Copyright (c) 2005 IBM Corporation and others.

All rights reserved. This program and the accompanying materials

are made available under the terms of the Eclipse Public License v1.0

which accompanies this distribution, and is available at

http://www.eclipse.org/legal/epl-v10.html

Contributors:

 IBM Corporation
Debug Views Update
Background

Updates in debug views are triggered by selection change events from the Debug View and debug events fired by the debug model. The update strategy in debug views today is inflexible and is based on a pre-defined set of events. The model has no control over what events get handled and how an event is handled. In addition, the model has no means of controlling when or how often views are updated. For example, it may make sense to update views after a suspend event for some debug adapters, but the timing of the update may not be optimal for other debuggers. It is difficult for the debug platform to provide a strategy that satisfies the needs of every debugger.

This limitation poses problems for debuggers, especially those with slow connections. Problems include locking up the UI unnecessarily or taking a long time for a debugger to step since debuggers have no choice but to handle requests coming in from the UI for view updates.
Requirements

To solve this problem, updates in debug views need to be more flexible. Instead of simply handling a predefined set of debug events, views should allow models to better control when and how updates should be performed. The design needs to satisfy the following requirements:

· Allow different views to have different update policies. (For example, the Debug View would have a different update policy from the Variables View)

· Allow different models to specify different update policies on a view. (For example, the variables view should use different update policy depending on what elements are currently displayed in the view.)

· Allow debug model to control how/when debug views are updated.

· Possible Policies:
· Update only what is visible in the view.

· Update nothing

· Update all

· Update when target state has changed (only update labels)
· Update when target content has changed (need to re-get content)

· Delay update x seconds after suspend

· Periodic update

· Allow debug models to control update frequency

· Allow models to cancel updates after scrolling or stepping away
· Allow user to take a snapshot and update manually
How are debug views updated now?

[image: image1]
· Two events would trigger a view to get content from the model:

· Setting the input to a view. (a.1)

· Receiving a debug event from the model (b.1 to b.3)

Setting input to a view

· Each view has a view input. When a view input is set (refer to a.1 from diagram), the content provider of the view asks the model for content and populates its view accordingly.
· For example, the Variables View has a stack frame as its view input. When the stack frame is set as the input to the view, the Variables View asks the stack frame for its variables to populate the view. (Refer to 1, 2, and 3)
Debug events from Model

· View updates are driven by debug events fired by debug models. (refer to b.1 from diagram)
· Debug Views Event handler listens for debug events. Each view has its own event handler.

· Event handler has an event filter that would filter out events that does not require updates on a view. (b.2)
· For events that get passed through to the event handler, the handler performs different types of updates based on the event type.
· The handler tells its debug view to refresh. (b.3)
· The debug view tells its viewer to update which causes its content provider to re-get its content. (b.4)
· The content provider initially populates its view with dummy content. (the “pending…” tree nodes). And then it asks its content manager to get content from the model on a background thread. (1 & 2)
· When the model returns its content, the content manager updates the view with real content. (3)
· If another event is received while the view is still processing a debug event, the event handler queues the event and would handle the events in the order of which the events are received.
Views displaying content from a single debug target
· The view displays content from a single target. The view has an input and the input is changed based on selection changed events from the Debug View.

· E.g Variables View, Registers View, and Expressions View

· The view does not know anything about when to update. The updates are driven by :

· Selection changed event from the Debug View, causing its input to be changed in the view.

· Debug Events received by the view’s event handler. The event handler tells the view to update. The event handler can asks the remote content manager to cancel a job if another event is received and does not make sense to update anymore. (i.e when the target has resumed, the event handler can cancel pending update requests)
Views displaying content from multiple debug targets

· The view displays content from multiple targets simultaneously. An example of this view is the Debug View where the input is the launch manager. Any launches registered to the launch manager can cause the view to update.

· How do we handle different update strategies when multiple debug targets are at play simultaneously?

· Would it be possible to have multiple pluggable view updaters?

Ideas
Idea 1: Customizable View Event Handler using #getAdapter(…)
· All updates in a view are driven by the view’s event handler. Currently there is a single static event handler for every view. When the handler receives a debug event, the handler tells the view to update.

· One idea is to allow clients to contribute customized event handlers to a debug view. (We can rename these event handlers as view updaters.)

· This idea may work for single-target view where there is a single input to the view. The input changes as the selection from the Debug View changes.

· We can call #getAdapter(IDebugViewEventHandler.class) to locate an event handler for the view. If a client wants to override the event handler, they can just return something when this #getAdapter(…) call is made. Otherwise, simply return null.

· If client has provided a custom event handler, the view should rely on that to manage view updates.
· Otherwise, the view can use its existing event handler as the default and perform updates based on suspend and change events.

· The platform can provide implementation on various event handlers. Clients can also write their own event handler.

[Pros/Cons]
· This strategy may not work for the Debug View unless the view handles multiple event handlers. The view can retrieve multiple event handlers for each launch or target.

· This also may not work if multiple views are using the same debug element as their view input. For example, both the Variables View and the Registers View uses the stack frame as their view input. This design does not allow clients to specify a different update policy for the two views. When #getAdapter(…) is called, the stack frame does not have the context to determine which view has requested for a view updater.
Idea 2: Customizable Updater using an extension point

· Another way to bind an input to a custom updater is by using an extension point. The extension point would require a model id, a view id and a reference to the class that is in charge of updates. When an input is set to a view, the view should examine its model identifier. Given the model identifier and its view id, the view would be able to find the appropriate updater to use.

· Again, the platform can provide some generic updaters for clients. Clients can also provide their own view updater.

· The views can be smarter about getting a view updater. For example, in the Debug View, the view would try to retrieve an updater when a debug target is added. In the Variables View, the view would try to retrieve an updater when a new stackframe is set as input. The view would not try to get an updater for each variable.

[Pros/Cons]
· This strategy does not require the client to implement or reference to a view updater in their code. This maintains UI/Model separation.
· This strategy better handles views that display content from multiple targets. (e.g. the Debug View) For each element being displayed in a view, the view could retrieve the appropriate view updater based on this extension point. A view could have multiple view updaters and each updater would handle updates for its own debug target.
· Having an updater is the most flexible strategy. View update is completely controlled by a view updater. There is no limit on what an updater can do.

· The drawback of this strategy is that the model has no direct reference to the updater. As a result, the model cannot directly control when update should commence. Updates are still event driven.

Idea 3: Generalize the concept of IMemoryBlockConnection

· When the memory view displays the content of an IMemoryBlock, the view registers with the memory block via an IMemoryBlockExtension interface. A connection means that a view displaying the content of the memory block. A memory block has an option to implement an IMemoryRenderingUpdater interface. If this interface is implemented, the rendering would not update based on debug events. Instead, the view relies on the memory block to control its update via a IMemoryBlockConnection interface. When a memory block is changed after a suspend event, the memory block calls IMemoryBlockConnection#update to tell the rendering to update. This gives the memory block complete control over when and how often the rendering should be updated.

· We can employ a similar strategy in other debug views by creating connection to debug elements and relying on debug elements to control the updates.

[Pros/Cons]
· This strategy may burdens the clients with more work as clients now need to be smarter about when to update.

· There may also be issue about calling updates too often. For example, if every variable from the Variables View get a connection, each variable may cause the Variables View to update once after a suspend event. The update call needs to be coordinated among the different debug elements.

· This also reduces the separation of UI with the model. The model is required to have more knowledge of the UI. It needs to know which view to update and when to update.
· The advantage of this approach is that the model has better control of view updates. It does not rely on an event/listener mechanism.

Idea 4: Customizable Debug Events and Event Handler

· Expand debug event types and allow for customizable debug events. (Clients can customize debug events using model specific codes.)

· Allow clients to define view update policy via an extension point. Again, the extension would require the view id, the model id and an event handler.

· When a debug event is passed to the event handler, the handler asks the event handler if the event should be handled and how it should be handled. If the handler determines that it knows how to handle a certain event, the handler will be asked to handle the event. This handler is responsible for updating the view.

[Pros/Cons]
· All updates are still driven by events.

· Maintain UI and Model separation.

· This still does not allow the model to directly control view update.
· Models cannot cancel an update when user has stepped or scrolled away.

· This also poses performance impact where there are many debug event listeners. Even when there is only one view who is interested in a customizable event, all event listeners still need to be notified.
Idea 5: Update solely based on change events

· Views are currently updated based on suspend event or change events.

· On suspend event, debug views asks the model for new content and update.

· On content change event, debug views also ask the model for new content and update.

· On state change event, debug views only update labels for the element being displayed.

· Models have better control over when views get updated if views only update based on change event. Take the variables view for an example, the variables view has a stack frame as content input. Upon a content change event fired by the stack frame, the variables view will update. The view will not update on any other event. Models can fire change events at the appropriate times to trigger an update on the view.
· When stepping quickly, the model can opt not to fire a change event on its debug element, thereby not updating debug views.

· When the model has settled, (after suspended for x seconds), the model can fire a change event and update views with latest content.

[Pros/Cons]

· Least changes required.

· This would cause all views that listen for the same change event to update together.

· Models still have no way of defining different update policies for different views.
· The model has to know about the view in this case.

· Does not scale as each variable would have to fire a change event after a suspend event, instead of views handling a suspend event.
Design
After looking at all the ideas, I believe implementing Idea 2 and Idea 3 will give us enough flexibility for debug adapters to control view updates. Idea 2 allows models to override default view update policy using an extension point. Models can contribute updaters to views and control how different debug events should be handled. If the model needs even better control, Idea 3 allows models to directly update a view without relying on any event listening mechanism.
Idea 2: Customizable Updater using an extension point

· Clients contribute an updater to a view via an extension point. The extension point is defined as follows:

 <extension point="org.eclipse.debug.ui.viewUpdatePolicy">
 <policy

 name="Sample Update Policy"

 description="Update 2 seconds after the program is suspended."
 class="com.abc.sampleadapter.SampleVariablesViewUpdater"
 modelId="com.abc.sampleadapter.extendedMemoryBlock"
 viewId="org.eclipse.debug.ui.VariableView"
 hidden="false"/>
 </extension>
· Each policy consists of 6 attributes:

· Name – the name of the update policy

· Description – Description of what the update policy does.

· Class – is a fully qualified java class that implements IDebugViewUpdater. This class is responsible for updating the view. The view itself has no knowledge of when update should commence. The updater is responsible for handling events and figuring out when the view should update.
· Model Id – is the model identifier of the input object to the view. For example, in the case of Variables View, the model id should be the model id as specified in the stack frame that is set as the input to the variables view. In the future, the input to the variables view does not have to be a stack frame. This design would continue to work as long as the model identifier matches the input debug element
· View Id – is the identifier for the view to which this policy should be applied.
· Hidden – optional Boolean attribute. If we are to allow user to choose update policy for different views on the fly, this attribute can be used to specify if an update policy is visible to user.

[image: image2]
· Instead of having a static event handler in each debug view, a debug view can now have multiple view updaters.

· Updaters are contributed via an extension point. If no updater is contributed, a default updater would be used. (Current event handler should be used as the default updater to maintain compatibility.)

· When a new input is set to a view, either as a result of selection event from the Debug View or as a result of some other mechanism, the view should look for update policies for the input debug element. For each policy that matches the view id and the debug element’s model id, the updater specified from the update policy should be instantiated and initialized by the view.
· Each updater can be specialized to handle certain events and may handle the events differently. For example, one updater can handle a suspend debug event and make its view update immediately. Another updater can also handle a suspend event but would only update the view after a delay.
· The Debug Platform should provide some generic implementations of view updaters. The platform should provide some public updaters and allow clients to extend those updaters.
· Clients can also write their own updater.
· Again, a view could ask the model for content upon two events. The view is initially populated when the input is set. Or the view needs to be updated when the target has changed. In addition to controlling updates in a view, the updater can also control the timing of initially populating a view. For example, when a stackframe is set as input to the Variables View, the target may not be ready to get variables. We can also use the updater to control when a view should be populated after input is set. When input is set, the view does not automatically get content. Instead, it could rely on the updater to tell it to do so when appropriate.

Related Interfaces
/*

 View updaters are required to implement this interface. Once registered with

 a view, the updater will start to receive becoming visible/hidden events from the view.

*/

public interface IDebugViewUpdater {

/**

 * Initialize the updater with the view and the element

 * that is the input to the view.

 * @param view

 * @param viewInput

 */

public void init(IDebugViewExtension view, IDebugElement viewInput);

/**

 * Called when the specified view becomes visible

 * @param view

 */

public void becomesVisible(IDebugViewExtension view);

/**

 * Called when the specified view becomes hidden

 * @param view

 */

public void becomesHidden(IDebugViewExtension view);

/**

 * Called when the specified objects become visible within the view.

 * TODO: not sure if this is possible as it may be expensive to keep

 * track of visible objects

 * @param obj

 */

public void becomesVisible(Object[] obj);

/**

 * Called when the specified objects become hidden within the view.

 * TODO: not sure if this is possible as it may be expensive to keep

 * track of visible objects

 * @param obj

 */

public void becomesHidden(Object[] obj);

/**

 * @return true if the view is currently visible, false otherwise.

 */

public boolean isVisible();

/**

 * @param obj

 * @return true if the object is visible in the view, false otherwise.

 */

public boolean isVisible(Object obj);

/**

 * Called when the view is disposed or when the updater

 * should no longer be used by the debug view.

 */

public void dispose();

/**

 * @return the view input this updater is responsible for

 */

public IDebugElement getViewInput();

/**

 * @return the view that this updater will update

 */

public IDebugViewExtension getView();

/**

 * @return the view id of the view that this updater is registered to

 */

public String getViewId();

/**

 * Call to update the view that this updater is responsible for

 * @param elm - the element to update or null if the entire view is to be updated.

 * @param getContent - set to true if the content of the debug element and its children

 * needs to be retreived. Set to false if onnly the labels of the debug elements are to

 * be updated.

 */

public void updateView(IDebugElement elm, boolean getContent);

}
/*

Extension to IDebugView. Views that implement this interface allow clients

to control updates in the view.

*/
public interface IDebugViewExtension extends IDebugView{

/**

 * Called when the view needs to be refreshed. The sepcified element and its children

 * would be updated.

 * @param elm - debug element to update, null if the entire view is to be updated

 * @param getContent - set to true if the view needs to get content

 * from the model. Set to false if only the labels of the content needs to be updated

 */

public void refresh(IDebugElement elm, boolean getContent);

/**

 * Cancel all pending refresh that the view may have scheduled.

 * Called when the target has stepped away.

 */

public void cancelPendingRefresh();

/**

 * Clear any cached information that the view may have when called.

 * e.g. tree expansion from the view

 */

public void clearCache();

/**

 * Add the specified updaters to the view. The view is responsible

 * for initializing the updater after the updater is added to a view.

 * @param updaters

 */

public void addUpdaters(IDebugViewUpdater[] updaters);

/**

 * Remove the specified updaters from the view. The view is responsible

 * to dispose the updaters when an updater is removed from a view.

 * @param updaters

 */

public void removeUpdaters(IDebugViewUpdater[] updaters);

/**

 * Return a list of view updaters applicable for the specified debug element.

 * @param elm - the debug element for looking for updaters, value cannot be null.

 * @return - Return a list of view updaters applicable for the specified debug element.

 */

public IDebugViewUpdater[] getUpdaters(IDebugElement elm);

}
Idea 3: Generalize the concept of IMemoryBlockConnection
· Alternatively, clients can directly control updates to a view by providing an adapter that contributes an updater. The idea is to allow the model to directly drive updates in views and not rely on any event listening mechanism.
· When a view sets a debug element as its input, the debug view asks the debug element if it wants to manage its own update.

· If the debug element returns yes, then the view would not perform any automatic update. The view relies on the debug element to provide an updater for the view. (Refer to later section for details.)
· Otherwise, the view would use a default view updater to update. (i.e. continue to update for suspend and change events.)

· It is still required that each view would have its own update policy even though the view may be displaying content from the same debug element.
Upon setting a debug element as input to a view:
· Take the variables view as an example, this is when the selection has changed in the Debug View and the Variables View has a different stack frame as its input.

[image: image3]
· When the input is set in a debug view, the debug view retrieves an instance of IManagedUpdateDebugElement via getAdapter(…). By returning an object upon this call, the debug element is saying that it wants to manage its own update in debug views.
· An element may or may not want to manage updates for all the views that display the debug element. For example, while a debug adapter wants to control the update of the Variables View, it may not want to customize the update of the Registers View. To allow the debug adapter to only customize the updates of a specific view, the view asks the returned IManagedUpdateDebugElement if it supports update for a given view.

· If a debug element supports update for the view, the view create a connection with the debug element. By creating a connection, the view gives the element a reference to the view. Upon connection, the debug element creates a debug view updater and returns the updater to the view.

· The updater is responsible for driving all the updates to the view. In addition, the updater gets notified when the view become visible or hidden. It also gets notified when certain elements in the view becomes visible or hidden. This allows the updater to perform some optimization by only updating what’s visible.

· The model can control updates to the view by directly calling the updater to update a view.

· Or, the update could run on some update policies and update its view when appropriate. For example, an updater can act like an event handler and update upon some debug events. Alternatively the updater could run on a timer, and suspend its debug model and update its view at a set time interval.

Related Interfaces

/**

 * Clients may implement this interface to indicate that its

 * debug element would manage its own update. Views would not update

 * based on debug events.

 */

public interface IManagedUpdateDebugElement extends IDebugElement {

/**

 * @param viewId

 * @return true if the element supports update for the

 * specified view

 */

public boolean supportsUpdate(String viewId);

/**

 * Returns the updater to be used for this view.

 * The upater will be notified when the view becomes visible / hidden.

 * @param view - the view requiring an updater

 * @return the updater to be used for this view

 */

public IDebugViewUpdater connect(IDebugViewExtension view);

/**

 * Called when the element is no longer the input to the view.

 * @param view - the view that has changed input

 * @param updater - the updater registered to this view

 */

public void disconnect(IDebugViewExtension view, IDebugViewUpdater updater);

}

Upon removing a debug element as input to a view:

· Take the variables view as an example, this is when the selection has changed in the Debug View and the Variables View has a different stack frame as its input. The stackframe is no longer used as the input to the variables view.

[image: image4]
· When the input of the view is changed and the debug element is no longer the input, the view disconnects itself from the debug element.

· When a view is disconnected, the debug element should dispose the associated debug view updater.

· Once disconnected, the updater would no longer receive view event notification.
· The updater can no longer update its view.
Handling Views Displaying Content from Multiple Targets
· If a view is displaying content from multiple targets, then updater cannot be retrieved at the time when view input is set. Those views generally have a static view input and content from different targets are added to it on the fly. An example of this type of view is the Debug View.

· In this case, updaters should be created and added to a view when new models are added to the view.

· For example, in the Debug View, when a new launch is added to the view and subsequently, a model is added under a launch, the Debug View would try to find an updater for the model. The Debug View would have multiple updaters and each model would have one or more updaters. On the IDebugViewExtension interface, an updater could selectively update the content on a view. When multiple models and updaters are at play simultaneously, the updater can choose to only update items that belong to its model.
View

Content Provider

(a.1) Set Input: Debug Element

(1) Refresh with dummy

Content Mgr

Model

(2) Get Content on background thread

(3) Refresh with real content

Debug Views Event Handler

Event Filter

(b.1) Debug Events:

Create

Suspend

Resume

Change�(content/state)

Terminate

(b.3) Refresh

(b.2)Filtered Events

IManagedUpdateDebugElement

Pluggable View Updater

Model

Content Mgr

(a.1) Set Input: Debug Element

Content Provider

View

(3) Refresh with real content

(b.1) Refresh

(2) Get Content on background thread

(1) Refresh with dummy

(b.2) Get content

IDebugViewUpdater

(View 3)

IDebugViewUpdater

(View 2)

IDebugViewUpdater

(View 1)

Model

View 1

UI

(1) Supports Update?

(given a view id)

(2) Connect

(4) Return updater

(6) Control Update

UI

View 1

IDebugViewUpdater

(View 3)

IDebugViewUpdater

(View 2)

IDebugViewUpdater

(View 1)

IManagedUpdateDebugElement

Model

(1) Disconnect

(5) Events Notification

(3) Create

Input Changed

(2) Dispose

Input Changed

Pluggable View Updater

Pluggable View Updater

(b.4) Get content

PAGE
1

