base-compat-batteries-0.13.1: base-compat with extra batteries
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Bifoldable.Compat

Documentation

biList :: Bifoldable t => t a a -> [a] #

biall :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool #

biany :: Bifoldable t => (a -> Bool) -> (b -> Bool) -> t a b -> Bool #

biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a #

biconcat :: Bifoldable t => t [a] [a] -> [a] #

biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c] #

bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool #

bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a #

bifoldl' :: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a #

bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a #

bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a #

bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c #

bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a #

bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c #

biforM_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () #

bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () #

bilength :: Bifoldable t => t a b -> Int #

bimapM_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () #

bimaximum :: (Bifoldable t, Ord a) => t a a -> a #

bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a #

biminimum :: (Bifoldable t, Ord a) => t a a -> a #

biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a #

bimsum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a #

binotElem :: (Bifoldable t, Eq a) => a -> t a a -> Bool #

binull :: Bifoldable t => t a b -> Bool #

bior :: Bifoldable t => t Bool Bool -> Bool #

biproduct :: (Bifoldable t, Num a) => t a a -> a #

bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () #

bisequence_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () #

bisum :: (Bifoldable t, Num a) => t a a -> a #

bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () #

class Bifoldable (p :: Type -> Type -> Type) where #

Minimal complete definition

bifoldr | bifoldMap

Methods

bifold :: Monoid m => p m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c #

Instances

Instances details
Bifoldable Either 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => Either m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Either a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Either a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Either a b -> c #

Bifoldable Arg 
Instance details

Defined in Data.Semigroup

Methods

bifold :: Monoid m => Arg m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Arg a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Arg a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Arg a b -> c #

Bifoldable (,) 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (a, b) -> c #

Bifoldable (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => Const m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Const a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Const a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Const a b -> c #

Bifoldable ((,,) x) 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, a, b) -> c #

Bifoldable (K1 i :: Type -> Type -> Type) 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => K1 i m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> K1 i a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> K1 i a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> K1 i a b -> c #

Bifoldable ((,,,) x y) 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, y, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, y, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, y, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, y, a, b) -> c #

Bifoldable ((,,,,) x y z) 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, y, z, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, y, z, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, y, z, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, y, z, a, b) -> c #

Bifoldable ((,,,,,) x y z w) 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, y, z, w, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, y, z, w, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, y, z, w, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, y, z, w, a, b) -> c #

Bifoldable ((,,,,,,) x y z w v) 
Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => (x, y, z, w, v, m, m) -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> (x, y, z, w, v, a, b) -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> (x, y, z, w, v, a, b) -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> (x, y, z, w, v, a, b) -> c #