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Abstract

UGALY (Universal Groups Acting LocallY) is a GAP package that provides methods to create, analyse and
find local actions of generalised universal groups acting on locally finite regular trees, following Burger-Mozes
and Tornier.

Copyright

UGALY is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any
later version.
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Chapter 1

Introduction

Let Q be a set of cardinality d € N>3 and let T; = (V, E) be the d-regular tree. We follow Serre’s graph
theory notation [Ser80]. Given a subgroup H of the automorphism group Aut(7) of T;, and a vertex
x € V, the stabilizer H, of x in H induces a permutation group on the set E(x) := {e € E | o(e) = x} of
edges issuing from x. We say that H is locally "P" if for every x € V said permutation group satisfies
the property "P", e.g. being transitive, semiprimitive, quasiprimitive or 2-transitive.

In [BMOO], Burger-Mozes develop a remarkable structure theory of closed, non-discrete, locally
quasiprimitive subgroups of Aut(7;), which resembles the theory of semisimple Lie groups. They
complement this structure theory with a particularly accessible class of subgroups of Aut(7;) with
prescribed local action: Given F < Sym(€), their universal group U(F) < Aut(7y) is closed, com-
pactly generated, vertex-transitive and locally permutation isomorphic to F. It is discrete if and only
if F is semiregular. When F is transitive, U(F) is maximal up to conjugation among vertex-transitive
subgroups of Aut(7}) that are locally permutation isomorphic to F, hence universal.

This construction was generalized by the second author in [Tor20]: In the spirit of k-closures of
groups acting on trees developed in [BEW15], we generalize the universal group construction by pre-
scribing the local action on balls of a given radius &k € N, the Burger-Mozes construction corresponding
to the case k = 1. Fix a tree By which is isomorphic to a ball of radius & in the labelled tree 7; and
let X : B(x,k) — Ba (x € V) be the unique label-respecting isomorphism. Then

ok - Aut(Ty) x V — Aut(Byy), (g,x) = Iy, 0g0 (If) ™!

captures the k-local action of g at the vertex x € V.
With this we can make the following definition: Let F < Aut(Bg ). Define

Ui(F) :={g € Aut(Ty) |Vx €V : or(g,x) € F}.

While Uy (F) is always closed, vertex-transitive and compactly generated, other properties of U(F)
do not carry over. Foremost, the group Ui(F) need not be locally action isomorphic to F and we
say that F < Aut(Bg ) satisfies condition (C) if it is. This can be viewed as an interchangeability
condition on neighbouring local actions, see Section 3.1. There is also a discreteness condition (D) on
F < Aut(Bg ) in terms of certain stabilizers in F' under which Uy (F) is discrete, see Section 5.1.

UGALY provides methods to create, analyse and find local actions F < Aut(Bgy) that satisfy
condition (C) and/or (D), including the constructions I', A, ®, X, and II developed in [Tor20]. This
package was developed within the Zero-Dimensional Symmetry Research Group in the School of
Mathematical and Physical Sciences at The University of Newcastle as part of a project course taken
by the first author, supervised by the second author.
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1.1 Purpose

Note: many of the examples in this manual access random elements of various domains via Random ().
To ensure reproducibility and testability we initialize the random source mt below each time.
Example
gap> mt:=RandomSource (IsMersenneTwister,1);
<RandomSource in IsMersenneTwister>

UGALY serves both a research and an educational purpose. It consolidates a rudimentary codebase
that was developed by the second author in the course of research undertaken towards the article
[Tor20]. This codebase had been tremendously beneficial in achieving the results of [Tor20] in the
first place and so there has always been a desire to make it available to a wider audience.

From a research perspective, UGALY introduces computational methods to the world of locally
compact groups. Due to the Cayley-Abels graph construction [KMOS], groups acting on trees form a
particularly significant class of totally disconnected locally compact groups. Burger-Mozes universal
groups [BMO00] and their generalisations Uy (F), where F < Aut(By ) satisfies the compatibility con-
dition (C), are among the most accessible of these groups and form a significant subclass: in fact, due
to [Tor20, Corollary 4.32], the locally transitive, generalised universal groups are exactly the closed,
locally transitive subgroups of Aut(7) that contain an inversion of order 2 and satisfy one of the inde-
pendence properties (P;) (see [BEW15]) that generalise Tits” independence property (P), see [Tit70].
Subgroups of Aut(By x) are treated as objects of the category IsLocalAction (2.1.1) to the effect that
they remember the degree d the radius & of the tree B that they act on as a permutation group on its
d-(d — 1)k leaves. For example, the automorphism group of B3> can be accessed as follows.

Example

gap> F:=AutBall(3,2);

Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) 1
gap> IsLocalAction(F);

true

gap> LocalActionDegree(F);

3

gap> LocalActionRadius(F);

2

In general, a subgroup F of the permutation group Aut(B, ) can be turned into an object of the cate-
gory IsLocalAction (2.1.1) by calling the creator operation LocalAction (2.1.2) with the degree d,
the radius k and the permutation group F itself. For example, the subgroup A3 < Aut(Bs3 ;) = S3 can
be generated as follows.

Example
gap> A3:=LocalAction(3,1,AlternatingGroup(3));
AltC [ 1 ..31)

gap> IsLocalAction(A3);

true

gap> LocalActionDegree (A3);

3

gap> LocalActionRadius(A3);

1
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UGALY provides the means to generate a library of all generalised universal groups Ui (F) in terms
of their k-local action F < Aut(B,y) satisfying the compatibility condition (C). We envision to add
such a library in a future version of this package. In the case k = 1 of classical Burger-Mozes groups,
the compatibility condition (C) is void and so the library would coincide with the library of finite
transitive permutation groups TransGrp. For example, in the case (d,k) = (3,1) there are only two
local actions, corresponding to the two transitive permutation groups of degree 3, namely A3 and S;.

Example
gap> A3:=LocalAction(3,1,TransitiveGroup(3,1));
A3
gap> S3:=LocalAction(3,1,TransitiveGroup(3,2));
S3

To create this library for the case (d, k) = (3,2) we organise the subgroups F' < Aut(Bj3 ) that satisfy
the compatibility condition (C) according to which subgroup of Aut(Bs3 ;) they project to under the
natural projection Aut(B3 ) — Aut(Bs ;) that restricts automorphisms to Bz} C B3 . In other words,
we organise the subgroups F < Aut(B3,) satisfying (C) according to o (F,b) < Aut(B3 ;). Using
ConjugacyClassRepsCompatibleGroupsWithProjection (3.3.5), the following code illustrates
that there is one conjugacy class of groups that projects to A3 whereas five project to S3.

Example
gap> A3_extn:=ConjugacyClassRepsCompatibleGroupsWithProjection(2,A3);
[ Group([ (1,4,5)(2,3,6) 1) 1
gap> S3_extn:=ConjugacyClassRepsCompatibleGroupsWithProjection(2,S3);
[ Group([ (1,2)(3,5)(4,6), (1,4,5)(2,3,6) 1),
Group([ (1,2)(3,4)(5,6), (1,2)(3,5)(4,6), (1,4,5)(2,3,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (3,5,4,6) 1),
Group([ (3,4)(5,6), (1,2)(38,4), (1,4,5)(2,3,6), (3,5)(4,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (5,6), (3,5,4,6) 1) 1]

All of these groups have been identified to stem from general constructions of groups F < Aut(By )
satisfying (C) from a given group F < Aut(By,;), much like some finite transitive groups have been
organised into families. Specifically, the constructions I'(F), A(F), II(F, p,X ) and ®(F) introduced in
the article [Tor20, Section 3.4] can be accessed via the UGALY functions LocalActionGamma (4.1.2),
LocalActionDelta (4.1.3), LocalActionPi (4.4.4) and LocalActionPhi (4.2.1) respectively, see
Chapter 4. Below, we use these functions to identify all six groups of the previous output.

Example
gap> LocalActionPhi (A3)=A3_extn[1];
true
gap> LocalActionGamma(3,S3)=S3_extn[1];
true
gap> LocalActionDelta(3,S3)=S3_extn[2];
false

gap> IsConjugate(AutBall(3,2),LocalActionDelta(3,S3),33 _extn[2]);
true

gap> rho:=SignHomomorphism(S3);;

gap> LocalActionPi(2,3,83,rho, [0,1])=S3_extn[3];

true

gap> LocalActionPi(2,3,S83,rho, [1])=S3_extn[4];

true

gap> LocalActionPhi (S3)=S3_extn[5];

true
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UGALY may also be a useful tool in the context of the Weiss conjecture [Wei78], which in particular
states that there are only finitely many conjugacy classes of discrete, vertex-transitive and locally
primitive subgroup of Aut(7;). When such a group contains an inversion of order 2, it can be written
as a universal group Ui(F), where F < Aut(By x) satisfies both the compatibility condition (C) and the
discreteness condition (D), due to [Tor20, Corollary 4.38]. Therefore, UGALY can be used to construct
explicit examples of groups relevant to the Weiss conjecture. Their structure as well as patterns in their
appearance may provide more insight into the conjecture and suggest directions of research. At the
very least, UGALY provides lower bounds on their numbers. For example, consider the case d = 4.
There are exactly two primitive groups of degree 4, namely A4 and S4, which we readily turn into

objects of the category IsLocalAction (2.1.1).
Example

gap> NrPrimitiveGroups(4);

2

gap> A4d:=LocalAction(4,1,PrimitiveGroup(4,1));;
gap> S4:=LocalAction(4,1,PrimitiveGroup(4,2));;

Next, we proceed as before to determine how many conjugacy classes of subgroups of Aut(Bj4 ) with
(C) there are that project onto A4 and S4 respectively. We then filter the output for subgroups that, in

addition, satisfy the discreteness condition (D), see SatisfiesD (5.2.1).
Example
gap> A4_extn:=ConjugacyClassRepsCompatibleGroupsWithProjection(2,A4);;
gap> Size(A4_extn); Size(Filtered(A4_extn,SatisfiesD));

5

2

gap> S4_extn:=ConjugacyClassRepsCompatibleGroupsWithProjection(2,54);;
gap> Size(S4_extn); Size(Filtered(S4_extn,SatisfiesD));

13

3

For A4 there are two, and for Sy there are three. We conclude that there are at least 5 =2 + 3 conjugacy
classes of discrete, vertex-transitive and locally primitive subgroups of Aut(7;). More examples, and
hence a better lower bound, can be obtained by increasing k.

Every subgroup F' < Aut(By ;) which satisfies both (C) and (D) admits an involutive compatibility
cocycle (see [Tor20, Section 3.2.2]),i.e. amap z: F x {1,...,d} — F which satisfies certain properties
reflecting the discreteness of the group Ui (F). It is intriguing that some groups F' < Aut(B, ;) with (C)
and (D) stem from groups F’' < Aut(B, 1) that satisfy (C), admit an involutive compatibility cocycle
z but do not satisfy (D), in the sense of the construction F = I',(F’) (see [Tor20, Proposition 3.26]),
whereas others do not. For example, in the case d = 3, five of the seven conjugacy classes of discrete,
vertex-transitive and locally primitive subgroups of Aut(73) come from generalised universal groups.
Of these five, three arise from groups F’ as above while the remaining two do not, see [Tor20, Example
4.39]. The three groups are I'(A3) and I'(S3) and I";(IT(S3,sgn,{1})). The code example below verifies
that T1(S3,sgn,{1}) < Aut(B3) indeed satisfies (C), does not satisfy (D) but admits an involutive

compatibility cocycle z, which can be obtained using InvolutiveCompatibilityCocycle (5.3.1).
Example

gap> S3:=SymmetricGroup(3);;

gap> rho:=SignHomomorphism(S3);;

gap> H:=LocalActionPi(2,3,S83,rho, [1]);;

gap> [SatisfiesC(H), SatisfiesD(H), not InvolutiveCompatibilityCocycle(H)=faill;
[ true, false, true ]




UGALY 8

We then find that there are four conjugacy classes of subgroups of Aut(B33) that satisfy (C) and
project onto I1(S3,sgn,{1}) under the natural projection map Aut(B33) — Aut(B3). Of these four
groups, two also satisy (D) and one is conjugate to I';(I1(S3,sgn,{1})), which we construct using

LocalActionGamma (4.1.2).

Example
gap> grps:=ConjugacyClassRepsCompatibleGroupsWithProjection(3,H);; Size(grps);
4

gap> Size(Filtered(grps,SatisfiesD));

2

gap> z:=InvolutiveCompatibilityCocycle(H);;

gap> Size(Intersection(LocalActionGamma(H,z) ~AutBall(3,3),grps));
1

The number of different (involutive) compatibility cocycles that a group F < Aut(B;;) may ad-
mit is also mysterious, including in the case k = 1. For example, consider the case (d,k) = (4,1).
We compute the set of all involutive compatibility cocycles of a local action using the function
Al1InvolutiveCompatibilityCocycles (5.3.2):
Example
gap> grps:=AllTransitiveGroups (NrMovedPoints,4) ;

[ C(4) = 4, E(4) = 2[x]2, D(4), A4, sS4 ]

gap> Apply(grps,H->Size(AllInvolutiveCompatibilityCocycles(LocalAction(4,1,H))));;
gap> grps;

[1, 1, 8, 28, 256 ]

From an educational point of view, we envision that UGALY could be used to enhance the learning
experience of students in the area of groups acting on trees. The class of generalised universal groups
forms an ideal framework for this purpose. For example, to internalise the widely used concept of
local actions it may be helpful to take a 2-local action in the form of an automorphism of B3, de-
compose it into its 1-local actions, and recover the original autmorphism from them: in the example
below, we start with a random automorphism aut of B3>. We then compute its 1-local actions at
the center vertex, represented by the address [], as well as its neighbours [1], [2] and [3] using
LocalAction (2.1.6). Finally, we recover aut from the 1-local actions at the center’s neighbours us-
ing AssembleAutomorphism (3.2.4), which only requires the local actions at the center’s neighbours.
Example

gap> mt:=RandomSource(IsMersenneTwister,1);;
gap> aut:=Random(mt,AutBall(3,2));
(1,4,5,2,3,6)

gap> aut_center:=LocalAction(1,3,2,aut,[]);
(1,2,3)

gap> aut_1:=LocalAction(1,3,2,aut, [1]);
(1,2,3)

gap> aut_2:=LocalAction(1,3,2,aut, [2]);
(1,2,3)

gap> aut_3:=LocalAction(1,3,2,aut, [3]);
(1,3)

gap> AssembleAutomorphism(3,1, [aut_1,aut_2,aut_3]);
(1,4,5,2,3,6)

The computationally inclined student may also benefit from verifying existing theorems using
UGALY. For example, one way to phrase a part of Tutte’s work [Tut47] [Tut59] is to say that there
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are only three conjugacy classes of discrete, locally transitive subgroups of Aut(73) that contain an
inversion of order 2 and are P»-closed. Due to [Tor20, Corollary 4.38], this can be verified by check-
ing that among all locally transitive subgroups of Aut(Bs3 ) which satisfy the compatibility condition
(C), only three also satisfy the discreteness condition (D). In the code example below, we start this
task by turning the two transitive groups of degree 3, namely A3 and S3, into objects of the category

IsLocalAction (2.1.1). For each of them we proceed to compute the list of subgroups of Aut(B3 )

that satisfy (C) and project onto the respective group as before. Now we merely have to go through

these lists and check whether or not condition (D) is satisfied. Indeed we find exactly three groups.

Example

gap> A3:=LocalAction(3,1,TransitiveGroup(3,1));;

gap> S3:=LocalAction(3,1,TransitiveGroup(3,2));;

gap> A3_extn:=ConjugacyClassRepsCompatibleGroupsWithProjection(2,A3);

[ Group([ (1,4,5)(2,3,6) 1) ]

gap> S3_extn:=ConjugacyClassRepsCompatibleGroupsWithProjection(2,S3);

[ Group([ (1,2)(3,5)(4,6), (1,4,5)(2,3,6) 1),
Group([ (1,2)(3,4)(5,6), (1,2)(3,5)(4,6), (1,4,5)(2,3,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (3,5,4,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (3,5)(4,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (5,6), (3,5,4,6) 1) ]

gap> Apply(A3_extn,SatisfiesD); A3_extn;

[ true ]

gap> Apply(S3_extn,SatisfiesD); S3_extn;

[ true, true, false, false, false ]

It may also be instructive to generate involutive compatibility cocycles computationally and check
parts of the axioms manually. In the example below, we first generate the group I1(S3,sgn,{1}) <
Aut(B3 ), which we know admits an involutive compatibility cocycle from before. We then check
that z is indeed involutive on a random element a € I1(S3,sgn,{1}) in direction 1 by checking that

2(z(a,1),1) = a.
Example

gap> S3:=SymmetricGroup(3);;

gap> rho:=SignHomomorphism(SB);;

gap> H:=LocalActionPi(2,3,S83,rho, [1]);;

gap> z:=InvolutiveCompatibilityCocycle(H);;

gap> mt:=RandomSource(IsMersenneTwister,1);;

gap> a:=Random(mt,H); Image(z,[Image(z,[a,1]1),1]);
(1,5,3)(2,6,4)

(1,5,3)(2,6,4)




Chapter 2

Preliminaries

We recall the following notation from the Introduction which is essential throughout this manual, cf.
[Tor20]. Let Q be a set of cardinality d € N>3 and let T; = (V, E) denote the d-regular tree, following
the graph theory notation in [Ser80]. A labelling [ of T; is a map [ : E — Q such that for every x € V
the restriction /, : E(x) — Q, e — [(e) is a bijection, and /(e) = I(e) for all e € E. For every k € N, fix
a tree By x which is isomorphic to a ball of radius k around a vertex in 7; and carry over the labelling
of Ty to By x via the chosen isomorphism. We denote the center of By, by b.

For every x € V there is a unique, label-respecting isomorphism /¥ : B(x, k) — B, i. We define the
k-local action o (g,x) € Aut(B, ) of an automorphism g € Aut(7;) at a vertex x € V via the map

oy - Aut(Ty) X V — Aut(By ), 0k(g,x) = Ok (g,x) = lg 0 go (1)

2.1 Local actions

In this package, local actions F < Aut(B,) are handled as objects of the category IsLocalAction
(2.1.1) and have several attributes and properties introduced throughout this manual. Most importantly,
a local action always stores the degree d and the radius k of the ball B, ; that it acts on.

2.1.1 IsLocalAction (for IsPermGroup)

> IsLocalAction(F) (filter)

Returns: true if F is an object of the category IsLocalAction, and false otherwise.

Local actions F < Aut(Bgy) are stored together with their degree (see LocalActionDegree
(2.1.4)), radius (see LocalActionRadius (2.1.5)) as well as other attributes and properties in this
category. They can be initialised using the creator operation LocalAction (2.1.2).

Example
gap> G:=WreathProduct (SymmetricGroup(2) ,SymmetricGroup(3));
Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) 1D

gap> IsLocalAction(G) ;

false

gap> H:=AutBall(3,2);

Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) 1)

gap> IsLocalAction(H);

true

gap> K:=LocalAction(3,2,G);

Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) 1)

10
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gap> IsLocalAction(K);
true

2.1.2 LocalAction (for IsInt, IsInt, IsPermGroup)

> LocalAction(d, k, F) (operation)
Returns: the regular rooted tree group G as an object of the category IsLocalAction (2.1.1),
checking that F is indeed a subgroup of Aut(Bg ).
The arguments of this method are a degree d € N>3, aradius k € Ny and a group F < Aut(B ).

Example
gap> G:=WreathProduct (SymmetricGroup(2),SymmetricGroup(3));
Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) 1)
gap> IsLocalAction(G);

false

gap> G:=LocalAction(3,2,G);

Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) 1D
gap> IsLocalAction(G);

true

2.1.3 LocalActionNC (for IsInt, IsInt, IsPermGroup)

> LocalActionNC(d, k, F) (operation)
Returns: the regular rooted tree group G as an object of the category IsLocalAction (2.1.1),
without checking that F is indeed a subgroup of Aut(Bg ).
The arguments of this method are a degree d € N3, aradius k € Ny and a group F < Aut(B ).

2.1.4 LocalActionDegree (for IsLocalAction)

> LocalActionDegree (F) (attribute)
Returns: the degree d of the ball By that F' is acting on.
The argument of this attribute is a local action F < Aut(B,x) (see IsLocalAction (2.1.1)).

Example
gap> A4d:=LocalAction(4,1,AlternatingGroup(4));
AltC L1 ..41)

gap> F:=LocalActionPhi(3,A4);

<permutation group with 18 generators>

gap> LocalActionDegree(F);

4

2.1.5 LocalActionRadius (for IsLocalAction)

> LocalActionRadius (F) (attribute)

Returns: the radius k of the ball By that F' is acting on.

The argument of this attribute is a local action F < Aut(B, x) (see IsLocalAction (2.1.1)).
Example
gap> A4:=LocalAction(4,1,AlternatingGroup(4));
AltC [ 1 .. 41)
gap> F:=LocalActionPhi(3,A4);
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<permutation group with 18 generators>
gap> LocalActionRadius(F);
3

2.1.6 LocalAction (for r, d, k, aut, addr)

> LocalAction(r, d, k, aut, addr) (operation)
Returns: the r-local action o, (aut,addr) of the automorphism aut of B, at the vertex repre-
sented by the address addr.
The arguments of this method are a radius r, a degree d € N3, aradius k € N, an automorphism
aut of By, and an address addr.

Example
gap> a:=(1,3,5)(2,4,6);; a in AutBall(3,2);
true
gap> LocalAction(2,3,2,a,[1);

(1,3,5)(2,4,6)
gap> LocalAction(1,3,2,a,[1);
(1,2,3)
gap> LocalAction(1,3,2,a,[1]);
(1,2)
Example

gap> mt:=RandomSource(IsMersenneTwister,1);;

gap> b:=Random(mt,AutBall(3,4));

(1,18,11,5,23,14,4,20,10,7,22,16) (2,17,12,6,24,13,3,19,9,8,21,15)
gap> LocalAction(2,3,4,b,[3,1]1);

(1,2)(3,6,4,5)

gap> LocalAction(3,3,4,b,[3,1]1);

Error, the sum of input argument r=3 and the length of input argument
addr=[ 3, 1 ] must not exceed input argument k=4

2.1.7 Projection (for F, r)

> Proj ection(F, r) (operation)
Returns: the restriction of the projection map Aut(By k) — Aut(By,) to F.
The arguments of this method are a local action F < Aut(B, x), and a projection radius r < k.

Example

gap> F:=LocalActionGamma(4,3,SymmetricGroup(3));

Group([ (1,16,19)(2,15,20)(3,13,18) (4,14,17) (5,10,23) (6,9,24) (7,12,22)
(8,11,21), (1,9)(2,10)(3,12)(4,11)(5,15)(6,16) (7,13) (8,14) (17,21) (18,22)
(19,24)(20,23) 1)

gap> pr:=Projection(F,2);

<action homomorphism>

gap> mt:=RandomSource(IsMersenneTwister,1);;

gap> a:=Random(mt,F);; Image(pr,a);

(1,2)(3,5) (4,6)
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2.1.8 ImageOfProjection

> ImageOfProjection(F, r) (function)
Returns: the local action o,(F,b) < Aut(Bg,).
The arguments of this method are a local action F < Aut(By ), and a projection radius r < k.
This method uses LocalAction (2.1.6) on generators rather than Projection (2.1.7) on the group to
compute the image.

Example

gap> AutBall(3,2);

Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) 1)
gap> ImageOfProjection(AutBall(3,2),1);

Group([ O, O, O, (1,2,3), (1,2) D

2.2 Finite balls

The automorphism groups of the finite labelled balls By lie at the center of this package. The method
AutBall (2.2.1) produces these automorphism groups as iterated wreath products. The result is a
permutation group on the set of leaves of By k.

2.2.1 AutBall

> AutBall(d, k) (function)
Returns: the local action Aut(B, ) as a permutation group of the d - (d — 1)~ ! leaves of By .
The arguments of this method are a degree d € N>3 and a radius k € Ny.

Example
gap> G:=AutBall(3,2);

Group([ (1,2), (3,4), (5,6), (1,3,5)(2,4,6), (1,3)(2,4) 1)
gap> Size(G);

48

2.3 Addresses and leaves
The vertices at distance n from the center b of B, ; are addressed as elements of the set
QM = {(oy,...,0,) € Q" |VIe{l,....n—1}: @ # o1},

i.e. as lists of length n of elements from [1..d] such that no two consecutive entries are equal. They
are ordered according to the lexicographic order on Q). The center b itself is addressed by the empty
list []. Note that the leaves of B, correspond to elements of Qb

2.3.1 BallAddresses

> BallAddresses(d, k) (function)
Returns: a list of all addresses of vertices in B,y in ascending order with respect to length,
lexicographically ordered within each level. See AddressOfLeaf (2.3.3) and LeafOfAddress (2.3.4)
for the correspondence between the leaves of B, and addresses of length k.
The arguments of this method are a degree d € N>3 and a radius k € Ny.
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Example
gap> BallAddresses(3,1);

trf 1,011,021, [31]1]

gap> BallAddresses(3,2);

tc 1, r+31, 021,031, 01,21,[01,31,[02,11,[2,31,
[3 11, [3,21]1

2.3.2 LeafAddresses

> LeafAddresses(d, k) (function)
Returns: a list of addresses of the leaves of B, in lexicographic order.
The arguments of this method are a degree d € N>3 and a radius k € Np.

Example

gap> LeafAddresses(3,2);
(1,21, 01,31, 02,11, 0[02,31,0[3,11,1[3,211

2.3.3 AddressOfLeaf

> AddressOfLeaf(d, k, 1f) (function)
Returns: the address of the leaf 1f of B, with respect to the lexicographic order.
The arguments of this method are a degree d € N>3, aradius k € N, and a leaf 1f of By .

Example

gap> AddressOfLeaf(3,2,1);
[1, 2]

gap> AddressOfLeaf(3,3,1);
[1, 2, 1]

2.3.4 LeafOfAddress

> LeafOfAddress(d, k, addr) (function)
Returns: the smallest leaf (integer) whose address has addr as a prefix.
The arguments of this method are a degree d € N3, aradius k € N, and an address addr.

Example
gap> LeafOfAddress(3,2,[1,2]);
1
gap> LeafOfAddress(3,2,[3]);
5
gap> LeafOfAddress(3,2,[]1);
1
2.3.5 ImageAddress
> ImageAddress(d, k, aut, addr) (function)

Returns: the address of the image of the vertex represented by the address addr under the
automorphism aut of By .

The arguments of this method are a degree d € N>3, a radius k € N, an automorphism aut of
B, i, and an address addr.
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Example
gap> ImageAddress(3,2,(1,2),[1,2]);

[1, 3]

gap> ImageAddress(3,2,(1,2),[11);
[1]

2.3.6 ComposeAddresses

> ComposeAddresses(addrl, addr2) (function)
Returns: the concatenation of the addresses addrl and addr2 with reduction as per [Tor20,
Section 3.2].

The arguments of this method are two addresses addrl and addr2.

Example
gap> ComposeAddresses([1,3],[2,1]);

[1,3,2,1]

gap> ComposeAddresses([1,3,2],[2,1]);
[1, 3, 1]




Chapter 3

Compatibility

3.1 The compatibility condition (C)

A subgroup F < Aut(B,) satifies the compatibility condition (C) if and only if Ui(F) is locally
action isomorphic to F, see [ Tor20, Proposition 3.8]. The term compatibility comes from the following
translation of this condition into properties of the (k — 1)-local actions of elements of F: The group F
satisfies (C) if and only if

Vac FYoc Q3B cF: o 1(a,b) =0 1(B,be), Ok1(0,be) = 0r_1(B,b).

3.2 Compatible elements

This section is concerned with testing compatibility of two given elements (see
AreCompatibleBallElements (3.2.1)) and finding an/all elements that is/are compatible with
a given one (see CompatibleBallElement (3.2.2), CompatibilitySet (3.2.3)).

3.2.1 AreCompatibleBallElements

> AreCompatibleBallElements(d, k, autl, aut2, dir) (function)
Returns: true if autl and aut2 are compatible with each other in direction dir, and false
otherwise.
The arguments of this method are a degree d € N>3, a radius k € N, two automorphisms aut1,
aut2 € Aut(By ), and a direction dir €[1..d].

Example
gap> AreCompatibleBallElements(3,1,(1,2),(1,2,3),1);
true
gap> AreCompatibleBallElements(3,1,(1,2),(1,2,3),2);
false
Example
gap> a:=(1,3,5)(2,4,6);; a in AutBall(3,2);
true
gap> LocalAction(1,3,2,a,[]); LocalAction(1,3,2,a,[1]);
(1,2,3)
1,2
gap> b:=(1,4)(2,3);; b in AutBall(3,2);

16
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true

gap> LocalAction(1,3,2,b,[]); LocalAction(1,3,2,b,[1]);
(1,2)

(1,2,3)

gap> AreCompatibleBallElements(3,2,a,b,1);

true

gap> AreCompatibleBallElements(3,2,a,b,3);

false

3.2.2 CompatibleBallElement

> CompatibleBallElement(F, aut, dir) (function)
Returns: an element of F that is compatible with aut in direction dir if one exists, and fail
otherwise.
The arguments of this method are alocal action F < Aut(By x), an element aut € F, and a direction
dir €[1..4].

Example
gap> mt:=RandomSource(IsMersenneTwister,1);;
gap> a:=Random(mt,AutBall(5,1)); dir:=Random(mt,[1..5]);
(1,2,5,4,3)
4
gap> CompatibleBallElement (AutBall(5,1),a,dir);
(1,2,5,4,3)
Example
gap> a:=(1,3,5)(2,4,6);; a in AutBall(3,2);
true
gap> CompatibleBallElement (AutBall(3,2),a,1);
(1,4,2,3)
3.2.3 CompatibilitySet
> CompatibilitySet(F, aut, dir) (operation)
> CompatibilitySet(F, aut, dirs) (operation)

for the arguments F, aut, dir
Returns: the list of elements of F that are compatible with aut in direction dir.

The arguments of this method are a local action F of < Aut(Bd,k), an automorphism aut € F,
and a direction dir €[1..d].

for the arguments F, aut, dirs
Returns: the list of elements of F that are compatible with aut in all directions of dirs.

The arguments of this method are a local action F of < Aut(Bgx), an automorphism aut € F,
and a sublist of directions dirs C[1..d].

Example
gap> F:=LocalAction(4,1,TransitiveGroup(4,3));
D(4)

gap> G:=LocalAction(4,1,SymmetricGroup(4));
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Sym( [ 1 ..41)
gap> aut:=(1,3);; aut in F;
true
gap> CompatibilitySet(G,aut,1);
RightCoset(Sym( [ 2 .. 41 ),(1,3))
gap> CompatibilitySet(F,aut,1);
RightCoset (Group([ (2,4) 1),(1,3))
gap> CompatibilitySet(F,aut,[1,3]);
RightCoset (Group([ (2,4) 1),(1,3))
gap> CompatibilitySet(F,aut, [1,2]);
RightCoset (Group(()),(1,3))
3.2.4 AssembleAutomorphism
> AssembleAutomorphism(d, k, auts) (function)

Returns: the automorphism (aut, (auts[i])?,) of By 1, where aut is implicit in (auts[i])¢

i=1"

The arguments of this method are a degree d € Nx3, a radius k € N, and a list auts of d auto-

morphisms (auts[i])Z, of B, which comes from an element (aut, (auts[i])L ) of Aut(Byi1)-
Example

gap> mt:=RandomSource(IsMersenneTwister,1);;
gap> aut:=Random(mt,AutBall(3,2));
(1,4,5,2,3,6)

gap> auts:=[];;

gap> for i in [1..3] do auts[i] :=CompatibleBallElement (AutBall(3,2),aut,i); od;
gap> auts;

[ (1,4,6,2,3,5), (1,3,6,2,4,5), (1,5)(2,6) ]
gap> a:=AssembleAutomorphism(3,2,auts);
(1,7,9,3,5,11)(2,8,10,4,6,12)

gap> a in AutBall(3,3);

true

gap> LocalAction(2,3,3,a,[]1);

(1,4,5,2,3,6)

3.3 Compatible subgroups

Using the methods of Section 3.2, this section provides methods to test groups for the compatibility
condition and search for compatible subgroups inside a given group, e.g. Aut(Bg ), or with a certain

image under some projection.

3.3.1 MaximalCompatibleSubgroup (for IsLocalAction)

> MaximalCompatibleSubgroup (F) (attribute)

Returns: The local action C(F) < Aut(By ), which is the maximal compatible subgroup of F.
The argument of this attribute is a local action F < Aut(By ) (see IsLocalAction (2.1.1)).

Example
gap> F:=LocalAction(3,1,Group((1,2)));
Group([ (1,2) 1)

gap> MaximalCompatibleSubgroup (F) ;

Group([ (1,2) 1)
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gap> G:=LocalAction(3,2,Group((1,2)));
Group([ (1,2) 1D

gap> MaximalCompatibleSubgroup(G) ;
Group(())

3.3.2 SatisfiesC (for IsLocalAction)

> SatisfiesC(F) (property)

Returns: true if F satisfies the compatibility condition (C), and false otherwise.

The argument of this property is a local action F < Aut(By ) (see IsLocalAction (2.1.1)).
Example
gap> D:=LocalActionDelta(3,SymmetricGroup(3));

Group([ (1,3,6)(2,4,5), (1,3)(2,4), (1,2)(3,4)(5,6) 1)
gap> SatisfiesC(D);
true

3.3.3 CompatibleSubgroups

> CompatibleSubgroups (F) (function)
Returns: the list of all compatible subgroups of F.
The argument of this method is a local action F < Aut(Bgg). This method
calls AllSubgroups on F and is therefore slow. Use for instructional purposes on

small examples only, and wuse ConjugacyClassRepsCompatibleSubgroups (3.3.4) or
ConjugacyClassRepsCompatibleGroupsWithProjection (3.3.5) for computations.

Example

gap> G:=LocalActionGamma(3,SymmetricGroup(3));

Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) 1)

gap> list:=CompatibleSubgroups(G) ;

[ Group(()), Group([ (1,2)(3,5)(4,6) 1), Group([ (1,3)(2,4)(5,6) 1),
Group([ (1,6)(2,5)(3,4) 1), Group([ (1,4,5)(2,3,6) 1),
Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) 1) ]

gap> Size(list);

6

gap> Size(AllSubgroups (SymmetricGroup(3)));

6

3.3.4 ConjugacyClassRepsCompatibleSubgroups (for IsLocalAction)

> ConjugacyClassRepsCompatibleSubgroups (F) (attribute)
Returns: a list of compatible representatives of conjugacy classes of F that contain a compatible
subgroup.
The argument of this method is a local action F of Aut(By ).
Example
gap> ConjugacyClassRepsCompatibleSubgroups (AutBall(3,2));
[ Group(()), Group([ (1,2)(3,5)(4,6) 1), Group([ (1,4,5)(2,3,6) 1),
Group([ (3,5)(4,6), (1,2) 1), Group([ (1,2)(3,5)(4,6), (1,3,6)(2,4,5) 1),
Group([ (3,5)(4,6), (1,3,5)(2,4,6), (1,2)(3,4)(5,6) 1),
Group([ (1,2)(3,5)(4,6), (1,3,5)(2,4,6), (1,2)(5,6), (1,2)(3,4) 1),
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Group([ (3,5)(4,6), (1,3,5)(2,4,6), (1,2)(5,6), (1,2)(3,4) 1),
Group([ (5,6), (3,4), (1,2), (1,3,5)(2,4,6), (3,5)(4,6) 1) ]

3.3.5 ConjugacyClassRepsCompatibleGroupsWithProjection

> ConjugacyClassRepsCompatibleGroupsWithProjection(1l, F) (function)
Returns: a list of compatible representatives of conjugacy classes of Aut(B,,) that contain a
compatible group which projects to F < Aut(Bg,).
The arguments of this method are a radius 1 € N, and a local action F < Aut(BdJ() for some k£ <.

Example
gap> S3:=LocalAction(3,1,SymmetricGroup(3));
Sym( [1..31)
gap> ConjugacyClassRepsCompatibleGroupsWithProjection(2,83);
[ Group([ (1,2)(3,5)(4,6), (1,4,5)(2,3,6) 1),
Group([ (1,2)(3,4)(5,6), (1,2)(3,5)(4,6), (1,4,5)(2,3,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (3,5,4,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (3,5)(4,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (5,6), (3,5,4,6) 1) ]
gap> A3:=LocalAction(3,1,AlternatingGroup(3));
AltC [ 1 ..31)
gap> ConjugacyClassRepsCompatibleGroupsWithProjection(2,A3);
[ Group([ (1,4,5)(2,3,6) 1) ]

Example
gap> F:=SymmetricGroup(3);;

gap> rho:=SignHomomorphism(F) ;;

gap> Hil:=LocalActionPi(2,3,F,rho,[0,1]);;
gap> H2:=LocalActionPi(2,3,F,rho, [1]);;
gap> Size(ConjugacyClassRepsCompatibleGroupsWithProjection(3,H1));
2

gap> Size(ConjugacyClassRepsCompatibleGroupsWithProjection(3,H2));
4




Chapter 4

Examples

Several classes of examples of subgroups of Aut(By ) that satisfy (C) and or (D) are constructed in
[Tor20] and implemented in this section. For a given permutation group F < S, there are always the
three local actions I'(F), A(F) and ®(F) on Aut(B, ) that project onto F. For some F, these are all
distinct and yield all universal groups that have F as their 1-local action, see [Tor20, Theorem 3.32].
More examples arise in particular when either point stabilizers in F are not simple, F preserves a
partition, or F is not perfect. This section also includes functions to provide the k-local actions of the
groups PGL(2,Q,,) and PSL(2,Q,,) acting on T, .

4.1 Discrete groups

Here, we implement the local actions I'(F), A(F) < Aut(Bg ), both of which satisfy both (C) and (D),
see [Tor20, Section 3.4.1].

4.1.1 LocalActionElement

> LocalActionElement(d, a) (operation)
> LocalActionElement (1, d, a) (operation)
> LocalActionElement(1l, d, s, addr) (operation)
> LocalActionElement(d, k, aut, z) (operation)

for the arguments d, a
Returns: the automorphism y(a) = (a, (a)wcq) € Aut(Bg2).

The arguments of this method are a degree d € N>3 and a permutation a € Sj.
for the arguments 1, d, a

Returns: the automorphism ¥ (a) € Aut(B,;) all of whose 1-local actions are given by a.

The arguments of this method are a radius 1 € N, a degree d € N>3 and a permutation a € Sy.
for the arguments 1, d, s, addr

Returns: the automorphism of B,;; whose 1-local actions are given by s at vertices whose
address has addr as a prefix and are trivial elsewhere.

The arguments of this method are a radius 1 € N, a degree d € N>3, a permutation s € S; and
an address addr of a vertex in B;; whose last entry is fixed by s.

21
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for the arguments d, k, aut, z
Returns: the automorphism ¥.(aut) = (aut, (z(aut,®))pco) € Aut(Bgii1)-

The arguments of this method are a degree d € N3, aradius k € N, an automorphism aut of
By, and an involutive compatibility cocycle z of a subgroup of Aut(B,y) that contains aut
(see InvolutiveCompatibilityCocycle (5.3.1)).

Example
gap> LocalActionElement (3, (1,2));

(1,3)(2,4) (5,6)

Example
gap> LocalActionElement(2,3,(1,2));
(1,3)(2,4)(5,6)
gap> LocalActionElement (3,3,(1,2));
(1,5)(2,6)(3,8)(4,7)(9,11) (10,12)

Example
gap> LocalActionElement (3,3, (1,2),[1,3]);

(3,4)
gap> LocalActionElement(3,3,(1,2),[]);
(1,5)(2,6)(3,8)(4,7)(9,11) (10,12)

Example
gap> S3:=LocalAction(3,1,SymmetricGroup(3));;

gap> zl:=AllInvolutiveCompatibilityCocycles(S3)[1];;
gap> LocalActionElement(3,1,(1,2),z1);
(1,4)(2,3)(5,6)

gap> z3:=AllInvolutiveCompatibilityCocycles(S3)[3];;
gap> LocalActionElement(3,1,(1,2),23);

(1,3)(2,4) (5,6)

4.1.2 LocalActionGamma

> LocalActionGamma(d, F) (operation)
> LocalActionGamma(l, d, F) (operation)
> LocalActionGamma(F, z) (operation)

for the arguments d, F
Returns: the local action I'(F) = {(a, (a)w) | a € F} < Aut(B,).

The arguments of this method are a degree d € N>3, and a subgroup F of S;.

for the arguments 1,d, F

Returns: the group I (F) < Aut(By,).

The arguments of this method are a radius 1 € N, a degree d € N3, and a subgroup F of S;.
for the arguments F, z

Returns: the group I',(F) = {(a, (z(a,®))peca) | a €F} < Aut(Bg 1)

The arguments of this method are a local action F < Aut(By) and an involutive compatibility
cocycle z of F (see InvolutiveCompatibilityCocycle (5.3.1)).
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Example
gap> F:=TransitiveGroup(4,3);;

gap> LocalActionGamma(4,F);

Group([ (1,5,9,10)(2,6,7,11)(3,4,8,12), (1,8)(2,7)(3,9)(4,5)(10,12) 1)

Example
gap> LocalActionGamma(3,SymmetricGroup(3));

Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) 1)

gap> LocalActionGamma(2,3,SymmetricGroup(3));

Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) 1)

gap> LocalActionGamma(3,3,SymmetricGroup(3));

Group([ (1,8,10)(2,7,9)(3,5,12)(4,6,11), (1,5)(2,6)(3,8)(4,7)(9,11)(10,12) 1)

Example

gap> F:=SymmetricGroup(3);;

gap> rho:=SignHomomorphism(F);;

gap> H:=LocalActionPi(2,3,F,rho, [1]);;

gap> z:=InvolutiveCompatibilityCocycle(H);;

gap> g:=LocalActionGamma(H,z);;

gap> [NrMovedPoints(g) ,Transitiveldentification(g)];
[ 12, 8]

4.1.3 LocalActionDelta

> LocalActionDelta(d, F) (operation)
> LocalActionDelta(d, F, C) (operation)

for the arguments d, F
Returns: the group A(F) < Aut(Bg7).

The arguments of this method are a degree d € N>3, and a transitive subgroup F of Sj.

for the arguments d, F, C
Returns: the group A(F,C) < Aut(By ).

The arguments of this method are a degree d € N3, a transitive subgroup F of S;, and a central
subgroup C of the stabilizer Fj of 1in F.

Example
gap> F:=SymmetricGroup(3);;

gap> D:=LocalActionDelta(3,F);

Group([ (1,3,6)(2,4,5), (1,3)(2,4), (1,2)(3,4)(5,6) 1)
gap> Fl:=Stabilizer(F,1);;

gap> Dil:=LocalActionDelta(3,F,F1);

Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6), (1,2)(3,4)(5,6) 1)
gap> D=D1;

false

gap> G:=AutBall(3,2);;

gap> D~G=D1"G;

true

Example

gap> F:=PrimitiveGroup(5,3);
AGL(1, 5)
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gap> Fl:=Stabilizer(F,1);

Group([ (2,3,4,5) 1)

gap> C:=Group((2,4)(3,5));

Group([ (2,4)(3,5) 1)

gap> Index(F1,C);

2

gap> Index(LocalActionDelta(5,F,F1),LocalActionDelta(5,F,C));
2

4.2 Maximal extensions

For any F < Aut(By ) that satisfies (C), the group ®(F) < Aut(Bg k1) is the maximal extension of
F that satisfies (C) as well. It stems from the action of U (F) on balls of radius k+ 1 in 7.

4.2.1 LocalActionPhi

> LocalActionPhi (F) (operation)
> LocalActionPhi(1, F) (operation)

for the argument F
Returns: the group ®4(F) = {(a,(ap)w) |a €F, VO € Q: ayp € Cr(a,0)} < Aut(Bgjt1).

The argument of this method is a local action F < Aut(Bg ).

for the arguments 1, F

Returns: the group ®/(F) = ®;_j0--- 0@, 1 o®(F) < Aut(By).

The arguments of this method are a radius 1 € N and a local action F < Aut(Bg ).
Example
gap> S3:=LocalAction(3,1,SymmetricGroup(3));;
gap> LocalActionPhi(S3);

Group([ O, (1,4,5)(2,3,6), (1,3)(2,4)(5,6), (1,2), (3,4), (5,6) 1)
gap> last=AutBall(3,2);

true

gap> A3:=LocalAction(3,1,AlternatingGroup(3));;

gap> LocalActionPhi (A3);

Group([ O, (1,4,5)(2,3,6) 1)

gap> last=LocalActionGamma(3,AlternatingGroup(3));

true

Example
gap> S3:=LocalAction(3,1,SymmetricGroup(3));;
gap> groups:=ConjugacyClassRepsCompatibleGroupsWithProjection(2,383);
[ Group([ (1,2)(3,5)(4,6), (1,4,5)(2,3,6) 1),
Group([ (1,2)(3,4)(5,6), (1,2)(3,5)(4,6), (1,4,5)(2,3,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (3,5,4,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (3,5)(4,6) 1),
Group([ (3,4)(5,6), (1,2)(3,4), (1,4,5)(2,3,6), (5,6), (3,5,4,6) 1) ]
gap> for G in groups do Print(Size(G),",",Size(LocalActionPhi(G)),"\n"); od;
6,6
12,12
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24,192
24,192
48,3072

Example
gap> LocalActionPhi(3,LocalAction(4,1,SymmetricGroup(4)));
<permutation group with 34 generators>

gap> last=AutBall(4,3);

true

Example
gap> rho:=SignHomomorphism(SymmetricGroup(3));;

gap> F:=LocalActionPi(2,3,SymmetricGroup(3),rho,[1]);; Size(F);
24

gap> P:=LocalActionPhi(4,F);; Size(P);

12288

gap> IsSubgroup(AutBall(3,4),P);

true

gap> SatisfiesC(P);

true

4.3 Normal subgroups and partitions

When point stabilizers in F' < S; are not simple, or F' preserves a partition, more universal groups can
be constructed as follows.

4.3.1 LocalActionPhi

> LocalActionPhi(d, F, N) (operation)
> LocalActionPhi(d, F, P) (operation)
> LocalActionPhi(F, P) (operation)

for the arguments d, F, N
Returns: the group ®(F,N) < Aut(B,).

The arguments of this method are a degree d € Nx3, a transitive permutation group F < S, and
a normal subgroup N of the stabilizer F| of 1 in F.

for the arguments d, F, P
Returns: the group ®(F,P) = {(a, (aw)w) | a €F, ap € Cr(a, ®) constant w.r.t. P} < Aut(B;>).

The arguments of this method are a degree d € N>3 and a permutation group F < §; and a
partition P of [1..d] preserved by F.

for the arguments F, P
Returns: the group ®4(F,P) = {(a,(Qw)w) | & € F, 0y € Cr(a,®) constant w.r.t. P} <
Aut(BdJ(Jrl).

The arguments of this method are a local action F < Aut(By ;) and a partition P of [1..d] pre-
serverd by mF < §,. This method assumes that all compatibility sets with respect to a partition
element are non-empty and that all compatibility sets of the identity with respect to a partition
element are non-trivial.
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gap> F:=SymmetricGroup(4);;

gap> Fl:=Stabilizer(F,1);

Sym( [ 2 ..41)

gap> grps:=NormalSubgroups (F1);

[Sym( [ 2 ..471), A1t( [ 2 .. 41 ), Group(Q) 1

gap> N:=grps[2];

Ale([2..41)

gap> LocalActionPhi(4,F,N);

Group([ (1,5,9,10)(2,6,7,11)(3,4,8,12), (1,4)(2,5)(3,6)(7,8)(10,11), (1,2,3) 1)
gap> Index(F1,N);

2

gap> Index(LocalActionPhi(4,F,F1),LocalActionPhi(4,F,N));
16

Example

gap> F:=TransitiveGroup(4,3);

D(4)

gap> P:=Blocks(F,[1..4]);

[[1,371,[2, 411

gap> G:=LocalActionPhi(4,F,P);

Group([ (1,5,9,10)(2,6,7,11)(3,4,8,12), (1,8)(2,7)(3,9)(4,5)(10,12), (1,3)
(8,9), (4,5)(10,12) 1)

gap> mt:=RandomSource(IsMersenneTwister,1);;

gap> aut:=Random(mt,G) ;

(1,3)(4,12)(5,10)(6,11)(8,9)

gap> LocalAction(1,4,2,aut,[1]); LocalAction(1,4,2,aut,[3]);

(2,4)

(2,4)

gap> LocalAction(1,4,2,aut, [2]); LocalAction(1,4,2,aut, [4]);

(1,3)(2,4)

(1,3)(2,4)

Example

gap> H:=TransitiveGroup(4,3);
D(4)

gap> P:=Blocks(H,[1..4]);
([1,31,02,41]1

gap> F:=LocalActionPhi(4,H,P);;
gap> G:=LocalActionPhi(F,P);;
gap> SatisfiesC(G);

true

4.4 Abelian quotients

When a permutation group F < S; is not perfect, i.e. it admits an abelian quotient p : ' — A, more
universal groups can be constructed by imposing restrictions of the form [T,cz [Ties,) P(01(@,x)) =

1 on elements o € F(F) < Aut(Byz).
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4.4.1 SignHomomorphism

> SignHomomorphism(F)
Returns: the sign homomorphism from F to S,.
The argument of this method is a permutation group F < S;. This method can be used as an
example for the argument rho in the methods SpheresProduct (4.4.3) and LocalActionPi (4.4.4).

Example

(function)

gap> F:=SymmetricGroup(3);;

gap> sign:=SignHomomorphism(F) ;

MappingByFunction( Sym( [ 1 .. 31 ), Sym( [ 1 .. 21 ), function( g ) ... end )
gap> Image(sign,(2,3));

(1,2)

gap> Image(sign,(1,2,3));

O

4.4.2 AbelianizationHomomorphism

> AbelianizationHomomorphism(F)
Returns: the homomorphism from F to F/[F, F].
The argument of this method is a permutation group F < §;. This method can be used as an
example for the argument rho in the methods SpheresProduct (4.4.3) and LocalActionPi (4.4.4).

(function)

Example
gap> F:=PrimitiveGroup(5,3);
AGL(1, 5)
gap> ab:=AbelianizationHomomorphism(PrimitiveGroup(5,3));
[ (2,3,4,5), (1,2,3,5,4) ] -> [ f1, <identity> of ... ]
gap> Elements(Range(ab));
[ <identity> of ..., f1, £2, f1xf2 ]
gap> StructureDescription(Range(ab));
n C4||

4.4.3 SpheresProduct

> SpheresProduct(d, k, aut, rho, R)
Returns: the product [T,eg [Tres(s, Tho (01 (aut,x)) € im(rho).
The arguments of this method are a degree d € N>3, a radius k € N, an automorphism aut of
By all of whose 1-local actions are in the domain of the homomorphism rho from a subgroup of

Sy to an abelian group, and a sublist R of [0..k-1]. This method is used in the implementation of
LocalActionPi (4.4.4).

(function)

Example
gap> rho:=SignHomomorphism(SymmetricGroup(3));;

gap> SpheresProduct (3,2,LocalActionElement(2,3,(1,2)),rho, [0]);
(1,2)

gap> SpheresProduct(3,2,LocalActionElement(2,3,(1,2)) ,rho, [0,1]);
O

Example

gap> F:=PrimitiveGroup(5,3);
AGL(1, 5)

gap> rho:=AbelianizationHomomorphism(F) ;;
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gap> Elements(Range(rho));

[ <identity> of ..., f1, £2, f1xf2 ]
gap> StructureDescription(Range(rho));
I|C4||

gap> mt:=RandomSource(IsMersenneTwister,1);;

gap> aut:=Random(mt,F);

(1,4,3,5)

gap> SpheresProduct(5,3,LocalActionElement (3,5,aut) ,rho, [2]);
<identity> of ...

gap> SpheresProduct(5,3,LocalActionElement (3,5,aut) ,rho, [1,2]);
f1

gap> SpheresProduct(5,3,LocalActionElement (3,5,aut) ,rho, [0,1,2]);
f2

4.4.4 LocalActionPi

> LocalActionPi(1, d, F, rho, R) (function)
Returns: the group IT(F,rho ,R) = {& € ®'(F) | [T,er [Tes(p,rho (01 (,x)) = 1} < Aut(Bg,).
The arguments of this method are a degree 1 € N>, a radius d € N>3, a permutation group F
< S4, a homomorphism p from F to an abelian group that is surjective on every point stabilizer in F,
and a non-empty, non-zero subset R of [0..1-1] that contains [ — 1.

Example
gap> F:=LocalAction(5,1,PrimitiveGroup(5,3));
AGL(1, 5)

gap> rhol:=AbelianizationHomomorphism(F);;
gap> rho2:=SignHomomorphism(F) ;;

gap> LocalActionPi(3,5,F,rhol,[0,1,2]);
<permutation group with 4 generators>

gap> Index(LocalActionPhi(3,F),last);

4

gap> LocalActionPi(3,5,F,rho2,[0,1,2]);
<permutation group with 5 generators>

gap> Index(LocalActionPhi(3,F),last);

2

4.5 Semidirect products

When a subgroup F < Aut(Bg ) satisfies (C) and admits an involutive compatibility cocycle z (which
is automatic when k = 1) one can characterise the kernels K < ®;(F) Nker(m) that fit into a z-split
exact sequence 1 — K — X(F,K) — F — 1 for some subgroup X(F,K) < Aut(B ) that satisfies
(C). This characterisation is implemented in this section.

4.5.1 CompatibleKernels

> CompatibleKernels(d, F) (operation)
> CompatibleKernels(F, z) (operation)
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for the arguments d, F
Returns: the list of kernels K < []gecq Fo = kerm < Aut(Bg ) that are preserved by the action
F n[locoFus a-(ap)o = (aa, 14,0 ") w.
The arguments of this method are a degree d € N>3, and a permutation group F < S,.
The kernels output by this method are compatible with F with respect to the standard co-
cycle (see InvolutiveCompatibilityCocycle (5.3.1)) and can be used in the method
LocalActionSigma (4.5.2).

for the arguments F, z
Returns: the list of kernels K < ®;(F) Nker(m) < Aut(Bg 1) that are normalized by I",(F)
and such that for all k € K and @ € Q there is k¢ € K with pr ke = z(pryk, ®) !

The arguments of this method are a local action F < Aut(By ) that satisfies (C) and an involutive

compatibility cocycle z of F (see InvolutiveCompatibilityCocycle (5.3.1)). It can be used

in the method LocalActionSigma (4.5.2).

Example

gap> CompatibleKernels(3,SymmetricGroup(3));

[ Group((), Group([ (1,2)(3,4)(5,6) 1), Group([ (3,4)(5,6), (1,2)(5,6) 1),
Group([ (5,6), (3,4), (1,2) 1) ]

Example

gap> P:=SymmetricGroup(3);;

gap> rho:=SignHomomorphism(P);;

gap> F:=LocalActionPi(2,3,P,rho, [1]);;

gap> z:=InvolutiveCompatibilityCocycle(F);;

gap> CompatibleKernels(F,z);

[ Group((Q)), Group([ (1,2)(3,4)(5,6)(7,8)(9,10)(11,12) 1),
Group([ (1,2)(3,4)(5,6)(7,8), (5,6)(7,8)(9,10)(11,12) 1),
Group([ (5,6)(7,8), (1,2)(3,4), (9,10)(11,12) 1) ]

4.5.2 LocalActionSigma

> LocalActionSigma(d, F, K) (operation)
> LocalActionSigma(F, K, z) (operation)

for the arguments d, F, K
Returns: the semidirect product X(F,K) < Aut(By ).

The arguments of this method are a degree d € N>3, a subgroup F of S; and a compatible kernel
K for F (see CompatibleKernels (4.5.1)).

for the arguments F, K, z
Returns: the semidirect product £,(F,K) < Aut(Bg s+1).

The arguments of this method are a local action F of Aut(B,y) that satisfies (C) and a ker-
nel K that is compatible for F with respect to the involutive compatibility cocycle z (see
InvolutiveCompatibilityCocycle (5.3.1) and CompatibleKernels (4.5.1)) of F.

Example

gap> S3:=SymmetricGroup(3);;
gap> kernels:=CompatibleKernels(3,S3);
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[ Group((), Group([ (1,2)(3,4)(5,6) 1), Group([ (3,4)(5,6), (1,2)(5,6) 1),
Group([ (5,6), (3,4), (1,2) 1) ]

gap> for K in kernels do Print(Size(LocalActionSigma(3,S3,K)),"\n"); od;

6

12

24

48

Example

gap> P:=SymmetricGroup(3);;

gap> rho:=SignHomomorphism(P) ;;

gap> F:=LocalActionPi(2,3,P,rho, [1]);;

gap> z:=InvolutiveCompatibilityCocycle(F);;

gap> kernels:=CompatibleKernels(F,z);

[ Group((Q)), Group([ (1,2)(3,4)(5,6)(7,8)(9,10)(11,12) 1),
Group([ (1,2)(3,4)(5,6)(7,8), (5,6)(7,8)(9,10)(11,12) 1),
Group([ (5,6)(7,8), (1,2)(3,4), (9,10)(11,12) 1) ]

gap> for K in kernels do Print(Size(LocalActionSigma(F,K,z)),"\n"); od;

24

48

96

192

4.6 PGL; over the p-adic numbers

Here, we implement functions to provide the k-local actions of the groups PGL(2,Q,,) and PSL(2,Q),)
acting on T}, (1. This section is due to Tasman Fell.

4.6.1 LocalActionPGL2Qp

> LocalActionPGL2Qp(p, k) (function)
Returns: the subgroup of Aut(B,, ) induced by the action of PGL(2,Z,) on the ball of radius
k around the vertex corresponding to the identity lattice of the Bruhat-Tits tree of PGL(2,Q,).
The arguments of this method are a prime p and a radius k € N> .

Example
gap> LocalActionPGL2Qp(3,1)=SymmetricGroup(4);
true

gap> F:=LocalActionPGL2Qp(5,3);; Size(F);
1875000

gap> SatisfiesC(F);

true

4.6.2 LocalActionPSL2Qp

> LocalActionPSL2Qp(p, k) (function)
Returns: the subgroup of Aut(B, ) induced by the action of PSL(2,7Z,) on the ball of radius
k around the vertex corresponding to the identity lattice of the Bruhat-Tits tree of PGL(2,Q,).
The arguments of this method are a prime p and a radius k € N>;.
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gap> LocalActionPSL2Qp(3,1)=AlternatingGroup(4);
true

gap> F:=LocalActionPSL2Qp(5,3);; Size(F);

937500

gap> SatisfiesC(F);

true




Chapter 5

Discreteness

This chapter contains functions that are related to the discreteness property (D) presented in Proposi-
tion 3.12 of [Tor20].

5.1 The discreteness condition (D)

Said proposition shows that for a given F < Aut(By ) the group Ui (F) is discrete if and only if the
maximal compatible subgroup C(F) of F satisfies condition (D):

Vo €Q: Fr, = {id},

where Tj, is the k — l-neighbourhood of the edge (b,by) inside By;. In other words, F sat-
isfies (D) if and only if the compatibility set Cp(id,w) = {id}. We distinguish between F
satisfying condition (D) and Ui(F) being discrete with the methods SatisfiesD (5.2.1) and
YieldsDiscreteUniversalGroup (5.2.2) below.

5.2 Discreteness

5.2.1 SatisfiesD (for IsLocalAction)

> SatisfiesD(F) (property)
Returns: true if F satisfies the discreteness condition (D), and false otherwise.
The argument of this attribute is a local action F < Aut(B, x) (see IsLocalAction (2.1.1)).

Example
gap> G:=LocalActionGamma(3,SymmetricGroup(3));
Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) 1)
gap> SatisfiesD(G);

true

5.2.2 YieldsDiscreteUniversalGroup (for IsLocalAction)

> YieldsDiscreteUniversalGroup (F) (property)
Returns: true if Ui (F) is discrete, and false otherwise.
The argument of this attribute is a local action F < Aut(By ) (see IsLocalAction (2.1.1)).

32
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Example
gap> G:=LocalActionGamma(3,SymmetricGroup(3));
Group([ (1,4,5)(2,3,6), (1,3)(2,4)(5,6) 1)
gap> YieldsDiscreteUniversalGroup(G) ;

true

Example
gap> F:=LocalAction(3,2,Group((1,2)));
Group([ (1,2) 1

gap> YieldsDiscreteUniversalGroup(F);

true

gap> SatisfiesD(F);

false

gap> C:=MaximalCompatibleSubgroup (F) ;
Group(())

gap> SatisfiesD(C);

true

5.3 Cocycles

Subgroups F < Aut(By ) that satisfy both (C) and (D) admit an involutive compatibility cocycle, i.e. a
map z: F x {1,...,d} — F that satisfies certain properties, see [Tor20, Section 3.2.2]. When F satisfies
just (C), it may still admit an involutive compatibility cocycle. In this case, F admits an extension
I';(F) < Aut(B, ) that satisfies both (C) and (D). Involutive compatibility cocycles can be searched for
using InvolutiveCompatibilityCocycle (5.3.1) and AllInvolutiveCompatibilityCocycles
(5.3.2) below.

5.3.1 InvolutiveCompatibilityCocycle (for IsLocalAction)

> InvolutiveCompatibilityCocycle (F) (attribute)
Returns: an involutive compatibility cocycle of F, which is a mapping Fx [1..d] —F with
certain properties, if it exists, and fail otherwise. When k = 1, the standard cocycle is returned.
The argument of this attribute is a local action F < Aut(By ) (see IsLocalAction (2.1.1)), which
is compatible (see SatisfiesC (3.3.2)).

Example
gap> F:=LocalAction(3,1,AlternatingGroup(3));;
gap> z:=InvolutiveCompatibilityCocycle(F);;
gap> mt:=RandomSource(IsMersenneTwister,1);;
gap> a:=Random(mt,F);; dir:=Random(mt,[1..3]);;
gap> a; Image(z,[a,dir]);

(1,2,3)

(1,2,3)

Example
gap> G:=LocalActionGamma(3,AlternatingGroup(3));
Group([ (1,4,5)(2,3,6) 1)

gap> InvolutiveCompatibilityCocycle(G) <> fail;
true

gap> InvolutiveCompatibilityCocycle(AutBall(3,2));
fail
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5.3.2 AlllnvolutiveCompatibilityCocycles (for IsLocalAction)

> AllInvolutiveCompatibilityCocycles(F) (attribute)
Returns: the list of all involutive compatibility cocycles of F.
The argument of this attribute is a local action F < Aut(By ) (see IsLocalAction (2.1.1)), which
is compatible (see SatisfiesC (3.3.2)).
Example
gap> S3:=LocalAction(3,1,SymmetricGroup(3));;
gap> Size(AllInvolutiveCompatibilityCocycles(S3));
4

gap> Size(AllInvolutiveCompatibilityCocycles(LocalActionGamma(3,SymmetricGroup(3))
1
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