
Record Extension Protocol
Specification

i

Record Extension Protocol Specification

X Consortium Standard

Record Extension Protocol
Specification

ii

Copyright © 1994 Network Computing Devices, Inc.

Copyright © 1994 X Consortium

Copyright © 1995 X Consortium

Permission to use, copy, modify, distribute, and sell this documentation for any purpose is hereby granted without fee, provided
that the above copyright notice and this permission notice appear in all copies. Network Computing Devices, Inc. makes no
representations about the suitability for any purpose of the information in this document. This documentation is provided "as is"
without express or implied warranty.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium and shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Record Extension Protocol
Specification

iii

Contents

1 TITLE 1

1.1 Introduction . 1

1.1.1 Acknowledgements . 2

1.1.2 Goals . 2

1.1.3 Requirements . 2

1.2 Design . 2

1.2.1 Overview . 2

1.2.1.1 Data Delivery . 3

1.2.1.2 Record Context . 3

1.2.1.3 Record Client Connections . 3

1.2.1.4 Events . 3

1.2.1.5 Timing . 4

1.2.2 Types . 4

1.2.3 Errors . 6

1.3 Protocol Requests . 6

1.4 Encoding . 10

1.4.1 Types . 10

1.4.2 Errors . 11

1.4.3 Requests . 11

Record Extension Protocol
Specification

1 / 12

Chapter 1

TITLE

1.1 Introduction

Several proposals have been written over the past few years that address some of the issues surrounding the recording and
playback of user actions in the X Window System1 :

• Some Proposals for a Minimal X11 Testing Extension, Kieron Drake, UniSoft Ltd., April 1991

• X11 Input Synthesis Extension Proposal, Larry Woestman, Hewlett Packard, November 1991

• XTrap Architecture, Dick Annicchiario, et al, Digital Equipment Corporation, July 1991

• XTest Extension Recording Specification, Yochanan Slonim, Mercury Interactive, December 1992

This document both unifies and extends the previous diverse approaches to generate a proposal for an X extension that provides
support for the recording of all core X protocol and arbitrary extension protocol. Input synthesis, or playback, has already been
implemented in the XTest extension, an X Consortium standard. Therefore, this extension is limited to recording.

In order to provide both record and playback functionality, a hypothetical record application could use this extension to capture
both user actions and their consequences. For example, a button press (a user action) may cause a window to be mapped and
a corresponding MapNotify event to be sent (a consequence). This information could be stored for later use by a playback
application.

The playback application could use the recorded actions as input for the XTest extension’s XTestFakeInput operation to
synthesize the appropriate input events. The "consequence" or synchronization information is then used as a synchronization
point during playback. That is, the playback application does not generate specific synthesized events until their matching
synchronization condition occurs. When the condition occurs the processing of synthesized events continues. Determination
that the condition has occurred may be made by capturing the consequences of the synthesized events and comparing them to
the previously recorded synchronization information. For example, if a button press was followed by a MapNotify event on a
particular window in the recorded data, the playback application might synthesize the button press then wait for the MapNotify
event on the appropriate window before proceeding with subsequent synthesized input.

Because it is impossible to predict what synchronization information will be required by a particular application, the extension
provides facilities to record any subset of core X protocol and arbitrary extension protocol. As such, this extension does not
enforce a specific synchronization methodology; any method based on information in the X protocol stream (e.g., watching for
window mapping/unmapping, cursor changes, drawing of certain text strings, etc.) can capture the information it needs using
RECORD facilities.

1X Window System is a trademark of The Open Group.

Record Extension Protocol
Specification

2 / 12

1.1.1 Acknowledgements

The document represents the culmination of two years of debate and experiments done under the auspices of the X Consortium
xtest working group. Although this was a group effort, the author remains responsible for any errors or omissions. Two years
ago, Robert Chesler of Absol-puter, Kieron Drake of UniSoft Ltd., Marc Evans of Synergytics and Ken Miller of Digitial shared
the vision of a standard extension for recording and were all instrumental in the early protocol development. During the last
two years, Bob Scheifler of the X Consortium and Jim Fulton of NCD continuously provided input to the protocol design, as
well as encouragement to the author. In the last few months, Stephen Gildea and Dave Wiggins, both X Consortium staff, have
spent considerable time fine tuning the protocol design and reviewing the protocol specifications. Most recently, Amnon Cohen
of Mercury Interactive has assisted in clarification of the recorded event policy, and Kent Siefkes of Performance Awareness has
assisted in clarification of the timestamp policy.

1.1.2 Goals

• To provide a standard for recording, whereby both device events and synchronization information in the form of device event
consequences are recorded.

• To record contextual information used in synchronized playback without prior knowledge of the application that is being
recorded.

• To provide the ability to record arbitrary X protocol extensions.

1.1.3 Requirements

The extension should function as follows:

• It should not be dependent on other clients or extensions for its operation.

• It should not significantly impact performance.

• It should support the recording of all device input (core devices and XInput devices).

• It should be extendible.

• It should support the recording of synchronization information for user events.

1.2 Design

This section gives an overview of the RECORD extension and discusses its overall operation and data types.

1.2.1 Overview

The mechanism used by this extension for recording is to intercept core X protocol and arbitrary X extension protocol entirely
within the X server itself. When the extension has been requested to intercept specific protocol by one or more clients, the
protocol data are formatted and returned to the recording clients.

The extension provides a mechanism for capturing all events, including input device events that go to no clients, that is analogous
to a client expressing "interest" in all events in all windows, including the root window. Event filtering in the extension provides
a mechanism for feeding device events to recording clients; it does not provide a mechanism for in-place, synchronous event
substitution, modification, or withholding. In addition, the extension does not provide data compression before intercepted
protocol is returned to the recording clients.

Record Extension Protocol
Specification

3 / 12

1.2.1.1 Data Delivery

Because events are limited in size to 32 bytes, using events to return intercepted protocol data to recording clients is prohibitive
in terms of performance. Therefore, intercepted protocol data are returned to recording clients through multiple replies to the
extension request to begin protocol interception and reporting. This utilization is consistent with ListFontsWithInfo , for
example, where a single request has multiple replies.

Individual requests, replies, events or errors intercepted by the extension on behalf of recording clients cannot be split across
reply packets. In order to reduce overhead, multiple intercepted requests, replies, events and errors might be collected into a
single reply. Nevertheless, all data are returned to the client in a timely manner.

1.2.1.2 Record Context

The extension adds a record context resource (RC) to the set of resources managed by the server. All the extension operations
take an RC as an argument. Although the protocol permits sharing of RCs between clients, it is expected that clients will use
their own RCs. The attributes used in extension operations are stored in the RCs, and these attributes include the protocol and
clients to intercept.

The terms "register" and "unregister" are used to describe the relationship between clients to intercept and the RC. To register
a client with an RC means the client is added to the list of clients to intercept; to unregister a client means the client is deleted
from the list of clients to intercept. When the server is requested to register or unregister clients from an RC, it is required to do
so immediately. That is, it is not permissible for the server to wait until recording is enabled to register clients or recording is
disabled to unregister clients.

1.2.1.3 Record Client Connections

The typical communication model for a recording client is to open two connections to the server and use one for RC control and
the other for reading protocol data.

The "control" connection can execute requests to obtain information about the supported protocol version, create and destroy
RCs, specify protocol types to intercept and clients to be recorded, query the current state of an RC, and to stop interception and
reporting of protocol data. The "data" connection can execute a request to enable interception and reporting of specified protocol
for a particular RC. When the "enable" request is issued, intercepted protocol is sent back on the same connection, generally in
more than one reply packet. Until the last reply to the "enable" request is sent by the server, signifying that the request execution
is complete, no other requests will be executed by the server on that connection. That is, the connection that data are being
reported on cannot issue the "disable" request until the last reply to the "enable" request is sent by the server. Therefore, unless a
recording client never has the need to disable the interception and reporting of protocol data, two client connections are necessary.

1.2.1.4 Events

The terms "delivered events" and "device events" are used to describe the two event classes recording clients may select for
interception. These event classes are handled differently by the extension. Delivered events are core X events or X extension
events the server actually delivers to one or more clients. Device events are events generated by core X devices or extension input
devices that the server may or may not deliver to any clients. When device events are selected for interception by a recording
client, the extension guarantees each device event is recorded and will be forwarded to the recording client in the same order it is
generated by the device.

The recording of selected device events is not affected by server grabs. Delivered events, on the other hand, can be affected by
server grabs. If a recording client selects both a device event and delivered events that result from that device event, the delivered
events are recorded after the device event. In the absence of grabs, the delivered events for a device event precede later device
events.

Requests that have side effects on devices, such as WarpPointer and GrabPointer with a confine-to window, will cause
RECORD to record an associated device event. The XTEST extension request XTestFakeInput causes a device event to be
recorded; the device events are recorded in the same order that the XTestFakeInput requests are received by the server.

If a key autorepeats, multiple KeyPress and KeyRelease device events are reported.

Record Extension Protocol
Specification

4 / 12

1.2.1.5 Timing

Requests are recorded just before they are executed; the time associated with a request is the server time when it is recorded.

1.2.2 Types

The following new types are used in the request definitions that appear in section 3.

RC: CARD32

The "RC" type is a resource identifier for a server record context.

RANGE8: [first, last: CARD8]
RANGE16: [first, last: CARD16]
EXTRANGE: [major: RANGE8

minor: RANGE16]

RECORDRANGE: [core-requests: RANGE8
core-replies: RANGE8
ext-requests: EXTRANGE
ext-replies: EXTRANGE
delivered-events: RANGE8
device-events: RANGE8
errors: RANGE8
client-started: BOOL
client-died: BOOL]

The "RECORDRANGE" structure contains the protocol values to intercept. Typically, this structure is sent by recording clients
over the control connection when creating or modifying an RC.

• Specifies core X protocol requests with an opcode field between first and last inclusive. If first is equal to 0 and last is equal to
0, no core requests are specified by this RECORDRANGE. If first is greater than last, a "Value" error results.

• Specifies replies resulting from core X protocol requests with an opcode field between first and last inclusive. If first is equal
to 0 and last is equal to 0, no core replies are specified by this RECORDRANGE. If first is greater than last, a "Value" error
results.

• Specifies extension protocol requests with a major opcode field between major.first and major.last and a minor opcode field
between minor.first and minor.last inclusive. If major.first and major.last are equal to 0, no extension protocol requests are
specified by this RECORDRANGE. If major.first or major.last is less than 128 and greater than 0, if major.first is greater than
major.last, or if minor.first is greater than minor.last, a "Value" error results.

• Specifies replies resulting from extension protocol requests with a major opcode field between major.first and major.last and
a minor opcode field between minor.first and minor.last inclusive. If major.first and major.last are equal to 0, no extension
protocol replies are specified by this RECORDRANGE. If major.first or major.last is less than 128 and greater than 0, if
major.first is greater than major.last, or if minor.first is greater than minor.last, a "Value" error results.

• This is used for both core X protocol events and arbitrary extension events. Specifies events that are delivered to at least one
client that have a code field between first and last inclusive. If first is equal to 0 and last is equal to 0, no events are specified
by this RECORDRANGE. Otherwise, if first is less than 2 or last is less than 2, or if first is greater than last, a "Value" error
results.

• This is used for both core X device events and X extension device events that may or may not be delivered to a client. Specifies
device events that have a code field between first and last inclusive. If first is equal to 0 and last is equal to 0, no device events
are specified by this RECORDRANGE. Otherwise, if first is less than 2 or last is less than 2, or if first is greater than last, a
"Value" error results.

Record Extension Protocol
Specification

5 / 12

• Because the generated device event may or may not be associated with a client, unlike other RECORDRANGE components,
which select protocol for a specific client, selecting for device events in any RECORDRANGE in an RC causes the recording
client to receive one instance for each device event generated that is in the range specified.

• This is used for both core X protocol errors and arbitrary extension errors. Specifies errors that have a code field between first
and last inclusive. If first is equal to 0 and last is equal to 0, no errors are specified by this RECORDRANGE. If first is greater
than last, a "Value" error results.

• Specifies the connection setup reply. If False , the connection setup reply is not specified by this RECORDRANGE.

• Specifies notification when a client disconnects. If False , notification when a client disconnects is not specified by this
RECORDRANGE.

ELEMENT_HEADER: [from-server-time: BOOL
from-client-time: BOOL
from-client-sequence: BOOL]

The ELEMENT_HEADER structure specifies additional data that precedes each protocol element in the data field of a Record-
EnableContext reply.

• If from-server-time is True , each intercepted protocol element with category FromServer is preceded by the server time
when the protocol was recorded.

• If from-client-time is True , each intercepted protocol element with category FromClient is preceded by the server time
when the protocol was recorded.

• If from-client-sequence is True , each intercepted protocol element with category FromClient or ClientDied is pre-
ceded by the 32-bit sequence number of the recorded client’s most recent request processed by the server at that time. For
FromClient , this will be one less than the sequence number of the following request. For ClientDied , the sequence
number will be the only data, because no protocol is recorded.

Note that a reply containing device events is treated the same as other replies with category FromServer for purposes of these
flags. Protocol with category FromServer is never preceded by a sequence number because almost all such protocol has a
sequence number in it anyway.

If both a server time and a sequence number have been requested for a reply, each protocol request is preceded first by the time
and second by the sequence number.

XIDBASE: CARD32

The XIDBASE type is used to identify a particular client. Valid values are any existing resource identifier of any connected
client, in which case the client that created the resource is specified, or the resource identifier base sent to the target client from
the server in the connection setup reply. A value of 0 (zero) is valid when the XIDBASE is associated with device events that
may not have been delivered to a client.

CLIENTSPEC: XIDBASE or {CurrentClients, FutureClients, AllClients}

The CLIENTSPEC type defines the set of clients the RC attributes are associated with. This type is used by recording clients
when creating an RC or when changing RC attributes. XIDBASE specifies that the RC attributes apply to a single client only. C-
urrentClients specifies that the RC attributes apply to current client connections; FutureClients specifies future client
connections; AllClients specifies all client connections, which includes current and future.

The numeric values for CurrentClients , FutureClients and AllClients are defined such that there will be no
intersection with valid XIDBASEs.

When the context is enabled, the data connection is unregistered if it was registered. If the context is enabled, CurrentClie-
nts and AllClients silently exclude the recording data connection. It is an error to explicitly register the data connection.

CLIENT_INFO: [client-resource: CLIENTSPEC
intercepted-protocol: LISTofRECORDRANGE]

Record Extension Protocol
Specification

6 / 12

This structure specifies an intercepted client and the protocol to be intercepted for the client. The client-resource field is a resource
base that identifies the intercepted client. The intercepted-protocol field specifies the protocol to intercept for the client-resource.

1.2.3 Errors

RecordContext

• This error is returned if the value for an RC argument in a request does not name a defined record context.

1.3 Protocol Requests

RecordQueryVersion

• major-version, minor-version: CARD16

->

• major-version, minor-version: CARD16

This request specifies the RECORD extension protocol version the client would like to use. When the specified protocol version
is supported by the extension, the protocol version the server expects from the client is returned. Clients must use this request
before other RECORD extension requests.

This request also determines whether or not the RECORD extension protocol version specified by the client is supported by the
extension. If the extension supports the version specified by the client, this version number should be returned. If the client has
requested a higher version than is supported by the server, the server’s highest version should be returned. Otherwise, if the client
has requested a lower version than is supported by the server, the server’s lowest version should be returned. This document
defines major version one (1), minor version thirteen (13).

RecordCreateContext

context: RC
element-header: ELEMENT_HEADER
client-specifiers: LISTofCLIENTSPEC
ranges: LISTofRECORDRANGE
Errors: Match , Value , IDChoice , Alloc

This request creates a new record context within the server and assigns the identifier context to it. After the context is created, this
request registers the set of clients in client-specifiers with the context and specifies the protocol to intercept for those clients. The
recorded protocol elements will be preceded by data as specified by element-header. Typically, this request is used by a recording
client over the control connection. Multiple RC objects can exist simultaneously, containing overlapping sets of protocol and
clients to intercept.

If any of the values in element-header or ranges is invalid, a "Value" error results. Duplicate items in the list of client-specifiers
are ignored. If any item in the client-specifiers list is not a valid CLIENTSPEC, a "Match" error results. Otherwise, each item
in the client-specifiers list is processed as follows:

• If the item is an XIDBASE identifying a particular client, the specified client is registered with the context and the protocol to
intercept for the client is then set to ranges.

• If the item is CurrentClients , all existing clients are registered with the context at this time. The protocol to intercept
for all clients registered with the context is then set to ranges.

• If the item is FutureClients , all clients that connect to the server after this request executes will be automatically
registered with the context. The protocol to intercept for such clients will be set to ranges in the context.

Record Extension Protocol
Specification

7 / 12

• If the item is AllClients , the effect is as if the actions described for FutureClients are performed, followed by the
actions for CurrentClients .

The "Alloc" error results when the server is unable to allocate the necessary resources.

RecordRegisterClients

context: RC
element-header: ELEMENT_HEADER
client-specifiers: LISTofCLIENTSPEC
ranges: LISTofRECORDRANGE
Errors: Match , Value , RecordContext , Alloc

This request registers the set of clients in client-specifiers with the given context and specifies the protocol to intercept for those
clients. The header preceding each recorded protocol element is set as specified by element-header. These flags affect the entire
context; their effect is not limited to the clients registered by this request. Typically, this request is used by a recording client
over the control connection.

If context does not name a valid RC, a "RecordContext" error results. If any of the values in element-header or ranges
is invalid, a "Value" error results. Duplicate items in the list of client-specifiers are ignored. If any item in the list of client-
specifiers is not a valid CLIENTSPEC, a "Match" error results. If the context is enabled and the XID of the enabling connection
is specified, a "Match" error results. Otherwise, each item in the client-specifiers list is processed as follows:

• If the item is an XIDBASE identifying a particular client, the specified client is registered with the context if it is not already
registered. The protocol to intercept for the client is then set to ranges.

• If the item is CurrentClients , all existing clients that are not already registered with the specified context, except the
enabling connection if the context is enabled, are registered at this time. The protocol to intercept for all clients registered with
the context is then set to ranges.

• If the item is FutureClients , all clients that connect to the server after this request executes will be automatically
registered with the context. The protocol to intercept for such clients will be set to ranges in the context. The set of clients that
are registered with the context and their corresponding sets of protocol to intercept are left intact.

• If the item is AllClients , the effect is as if the actions described for FutureClients are performed, followed by the
actions for CurrentClients .

The "Alloc" error results when the server is unable to allocate the necessary resources.

RecordUnregisterClients

context: RC
client-specifiers: LISTofCLIENTSPEC
Errors: Match , RecordContext

This request removes the set of clients in client-specifiers from the given context’s set of registered clients. Typically, this request
is used by a recording client over the control connection.

If context does not name a valid RC, a "RecordContext" error results. Duplicate items in the list of client-specifiers are
ignored. If any item in the list is not a valid CLIENTSPEC, a "Match" error results. Otherwise, each item in the client-
specifiers list is processed as follows:

• If the item is an XIDBASE identifying a particular client, and the specified client is currently registered with the context, it is
unregistered, and the set of protocol to intercept for the client is deleted from the context. If the specified client is not registered
with the context, the item has no effect.

• If the item is CurrentClients , all clients currently registered with the context are unregistered from it, and their corre-
sponding sets of protocol to intercept are deleted from the context.

Record Extension Protocol
Specification

8 / 12

• If the item is FutureClients , clients that connect to the server after this request executes will not automatically be
registered with the context. The set of clients that are registered with this context and their corresponding sets of protocol that
will be intercepted are left intact.

• If the item is AllClients , the effect is as if the actions described for FutureClients are performed, followed by the
actions for CurrentClients .

A client is unregistered automatically when it disconnects.

RecordGetContext

context: RC
->
enabled: BOOL
element-header: ELEMENT_HEADER
intercepted-clients: LISTofCLIENT_INFO
Errors:
RecordContext

This request queries the current state of the specified context and is typically used by a recording client over the control connec-
tion. The enabled field specifies the state of data transfer between the extension and the recording client, and is either enabled
(True) or disabled (False). The initial state is disabled. When enabled, all core X protocol and extension protocol
received from (requests) or sent to (replies, errors, events) a particular client, and requested to be intercepted by the recording
client, is reported to the recording client over the data connection. The element-header specifies the header that precedes each
recorded protocol element. The intercepted-clients field specifies the list of clients currently being recorded and the protocol
associated with each client. If future clients will be automatically registered with the context, one of the returned CLIENT_INFO
structures has a client-resource value of FutureClients and an intercepted-protocol giving the protocol to intercept for future
clients. Protocol ranges may be decomposed, coalesced, or otherwise modified by the server from how they were specified by the
client. All CLIENTSPECs registered with the server are returned, even if the RECORDRANGE(s) associated with them specify
no protocol to record.

When the context argument is not valid, a RecordContext error results.

RecordEnableContext

context: RC
->+
category: {FromServer, FromClient, ClientStarted, ClientDied, StartOfData, EndOfData}
element-header: ELEMENT_HEADER
client-swapped: BOOL
id-base: XIDBASE
server-time: TIMESTAMP
recorded-sequence-number: CARD32
data: LISTofBYTE
Errors: Match, RecordContext

This request enables data transfer between the recording client and the extension and returns the protocol data the recording client
has previously expressed interest in. Typically, this request is executed by the recording client over the data connection.

If the client is registered on the context, it is unregistered before any recording begins.

Once the server receives this request, it begins intercepting and reporting to the recording client all core and extension protocol
received from or sent to clients registered with the RC that the recording client has expressed interest in. All intercepted protocol
data is returned in the byte-order of the recorded client. Therefore, recording clients are responsible for all byte swapping, if
required. More than one recording client cannot enable data transfer on the same RC at the same time. Multiple intercepted
requests, replies, events and errors might be packaged into a single reply before being returned to the recording clients.

The category field determines the possible types of the data. When a context is enabled, the server will immediately send a reply
of category StartOfData to notify the client that recording is enabled. A category of FromClient means the data are from

Record Extension Protocol
Specification

9 / 12

the client (requests); FromServer means data are from the server (replies, errors, events, or device events). For a new client,
the category is ClientStarted and the data are the connection setup reply. When the recorded client connection is closed,
category is set to the value ClientDied and no protocol is included in this reply. When the disable request is made over the
control connection, a final reply is sent over the data connection with category EndOfData and no protocol.

The element-header field returns the value currently set for the context, which tells what header information precedes each
recorded protocol element in this reply.

The client-swapped field is True if the byte order of the protocol being recorded is swapped relative to the recording client;
otherwise, client-swapped is False . The recorded protocol is in the byte order of the client being recorded; device events
are in the byte order of the recording client. For replies of category StartOfData and EndOfData the client-swapped bit is
set according to the byte order of the server relative to the recording client. The id-base field is the resource identifier base sent
to the client from the server in the connection setup reply, and hence, identifies the client being recorded. The id-base field is 0
(zero) when the protocol data being returned are device events. The server-time field is set to the time of the server when the first
protocol element in this reply was intercepted. The server-time of reply N+1 is greater than or equal to the server-time of reply
N, and is greater than or equal to the time of the last protocol element in reply N.

The recorded-sequence-number field is set to the sequence number of the recorded client’s most recent request processed by the
server.

The data field contains the raw protocol data being returned to the recording client. If requested by the element-header of this
record context, each protocol element may be preceded by a 32-bit timestamp and/or a 32-bit sequence number. If present, both
the timestamp and sequence number are always in the byte order of the recording client.

For the core X events KeyPress , KeyRelease , ButtonPress , and ButtonRelease , the fields of a device
event that contain valid information are time and detail. For the core X event MotionNotify , the fields of a device event
that contain valid information are time, root, root-x and root-y. The time field refers to the time the event was generated by the
device.

For the extension input device events DeviceKeyPress , DeviceKeyRelease , DeviceButtonPress , and De-
viceButtonRelease , the fields of a device event that contain valid information are device, time and detail. For Device-
MotionNotify , the valid device event fields are device and time. For the extension input device events ProximityIn and
ProximityOut , the fields of a device event that contain valid information are device and time. For the extension input device
event DeviceValuator , the fields of a device event that contain valid information are device, num_valuators, first_valuator,
and valuators. The time field refers to the time the event was generated by the device.

The error "Match" is returned when data transfer is already enabled. When the context argument is not valid, a RecordCon-
text error results.

RecordDisableContext

context: RC
Errors: RecordContext

This request is typically executed by the recording client over the control connection. This request directs the extension to
immediately send any complete protocol elements currently buffered, to send a final reply with category EndOfData , and to
discontinue data transfer between the extension and the recording client. Protocol reporting is disabled on the data connection
that is currently enabled for the given context. Once the extension completes processing this request, no additional recorded
protocol will be reported to the recording client. If a data connection is not currently enabled when this request is executed, then
this request has no affect on the state of data transfer. An RC is disabled automatically when the connection to the enabling client
is closed down.

When the context argument is not valid, a RecordContext error results.

RecordFreeContext

• context RC

• Errors: RecordContext

This request deletes the association between the resource ID and the RC and destroys the RC. If a client has enabled data transfer
on this context, the actions described in RecordDisableContext are performed before the context is freed.

Record Extension Protocol
Specification

10 / 12

An RC is destroyed automatically when the connection to the creating client is closed down and the close-down mode is Dest-
royAll. When the context argument is not valid, a RecordContext error results.

1.4 Encoding

Please refer to the X11 Protocol Encoding document as this document uses conventions established there.

The name of this extension is "RECORD".

1.4.1 Types

RC: CARD32

RANGE8
1 CARD8 first
1 CARD8 last

RANGE16
2 CARD16 first
2 CARD16 last

EXTRANGE
2 RANGE8 major
4 RANGE16 minor

RECORDRANGE
2 RANGE8 core-requests
2 RANGE8 core-replies
6 EXTRANGE ext-requests
6 EXTRANGE ext-replies
2 RANGE8 delivered-events
2 RANGE8 device-events
2 RANGE8 errors
1 BOOL client-started
1 BOOL client-died

ELEMENT_HEADER
1 CARD8

0x01 from-server-time
0x02 from-client-time
0x04 from-client-sequence

XIDBASE: CARD32

CLIENTSPEC
4 XIDBASE client-id-base

1 CurrentClients
2 FutureClients
3 AllClients

CLIENT_INFO
4 CLIENTSPEC client-resource
4 CARD32 n, number of record ranges in

intercepted-protocol
24n LISTofRECORDRANGE intercepted-protocol

Record Extension Protocol
Specification

11 / 12

1.4.2 Errors

RecordContext
1 0 Error
1 CARD8 extension’s base error code + 0
2 CARD16 sequence number
4 CARD32 invalid record context
24 unused

1.4.3 Requests

RecordQueryVersion
1 CARD8 major opcode
1 0 minor opcode
2 2 request length
2 CARD16 major version
2 CARD16 minor version

=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 major version
2 CARD16 minor version
20 unused

RecordCreateContext
1 CARD8 major opcode
1 1 minor opcode
2 5+m+6n request length
4 RC context
1 ELEMENT_HEADER element-header
3 unused
4 CARD32 m, number of client-specifiers
4 CARD32 n, number of ranges
4m LISTofCLIENTSPEC client-specifiers
24n LISTofRECORDRANGE ranges

RecordRegisterClients
1 CARD8 major opcode
1 2 minor opcode
2 5+m+6n request length
4 RC context
1 ELEMENT_HEADER element-header
3 unused
4 CARD32 m, number of client-specifiers
4 CARD32 n, number of ranges
4m LISTofCLIENTSPEC client-specifiers
24n LISTofRECORDRANGE ranges

RecordUnregisterClients
1 CARD8 major opcode
1 3 minor opcode
2 3+m request length
4 RC context
4 CARD32 m, number of client-specifiers
4m LISTofCLIENTSPEC client-specifiers

Record Extension Protocol
Specification

12 / 12

RecordGetContext
1 CARD8 major opcode
1 4 minor opcode
2 2 request length
4 RC context

=>
1 1 Reply
1 BOOL enabled
2 CARD16 sequence number
4 j reply length
1 ELEMENT_HEADER element-header
3 unused
4 CARD32 n, number of intercepted-clients
16 unused
4j LISTofCLIENT_INFO intercepted-clients

RecordEnableContext
1 CARD8 major opcode
1 5 minor opcode
2 2 request length
4 RC context

=>+
1 1 Reply
1 category

0 FromServer
1 FromClient
2 ClientStarted
3 ClientDied
4 StartOfData
5 EndOfData

2 CARD16 sequence number
4 n reply length
1 ELEMENT_HEADER element-header
1 BOOL client-swapped
2 unused
4 XIDBASE id-base
4 TIMESTAMP server-time
4 CARD32 recorded-sequence-number
8 unused
4n BYTE data

RecordDisableContext
1 CARD8 major opcode
1 6 minor opcode
2 2 request length
4 RC context

RecordFreeContext
1 CARD8 major opcode
1 7 minor opcode
2 2 request length
4 RC context

	TITLE
	Introduction
	Acknowledgements
	Goals
	Requirements

	Design
	Overview
	Data Delivery
	Record Context
	Record Client Connections
	Events
	Timing

	Types
	Errors

	Protocol Requests
	Encoding
	Types
	Errors
	Requests

