\newcommand{\noopsort}[1]{} \newcommand{\printfirst}[2]{#1}
  \newcommand{\singleletter}[1]{#1} \newcommand{\switchargs}[2]{#2#1}
\begin{thebibliography}{10}

\sethebrew
\bibitem{h2}
�.�. �������.
\newblock {\em ���� ������}.
\newblock \L{Pitman}, ��������, ���� \L{1997}.

\bibitem{h1}
�.�. �������.
\newblock {\em ���� ������}.
\newblock \L{Pitman}, ��������, ���� \L{1997}.

\unsethebrew
\bibitem{51}
C.~T.~H. Baker and G.~F.~(Eds) Miller.
\newblock {\em Treatment of Integral Equations by Numerical Methods}.
\newblock \L{Pitman}, London, July 1985.
\newblock Based on the proceedings of a symposium held in Durham, in July,
  1982, organized under the auspices of the London Math. Soc.

\bibitem{12}
J.C. Gohberg and M.G. Krein.
\newblock {\em Introduction to the theory of linear non-selfadjoint operators},
  volume Vol. 18 of {\em Transl. Math. Monographs}.
\newblock AMS, 1969.

\bibitem{8}
J.C. Gohberg and M.G. Krein.
\newblock {\em Introduction to the theory of linear non-selfadjoint operators},
  volume Vol. 18 of {\em Transl. Math. Monographs}.
\newblock AMS, 1969.

\bibitem{9}
J.C. Gohberg and M.G. Krein.
\newblock {\em Introduction to the theory of linear non-selfadjoint operators},
  volume Vol. 18 of {\em Transl. Math. Monographs}.
\newblock AMS, 1969.

\bibitem{10}
J.C. Gohberg and M.G. Krein.
\newblock {\em Introduction to the theory of linear non-selfadjoint operators},
  volume Vol. 18 of {\em Transl. Math. Monographs}.
\newblock AMS, 1969.

\bibitem{11}
J.C. Gohberg and M.G. Krein.
\newblock {\em Introduction to the theory of linear non-selfadjoint operators},
  volume Vol. 18 of {\em Transl. Math. Monographs}.
\newblock AMS, 1969.

\bibitem{2}
M.~A. Golberg.
\newblock {\em Solution Methods for Integral Equations}.
\newblock Plenum, 1979.

\bibitem{1}
C.~W. Groetsch.
\newblock {\em \L{The Theory of Tikhonov Regularization for Fredholm Integral
  Equation of the First Kind}}, pages 11--12.
\newblock \L{Pitman}, 1984.

\bibitem{5}
J.~T. Marti.
\newblock On a regularization method for fredholm equations of the first kind,
  using {Sobolev} space.
\newblock In {\em Treatment of Integral Equations by Numerical Methods}.
  Academic Press, 1982.

\bibitem{3}
J.T. Marti.
\newblock On the convergence of an algorithm for computing minimum norm
  solutions of ill-posed problems.
\newblock {\em Math. Comp.}, 34:521--527, 1980.

\bibitem{4}
G.M. Wing.
\newblock Condition numbers of matrices arising from the numerical solution of
  linear integral equations of the first kind.
\newblock {\em J. Integral Equations}, 9, (Suppl.):191--204, Sept. 1985.

\end{thebibliography}