Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Data.Bifoldable.Compat
Documentation
class Bifoldable (p :: Type -> Type -> Type) where #
Methods
bifold :: Monoid m => p m m -> m #
bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> p a b -> m #
bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> p a b -> c #
bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> p a b -> c #
Instances
Bifoldable Arg | |
Bifoldable Either | |
Bifoldable (,) | |
Bifoldable (Const :: Type -> Type -> Type) | |
Bifoldable ((,,) x) | |
Bifoldable (K1 i :: Type -> Type -> Type) | |
Bifoldable ((,,,) x y) | |
Bifoldable ((,,,,) x y z) | |
Bifoldable ((,,,,,) x y z w) | |
Defined in Data.Bifoldable | |
Bifoldable ((,,,,,,) x y z w v) | |
Defined in Data.Bifoldable |
biList :: Bifoldable t => t a a -> [a] #
biasum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a #
biconcat :: Bifoldable t => t [a] [a] -> [a] #
biconcatMap :: Bifoldable t => (a -> [c]) -> (b -> [c]) -> t a b -> [c] #
bielem :: (Bifoldable t, Eq a) => a -> t a a -> Bool #
bifind :: Bifoldable t => (a -> Bool) -> t a a -> Maybe a #
bifoldl' :: Bifoldable t => (a -> b -> a) -> (a -> c -> a) -> a -> t b c -> a #
bifoldl1 :: Bifoldable t => (a -> a -> a) -> t a a -> a #
bifoldlM :: (Bifoldable t, Monad m) => (a -> b -> m a) -> (a -> c -> m a) -> a -> t b c -> m a #
bifoldr' :: Bifoldable t => (a -> c -> c) -> (b -> c -> c) -> c -> t a b -> c #
bifoldr1 :: Bifoldable t => (a -> a -> a) -> t a a -> a #
bifoldrM :: (Bifoldable t, Monad m) => (a -> c -> m c) -> (b -> c -> m c) -> c -> t a b -> m c #
biforM_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () #
bifor_ :: (Bifoldable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f () #
bilength :: Bifoldable t => t a b -> Int #
bimapM_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () #
bimaximum :: (Bifoldable t, Ord a) => t a a -> a #
bimaximumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a #
biminimum :: (Bifoldable t, Ord a) => t a a -> a #
biminimumBy :: Bifoldable t => (a -> a -> Ordering) -> t a a -> a #
bimsum :: (Bifoldable t, Alternative f) => t (f a) (f a) -> f a #
binotElem :: (Bifoldable t, Eq a) => a -> t a a -> Bool #
binull :: Bifoldable t => t a b -> Bool #
biproduct :: (Bifoldable t, Num a) => t a a -> a #
bisequenceA_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () #
bisequence_ :: (Bifoldable t, Applicative f) => t (f a) (f b) -> f () #
bisum :: (Bifoldable t, Num a) => t a a -> a #
bitraverse_ :: (Bifoldable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f () #