
Condor® Version 7.2.3 Manual

Condor Team, University of Wisconsin–Madison

May 28, 2009

CONTENTS

1 Overview 1

1.1 High-Throughput Computing (HTC) and its Requirements 1

1.2 Condor’s Power .. 2

1.3 Exceptional Features 3

1.4 Current Limitations 4

1.5 Availability .. . 5

1.6 Contributions to Condor 8

1.7 Contact Information 9

1.8 Privacy Notice .. . 10

2 Users’ Manual 11

2.1 Welcome to Condor .. 11

2.2 Introduction .. . 11

2.3 Matchmaking with ClassAds 12

2.3.1 Inspecting Machine ClassAds with condorstatus 13

2.4 Road-map for Running Jobs 14

2.4.1 Choosing a Condor Universe .. 15

2.5 Submitting a Job .. 19

2.5.1 Sample submit description files 20

i

CONTENTS ii

2.5.2 About Requirements and Rank .. . 22

2.5.3 Submitting Jobs Using a Shared File System 24

2.5.4 Submitting Jobs Without a Shared File System: Condor’s File Transfer Mechanism 26

2.5.5 Environment Variables .. . 33

2.5.6 Heterogeneous Submit: Execution on Differing Architectures 34

2.6 Managing a Job .38

2.6.1 Checking on the progress of jobs 38

2.6.2 Removing a job from the queue .. 40

2.6.3 Placing a job on hold .40

2.6.4 Changing the priority of jobs 41

2.6.5 Why does the job not run? .41

2.6.6 In the log file . 42

2.6.7 Job Completion . 45

2.7 Priorities and Preemption 47

2.7.1 Job Priority . 47

2.7.2 User priority . 47

2.7.3 Details About How Condor Jobs Vacate Machines 48

2.8 Java Applications 48

2.8.1 A Simple Example Java Application 49

2.8.2 Less Simple Java Specifications 51

2.8.3 Chirp I/O . 53

2.9 Parallel Applications (Including MPI Applications) 55

2.9.1 Prerequisites to Running Parallel Jobs 55

2.9.2 Parallel Job Submission .. . 55

2.9.3 Parallel Jobs with Separate Requirements 57

2.9.4 MPI Applications Within Condor’s Parallel Universe 58

2.9.5 Outdated Documentation of the MPI Universe 59

2.10 DAGMan Applications 64

Condor Version 7.2.3 Manual

CONTENTS iii

2.10.1 DAGMan Terminology .64

2.10.2 Input File Describing the DAG 65

2.10.3 Submit Description File 69

2.10.4 Job Submission .70

2.10.5 Job Monitoring, Job Failure, and Job Removal 71

2.10.6 Advanced Features of DAGMan .. . 72

2.10.7 Job Recovery: The Rescue DAG .. . 86

2.10.8 File Paths in DAGs .89

2.10.9 Visualizing DAGs withdot . 90

2.11 Virtual Machine Applications 91

2.11.1 The Submit Description File 91

2.11.2 Checkpoints . 94

2.11.3 Disk Images . 94

2.11.4 Job Completion in the vm Universe 94

2.12 Time Scheduling for Job Execution 95

2.12.1 Job Deferral .95

2.12.2 CronTab Scheduling .. 98

2.13 Stork Applications 102

2.13.1 Submitting Stork Jobs .. . 102

2.13.2 Managing Stork Jobs .. 104

2.13.3 Fault Tolerance .. 104

2.13.4 Running Stork Jobs Under DAGMan 106

2.13.5 The Lease Manager .106

2.14 Job Monitor .. 107

2.14.1 Transition States .. . 107

2.14.2 Events . 107

2.14.3 Selecting Jobs .107

2.14.4 Zooming . 108

Condor Version 7.2.3 Manual

CONTENTS iv

2.14.5 Keyboard and Mouse Shortcuts 108

2.15 Special Environment Considerations 108

2.15.1 AFS . 108

2.15.2 NFS Automounter . 109

2.15.3 Condor Daemons That Do Not Run as root 109

2.15.4 Job Leases . 110

2.16 Potential Problems 111

2.16.1 Renaming of argv[0] .. 111

3 Administrators’ Manual 112

3.1 Introduction .. . 112

3.1.1 The Different Roles a Machine Can Play 113

3.1.2 The Condor Daemons . 114

3.2 Installation .. . 116

3.2.1 Obtaining Condor . 117

3.2.2 Preparation . 118

3.2.3 Newer Unix Installation Procedure 123

3.2.4 Condor is installed Under Unix ... now what? 125

3.2.5 Installation on Windows .. . 127

3.2.6 RPMs . 137

3.2.7 Upgrading - Installing a Newer Version of Condor 137

3.2.8 Installing the CondorView Client Contrib Module 138

3.2.9 Dynamic Deployment . 140

3.3 Configuration .. 142

3.3.1 Introduction to Configuration Files 142

3.3.2 The Special Configuration Macros $ENV(), $RANDOMCHOICE(), and $RANDOMINTEGER()149

3.3.3 Condor-wide Configuration File Entries 150

3.3.4 Daemon Logging Configuration File Entries 157

Condor Version 7.2.3 Manual

CONTENTS v

3.3.5 DaemonCore Configuration File Entries 162

3.3.6 Network-Related Configuration File Entries 165

3.3.7 Shared File System Configuration File Macros 168

3.3.8 Checkpoint Server Configuration File Macros 172

3.3.9 condormaster Configuration File Macros 173

3.3.10 condorstartd Configuration File Macros 179

3.3.11 condorschedd Configuration File Entries 195

3.3.12 condorshadow Configuration File Entries 202

3.3.13 condorstarter Configuration File Entries 203

3.3.14 condorsubmit Configuration File Entries 205

3.3.15 condorpreen Configuration File Entries 207

3.3.16 condorcollector Configuration File Entries 208

3.3.17 condornegotiator Configuration File Entries 211

3.3.18 condorprocd Configuration File Macros 216

3.3.19 condorcredd Configuration File Macros 216

3.3.20 condorgridmanager Configuration File Entries 216

3.3.21 condorjob router Configuration File Entries 220

3.3.22 condorleasemanager Configuration File Entries 221

3.3.23 gridmonitor Configuration File Entries 222

3.3.24 Configuration File Entries Relating to Grid Usage andGlidein 223

3.3.25 Configuration File Entries for DAGMan 223

3.3.26 Configuration File Entries Relating to Security 229

3.3.27 Configuration File Entries Relating to PrivSep 232

3.3.28 Configuration File Entries Relating to Virtual Machines 233

3.3.29 Configuration File Entries Relating to High Availability 235

3.3.30 Configuration File Entries Relating to Quill 239

3.3.31 MyProxy Configuration File Macros 242

3.3.32 Configuration File Macros Affecting APIs 242

Condor Version 7.2.3 Manual

CONTENTS vi

3.3.33 Stork Configuration File Macros 243

3.4 User Priorities and Negotiation 244

3.4.1 Real User Priority (RUP) .. . 244

3.4.2 Effective User Priority (EUP) 245

3.4.3 Priorities and Preemption 245

3.4.4 Priority Calculation 247

3.4.5 Negotiation . 247

3.4.6 The Layperson’s Description of the Pie Spin and Pie Slice 248

3.4.7 Group Accounting . 249

3.4.8 Group Quotas . 250

3.5 Policy Configuration for thecondorstartd . 252

3.5.1 Startd ClassAd Attributes 253

3.5.2 TheSTARTexpression . 253

3.5.3 TheIS VALID CHECKPOINTPLATFORMexpression 254

3.5.4 TheRANKexpression . 255

3.5.5 Machine States . 256

3.5.6 Machine Activities .. 260

3.5.7 State and Activity Transitions 261

3.5.8 State/Activity Transition Expression Summary 270

3.5.9 Policy Settings .272

3.6 Security .281

3.6.1 Condor’s Security Model .. . 282

3.6.2 Security Negotiation .. . 284

3.6.3 Authentication .287

3.6.4 The Unified Map File for Authentication 298

3.6.5 Encryption . 299

3.6.6 Integrity . 301

3.6.7 Authorization .302

Condor Version 7.2.3 Manual

CONTENTS vii

3.6.8 Security Sessions .. 306

3.6.9 Host-Based Security in Condor 307

3.6.10 Using Condor w/ Firewalls, Private Networks, and NATs 315

3.6.11 User Accounts in Condor .. . 315

3.6.12 Privilege Separation 320

3.6.13 Support forglexec . 324

3.7 Networking (includes sections on Port Usage and GCB) 325

3.7.1 Port Usage in Condor .325

3.7.2 Configuring Condor for Machines With Multiple NetworkInterfaces . . . 329

3.7.3 Generic Connection Brokering (GCB) 332

3.7.4 Using TCP to Send Updates to thecondorcollector 345

3.8 The Checkpoint Server 346

3.8.1 Preparing to Install a Checkpoint Server 347

3.8.2 Installing the Checkpoint Server Module 347

3.8.3 Configuring your Pool to Use Multiple Checkpoint Servers 348

3.8.4 Checkpoint Server Domains .. . 349

3.9 DaemonCore . 351

3.9.1 DaemonCore and Unix signals .. . 352

3.9.2 DaemonCore and Command-line Arguments 352

3.10 The High Availability of Daemons 354

3.10.1 High Availability of the Job Queue 354

3.10.2 High Availability of the Central Manager 356

3.11 Quill .362

3.11.1 Installation and Configuration 362

3.11.2 Four Usage Examples .367

3.11.3 Quill and Security .. 368

3.11.4 Quill and Its RDBMS Schema .. 369

3.12 Setting Up for Special Environments 389

Condor Version 7.2.3 Manual

CONTENTS viii

3.12.1 Using Condor with AFS .389

3.12.2 Configuring Condor for Multiple Platforms 391

3.12.3 Full Installation of condorcompile . 394

3.12.4 Thecondorkbdd . 395

3.12.5 Configuring The CondorView Server 396

3.12.6 Running Condor Jobs within a VMware or Xen Virtual Machine Environment398

3.12.7 Configuring The Startd for SMP Machines 399

3.12.8 Condor’s Dedicated Scheduling 408

3.12.9 Configuring Condor for Running Backfill Jobs 412

3.12.10 Group ID-Based Process Tracking 420

3.12.11 Concurrency Limits .. . 420

3.13 Java Support Installation 422

3.14 Virtual Machines 424

3.14.1 Configuration Parameters 424

3.15 Power Management .. . 426

3.15.1 Entering a Low Power State .. . 426

3.15.2 Returning From a Low Power State 427

3.15.3 Keeping a ClassAd for a Hibernating Machine 428

3.15.4 Linux Platform Details 428

3.15.5 Windows Platform Details 428

4 Miscellaneous Concepts 430

4.1 Condor’s ClassAd Mechanism 430

4.1.1 Syntax . 431

4.1.2 Evaluation Semantics .. . 439

4.1.3 ClassAds in the Condor System .. . 441

4.2 Condor’s Checkpoint Mechanism 443

4.2.1 Standalone Checkpointing 444

Condor Version 7.2.3 Manual

CONTENTS ix

4.2.2 Checkpoint Safety .445

4.2.3 Checkpoint Warnings .. 445

4.2.4 Checkpoint Library Interface 446

4.3 Computing On Demand (COD) .. . 447

4.3.1 Overview of How COD Works . 448

4.3.2 Authorizing Users to Create and Manage COD Claims 448

4.3.3 Defining a COD Application .448

4.3.4 Managing COD Resource Claims .. 452

4.3.5 Limitations of COD Support in Condor 459

4.4 Job Hooks . 460

4.4.1 Hooks that Fetch Work . 460

4.4.2 Hooks for a Job Router . 467

4.5 Application Program Interfaces 468

4.5.1 Web Service . 468

4.5.2 The DRMAA API . 480

4.5.3 The Command Line Interface .. 482

4.5.4 The Condor GAHP . 482

4.5.5 The Condor Perl Module . 482

5 Grid Computing 491

5.1 Introduction .. . 491

5.2 Connecting Condor Pools with Flocking 492

5.2.1 Flocking Configuration .. . 492

5.2.2 Job Considerations .. 494

5.3 The Grid Universe .. 494

5.3.1 Condor-C, The condor Grid Type .. . 494

5.3.2 Condor-G, the gt2 and gt4 Grid Types 498

5.3.3 The nordugrid Grid Type .510

Condor Version 7.2.3 Manual

CONTENTS x

5.3.4 The unicore Grid Type .510

5.3.5 The pbs Grid Type . 511

5.3.6 The lsf Grid Type . 511

5.3.7 The amazon Grid Type . 512

5.3.8 Matchmaking in the Grid Universe 513

5.4 Glidein . 519

5.4.1 WhatcondorglideinDoes . 519

5.4.2 Configuration Requirements in the Local Pool 519

5.4.3 Running Jobs on the Remote Grid Resource After Glidein. 520

5.5 Dynamic Deployment .. . 520

5.6 The Condor Job Router .. . 521

5.6.1 Routing Mechanism . 522

5.6.2 Job Submission with Job Routing Capability 522

5.6.3 An Example Configuration .524

5.6.4 Routing Table Entry ClassAd Attributes 526

5.6.5 Example: constructing the routing table from ReSS 528

6 Platform-Specific Information 529

6.1 Linux . 529

6.1.1 Linux Kernel-specific Information 530

6.1.2 Red Hat Version 9.x . 530

6.1.3 Red Hat Fedora 1, 2, and 3 .530

6.2 Microsoft Windows .. . 531

6.2.1 Limitations under Windows .. . 531

6.2.2 Supported Features under Windows 532

6.2.3 Secure Password Storage .. . 532

6.2.4 Executing Jobs as the Submitting User 533

6.2.5 Executing Jobs with the User’s Profile Loaded 534

Condor Version 7.2.3 Manual

CONTENTS xi

6.2.6 Details on how Condor for Windows starts/stops a job 535

6.2.7 Security Considerations in Condor for Windows 537

6.2.8 Network files and Condor .538

6.2.9 Interoperability between Condor for Unix and Condor for Windows 544

6.2.10 Some differences between Condor for Unix -vs- Condorfor Windows . . . 544

6.3 Macintosh OS X . 545

6.4 AIX . 545

6.4.1 AIX 5.2L . 545

6.4.2 AIX 5.1L . 545

7 Frequently Asked Questions (FAQ) 547

7.1 Obtaining & Installing Condor 547

7.2 Setting up Condor .. . 553

7.3 Running Condor Jobs .. . 556

7.4 Condor on Windows .566

7.5 Grid Computing .. 573

7.6 Troubleshooting 575

7.7 Other questions .. . 578

8 Version History and Release Notes 579

8.1 Introduction to Condor Versions 579

8.1.1 Condor Version Number Scheme .. 579

8.1.2 The Stable Release Series .. . 580

8.1.3 The Development Release Series 580

8.2 Upgrade Surprises 580

8.3 Stable Release Series 7.2 581

8.4 Development Release Series 7.1 592

8.5 Stable Release Series 7.0 606

8.6 Development Release Series 6.9 623

Condor Version 7.2.3 Manual

CONTENTS xii

8.7 Stable Release Series 6.8 648

9 Command Reference Manual (man pages) 672

cleanuprelease . 673

condoradvertise . 675

condorcheckuserlogs . 679

condorcheckpoint . 680

condorchirp . 683

condorcod . 686

condorcold start . 689

condorcold stop . 692

condorcompile . 695

condorconfigbind . 698

condorconfigval . 700

condorconfigure . 704

condorconverthistory . 709

condordagman . 711

condor fetchlog . 715

condorfindhost . 718

condorglidein . 720

condorhistory . 727

condorhold . 730

condor load history . 733

condormaster. 735

condormasteroff . 737

condoroff . 738

condoron . 741

condorpower . 744

Condor Version 7.2.3 Manual

CONTENTS xiii

condorpreen . 746

condorprio . 748

condorq . 750

condorqedit . 758

condorreconfig . 760

condorreconfigschedd. 763

condorrelease . 764

condorreschedule. 766

condorrestart . 769

condorrm . 772

condorrouter history . 775

condorrun . 777

condorset shutdown . 781

condorstats . 783

condorstatus . 787

condorstorecred . 793

condorsubmit . 795

condorsubmitdag . 825

condor transferdata . 830

condorupdatesstats . 832

condoruserlog . 835

condoruserprio . 838

condorvacate . 841

condorvacatejob . 844

condorversion . 847

condorwait . 849

filelock midwife . 852

filelock undertaker . 854

Condor Version 7.2.3 Manual

CONTENTS xiv

install release . 856

stork q . 858

stork list cred . 860

stork rm . 862

stork rm cred . 864

stork store cred . 866

stork status . 868

stork submit . 870

uniq pid midwife . 874

uniq pid undertaker. 876

LICENSING AND COPYRIGHT

Condor is released under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-Madison,
WI.

Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the Licenseat

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing permissions and limitations under the License.

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

”License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

”Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting
the License.

”Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled
by, or are under common control with that entity. For the purposes of this definition, ”control” means (i)
the power, direct or indirect, to cause the direction or management of such entity, whether by contract or

Condor Version 7.2.3 Manual

http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0

CONTENTS xv

otherwise, or (ii) ownership of fifty percent (50outstanding shares, or (iii) beneficial ownership of such
entity.

”You” (or ”Your”) shall mean an individual or Legal Entity exercising permissions granted by this Li-
cense.

”Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

”Object” form shall mean any form resulting from mechanicaltransformation or translation of a Source
form, including but not limited to compiled object code, generated documentation, and conversions to
other media types.

”Work” shall mean the work of authorship, whether in Source or Object form, made available under the
License, as indicated by a copyright notice that is includedin or attached to the work (an example is
provided in the Appendix below).

”Derivative Works” shall mean any work, whether in Source orObject form, that is based on (or derived
from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by name) to the interfaces
of, the Work and Derivative Works thereof.

”Contribution” shall mean any work of authorship, including the original version of the Work and any
modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized
to submit on behalf of the copyright owner. For the purposes of this definition, ”submitted” means any
form of electronic, verbal, or written communication sent to the Licensor or its representatives, includ-
ing but not limited to communication on electronic mailing lists, source code control systems, and issue
tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and im-
proving the Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as ”Not a Contribution.”

”Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution
has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright li-
cense to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and
distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as
stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the date such litigation is
filed.

4. Redistribution. You may reproduce and distribute copiesof the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet the
following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

Condor Version 7.2.3 Manual

CONTENTS xvi

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that do not
pertain to any part of the Derivative Works; and

(d) If the Work includes a ”NOTICE” text file as part of its distribution, then any Derivative Works that
You distribute must include a readable copy of the attribution notices contained within such NOTICE
file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of
the following places: within a NOTICE text file distributed as part of the Derivative Works; within the
Source form or documentation, if provided along with the Derivative Works; or, within a display gener-
ated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of
the NOTICE file are for informational purposes only and do notmodify the License. You may add Your
own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the
NOTICE text from the Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or dif-
ferent license terms and conditions for use, reproduction,or distribution of Your modifications, or for
any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally sub-
mitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this
License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to usethe trade names, trademarks, service marks,
or product names of the Licensor, except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions)on an ”AS IS” BASIS, WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation,
any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of
using or redistributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts)
or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect,
special, incidental, or consequential damages of any character arising as a result of this License or out
of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if
such Contributor has been advised of the possibility of suchdamages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof,
You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other
liability obligations and/or rights consistent with this License. However, in accepting such obligations,
You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, andhold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such
warranty or additional liability.

END OF TERMS AND CONDITIONS

Condor Version 7.2.3 Manual

CHAPTER

ONE

Overview

1.1 High-Throughput Computing (HTC) and its Requirements

For many research and engineering projects, the quality of the research or the product is heavily
dependent upon the quantity of computing cycles available.It is not uncommon to find problems
that require weeks or months of computation to solve. Scientists and engineers engaged in this
sort of work need a computing environment that delivers large amounts of computational power
over a long period of time. Such an environment is called a High-Throughput Computing (HTC)
environment. In contrast, High Performance Computing (HPC) environments deliver a tremendous
amount of compute power over a short period of time. HPC environments are often measured in
terms of FLoating point Operations Per Second (FLOPS). A growing community is not concerned
about operations per second, but operations per month or peryear. Their problems are of a much
larger scale. They are more interested in how many jobs they can complete over a long period of
time instead of how fast an individual job can complete.

The key to HTC is to efficiently harness the use of all available resources. Years ago, the en-
gineering and scientific community relied on a large, centralized mainframe or a supercomputer to
do computational work. A large number of individuals and groups needed to pool their financial re-
sources to afford such a machine. Users had to wait for their turn on the mainframe, and they had a
limited amount of time allocated. While this environment was inconvenient for users, the utilization
of the mainframe was high; it was busy nearly all the time.

As computers became smaller, faster, and cheaper, users moved away from centralized main-
frames and purchased personal desktop workstations and PCs. An individual or small group could
afford a computing resource that was available whenever they wanted it. The personal computer is
slower than the large centralized machine, but it provides exclusive access. Now, instead of one giant
computer for a large institution, there may be hundreds or thousands of personal computers. This

1

1.2. Condor’s Power 2

is an environment of distributed ownership, where individuals throughout an organization own their
own resources. The total computational power of the institution as a whole may rise dramatically as
the result of such a change, but because of distributed ownership, individuals have not been able to
capitalize on the institutional growth of computing power.And, while distributed ownership is more
convenient for the users, the utilization of the computing power is lower. Many personal desktop
machines sit idle for very long periods of time while their owners are busy doing other things (such
as being away at lunch, in meetings, or at home sleeping).

1.2 Condor’s Power

Condor is a software system that creates a High-Throughput Computing (HTC) environment. It
effectively utilizes the computing power of workstations that communicate over a network. Condor
can manage a dedicated cluster of workstations. Its power comes from the ability to effectively
harness non-dedicated, preexisting resources under distributed ownership.

A user submits the job to Condor. Condor finds an available machine on the network and begins
running the job on that machine. Condor has the capability todetect that a machine running a
Condor job is no longer available (perhaps because the ownerof the machine came back from lunch
and started typing on the keyboard). It can checkpoint the job and move (migrate) the jobs to a
different machine which would otherwise be idle. Condor continues job on the new machine from
precisely where it left off.

In those cases where Condor can checkpoint and migrate a job,Condor makes it easy to maxi-
mize the number of machines which can run a job. In this case, there is no requirement for machines
to share file systems (for example, with NFS or AFS), so that machines across an entire enterprise
can run a job, including machines in different administrative domains.

Condor can be a real time saver when a job must be run many (hundreds of) different times,
perhaps with hundreds of different data sets. With one command, all of the hundreds of jobs are
submitted to Condor. Depending upon the number of machines in the Condor pool, dozens or even
hundreds of otherwise idle machines can be running the job atany given moment.

Condor does not require an account (login) on machines whereit runs a job. Condor can do
this because of itsremote system calltechnology, which traps library calls for such operations as
reading or writing from disk files. The calls are transmittedover the network to be performed on the
machine where the job was submitted.

Condor provides powerful resource management by match-making resource owners with re-
source consumers. This is the cornerstone of a successful HTC environment. Other compute cluster
resource management systems attach properties to the job queues themselves, resulting in user con-
fusion over which queue to use as well as administrative hassle in constantly adding and editing
queue properties to satisfy user demands. Condor implementsClassAds, a clean design that simpli-
fies the user’s submission of jobs.

ClassAds work in a fashion similar to the newspaper classified advertising want-ads. All ma-
chines in the Condor pool advertise their resource properties, both static and dynamic, such as

Condor Version 7.2.3 Manual

1.3. Exceptional Features 3

available RAM memory, CPU type, CPU speed, virtual memory size, physical location, and cur-
rent load average, in aresource offerad. A user specifies aresource requestad when submitting a
job. The request defines both the required and a desired set ofproperties of the resource to run the
job. Condor acts as a broker by matching and ranking resourceoffer ads with resource request ads,
making certain that all requirements in both ads are satisfied. During this match-making process,
Condor also considers several layers of priority values: the priority the user assigned to the resource
request ad, the priority of the user which submitted the ad, and desire of machines in the pool to
accept certain types of ads over others.

1.3 Exceptional Features

Checkpoint and Migration. Where programs can be linked with Condor libraries, users ofCondor
may be assured that their jobs will eventually complete, even in the ever changing environment
that Condor utilizes. As a machine running a job submitted toCondor becomes unavailable,
the job can be check pointed. The job may continue after migrating to another machine.
Condor’s periodic checkpoint feature periodically checkpoints a job even in lieu of migration
in order to safeguard the accumulated computation time on a job from being lost in the event
of a system failure such as the machine being shutdown or a crash.

Remote System Calls.Despite running jobs on remote machines, the Condor standard universe
execution mode preserves the local execution environment via remote system calls. Users do
not have to worry about making data files available to remote workstations or even obtaining
a login account on remote workstations before Condor executes their programs there. The
program behaves under Condor as if it were running as the userthat submitted the job on the
workstation where it was originally submitted, no matter onwhich machine it really ends up
executing on.

No Changes Necessary to User’s Source Code.No special programming is required to use Con-
dor. Condor is able to run non-interactive programs. The checkpoint and migration of pro-
grams by Condor is transparent and automatic, as is the use ofremote system calls. If these
facilities are desired, the user only re-links the program.The code is neither recompiled nor
changed.

Pools of Machines can be Hooked Together.Flocking is a feature of Condor that allows jobs sub-
mitted within a first pool of Condor machines to execute on a second pool. The mechanism
is flexible, following requests from the job submission, while allowing the second pool, or a
subset of machines within the second pool to set policies over the conditions under which jobs
are executed.

Jobs can be Ordered.The ordering of job execution required by dependencies among jobs in a set
is easily handled. The set of jobs is specified using a directed acyclic graph, where each job
is a node in the graph. Jobs are submitted to Condor followingthe dependencies given by the
graph.

Condor Enables Grid Computing. As grid computing becomes a reality, Condor is already there.
The technique of glidein allows jobs submitted to Condor to be executed on grid machines

Condor Version 7.2.3 Manual

1.4. Current Limitations 4

in various locations worldwide. As the details of grid computing evolve, so does Condor’s
ability, starting with Globus-controlled resources.

Sensitive to the Desires of Machine Owners.The owner of a machine has complete priority over
the use of the machine. An owner is generally happy to let others compute on the machine
while it is idle, but wants it back promptly upon returning. The owner does not want to take
special action to regain control. Condor handles this automatically.

ClassAds. The ClassAd mechanism in Condor provides an extremely flexible, expressive frame-
work for matchmaking resource requests with resource offers. Users can easily request both
job requirements and job desires. For example, a user can require that a job run on a machine
with 64 Mbytes of RAM, but state a preference for 128 Mbytes, if available. A workstation
owner can state a preference that the workstation runs jobs from a specified set of users. The
owner can also require that there be no interactive workstation activity detectable at certain
hours before Condor could start a job. Job requirements/preferences and resource availability
constraints can be described in terms of powerful expressions, resulting in Condor’s adapta-
tion to nearly any desired policy.

1.4 Current Limitations

Limitations on Jobs which can Checkpointed Although Condor can schedule and run any type
of process, Condor does have some limitations on jobs that itcan transparently checkpoint
and migrate:

1. Multi-process jobs are not allowed. This includes systemcalls such asfork() ,
exec() , andsystem() .

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared
memory.

3. Network communication must be brief. A jobmay make network connections using
system calls such assocket() , but a network connection left open for long periods
will delay checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals is notallowed. Condor reserves
these signals for its own use. Sending or receiving all othersignalsis allowed.

5. Alarms, timers, and sleeping are not allowed. This includes system calls such as
alarm() , getitimer() , andsleep() .

6. Multiple kernel-level threads are not allowed. However,multiple user-level threadsare
allowed.

7. Memory mapped files are not allowed. This includes system calls such asmmap() and
munmap() .

8. File locks are allowed, but not retained between checkpoints.

Condor Version 7.2.3 Manual

1.5. Availability 5

9. All files must be opened read-only or write-only. A file opened for both reading and
writing will cause trouble if a job must be rolled back to an old checkpoint image. For
compatibility reasons, a file opened for both reading and writing will result in a warning
but not an error.

10. A fair amount of disk space must be available on the submitting machine for storing
a job’s checkpoint images. A checkpoint image is approximately equal to the virtual
memory consumed by a job while it runs. If disk space is short,a specialcheckpoint
servercan be designated for storing all the checkpoint images for apool.

11. On Linux, your job must be statically linked.condorcompiledoes this by default.
Dynamic linking is allowed on Solaris.

12. Reading to or writing from files larger than 2 GB is not supported.

Note: these limitationsonly apply to jobs which Condor has been asked to transparently
checkpoint. If job checkpointing is not desired, the limitations above do not apply.

Security Implications. Condor does a significant amount of work to prevent security hazards, but
loopholes are known to exist. Condor can be instructed to runuser programs only as the UNIX
user nobody, a user login which traditionally has very restricted access. But even with access
solely as user nobody, a sufficiently malicious individual could do such things as fill up/tmp
(which is world writable) and/or gain read access to world readable files. Furthermore, where
the security of machines in the pool is a high concern, only machines where the UNIX user
root on that machine can be trusted should be admitted into the pool. Condor provides the
administrator with extensive security mechanisms to enforce desired policies.

Jobs Need to be Re-linked to get Checkpointing and Remote System Calls Although typically
no source code changes are required, Condor requires that the jobs be re-linked with the Con-
dor libraries to take advantage of checkpointing and remotesystem calls. This often precludes
commercial software binaries from taking advantage of these services because commercial
packages rarely make their object code available. Condor’sother services are still available
for these commercial packages.

1.5 Availability

Condor is currently available as a free download from the Internet via the World Wide Web at URL
http://www.cs.wisc.edu/condor/downloads-v2. Binary distributions of Condor are available for the
platforms detailed in Table 1.1. A platform is an architecture/operating system combination. Condor
binaries are available for most major versions of Unix, as well as Windows.

In the table,clippedmeans that Condor does not support checkpointing or remote system calls
on the given platform. This means thatstandardjobs are not supported, onlyvanilla jobs. See
section 2.4.1 on page 15 for more details on job universes within Condor and their abilities and
limitations.

For 7.0.0 and later releases, the Condor source code is available for public download alongside
the binary distributions.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/downloads-v2

1.5. Availability 6

Architecture Operating System

Hewlett Packard PA-RISC (both PA7000
and PA8000 series)

- HPUX 11.00 (clipped)

Sun SPARC Sun4m, Sun4c, Sun Ultra-
SPARC

- Solaris 8, 9 (clipped)

- Solaris 10 (clipped) (Using the Solaris 9 bina-
ries)

Intel x86 - Red Hat Linux 9
- RedHat Enterprise Linux 3
- RedHat Enterprise Linux 4 (Using RHEL3 bina-
ries)
- RedHat Enterprise Linux 5
- Fedora Core 1, 2, 3, 4, 5 (Using RHEL3 binaries)
- Debian Linux 3.1 (sarge) (Using RHEL3 bina-
ries)
- Debian Linux 4.0 (etch)
- Debian Linux 5.0 (lenny)
- Windows 2000 Professional and Server (Win NT
5.0) (clipped)
- Windows 2003 Server (Win NT 5.2) (clipped)
- Windows 2008 Server (Win NT 6.0) (clipped)
- Windows XP Professional (Win NT 5.1)
(clipped)
- Windows Vista (Win NT 6.0) (clipped)
- Macintosh OS X 10.4 (clipped)

PowerPC - Macintosh OS X 10.4 (clipped)
- AIX 5.2, 5.3 (clipped)
- Yellowdog Linux 5.0 (clipped)
- SuSE Linux Enterprise Server 9 (clipped)

Itanium IA64 - Red Hat Enterprise Linux 3 (clipped)
Opteron x8664 - Red Hat Enterprise Linux 3

- Red Hat Enterprise Linux 5
- Debian Linux 5.0 (lenny)

Table 1.1: Condor Version 7.2.3 supported platforms

NOTE: Other Linux distributions likely work, but are not tested or supported.

Condor is also available, but is not currently distributed as tested binaries for the platforms shown
in Table 1.2.

For more platform-specific information about Condor’s support for various operating systems,

Condor Version 7.2.3 Manual

1.5. Availability 7

Platform Notes

FreeBSD 6, 7 (clipped) on Intel x86 Known to compile
FreeBSD 7 (clipped) on Itanium IA64 Known to compile

Table 1.2: Other Condor Version 7.2.3 available platforms

see Chapter 6 on page 529.

Jobs submitted to the standard universe utilizecondorcompileto relink programs with libraries
provided by Condor. Table 1.3 lists supported compilers by platform. Other compilers may work,
but are not supported.

Platform Compiler Notes
Red Hat Enterprise Linux 3, 4, 5 on x86 gcc, g++, and g77 as shipped
Red Hat Debian Linux 3.1 (sarge) on x86 gcc up to version 3.4.1
Red Hat Debian Linux 5.0 (lenny) on x86 and x8664 gcc, g++, gfortran as shipped
Fedora Core 1, 2, 3, 4, 5, 6, 7 on x86 gcc, g++, and g77 as shipped

Table 1.3: Supported compilers under Condor Version 7.2.3

The following table, Table 1.4, identifies which platforms support the transfer of large files
(greater than 2 Gbyte in length). For vanilla universe jobs and those platforms where large file
transfer is supported, the support is automatic.

Platform Large File Transfer Supported?

Hewlett Packard PA-RISC with HPUX 11.00 Yes
Sun SPARC Sun4m,Sun4c, Sun UltraSPARC with Solaris 8, 9 Yes
Intel x86 with Red Hat Enterprise Linux 3, 4, 5, Debian Linux 3.1, 4.0, 5.0 Yes
Intel x86 with Fedora Core 1, 2, 3, 4, 5, 6, 7 Yes
Intel x86 with Windows 2000 Professional and Server Yes
Intel x86 with 2003 Server (Win NT 5.0) Yes
Intel x86 with Windows XP Professional (Win NT 5.1) Yes
Intel x86 with Windows Vista Yes
PowerPC with Macintosh OS X No
PowerPC with AIX 5.2 Yes
PowerPC with Yellowdog Linux 5.0 Yes
Itanium with Red Hat Enterprise Linux 3 Yes
Opteron x8664 with Red Hat Enterprise Linux 3, 4, 5, Debian Linux 5.0 Yes

Table 1.4: Supported platforms for large file transfer of vanilla universe job files

Condor Version 7.2.3 Manual

1.6. Contributions to Condor 8

1.6 Contributions to Condor

The quality of the Condor project is enhanced by the contributions of external organizations. We
gratefully acknowledge the following contributions.

• The Globus Alliance (http://www.globus.org), for code and assistance in developing Condor-
G and the Grid Security Infrastructure (GSI) for authentication and authorization.

• The GOZAL Project from the Computer Science Department of the Technion Israel Institute
of Technology (http://www.technion.ac.il/), for their enhancements for Condor’s High Avail-
ability. Thecondorhad daemon allows one of multiple machines to function as the central
manager for a Condor pool. Therefore, if an acting central manager fails, another can take its
place.

• Micron Corporation (http://www.micron.com/) for the MSI-based installer for Condor on
Windows.

• Paradyn Project (http://www.paradyn.org/) and the Universitat Autònoma de Barcelona
(http://www.caos.uab.es/) for work on the Tool Daemon Protocol (TDP).

Our Web Services API acknowledges the use of gSOAP with theirrequested wording:

• Part of the software embedded in this product is gSOAP software. Portions created by gSOAP
are Copyright (C) 2001-2004 Robert A. van Engelen, Genivia inc. All Rights Reserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY GENIVIA INC
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• Some distributions of Condor include the Google Coredumper library
(http://goog-coredumper.sourceforge.net/). The GoogleCoredumper library is released
under these terms:

Copyright (c) 2005, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Condor Version 7.2.3 Manual

http://www.globus.org
http://www.technion.ac.il/
http://www.micron.com/
http://www.paradyn.org/
http://www.caos.uab.es/
http://goog-coredumper.sourceforge.net/

1.7. Contact Information 9

– Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

– Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

– Neither the name of Google Inc. nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIALDAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

1.7 Contact Information

The latest software releases, publications/papers regarding Condor and other High-
Throughput Computing research can be found at the official web site for Condor at
http://www.cs.wisc.edu/condor.

In addition, there is an e-mail list at condor-world@cs.wisc.edu. The Condor Team
uses this e-mail list to announce new releases of Condor and other major Condor-related
news items. To subscribe or unsubscribe from the the list, follow the instructions at
http://www.cs.wisc.edu/condor/mail-lists/. Because many of us receive too much e-mail as it is,
you will be happy to know that the Condor World e-mail list group is moderated, and only major
announcements of wide interest are distributed.

Our users support each other by belonging to an unmoderated mailing list targeted at solving
problems with Condor. Condor team members attempt to monitor traffic to Condor Users, respond-
ing as they can. Follow the instructions at http://www.cs.wisc.edu/condor/mail-lists/.

Finally, you can reach the Condor Team directly. The Condor Team is comprised of the develop-
ers and administrators of Condor at the University of Wisconsin-Madison. Condor questions, com-
ments, pleas for help, and requests for commercial contractconsultation or support are all welcome;
send Internet e-mail to mailto:condor-admin@cs.wisc.edu. Please include your name, organization,
and telephone number in your message. If you are having trouble with Condor, please help us trou-
bleshoot by including as much pertinent information as you can, including snippets of Condor log
files.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor/mail-lists/
http://www.cs.wisc.edu/condor/mail-lists/
mailto:condor-admin@cs.wisc.edu

1.8. Privacy Notice 10

1.8 Privacy Notice

The Condor software periodically sends short messages to the Condor Project developers at the
University of Wisconsin, reporting totals of machines and jobs in each running Condor system. An
example of such a message is given below.

The Condor Project uses these collected reports to publish summary figures and tables, such
as the total of Condor systems worldwide, or the geographic distribution of Condor systems. This
information helps the Condor Project to understand the scale and composition of Condor in the real
world and improve the software accordingly.

The Condor Project will not use these reports to publicly identify any Condor system or user
without permission. The Condor software does not collect orreport any personal information about
individual users.

We hope that you will contribute to the development of Condorthrough this reporting fea-
ture. However, you are free to disable it at any time by changing the configuration variables
CONDORDEVELOPERSand CONDORDEVELOPERSCOLLECTOR, both described in section
3.3.16 of this manual.

Example of data reported:

This is an automated email from the Condor system
on machine "your.condor.pool.com". Do not reply.

This Collector has the following IDs:
CondorVersion: 6.6.0 Nov 12 2003
CondorPlatform: INTEL-LINUX-GLIBC22

Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 810 52 716 37 0 5
INTEL/WINNT50 120 5 115 0 0 0

SUN4u/SOLARIS28 114 12 92 9 0 1
SUN4x/SOLARIS28 5 1 0 4 0 0

Total 1049 70 923 50 0 6

RunningJobs IdleJobs
920 3868

Condor Version 7.2.3 Manual

CHAPTER

TWO

Users’ Manual

2.1 Welcome to Condor

Presenting Condor Version 7.2.3! Condor is developed by theCondor Team at the University of
Wisconsin-Madison (UW-Madison), and was first installed asa production system in the UW-
Madison Computer Sciences department more than 10 years ago. This Condor pool has since served
as a major source of computing cycles to UW faculty and students. For many, it has revolutionized
the role computing plays in their research. An increase of one, and sometimes even two, orders of
magnitude in the computing throughput of a research organization can have a profound impact on its
size, complexity, and scope. Over the years, the Condor Teamhas established collaborations with
scientists from around the world, and it has provided them with access to surplus cycles (one scien-
tist has consumed 100 CPU years!). Today, our department’s pool consists of more than 700 desktop
Unix workstations and more than 100 Windows 2000 machines. On a typical day, our pool delivers
more than 500 CPU days to UW researchers. Additional Condor pools have been established over
the years across our campus and the world. Groups of researchers, engineers, and scientists have
used Condor to establish compute pools ranging in size from ahandful to hundreds of workstations.
We hope that Condor will help revolutionize your compute environment as well.

2.2 Introduction

In a nutshell, Condor is a specialized batch system for managing compute-intensive jobs. Like
most batch systems, Condor provides a queuing mechanism, scheduling policy, priority scheme,
and resource classifications. Users submit their compute jobs to Condor, Condor puts the jobs in a
queue, runs them, and then informs the user as to the result.

11

2.3. Matchmaking with ClassAds 12

Batch systems normally operate only with dedicated machines. Often termed compute servers,
these dedicated machines are typically owned by one organization and dedicated to the sole purpose
of running compute jobs. Condor can schedule jobs on dedicated machines. But unlike traditional
batch systems, Condor is also designed to effectively utilize non-dedicated machines to run jobs. By
being told to only run compute jobs on machines which are currently not being used (no keyboard
activity, no load average, no active telnet users, etc), Condor can effectively harness otherwise idle
machines throughout a pool of machines. This is important because often times the amount of
compute power represented by the aggregate total of all the non-dedicated desktop workstations
sitting on people’s desks throughout the organization is far greater than the compute power of a
dedicated central resource.

Condor has several unique capabilities at its disposal which are geared toward effectively utiliz-
ing non-dedicated resources that are not owned or managed bya centralized resource. These include
transparent process checkpoint and migration, remote system calls, and ClassAds. Read section 1.2
for a general discussion of these features before reading any further.

2.3 Matchmaking with ClassAds

Before you learn about how to submit a job, it is important to understand how Condor allocates
resources. Understanding the unique framework by which Condor matches submitted jobs with
machines is the key to getting the most from Condor’s scheduling algorithm.

Condor simplifies job submission by acting as a matchmaker ofClassAds. Condor’s ClassAds
are analogous to the classified advertising section of the newspaper. Sellers advertise specifics about
what they have to sell, hoping to attract a buyer. Buyers may advertise specifics about what they
wish to purchase. Both buyers and sellers list constraints that need to be satisfied. For instance, a
buyer has a maximum spending limit, and a seller requires a minimum purchase price. Furthermore,
both want to rank requests to their own advantage. Certainlya seller would rank one offer of $50
dollars higher than a different offer of $25. In Condor, users submitting jobs can be thought of as
buyers of compute resources and machine owners are sellers.

All machines in a Condor pool advertise their attributes, such as available RAM memory, CPU
type and speed, virtual memory size, current load average, along with other static and dynamic
properties. This machine ClassAd also advertises under what conditions it is willing to run a Condor
job and what type of job it would prefer. These policy attributes can reflect the individual terms and
preferences by which all the different owners have graciously allowed their machine to be part of
the Condor pool. You may advertise that your machine is only willing to run jobs at night and when
there is no keyboard activity on your machine. In addition, you may advertise a preference (rank)
for running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd with your requirements and preferences.
The ClassAd includes the type of machine you wish to use. For instance, perhaps you are looking
for the fastest floating point performance available. You want Condor to rank available machines
based upon floating point performance. Or, perhaps you care only that the machine has a minimum
of 128 Mbytes of RAM. Or, perhaps you will take any machine youcan get! These job attributes

Condor Version 7.2.3 Manual

2.3. Matchmaking with ClassAds 13

and requirements are bundled up into a job ClassAd.

Condor plays the role of a matchmaker by continuously reading all the job ClassAds and all the
machine ClassAds, matching and ranking job ads with machineads. Condor makes certain that all
requirements in both ClassAds are satisfied.

2.3.1 Inspecting Machine ClassAds with condorstatus

Once Condor is installed, you will get a feel for what a machine ClassAd does by trying thecon-
dor statuscommand. Try thecondorstatuscommand to get a summary of information from Class-
Ads about the resources available in your pool. Typecondorstatusand hit enter to see a summary
similar to the following:

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

adriana.cs INTEL SOLARIS251 Claimed Busy 1.000 64 0+01:10: 00
alfred.cs. INTEL SOLARIS251 Claimed Busy 1.000 64 0+00:40: 00
amul.cs.wi SUN4u SOLARIS251 Owner Idle 1.000 128 0+06:20:0 4
anfrom.cs. SUN4x SOLARIS251 Claimed Busy 1.000 32 0+05:16: 22
anthrax.cs INTEL SOLARIS251 Claimed Busy 0.285 64 0+00:00: 00
astro.cs.w INTEL SOLARIS251 Claimed Busy 0.949 64 0+05:30: 00
aura.cs.wi SUN4u SOLARIS251 Owner Idle 1.043 128 0+14:40:1 5

. . .

Thecondorstatuscommand has options that summarize machine ads in a variety of ways. For
example,

condor status -availableshows only machines which are willing to run jobs now.

condor status -run shows only machines which are currently running jobs.

condor status -l lists the machine ClassAds for all machines in the pool.

Refer to thecondorstatuscommand reference page located on page 787 for a complete descrip-
tion of thecondorstatuscommand.

Figure 2.1 shows the complete machine ClassAd for a single workstation: alfred.cs.wisc.edu.
Some of the listed attributes are used by Condor for scheduling. Other attributes are for information
purposes. An important point is thatany of the attributes in a machine ad can be utilized at job
submission time as part of a request or preference on what machine to use. Additional attributes can
be easily added. For example, your site administrator can add a physical location attribute to your
machine ClassAds.

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs 14

MyType = "Machine"
TargetType = "Job"
Name = "alfred.cs.wisc.edu"
Machine = "alfred.cs.wisc.edu"
StartdIpAddr = "<128.105.83.11:32780>"
Arch = "INTEL"
OpSys = "SOLARIS251"
UidDomain = "cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
State = "Unclaimed"
EnteredCurrentState = 892191963
Activity = "Idle"
EnteredCurrentActivity = 892191062
VirtualMemory = 185264
Disk = 35259
KFlops = 19992
Mips = 201
LoadAvg = 0.019531
CondorLoadAvg = 0.000000
KeyboardIdle = 5124
ConsoleIdle = 27592
Cpus = 1
Memory = 64
AFSCell = "cs.wisc.edu"
START = LoadAvg - CondorLoadAvg <= 0.300000 && KeyboardIdle > 15 * 60
Requirements = TRUE
Rank = Owner == "johndoe" || Owner == "friendofjohn"
CurrentRank = - 1.000000
LastHeardFrom = 892191963

Figure 2.1: Sample output fromcondorstatus -l alfred

2.4 Road-map for Running Jobs

The road to using Condor effectively is a short one. The basics are quickly and easily learned.

Here are all the steps needed to run a job using Condor.

Code Preparation. A job run under Condor must be able to run as a background batchjob. Condor
runs the program unattended and in the background. A programthat runs in the background
will not be able to do interactive input and output. Condor can redirect console output (stdout
and stderr) and keyboard input (stdin) to and from files for you. Create any needed files that
contain the proper keystrokes needed for program input. Make certain the program will run
correctly with the files.

The Condor Universe. Condor has several runtime environments (called auniverse) from which
to choose. Of the universes, two are likely choices when learning to submit a job to Condor:
the standard universe and the vanilla universe. The standard universe allows a job running

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs 15

under Condor to handle system calls by returning them to the machine where the job was
submitted. The standard universe also provides the mechanisms necessary to take a checkpoint
and migrate a partially completed job, should the machine onwhich the job is executing
become unavailable. To use the standard universe, it is necessary to relink the program with
the Condor library using thecondorcompilecommand. The manual page forcondorcompile
on page 695 has details.

The vanilla universe provides a way to run jobs that cannot berelinked. There is no way to
take a checkpoint or migrate a job executed under the vanillauniverse. For access to input
and output files, jobs must either use a shared file system, or use Condor’s File Transfer
mechanism.

Choose a universe under which to run the Condor program, and re-link the program if neces-
sary.

Submit description file. Controlling the details of a job submission is a submit description file.
The file contains information about the job such as what executable to run, the files to use for
keyboard and screen data, the platform type required to run the program, and where to send
e-mail when the job completes. You can also tell Condor how many times to run a program;
it is simple to run the same program multiple times with multiple data sets.

Write a submit description file to go with the job, using the examples provided in section 2.5.1
for guidance.

Submit the Job. Submit the program to Condor with thecondorsubmitcommand.

Once submitted, Condor does the rest toward running the job.Monitor the job’s progress with
the condorq andcondorstatuscommands. You may modify the order in which Condor will run
your jobs withcondorprio. If desired, Condor can even inform you in a log file every timeyour job
is checkpointed and/or migrated to a different machine.

When your program completes, Condor will tell you (by e-mail, if preferred) the exit status of
your program and various statistics about its performances, including time used and I/O performed.
If you are using a log file for the job (which is recommended) the exit status will be recorded in the
log file. You can remove a job from the queue prematurely withcondorrm.

2.4.1 Choosing a Condor Universe

A universein Condor defines an execution environment. Condor Version 7.2.3 supports several
different universes for user jobs:

• Standard

• Vanilla

• MPI

• Grid

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs 16

• Java

• Scheduler

• Local

• Parallel

• VM

Theuniverseunder which a job runs is specified in the submit description file. If a universe is
not specified, the default is standard.

The standard universe provides migration and reliability,but has some restrictions on the pro-
grams that can be run. The vanilla universe provides fewer services, but has very few restrictions.
The MPI universe is for programs written to the MPICH interface. See section 2.9.5 for more about
MPI and Condor. The MPI Universe has been superseded by the parallel universe. The grid universe
allows users to submit jobs using Condor’s interface. Thesejobs are submitted for execution on grid
resources. The java universe allows users to run jobs written for the Java Virtual Machine (JVM).
The scheduler universe allows users to submit lightweight jobs to be spawned by thecondorschedd
daemon on the submit host itself. The parallel universe is for programs that require multiple ma-
chines for one job. See section 2.9 for more about the Parallel universe. The vm universe allows
users to run jobs where the job is no longer a simple executable, but a disk image, facilitating the
execution of a virtual machine.

Standard Universe

In the standard universe, Condor providescheckpointingandremote system calls. These features
make a job more reliable and allow it uniform access to resources from anywhere in the pool. To
prepare a program as a standard universe job, it must be relinked withcondorcompile. Most pro-
grams can be prepared as a standard universe job, but there are a few restrictions.

Condor checkpoints a job at regular intervals. Acheckpoint imageis essentially a snapshot of
the current state of a job. If a job must be migrated from one machine to another, Condor makes a
checkpoint image, copies the image to the new machine, and restarts the job continuing the job from
where it left off. If a machine should crash or fail while it isrunning a job, Condor can restart the
job on a new machine using the most recent checkpoint image. In this way, jobs can run for months
or years even in the face of occasional computer failures.

Remote system calls make a job perceive that it is executing on its home machine, even though
the job may execute on many different machines over its lifetime. When a job runs on a remote ma-
chine, a second process, called acondorshadowruns on the machine where the job was submitted.

When the job attempts a system call, thecondorshadowperforms the system call instead and
sends the results to the remote machine. For example, if a jobattempts to open a file that is stored
on the submitting machine, thecondorshadowwill find the file, and send the data to the machine
where the job is running.

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs 17

To convert your program into a standard universe job, you must usecondorcompileto relink
it with the Condor libraries. Putcondorcompilein front of your usual link command. You do not
need to modify the program’s source code, but you do need access to the unlinked object files. A
commercial program that is packaged as a single executable file cannot be converted into a standard
universe job.

For example, if you would have linked the job by executing:

% cc main.o tools.o -o program

Then, relink the job for Condor with:

% condor_compile cc main.o tools.o -o program

There are a few restrictions on standard universe jobs:

1. Multi-process jobs are not allowed. This includes systemcalls such asfork() , exec() ,
andsystem() .

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared
memory.

3. Network communication must be brief. A jobmaymake network connections using system
calls such assocket() , but a network connection left open for long periods will delay
checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals is notallowed. Condor reserves these
signals for its own use. Sending or receiving all other signals is allowed.

5. Alarms, timers, and sleeping are not allowed. This includes system calls such asalarm() ,
getitimer() , andsleep() .

6. Multiple kernel-level threads are not allowed. However,multiple user-level threadsare al-
lowed.

7. Memory mapped files are not allowed. This includes system calls such asmmap() and
munmap() .

8. File locks are allowed, but not retained between checkpoints.

9. All files must be opened read-only or write-only. A file opened for both reading and writing
will cause trouble if a job must be rolled back to an old checkpoint image. For compatibility
reasons, a file opened for both reading and writing will result in a warning but not an error.

10. A fair amount of disk space must be available on the submitting machine for storing a job’s
checkpoint images. A checkpoint image is approximately equal to the virtual memory con-
sumed by a job while it runs. If disk space is short, a specialcheckpoint servercan be desig-
nated for storing all the checkpoint images for a pool.

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs 18

11. On Linux, your job must be statically linked.condorcompiledoes this by default. Dynamic
linking is allowed on Solaris.

12. Reading to or writing from files larger than 2 GB is not supported.

Vanilla Universe

The vanilla universe in Condor is intended for programs which cannot be successfully re-linked.
Shell scripts are another case where the vanilla universe isuseful. Unfortunately, jobs run under the
vanilla universe cannot checkpoint or use remote system calls. This has unfortunate consequences
for a job that is partially completed when the remote machinerunning a job must be returned to its
owner. Condor has only two choices. It can suspend the job, hoping to complete it at a later time, or
it can give up and restart the jobfrom the beginningon another machine in the pool.

Since Condor’s remote system call features cannot be used with the vanilla universe, access to
the job’s input and output files becomes a concern. One optionis for Condor to rely on a shared file
system, such as NFS or AFS. Alternatively, Condor has a mechanism for transferring files on behalf
of the user. In this case, Condor will transfer any files needed by a job to the execution site, run the
job, and transfer the output back to the submitting machine.

Under Unix, the Condor presumes a shared file system for vanilla jobs. However, if a shared
file system is unavailable, a user can enable the Condor File Transfer mechanism. On Windows
platforms, the default is to use the File Transfer mechanism. For details on running a job with a
shared file system, see section 2.5.3 on page 24. For details on using the Condor File Transfer
mechanism, see section 2.5.4 on page 26.

Grid Universe

The Grid universe in Condor is intended to provide the standard Condor interface to users who wish
to start jobs intended for remote management systems. Section 5.3 on page 494 has details on using
the Grid universe. The manual page forcondorsubmiton page 795 has detailed descriptions of the
grid-related attributes.

Java Universe

A program submitted to the Java universe may run on any sort ofmachine with a JVM regardless of
its location, owner, or JVM version. Condor will take care ofall the details such as finding the JVM
binary and setting the classpath.

Scheduler Universe

The scheduler universe allows users to submit lightweight jobs to be run immediately, alongside
thecondorschedddaemon on the submit host itself. Scheduler universe jobs are not matched with

Condor Version 7.2.3 Manual

2.5. Submitting a Job 19

a remote machine, and will never be preempted. The job’s requirements expression is evaluated
against thecondorschedd’s ClassAd.

Originally intended for meta-schedulers such ascondordagman, the scheduler universe can also
be used to manage jobs of any sort that must run on the submit host.

However, unlike the local universe, the scheduler universedoes not use acondorstarterdaemon
to manage the job, and thus offers limited features and policy support. The local universe is a better
choice for most jobs which must run on the submit host, as it offers a richer set of job management
features, and is more consistent with other universes such as the vanilla universe. The scheduler
universe may be retired in the future, in favor of the newer local universe.

Local Universe

The local universe allows a Condor job to be submitted and executed with different assumptions for
the execution conditions of the job. The job does not wait to be matched with a machine. It instead
executes right away, on the machine where the job is submitted. The job will never be preempted.
The job’s requirements expression is evaluated against thecondorschedd’s ClassAd.

Parallel Universe

The parallel universe allows parallel programs, such as MPIjobs, to be run within the opportunistic
Condor environment. Please see section 2.9 for more details.

VM Universe

Condor facilitates the execution of VMware and Xen virtual machines with the vm universe.

Please see section 2.11 for details.

2.5 Submitting a Job

A job is submitted for execution to Condor using thecondorsubmitcommand.condorsubmittakes
as an argument the name of a file called a submit description file. This file contains commands
and keywords to direct the queuing of jobs. In the submit description file, Condor finds everything
it needs to know about the job. Items such as the name of the executable to run, the initial working
directory, and command-line arguments to the program all gointo the submit description file.con-
dor submitcreates a job ClassAd based upon the information, and Condorworks toward running
the job.

The contents of a submit file can save time for Condor users. Itis easy to submit multiple runs of
a program to Condor. To run the same program 500 times on 500 different input data sets, arrange

Condor Version 7.2.3 Manual

2.5. Submitting a Job 20

your data files accordingly so that each run reads its own input, and each run writes its own output.
Each individual run may have its own initial working directory, stdin, stdout, stderr, command-line
arguments, and shell environment. A program that directly opens its own files will read the file
names to use either from stdin or from the command line. A program that opens a static filename
every time will need to use a separate subdirectory for the output of each run.

Thecondorsubmitmanual page is on page 795 and contains a complete and full description of
how to usecondorsubmit.

2.5.1 Sample submit description files

In addition to the examples of submit description files givenin thecondorsubmitmanual page, here
are a few more.

Example 1

Example 1 is the simplest submit description file possible. It queues up one copy of the program
foo (which had been created bycondorcompile) for execution by Condor. Since no platform is
specified, Condor will use its default, which is to run the jobon a machine which has the same ar-
chitecture and operating system as the machine from which itwas submitted. Noinput , output ,
anderror commands are given in the submit description file, so the filesstdin , stdout , and
stderr will all refer to /dev/null . The program may produce output by explicitly opening a
file and writing to it. A log file,foo.log , will also be produced that contains events the job had
during its lifetime inside of Condor. When the job finishes, its exit conditions will be noted in the
log file. It is recommended that you always have a log file so youknow what happened to your jobs.

####################
#
Example 1
Simple condor job description file
#
####################

Executable = foo
Log = foo.log
Queue

Example 2

Example 2 queues two copies of the programmathematica. The first copy will run in directory
run 1, and the second will run in directoryrun 2. For both queued copies,stdin will be
test.data , stdout will be loop.out , andstderr will be loop.error . There will be
two sets of files written, as the files are each written to theirown directories. This is a convenient

Condor Version 7.2.3 Manual

2.5. Submitting a Job 21

way to organize data if you have a large group of Condor jobs torun. The example file shows
program submission ofmathematicaas a vanilla universe job. This may be necessary if the source
and/or object code to programmathematicais not available.

####################
#
Example 2: demonstrate use of multiple
directories for data organization.
#
####################

Executable = mathematica
Universe = vanilla
input = test.data
output = loop.out
error = loop.error
Log = loop.log

Initialdir = run_1
Queue

Initialdir = run_2
Queue

Example 3

The submit description file for Example 3 queues 150 runs of programfoowhich has been compiled
and linked for Sun workstations running Solaris 8. This job requires Condor to run the program on
machines which have greater than 32 megabytes of physical memory, and expresses a preference to
run the program on machines with more than 64 megabytes, if such machines are available. It also
advises Condor that it will use up to 28 megabytes of memory when running. Each of the 150 runs
of the program is given its own process number, starting withprocess number 0. So, filesstdin ,
stdout , andstderr will refer to in.0 , out.0 , anderr.0 for the first run of the program,
in.1 , out.1 , anderr.1 for the second run of the program, and so forth. A log file containing
entries about when and where Condor runs, checkpoints, and migrates processes for the 150 queued
programs will be written into filefoo.log .

####################
#
Example 3: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Condor Version 7.2.3 Manual

2.5. Submitting a Job 22

Executable = foo
Requirements = Memory >= 32 && OpSys == "SOLARIS28" && Arch == "SUN4u"
Rank = Memory >= 64
Image_Size = 28 Meg

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log

Queue 150

2.5.2 About Requirements and Rank

Therequirements andrank commands in the submit description file are powerful and flexible.
Using them effectively requires care, and this section presents those details.

Both requirements and rank need to be specified as valid Condor ClassAd expressions,
however, default values are set by thecondorsubmitprogram if these are not defined in the submit
description file. From thecondorsubmitmanual page and the above examples, you see that writing
ClassAd expressions is intuitive, especially if you are familiar with the programming language C.
There are some pretty nifty expressions you can write with ClassAds. A complete description of
ClassAds and their expressions can be found in section 4.1 onpage 430.

All of the commands in the submit description file are case insensitive,exceptfor the ClassAd
attribute string values. ClassAds attribute names are caseinsensitive, but ClassAd string values are
case preserving.

Note that the comparison operators (<, >, <=, >=, and==) compare strings case insensitively.
The special comparison operators=?= and=!= compare strings case sensitively.

A requirements or rank command in the submit description file may utilize attributes that
appear in a machine or a job ClassAd. Within the submit description file (for a job) the prefix
MY. (on a ClassAd attribute name) causes a reference to the job ClassAd attribute, and the prefix
TARGET.causes a reference to a potential machine or matched machineClassAd attribute.

Thecondorstatuscommand displays statistics about machines within the pool. The -l option
displays the machine ClassAd attributes for all machines inthe Condor pool. The job ClassAds, if
there are jobs in the queue, can be seen with thecondorq -l command. This shows all the defined
attributes for current jobs in the queue.

A list of defined ClassAd attributes for job ClassAds is givenin the unnumbered Appendix on
page 879. A list of defined ClassAd attributes for machine ClassAds is given in the unnumbered
Appendix on page 886.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 23

Rank Expression Examples

When considering the match between a job and a machine, rank is used to choose a match from
among all machines that satisfy the job’s requirements and are available to the user, after accounting
for the user’s priority and the machine’s rank of the job. Therank expressions, simple or complex,
define a numerical value that expresses preferences.

The job’srank expression evaluates to one of three values. It can be UNDEFINED, ERROR, or
a floating point value. Ifrank evaluates to a floating point value, the best match will be theone with
the largest, positive value. If norank is given in the submit description file, then Condor substitutes
a default value of 0.0 when considering machines to match. Ifthe job’srank of a given machine
evaluates to UNDEFINED or ERROR, this same value of 0.0 is used. Therefore, the machine is still
considered for a match, but has no rank above any other.

A boolean expression evaluates to the numerical value of 1.0if true, and 0.0 if false.

The followingrank expressions provide examples to follow.

For a job that desires the machine with the most available memory:

Rank = memory

For a job that prefers to run on a friend’s machine on Saturdays and Sundays:

Rank = ((clockday == 0) || (clockday == 6))
&& (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friend1.cs.wisc.edu") ||
(machine == "friend2.cs.wisc.edu") ||
(machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating point performance (on Linpack bench-
marks):

Rank = kflops

This particular example highlights a difficulty with rank expression evaluation as currently defined.
While all machines have floating point processing ability, not all machines will have thekflops
attribute defined. For machines where this attribute is not defined,Rank will evaluate to the value
UNDEFINED, and Condor will use a default rank of the machine of 0.0. Therank attribute will
only rank machines where the attribute is defined. Therefore, the machine with the highest floating
point performance may not be the one given the highest rank.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 24

So, it is wise when writing arank expression to check if the expression’s evaluation will lead
to the expected resulting ranking of machines. This can be accomplished using thecondorstatus
command with the-constraintargument. This allows the user to see a list of machines that fit a
constraint. To see which machines in the pool havekflops defined, use

condor_status -constraint kflops

Alternatively, to see a list of machines wherekflops is not defined, use

condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friend1.cs.wisc.edu") * 3) +
((machine == "friend2.cs.wisc.edu") * 2) +

(machine == "friend3.cs.wisc.edu")

If the machine being ranked is"friend1.cs.wisc.edu" , then the expression

(machine == "friend1.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")

and

(machine == "friend3.cs.wisc.edu")

are false, and give the value 0.0. Therefore,rank evaluates to the value 3.0.
In this way, machine "friend1.cs.wisc.edu" is ranked higher than machine
"friend2.cs.wisc.edu" , machine"friend2.cs.wisc.edu" is ranked higher than
machine"friend3.cs.wisc.edu" , and all three of these machines are ranked higher than
others.

2.5.3 Submitting Jobs Using a Shared File System

If vanilla, java, parallel (or MPI) universe jobs are submitted without using the File Transfer mech-
anism, Condor must use a shared file system to access input andoutput files. In this case, the job
mustbe able to access the data files from any machine on which it could potentially run.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 25

As an example, suppose a job is submitted from blackbird.cs.wisc.edu, and the job requires
a particular data file called/u/p/s/psilord/data.txt . If the job were to run on cardi-
nal.cs.wisc.edu, the file/u/p/s/psilord/data.txt must be available through either NFS or
AFS for the job to run correctly.

Condor allows users to ensure their jobs have access to the right shared files by using the
FileSystemDomain and UidDomain machine ClassAd attributes. These attributes specify
which machines have access to the same shared file systems. All machines that mount the same
shared directories in the same locations are considered to belong to the same file system domain.
Similarly, all machines that share the same user information (in particular, the same UID, which is
important for file systems like NFS) are considered part of the same UID domain.

The default configuration for Condor places each machine in its own UID domain and file system
domain, using the full host name of the machine as the name of the domains. So, if a pooldoes
have access to a shared file system, the pool administratormustcorrectly configure Condor such
that all the machines mounting the same files have the sameFileSystemDomain configuration.
Similarly, all machines that share common user informationmust be configured to have the same
UidDomain configuration.

When a job relies on a shared file system, Condor uses therequirements expression to
ensure that the job runs on a machine in the correctUidDomain andFileSystemDomain . In
this case, the defaultrequirements expression specifies that the job must run on a machine with
the sameUidDomain andFileSystemDomain as the machine from which the job is submitted.
This default is almost always correct. However, in a pool spanning multipleUidDomain s and/or
FileSystemDomain s, the user may need to specify a differentrequirements expression to
have the job run on the correct machines.

For example, imagine a pool made up of both desktop workstations and a dedicated compute
cluster. Most of the pool, including the compute cluster, has access to a shared file system, but
some of the desktop machines do not. In this case, the administrators would probably define the
FileSystemDomain to becs.wisc.edu for all the machines that mounted the shared files,
and to the full host name for each machine that did not. An example is jimi.cs.wisc.edu .

In this example, a user wants to submit vanilla universe jobsfrom her own desktop machine
(jimi.cs.wisc.edu) which does not mount the shared file system (and is therefore in its own file
system domain, in its own world). But, she wants the jobs to beable to run on more than just her
own machine (in particular, the compute cluster), so she puts the program and input files onto the
shared file system. When she submits the jobs, she needs to tell Condor to send them to machines
that have access to that shared data, so she specifies a different requirements expression than
the default:

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there isnoshared file system, or the Condor pool administrator does notconfigure
theFileSystemDomain setting correctly (the default is that each machine in a poolis in its own
file system and UID domain), a user submits a job that cannot use remote system calls (for example,

Condor Version 7.2.3 Manual

2.5. Submitting a Job 26

a vanilla universe job), and the user does not enable Condor’s File Transfer mechanism, the job will
only run on the machine from which it was submitted.

2.5.4 Submitting Jobs Without a Shared File System: Condor’s File Transfer
Mechanism

Condor works well without a shared file system. The Condor filetransfer mechanism is utilized by
the user when the user submits jobs. Condor will transfer anyfiles needed by a job from the machine
where the job was submitted into a temporary working directory on the machine where the job is
to be executed. Condor executes the job and transfers outputback to the submitting machine. The
user specifies which files to transfer, and at what point the output files should be copied back to the
submitting machine. This specification is done within the job’s submit description file.

The default behavior of the file transfer mechanism varies across the different Condor universes,
and it differs between UNIX and Windows machines.

Default Behavior across Condor Universes and Platforms

For jobs submitted under the standard universe, the existence of a shared file system is not relevant.
Access to files (input and output) is handled through Condor’s remote system call mechanism. The
executable and checkpoint files are transferred automatically, when needed. Therefore, the user does
not need to change the submit description file if there is no shared file system.

For the vanilla, java, MPI, and parallel universes, access to files (including the executable)
through a shared file system is presumed as a default on UNIX machines. If there is no shared
file system, then Condor’s file transfer mechanism must be explicitly enabled. When submitting a
job from a Windows machine, Condor presumes the opposite: noaccess to a shared file system. It
instead enables the file transfer mechanism by default. Submission of a job might need to specify
which files to transfer, and/or when to transfer the output files back.

For the grid universe, jobs are to be executed on remote machines, so there would never be a
shared file system between machines. See section 5.3.2 for more details.

For the scheduler universe, Condor is only using the machinefrom which the job is submitted.
Therefore, the existence of a shared file system is not relevant.

Specifying If and When to Transfer Files

To enable the file transfer mechanism, two commands are placed in the job’s submit description file:
should transfer filesandwhen to transfer output. An example is:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

Condor Version 7.2.3 Manual

2.5. Submitting a Job 27

Theshould transfer files command specifies whether Condor should transfer input filesfrom
the submit machine to the remote machine where the job executes. It also specifies whether the
output files are transferred back to the submit machine. The command takes on one of three possible
values:

1. YES: Condor always transfers both input and output files.

2. IF_NEEDED: Condor transfers files if the job is matched with (and to be executed on) a
machine in a differentFileSystemDomain than the one the submit machine belongs to.
If the job is matched with a machine in the localFileSystemDomain , Condor will not
transfer files and relies on a shared file system.

3. NO: Condor’s file transfer mechanism is disabled.

The when to transfer output command tells Condor when output files are to be transferred
back to the submit machine after the job has executed on a remote machine. The command takes on
one of two possible values:

1. ON_EXIT: Condor transfers output files back to the submit machine only when the job exits
on its own.

2. ON_EXIT_OR_EVICT: Condor will always do the transfer, whether the job completes on its
own, is preempted by another job, vacates the machine, or is killed. As the job completes on
its own, files are transferred back to the directory where thejob was submitted, as expected.
For the other cases,files are transferred back at eviction time. These files are placed in the
directory defined by the configuration variableSPOOL, not the directory from which the job
was submitted. The transferred files are named using theClusterId and ProcId job
ClassAd attributes. The file name takes the form:

cluster<X>.proc<Y>.subproc0

where<X> is the value ofClusterId , and<Y> is the value ofProcId . As an example,
job 735.0 may produce the file

$(SPOOL)/cluster735.proc0.subproc0

This is only useful if partial runs of the job are valuable. Anexample of valuable partial runs
is when the application produces its own checkpoints.

There is no default value forwhen to transfer output. If using the file transfer mechanism,
this command must be defined. Ifwhen to transfer output is specified in the submit description
file, butshould transfer files is not, Condor assumes a value ofYESfor should transfer files.

NOTE: The combination of:

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

Condor Version 7.2.3 Manual

2.5. Submitting a Job 28

would produce undefined file access semantics. Therefore, this combination is prohibited bycon-
dor submit.

When submitting from a Unix platform, the file transfer mechanism is unused by de-
fault. If neitherwhen to transfer output or should transfer files are defined, Condor assumes
should_transfer_files = NO .

When submitting from a Windows platform, Condor does not provide any way to use a shared
file system for jobs. Therefore, if neitherwhen to transfer output or should transfer files are
defined, the file transfer mechanism is enabled by default with the following values:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

Specifying What Files to Transfer

If the file transfer mechanism is enabled, Condor will transfer the following files before the job is
run on a remote machine.

1. the executable

2. the input, as defined with theinput command

3. any jar files (for the Java universe)

If the job requires any other input files, the submit description file should utilize thetrans-
fer input files command. This comma-separated list specifies any other filesthat Condor is to
transfer to a remote site to set up the execution environmentfor the job before it is run. These files
are placed in the same temporary working directory as the job’s executable. At this time, directories
can not be transferred in this way. For example:

transfer_input_files = file1,file2

As a default, for jobs other than those submitted to the grid universe, any files that are modified
or created by the job in the temporary directory at the remotesite are transferred back to the machine
from which the job was submitted. Most of the time, this is thebest option. To restrict the files that
are transferred, specify the exact list of files withtransfer output files. Delimit these file names
with a comma. When this list is defined, and any of the files do not exist as the job exits, Condor
considers this an error, and re-runs the job.

WARNING: Do not specifytransfer output files(for other than grid universe jobs) unless there
is a really good reason – it is best to let Condor figure things out by itself based upon what output
the job produces.

For grid universe jobs, files to be transferred (other than standard output and standard error) must
be specified usingtransfer output files in the submit description file.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 29

File Paths for File Transfer

The file transfer mechanism specifies file names and/or paths on both the file system of the submit
machine and on the file system of the execute machine. Care must be taken to know which machine
(submit or execute) is utilizing the file name and/or path.

Files in thetransfer input files command are specified as they are accessed on the submit ma-
chine. The program (as it executes) accesses files as they arefound on the execute machine.

There are three ways to specify files and paths fortransfer input files:

1. Relative to the submit directory, if the submit commandinitialdir is not specified.

2. Relative to the initial directory, if the submit commandinitialdir is specified.

3. Absolute.

Before executing the program, Condor copies the executable, an input file as specified by the
submit commandinput , along with any input files specified bytransfer input files. All these
files are placed into a temporary directory (on the execute machine) in which the program runs.
Therefore, the executing program must access input fileswithoutpaths. Because all transferred files
are placed into a single, flat directory, input files must be uniquely named to avoid collision when
transferred. A collision causes the last file in the list to overwrite the earlier one.

If the program creates output files during execution, it mustcreate them within the temporary
working directory. Condor transfers back all files within the temporary working directory that have
been modified or created. To transfer back only a subset of these files, the submit commandtrans-
fer output files is defined. Transfer of files that exist, but are not within thetemporary working
directory is not supported. Condor’s behavior in this instance is undefined.

It is okay to create files outside the temporary working directory on the file system of the execute
machine, (in a directory such as/tmp) if this directory is guaranteed to exist and be accessible on
all possible execute machines. However, transferring sucha file back after execution completes may
not be done.

Here are several examples to illustrate the use of file transfer. The program executable is called
my program, and it uses three command-line arguments as it executes: two input file names and an
output file name. The program executable and the submit description file for this job are located in
directory/scratch/test .

The directory tree for all these examples:

/scratch/test (directory)
my_program.condor (the submit description file)
my_program (the executable)
files (directory)

logs2 (directory)
in1 (file)

Condor Version 7.2.3 Manual

2.5. Submitting a Job 30

in2 (file)
logs (directory)

Example 1 This simple example explicitly transfers input files. Theseinput files to be trans-
ferred are specified relative to the directory where the job is submitted. The single out-
put file, out1 , created when the job is executed will be transferred back into the directory
/scratch/test , not thefiles directory.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1, files/in2

Arguments = in1 in2 out1
Queue

Example 2 This second example is identical to Example 1, except that absolute paths to the input
files are specified, instead of relative paths to the input files.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1, /scrat ch/test/files/in2

Arguments = in1 in2 out1
Queue

Example 3 This third example illustrates the use of the submit commandinitialdir , and its effect
on the paths used for the various files. The expected locationof the executable is not affected
by theinitialdir command. All other files (specified byinput , output, transfer input files,
as well as files modified or created by the job and automatically transferred back) are located
relative to the specifiedinitialdir . Therefore, the output file,out1 , will be placed in the
files directory. Note that thelogs2 directory exists to make this example work correctly.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla

Condor Version 7.2.3 Manual

2.5. Submitting a Job 31

Error = logs2/err.$(cluster)
Output = logs2/out.$(cluster)
Log = logs2/log.$(cluster)

initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1, in2

Arguments = in1 in2 out1
Queue

Example 4 – Illustrates an Error This example illustrates a job that will fail. The files specified
using thetransfer input files command work correctly (see Example 1). However, relative
paths to files in theargumentscommand cause the executing program to fail. The file system
on the submission side may utilize relative paths to files, however those files are placed into a
single, flat, temporary directory on the execute machine.

Note that this specification and submission will cause the job to fail and re-execute.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1, files/in2

Arguments = files/in1 files/in2 files/out1
Queue

This example fails with the following error:

err: files/out1: No such file or directory.

Example 5 – Illustrates an Error As with Example 4, this example illustrates a job that will fail.
The executing program’s use of absolute paths cannot work.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1, /scrat ch/test/files/in2

Arguments = /scratch/test/files/in1 /scratch/test/file s/in2 /scratch/test/files/out1
Queue

Condor Version 7.2.3 Manual

2.5. Submitting a Job 32

The job fails with the following error:

err: /scratch/test/files/out1: No such file or directory.

Example 6 – Illustrates an Error This example illustrates a failure case where the executingpro-
gram creates an output file in a directory other than within the single, flat, temporary directory
that the program executes within. The file creation may or maynot cause an error, depending
on the existence and permissions of the directories on the remote file system.

Further incorrect usage is seen during the attempt to transfer the output file back using the
transfer output files command. The behavior of Condor for this case is undefined.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1, files/in2
transfer_output_files = /tmp/out1

Arguments = in1 in2 /tmp/out1
Queue

Requirements and Rank for File Transfer

Therequirements expression for a job must depend on theshould_transfer_files com-
mand. The job must specify the correct logic to ensure that the job is matched with a resource that
meets the file transfer needs. If norequirements expression is in the submit description file, or
if the expression specified does not refer to the attributes listed below,condorsubmitadds an appro-
priate clause to therequirements expression for the job.condorsubmitappends these clauses
with a logical AND,&&, to ensure that the proper conditions are met. Here are the default clauses
corresponding to the different values ofshould_transfer_files :

1. should_transfer_files = YES results in the addition of the clause
(HasFileTransfer) . If the job is always going to transfer files, it is required to
match with a machine that has the capability to transfer files.

2. should_transfer_files = NO results in the addition of
(TARGET.FileSystemDomain == MY.FileSystemDomain) . In addition,
Condor automatically adds theFileSystemDomain attribute to the job ad, with whatever
string is defined for thecondorscheddto which the job is submitted. If the job is not using
the file transfer mechanism, Condor assumes it will need a shared file system, and therefore,
a machine in the sameFileSystemDomain as the submit machine.

3. should_transfer_files = IF_NEEDED results in the addition of

Condor Version 7.2.3 Manual

2.5. Submitting a Job 33

(HasFileTransfer || (TARGET.FileSystemDomain == MY.File SystemDomain))

If Condor will optionally transfer files, it must require that the machine iseither capable of
transferring filesor in the same file system domain.

To ensure that the job is matched to a machine with enough local disk space to hold all the
transferred files, Condor automatically adds theDiskUsage job attribute. This attribute includes
the total size of the job’s executable and all input files to betransferred. Condor then adds an
additional clause to theRequirements expression that states that the remote machine must have
at least enough available disk space to hold all these files:

&& (Disk >= DiskUsage)

If should_transfer_files = IF_NEEDED and the job prefers to run on a machine in
the local file system domain over transferring files, (but arestill willing to allow the job to run
remotely and transfer files), therank expression works well. Use:

rank = (TARGET.FileSystemDomain == MY.FileSystemDomain)

Therank expression is a floating point number, so if other items are considered in ranking the
possible machines this job may run on, add the items:

rank = kflops + (TARGET.FileSystemDomain == MY.FileSystem Domain)

The value ofkflops can vary widely among machines, so thisrank expression will likely
not do as it intends. To place emphasis on the job running in the same file system domain, but still
consider kflops among the machines in the file system domain, weight the part of the rank expression
that is matching the file system domains. For example:

rank = kflops + (10000 * (TARGET.FileSystemDomain == MY.FileSystemDomain))

2.5.5 Environment Variables

The environment under which a job executes often contains information that is potentially useful to
the job. Condor allows a user to both set and reference environment variables for a job or job cluster.

Within a submit description file, the user may define environment variables for the job’s envi-
ronment by using theenvironment command. See thecondorsubmitmanual page at section 9 for
more details about this command.

The submittor’s entire environment can be copied into the job ClassAd for the job at job sub-
mission. Thegetenvcommand within the submit description file does this. See thecondorsubmit
manual page at section 9 for more details about this command.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 34

If the environment is set with theenvironment commandandgetenvis also set to true, values
specified withenvironment override values in the submittor’s environment (regardless of the order
of theenvironment andgetenvcommands).

Commands within the submit description file may reference the environment vari-
ables of the submitter as a job is submitted. Submit description file commands use
$ENV(EnvironmentVariableName) to reference the value of an environment variable.
Again, see thecondorsubmitmanual page at section 9 for more details about this usage.

Condor sets several additional environment variables for each executing job that may be useful
for the job to reference.

• CONDORSCRATCHDIR gives the directory where the job may place temporary data files.
This directory is unique for every job that is run, and it’s contents are deleted by Condor when
the job stops running on a machine, no matter how the job completes.

• CONDORSLOT gives the name of the slot (for SMP machines), on which the jobis run. On
machines with only a single slot, the value of this variable will be 1, just like theSlotID
attribute in the machine’s ClassAd. This setting is available in all universes. See section 3.12.7
for more details about SMP machines and their configuration.

• CONDORVM equivalent to CONDORSLOTdescribed above, except that it is only available
in the standard universe. NOTE: : As of Condor version 6.9.3, this environment variable is
deprecated. It will only be defined if theALLOWVMCRUFT configuration setting is set to
TRUE.

• X509 USERPROXYgives the full path to the X509 user proxy file if one is associated with
the job. (Typically a user will specifyx509userproxy in the submit file.) This setting is
currently available in the local, java, and vanilla universes.

2.5.6 Heterogeneous Submit: Execution on Differing Architectures

If executables are available for the different platforms ofmachines in the Condor pool, Condor
can be allowed the choice of a larger number of machines when allocating a machine for a job.
Modifications to the submit description file allow this choice of platforms.

A simplified example is a cross submission. An executable is available for one platform, but the
submission is done from a different platform. Given the correct executable, therequirements
command in the submit description file specifies the target architecture. For example, an exe-
cutable compiled for a Sun 4, submitted from an Intel architecture running Linux would add the
requirement

requirements = Arch == "SUN4x" && OpSys == "SOLARIS251"

Without thisrequirement , condorsubmitwill assume that the program is to be executed on a
machine with the same platform as the machine where the job issubmitted.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 35

Cross submission works for all universes exceptscheduler andlocal . See section 5.3.8 for
how matchmaking works in thegrid universe. The burden is on the user to both obtain and specify
the correct executable for the target architecture. To listthe architecture and operating systems of
the machines in a pool, runcondorstatus.

Vanilla Universe Example for Execution on Differing Archit ectures

A more complex example of a heterogeneous submission occurswhen a job may be executed on
many different architectures to gain full use of a diverse architecture and operating system pool.
If the executables are available for the different architectures, then a modification to the submit
description file will allow Condor to choose an executable after an available machine is chosen.

A special-purpose Machine Ad substitution macro can be usedin string attributes in the submit
description file. The macro has the form

$$(MachineAdAttribute)

The $$() informs Condor to substitute the requestedMachineAdAttribute from the machine
where the job will be executed.

An example of the heterogeneous job submission has executables available for three platforms:
LINUX Intel, Solaris26 Intel, and Solaris 8 Sun. This example usespovrayto render images using
a popular free rendering engine.

The substitution macro chooses a specific executable after aplatform for running the job is
chosen. These executables must therefore be named based on the machine attributes that describe a
platform. The executables named

povray.LINUX.INTEL
povray.SOLARIS26.INTEL
povray.SOLARIS28.SUN4u

will work correctly for the macro

povray.$$(OpSys).$$(Arch)

The executables or links to executables with this name are placed into the initial working direc-
tory so that they may be found by Condor. A submit descriptionfile that queues three jobs for this
example:

####################
#
Example of heterogeneous submission
#

Condor Version 7.2.3 Manual

2.5. Submitting a Job 36

####################

universe = vanilla
Executable = povray.$$(OpSys).$$(Arch)
Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "INTEL" && OpSys =="SOLARIS26") || \
(Arch == "SUN4u" && OpSys == "SOLARIS28")

Arguments = +W1024 +H768 +Iimage1.pov
Queue

Arguments = +W1024 +H768 +Iimage2.pov
Queue

Arguments = +W1024 +H768 +Iimage3.pov
Queue

These jobs are submitted to the vanilla universe to assure that once a job is started on a specific
platform, it will finish running on that platform. Switchingplatforms in the middle of job execution
cannot work correctly.

There are two common errors made with the substitution macro. The first is the use of a non-
existentMachineAdAttribute . If the specifiedMachineAdAttribute does not exist in the
machine’s ClassAd, then Condor will place the job in the heldstate until the problem is resolved.

The second common error occurs due to an incomplete job set up. For example, the submit
description file given above specifies three available executables. If one is missing, Condor report
back that an executable is missing when it happens to match the job with a resource that requires the
missing binary.

Standard Universe Example for Execution on Differing Architectures

Jobs submitted to the standard universe may produce checkpoints. A checkpoint can then be used
to start up and continue execution of a partially completed job. For a partially completed job, the
checkpoint and the job are specific to a platform. If migratedto a different machine, correct execu-
tion requires that the platform must remain the same.

In previous versions of Condor, the author of the heterogeneous submission file would need to
write extra policy expressions in therequirements expression to force Condor to choose the
same type of platform when continuing a checkpointed job. However, since it is needed in the com-
mon case, this additional policy is now automatically addedto therequirements expression. The
additional expression is added provided the user does not use CkptArch in therequirements

Condor Version 7.2.3 Manual

2.5. Submitting a Job 37

expression. Condor will remain backward compatible for those users who have explicitly specified
CkptRequirements –implying use ofCkptArch , in their requirements expression.

The expression added when the attributeCkptArch is not specified will default to

Added by Condor
CkptRequirements = ((CkptArch == Arch) || (CkptArch =?= UND EFINED)) && \

((CkptOpSys == OpSys) || (CkptOpSys =?= UNDEFINED))

Requirements = (<user specified policy>) && $(CkptRequire ments)

The behavior of theCkptRequirements expressions and its addition torequirements is
as follows. TheCkptRequirements expression guarantees correct operation in the two possible
cases for a job. In the first case, the job has not produced a checkpoint. The ClassAd attributes
CkptArch andCkptOpSys will be undefined, and therefore the meta operator (=?=) evaluates
to true. In the second case, the job has produced a checkpoint. The Machine ClassAd is restricted
to require further execution only on a machine of the same platform. The attributesCkptArch and
CkptOpSys will be defined, ensuring that the platform chosen for further execution will be the
same as the one used just before the checkpoint.

Note that this restriction of platforms also applies to platforms where the executables are binary
compatible.

The complete submit description file for this example:

####################
#
Example of heterogeneous submission
#
####################

universe = standard
Executable = povray.$$(OpSys).$$(Arch)
Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)

Condor automatically adds the correct expressions to insu re that the
checkpointed jobs will restart on the correct platform typ es.
Requirements = ((Arch == "INTEL" && OpSys == "LINUX") || \

(Arch == "INTEL" && OpSys =="SOLARIS26") || \
(Arch == "SUN4u" && OpSys == "SOLARIS28"))

Arguments = +W1024 +H768 +Iimage1.pov
Queue

Arguments = +W1024 +H768 +Iimage2.pov

Condor Version 7.2.3 Manual

2.6. Managing a Job 38

Queue

Arguments = +W1024 +H768 +Iimage3.pov
Queue

2.6 Managing a Job

This section provides a brief summary of what can be done oncejobs are submitted. The basic
mechanisms for monitoring a job are introduced, but the commands are discussed briefly. You are
encouraged to look at the man pages of the commands referred to (located in Chapter 9 beginning
on page 672) for more information.

When jobs are submitted, Condor will attempt to find resources to run the jobs. A list of all
those with jobs submitted may be obtained throughcondorstatuswith the -submittersoption. An
example of this would yield output similar to:

% condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

RunningJobs IdleJobs HeldJobs

ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5

nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0

Total 7 516 5

2.6.1 Checking on the progress of jobs

At any time, you can check on the status of your jobs with thecondorq command. This command
displays the status of all queued jobs. An example of the output fromcondorq is

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote
127.0 raman 4/11 15:35 0+00:00:00 R 0 1.4 hello
128.0 raman 4/11 15:35 0+00:02:33 I 0 1.4 hello

3 jobs; 2 idle, 1 running, 0 held

Condor Version 7.2.3 Manual

2.6. Managing a Job 39

This output contains many columns of information about the queued jobs. TheST column (for
status) shows the status of current jobs in the queue. AnR in the status column means the the job is
currently running. AnI stands for idle. The job is not running right now, because it is waiting for
a machine to become available. The statusH is the hold state. In the hold state, the job will not be
scheduled to run until it is released (see thecondorhold reference page located on page 730 and the
condorreleasereference page located on page 764). Older versions of Condor used aU in the status
column to stand for unexpanded. In this state, a job has neverproduced a checkpoint, and when the
job starts running, it will start running from the beginning. Newer versions of Condor do not use the
Ustate.

TheCPU_USAGEtime reported for a job is the time that has been committed to the job. It is
not updated for a job until the job checkpoints. At that time,the job has made guaranteed forward
progress. Depending upon how the site administrator configured the pool, several hours may pass
between checkpoints, so do not worry if you do not observe theCPU_USAGEentry changing by the
hour. Also note that this is actual CPU time as reported by theoperating system; it is not time as
measured by a wall clock.

Another useful method of tracking the progress of jobs is through the user log. If you have
specified alog command in your submit file, the progress of the job may be followed by viewing
the log file. Various events such as execution commencement,checkpoint, eviction and termination
are logged in the file. Also logged is the time at which the event occurred.

When your job begins to run, Condor starts up acondorshadowprocess on the submit ma-
chine. The shadow process is the mechanism by which the remotely executing jobs can access the
environment from which it was submitted, such as input and output files.

It is normal for a machine which has submitted hundreds of jobs to have hundreds of shadows
running on the machine. Since the text segments of all these processes is the same, the load on the
submit machine is usually not significant. If, however, you notice degraded performance, you can
limit the number of jobs that can run simultaneously throughtheMAXJOBS RUNNINGconfigura-
tion parameter. Please talk to your system administrator for the necessary configuration change.

You can also find all the machines that are running your job through thecondorstatuscommand.
For example, to find all the machines that are running jobs submitted by “breach@cs.wisc.edu,” type:

% condor_status -constraint 'RemoteUser == "breach@cs.wi sc.edu"'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL SOLARIS251 Claimed Busy 0.980 64 0+07:10: 02
biron.cs.w INTEL SOLARIS251 Claimed Busy 1.000 128 0+01:10 :00
cambridge. INTEL SOLARIS251 Claimed Busy 0.988 64 0+00:15: 00
falcons.cs INTEL SOLARIS251 Claimed Busy 0.996 32 0+02:05: 03
happy.cs.w INTEL SOLARIS251 Claimed Busy 0.988 128 0+03:05 :00
istat03.st INTEL SOLARIS251 Claimed Busy 0.883 64 0+06:45: 01
istat04.st INTEL SOLARIS251 Claimed Busy 0.988 64 0+00:10: 00
istat09.st INTEL SOLARIS251 Claimed Busy 0.301 64 0+03:45: 00
...

To find all the machines that are running any job at all, type:

Condor Version 7.2.3 Manual

2.6. Managing a Job 40

% condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL SOLARIS251 0.980 hepcon@cs.wisc.edu che vre.cs.wisc.
alfred.cs. INTEL SOLARIS251 0.980 breach@cs.wisc.edu neu fchatel.cs.w
amul.cs.wi SUN4u SOLARIS251 1.000 nice-user.condor@cs. c hevre.cs.wisc.
anfrom.cs. SUN4x SOLARIS251 1.023 ashoks@jules.ncsa.ui j ules.ncsa.uiuc
anthrax.cs INTEL SOLARIS251 0.285 hepcon@cs.wisc.edu che vre.cs.wisc.
astro.cs.w INTEL SOLARIS251 1.000 nice-user.condor@cs. c hevre.cs.wisc.
aura.cs.wi SUN4u SOLARIS251 0.996 nice-user.condor@cs. c hevre.cs.wisc.
balder.cs. INTEL SOLARIS251 1.000 nice-user.condor@cs. c hevre.cs.wisc.
bamba.cs.w INTEL SOLARIS251 1.574 dmarino@cs.wisc.edu ri ola.cs.wisc.e
bardolph.c INTEL SOLARIS251 1.000 nice-user.condor@cs. c hevre.cs.wisc.
...

2.6.2 Removing a job from the queue

A job can be removed from the queue at any time by using thecondorrm command. If the job that
is being removed is currently running, the job is killed without a checkpoint, and its queue entry is
removed. The following example shows the queue of jobs before and after a job is removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote
132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0
Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

2.6.3 Placing a job on hold

A job in the queue may be placed on hold by running the commandcondorhold. A job in the hold
state remains in the hold state until later released for execution by the commandcondorrelease.

Use of thecondorhold command causes a hard kill signal to be sent to a currently running job
(one in the running state). For a standard universe job, thismeans that no checkpoint is generated
before the job stops running and enters the hold state. When released, this standard universe job
continues its execution using the most recent checkpoint available.

Condor Version 7.2.3 Manual

2.6. Managing a Job 41

Jobs in universes other than the standard universe that are running when placed on hold will start
over from the beginning when released.

The manual page forcondorhold on page 730 and the manual page forcondorreleaseon
page 764 contain usage details.

2.6.4 Changing the priority of jobs

In addition to the priorities assigned to each user, Condor also provides each user with the capability
of assigning priorities to each submitted job. These job priorities are local to each queue and can be
any integer value, with higher values meaning better priority.

The default priority of a job is 0, but can be changed using thecondorprio command. For
example, to change the priority of a job to -15,

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

% condor_prio -p -15 126.0

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

It is important to note that thesejob priorities are completely different from theuserpriorities
assigned by Condor. Job priorities do not impact user priorities. They are only a mechanism for
the user to identify the relative importance of jobs among all the jobs submitted by the user to that
specific queue.

2.6.5 Why does the job not run?

Users sometimes find that their jobs do not run. There are several reasons why a specific job does
not run. These reasons include failed job or machine constraints, bias due to preferences, insuffi-
cient priority, and the preemption throttle that is implemented by thecondornegotiatorto prevent
thrashing. Many of these reasons can be diagnosed by using the -analyzeoption ofcondorq. For
example, a job (assigned the cluster.process value of 331228.2359) submitted to the local pool at
UW-Madison is not running. Runningcondorq’s analyzer provided the following information:

% condor_q -pool condor -name beak -analyze 331228.2359

Condor Version 7.2.3 Manual

2.6. Managing a Job 42

-- Schedd: beak.cs.wisc.edu : <128.105.146.14:30918>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

331228.2359: Run analysis summary. Of 819 machines,
159 are rejected by your job's requirements
137 reject your job because of their own requirements
488 match but are serving users with a better priority in the p ool

11 match but reject the job for unknown reasons
24 match but will not currently preempt their existing job

0 are available to run your job

A second example shows a job that does not run because the job does not have a high enough
priority to cause other running jobs to be preempted.

% condor_q -pool condor -name beak -analyze 207525.0

-- Schedd: beak.cs.wisc.edu : <128.105.146.14:30918>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

207525.000: Run analysis summary. Of 818 machines,

317 are rejected by your job's requirements
419 reject your job because of their own requirements

79 match but are serving users with a better priority in the po ol
3 match but reject the job for unknown reasons
0 match but will not currently preempt their existing job
0 are available to run your job

While the analyzer can diagnose most common problems, thereare some situations that it cannot
reliably detect due to the instantaneous and local nature ofthe information it uses to detect the
problem. Thus, it may be that the analyzer reports that resources are available to service the request,
but the job still does not run. In most of these situations, the delay is transient, and the job will run
during the next negotiation cycle.

If the problem persists and the analyzer is unable to detect the situation, it may be that the job
begins to run but immediately terminates due to some problem. Viewing the job’s error and log files
(specified in the submit command file) and Condor’sSHADOWLOGfile may assist in tracking down
the problem. If the cause is still unclear, please contact your system administrator.

2.6.6 In the log file

In a job’s log file are a log of events (a listing of events in chronological order) that occurred during
the life of the job. The formatting of the events is always thesame, so that they may be machine
readable. Four fields are always present, and they will most often be followed by other fields that
give further information that is specific to the type of event.

The first field in an event is the numeric value assigned as the event type in a 3-digit format. The
second field identifies the job which generated the event. Within parentheses are the ClassAd job
attributes ofClusterId value,ProcId value, and the MPI-specific rank for MPI universe jobs

Condor Version 7.2.3 Manual

2.6. Managing a Job 43

or a set of zeros (for jobs run under universes other than MPI), separated by periods. The third field
is the date and time of the event logging. The fourth field is a string that briefly describes the event.
Fields that follow the fourth field give further informationfor the specific event type.

These are all of the events that can show up in a job log file:

Event Number: 000
Event Name:Job submitted
Event Description: This event occurs when a user submits a job. It is the first event you will see
for a job, and it should only occur once.

Event Number: 001
Event Name:Job executing
Event Description: This shows up when a job is running. It might occur more than once.

Event Number: 002
Event Name:Error in executable
Event Description: The job couldn’t be run because the executable was bad.

Event Number: 003
Event Name:Job was checkpointed
Event Description: The job’s complete state was written to a checkpoint file. This might happen
without the job being removed from a machine, because the checkpointing can happen periodically.

Event Number: 004
Event Name:Job evicted from machine
Event Description: A job was removed from a machine before it finished, usually for a policy
reason: perhaps an interactive user has claimed the computer, or perhaps another job is higher
priority.

Event Number: 005
Event Name:Job terminated
Event Description: The job has completed.

Event Number: 006
Event Name: Image size of job updated
Event Description: This is informational. It is referring to the memory that thejob is using while
running. It does not reflect the state of the job.

Event Number: 007
Event Name:Shadow exception
Event Description: Thecondorshadow, a program on the submit computer that watches over the
job and performs some services for the job, failed for some catastrophic reason. The job will leave
the machine and go back into the queue.

Event Number: 008
Event Name:Generic log event
Event Description: Not used.

Condor Version 7.2.3 Manual

2.6. Managing a Job 44

Event Number: 009
Event Name:Job aborted
Event Description: The user canceled the job.

Event Number: 010
Event Name:Job was suspended
Event Description: The job is still on the computer, but it is no longer executing. This is usually
for a policy reason, like an interactive user using the computer.

Event Number: 011
Event Name:Job was unsuspended
Event Description: The job has resumed execution, after being suspended earlier.

Event Number: 012
Event Name:Job was held
Event Description: The user has paused the job, perhaps with thecondorhold command. It was
stopped, and will go back into the queue again until it is aborted or released.

Event Number: 013
Event Name:Job was released
Event Description: The user is requesting that a job on hold be re-run.

Event Number: 014
Event Name:Parallel node executed
Event Description: A parallel (MPI) program is running on a node.

Event Number: 015
Event Name:Parallel node terminated
Event Description: A parallel (MPI) program has completed on a node.

Event Number: 016
Event Name:POST script terminated
Event Description: A node in a DAGMan work flow has a script that should be run aftera job. The
script is run on the submit host. This event signals that the post script has completed.

Event Number: 017
Event Name:Job submitted to Globus
Event Description: A grid job has been delegated to Globus (version 2, 3, or 4).

Event Number: 018
Event Name:Globus submit failed
Event Description: The attempt to delegate a job to Globus failed.

Event Number: 019
Event Name:Globus resource up
Event Description: The Globus resource that a job wants to run on was unavailable, but is now
available.

Event Number: 020

Condor Version 7.2.3 Manual

2.6. Managing a Job 45

Event Name:Detected Down Globus Resource
Event Description: The Globus resource that a job wants to run on has become unavailable.

Event Number: 021
Event Name:Remote error
Event Description: The condorstarter (which monitors the job on the execution machine) has
failed.

Event Number: 022
Event Name:Remote system call socket lost
Event Description: The condorshadowand condorstarter (which communicate while the job
runs) have lost contact.

Event Number: 023
Event Name:Remote system call socket reestablished
Event Description: The condorshadowand condorstarter (which communicate while the job
runs) have been able to resume contact before the job lease expired.

Event Number: 024
Event Name:Remote system call reconnect failure
Event Description: The condorshadowand condorstarter (which communicate while the job
runs) were unable to resume contact before the job lease expired.

Event Number: 025
Event Name:Grid Resource Back Up
Event Description: A grid resource that was previously unavailable is now available.

Event Number: 026
Event Name:Detected Down Grid Resource
Event Description: The grid resource that a job is to run on is unavailable.

Event Number: 027
Event Name:Job submitted to grid resource
Event Description: A job has been submitted, and is under the auspices of the gridresource.

Event Number: 028
Event Name:Job ad information event triggered.
Event Description: Extra job ad attributes. This event is written as a supplement to other events
when the configuration parameterEVENTLOGJOB AD INFORMATIONATTRS is set.

2.6.7 Job Completion

When your Condor job completes(either through normal meansor abnormal termination by signal),
Condor will remove it from the job queue (i.e., it will no longer appear in the output ofcondorq)
and insert it into the job history file. You can examine the jobhistory file with thecondorhistory
command. If you specified a log file in your submit descriptionfile, then the job exit status will be
recorded there as well.

Condor Version 7.2.3 Manual

2.6. Managing a Job 46

By default, Condor will send you an email message when your job completes. You can modify
this behavior with thecondorsubmit“notification” command. The message will include the exit
status of your job (i.e., the argument your job passed to the exit system call when it completed)
or notification that your job was killed by a signal. It will also include the following statistics (as
appropriate) about your job:

Submitted at: when the job was submitted withcondorsubmit

Completed at: when the job completed

Real Time: elapsed time between when the job was submitted and when it completed (days
hours:minutes:seconds)

Run Time: total time the job was running (i.e., real time minus queuingtime)

Committed Time: total run time that contributed to job completion (i.e., runtime minus the run
time that was lost because the job was evicted without performing a checkpoint)

Remote User Time: total amount of committed time the job spent executing in user mode

Remote System Time:total amount of committed time the job spent executing in system mode

Total Remote Time: total committed CPU time for the job

Local User Time: total amount of time this job’scondorshadow(remote system call server) spent
executing in user mode

Local System Time: total amount of time this job’scondorshadowspent executing in system
mode

Total Local Time: total CPU usage for this job’scondorshadow

Leveraging Factor: the ratio of total remote time to total system time (a factor below 1.0 indicates
that the job ran inefficiently, spending more CPU time performing remote system calls than
actually executing on the remote machine)

Virtual Image Size: memory size of the job, computed when the job checkpoints

Checkpoints written: number of successful checkpoints performed by the job

Checkpoint restarts: number of times the job successfully restarted from a checkpoint

Network: total network usage by the job for checkpointing and remote system calls

Buffer Configuration: configuration of remote system call I/O buffers

Total I/O: total file I/O detected by the remote system call library

I/O by File: I/O statistics per file produced by the remote system call library

Remote System Calls:listing of all remote system calls performed (both Condor-specific and Unix
system calls) with a count of the number of times each was performed

Condor Version 7.2.3 Manual

2.7. Priorities and Preemption 47

2.7 Priorities and Preemption

Condor has two independent priority controls:job priorities anduserpriorities.

2.7.1 Job Priority

Job priorities allow the assignment of a priority level to each submitted Condor job in order to
control order of execution. To set a job priority, use thecondorprio command — see the example
in section 2.6.4, or the command reference page on page 748. Job priorities do not impact user
priorities in any fashion. A job priority can be any integer,and higher values are “better”.

2.7.2 User priority

Machines are allocated to users based upon a user’s priority. A lower numerical value for user
priority means higher priority, so a user with priority 5 will get more resources than a user with
priority 50. User priorities in Condor can be examined with the condoruserpriocommand (see
page 838). Condor administrators can set and change individual user priorities with the same utility.

Condor continuously calculates the share of available machines that each user should be allo-
cated. This share is inversely related to the ratio between user priorities. For example, a user with
a priority of 10 will get twice as many machines as a user with apriority of 20. The priority of
each individual user changes according to the number of resources the individual is using. Each
user starts out with the best possible priority: 0.5. If the number of machines a user currently has is
greater than the user priority, the user priority will worsen by numerically increasing over time. If
the number of machines is less then the priority, the priority will improve by numerically decreasing
over time. The long-term result is fair-share access acrossall users. The speed at which Condor
adjusts the priorities is controlled with the configurationmacroPRIORITY HALFLIFE , an expo-
nential half-life value. The default is one day. If a user that has user priority of 100 and is utilizing
100 machines removes all his/her jobs, one day later that user’s priority will be 50, and two days
later the priority will be 25.

Condor enforces that each user gets his/her fair share of machines according to user priority both
when allocating machines which become available and by priority preemption of currently allocated
machines. For instance, if a low priority user is utilizing all available machines and suddenly a
higher priority user submits jobs, Condor will immediatelycheckpoint and vacate jobs belonging
to the lower priority user. This will free up machines that Condor will then give over to the higher
priority user. Condor will not starve the lower priority user; it will preempt only enough jobs so that
the higher priority user’s fair share can be realized (basedupon the ratio between user priorities). To
prevent thrashing of the system due to priority preemption,the Condor site administrator can define
a PREEMPTIONREQUIREMENTSexpression in Condor’s configuration. The default expression
that ships with Condor is configured to only preempt lower priority jobs that have run for at least
one hour. So in the previous example, in the worse case it could take up to a maximum of one hour
until the higher priority user receives his fair share of machines. For a general discussion of limiting

Condor Version 7.2.3 Manual

2.8. Java Applications 48

preemption, please see section 3.5.9 of the Administrator’s manual.

User priorities are keyed on “username@domain”, for example “johndoe@cs.wisc.edu”. The
domain name to use, if any, is configured by the Condor site administrator. Thus, user priority and
therefore resource allocation is not impacted by which machine the user submits from or even if the
user submits jobs from multiple machines.

An extra feature is the ability to submit a job as anice job (see page 817). Nice jobs artificially
boost the user priority by one million just for the nice job. This effectively means that nice jobs will
only run on machines that no other Condor job (that is, non-niced job) wants. In a similar fashion,
a Condor administrator could set the user priority of any specific Condor user very high. If done,
for example, with a guest account, the guest could only use cycles not wanted by other users of the
system.

2.7.3 Details About How Condor Jobs Vacate Machines

When Condor needs a job to vacate a machine for whatever reason, it sends the job an asynchronous
signal specified in theKillSig attribute of the job’s ClassAd. The value of this attribute can be
specified by the user at submit time by placing thekill sig option in the Condor submit description
file.

If a program wanted to do some special work when required to vacate a machine, the program
may set up a signal handler to use a trappable signal as an indication to clean up. When submitting
this job, this clean up signal is specified to be used withkill sig. Note that the clean up work needs
to be quick. If the job takes too long to go away, Condor follows up with a SIGKILL signal which
immediately terminates the process.

A job that is linked usingcondorcompileand is subsequently submitted into the standard uni-
verse, will checkpoint and exit upon receipt of a SIGTSTP signal. Thus, SIGTSTP is the default
value forKillSig when submitting to the standard universe. The user’s code may still checkpoint
itself at any time by calling one of the following functions exported by the Condor libraries:

ckpt()() Performs a checkpoint and then returns.

ckpt and exit()() Checkpoints and exits; Condor will then restart the processagain later,
potentially on a different machine.

For jobs submitted into the vanilla universe, the default value for KillSig is SIGTERM, the
usual method to nicely terminate a Unix program.

2.8 Java Applications

Condor allows users to access a wide variety of machines distributed around the world. The Java
Virtual Machine (JVM) provides a uniform platform on any machine, regardless of the machine’s

Condor Version 7.2.3 Manual

2.8. Java Applications 49

architecture or operating system. The Condor Java universebrings together these two features to
create a distributed, homogeneous computing environment.

Compiled Java programs can be submitted to Condor, and Condor can execute the programs on
any machine in the pool that will run the Java Virtual Machine.

Thecondorstatuscommand can be used to see a list of machines in the pool for which Condor
can use the Java Virtual Machine.

% condor_status -java

Name JavaVendor Ver State Activity LoadAv Mem ActvtyTime

coral.cs.wisc Sun Microsy 1.2.2 Unclaimed Idle 0.000 511 0+ 02:28:04
doc.cs.wisc.e Sun Microsy 1.2.2 Unclaimed Idle 0.000 511 0+ 01:05:04
dsonokwa.cs.w Sun Microsy 1.2.2 Unclaimed Idle 0.000 511 0+ 01:05:04
...

If there is no output from thecondorstatuscommand, then Condor does not know the location
details of the Java Virtual Machine on machines in the pool, or no machines have Java correctly
installed. In this case, contact your system administratoror see section 3.13 for more information
on getting Condor to work together with Java.

2.8.1 A Simple Example Java Application

Here is a complete, if simple, example. Start with a simple Java program,Hello.java :

public class Hello {
public static void main(String [] args) {

System.out.println("Hello, world!\n");
}

}

Build this program using your Java compiler. On most platforms, this is accomplished with the
command

javac Hello.java

Submission to Condor requires a submit description file. If submitting where files are accessible
using a shared file system, this simple submit description file works:

####################
#
Example 1

Condor Version 7.2.3 Manual

2.8. Java Applications 50

Execute a single Java class
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
queue

The Java universe must be explicitly selected.

The main class of the program is given in theexecutablestatement. This is a file name which
contains the entry point of the program. The name of the main class (not a file name) must be
specified as the first argument to the program.

If submitting the job where a shared file system isnot accessible, the submit description file
becomes:

####################
#
Example 1
Execute a single Java class,
not on a shared file system
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
queue

For more information about using Condor’s file transfer mechanisms, see section 2.5.4.

To submit the job, where the submit description file is namedHello.cmd , execute

condor_submit Hello.cmd

To monitor the job, the commandscondorq andcondorrm are used as with all jobs.

Condor Version 7.2.3 Manual

2.8. Java Applications 51

2.8.2 Less Simple Java Specifications

Specifying more than 1 class file.For programs that consist of more than one.class file, iden-
tify the files in the submit description file:

executable = Stooges.class
transfer_input_files = Larry.class,Curly.class,Moe.cl ass

The executablecommand does not change. It still identifies the class file that contains the
program’s entry point.

JAR files. If the program consists of a large number of class files, it maybe easier to collect them
all together into a single Java Archive (JAR) file. A JAR can becreated with:

% jar cvf Library.jar Larry.class Curly.class Moe.class St ooges.class

Condor must then be told where to find the JAR as well as to use the JAR. The JAR file that
contains the entry point is specified with theexecutablecommand. All JAR files are specified
with the jar files command. For this example that collected all the class files into a single
JAR file, the submit description file contains:

executable = Library.jar
jar_files = Library.jar

Note that the JVM must know whether it is receiving JAR files orclass files. Therefore,
Condor must also be informed, in order to pass the information on to the JVM. That is why
there is a difference in submit description file commands forthe two ways of specifying files
(transfer input filesandjar files).

If there are multiple JAR files, theexecutablecommand specifies the JAR file that contains
the program’s entry point. This file is also listed with thejar filescommand:

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar

Using a third-party JAR file. As Condor requires that all JAR files (third-party or not) be avail-
able, specification of a third-party JAR file is no different than other JAR files. If the sortmerge
example above also relies on version 2.1 from http://jakarta.apache.org/commons/lang/, and
this JAR file has been placed in the same directory with the other JAR files, then the submit
description file contains

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar,commons-lang-2 .1.jar

An executable JAR file. When the JAR file is an executable, specify the program’s entry point in
theargumentscommand:

Condor Version 7.2.3 Manual

2.8. Java Applications 52

executable = anexecutable.jar
jar_files = anexecutable.jar
arguments = some.main.ClassFile

Packages.An example of a Java class that is declared in a non-default package is

package hpc;

public class CondorDriver
{

// class definition here
}

The JVM needs to know the location of this package. It is passed as a command-line argument,
implying the use of the naming convention and directory structure.

Therefore, the submit description file for this example willcontain

arguments = hpc.CondorDriver

JVM-version specific features. If the program uses Java features found only in certain JVMs,then
the Java application submitted to Condor must only run on those machines within the pool that
run the needed JVM. Inform Condor by adding arequirements statement to the submit
description file. For example, to require version 3.2, add tothe submit description file:

requirements = (JavaVersion=="3.2")

Benchmark speeds.Each machine with Java capability in a Condor pool will execute a benchmark
to determine its speed. The benchmark is taken when Condor isstarted on the machine, and it
uses the SciMark2 (http://math.nist.gov/scimark2) benchmark. The result of the benchmark is
held as an attribute within the machine ClassAd. The attribute is calledJavaMFlops . Jobs
that are run under the Java universe (as all other Condor jobs) may prefer or require a machine
of a specific speed by settingrank or requirements in the submit description file. As an
example, to execute only on machines of a minimum speed:

requirements = (JavaMFlops>4.5)

JVM options. Options to the JVM itself are specified in the submit description file:

java_vm_args = -DMyProperty=Value -verbose:gc

These options are those which go after the java command, but before the user’s main class. Do
not use this to set the classpath, as Condor handles that itself. Setting these options is useful
for setting system properties, system assertions and debugging certain kinds of problems.

Condor Version 7.2.3 Manual

http://math.nist.gov/scimark2

2.8. Java Applications 53

2.8.3 Chirp I/O

If a job has more sophisticated I/O requirements that cannotbe met by Condor’s file transfer mecha-
nism, then the Chirp facility may provide a solution. Chirp has two advantages over simple, whole-
file transfers. First, it permits the input files to be decidedupon at run-time rather than submit time,
and second, it permits partial-file I/O with results than canbe seen as the program executes. How-
ever, small changes to the program are required in order to take advantage of Chirp. Depending on
the style of the program, use either Chirp I/O streams or UNIX-like I/O functions.

Chirp I/O streams are the easiest way to get started. Modify the program to use the ob-
jects ChirpInputStream andChirpOutputStream instead ofFileInputStream and
FileOutputStream . These classes are completely documented in the Condor Software Devel-
oper’s Kit (SDK). Here is a simple code example:

import java.io. * ;
import edu.wisc.cs.condor.chirp. * ;

public class TestChirp {

public static void main(String args[]) {

try {
BufferedReader in = new BufferedReader(

new InputStreamReader(
new ChirpInputStream("input")));

PrintWriter out = new PrintWriter(
new OutputStreamWriter(

new ChirpOutputStream("output")));

while(true) {
String line = in.readLine();
if(line==null) break;
out.println(line);

}
out.close();

} catch(IOException e) {
System.out.println(e);

}
}

}

To perform UNIX-like I/O with Chirp, create aChirpClient object. This object supports
familiar operations such asopen , read , write , andclose . Exhaustive detail of the methods
may be found in the Condor SDK, but here is a brief example:

Condor Version 7.2.3 Manual

2.8. Java Applications 54

import java.io. * ;
import edu.wisc.cs.condor.chirp. * ;

public class TestChirp {

public static void main(String args[]) {

try {
ChirpClient client = new ChirpClient();
String message = "Hello, world!\n";
byte [] buffer = message.getBytes();

// Note that we should check that actual==length.
// However, skip it for clarity.

int fd = client.open("output","wct",0777);
int actual = client.write(fd,buffer,0,buffer.length);
client.close(fd);

client.rename("output","output.new");
client.unlink("output.new");

} catch(IOException e) {
System.out.println(e);

}
}

}

Regardless of which I/O style, the Chirp library must be specified and included with the job.
The Chirp JAR (Chirp.jar) is found in thelib directory of the Condor installation. Copy it into
your working directory in order to compile the program aftermodification to use Chirp I/O.

% condor_config_val LIB
/usr/local/condor/lib
% cp /usr/local/condor/lib/Chirp.jar .

Rebuild the program with the Chirp JAR file in the class path.

% javac -classpath Chirp.jar:. TestChirp.java

The Chirp JAR file must be specified in the submit description file. Here is an example submit
description file that works for both of the given test programs:

universe = java

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 55

executable = TestChirp.class
arguments = TestChirp
jar_files = Chirp.jar
queue

2.9 Parallel Applications (Including MPI Applications)

Condor’s Parallel universe supports a wide variety of parallel programming environments, and it
encompasses the execution of MPI jobs. It supports jobs which need to be co-scheduled. A co-
scheduled job has more than one process that must be running at the same time on different machines
to work correctly. The parallel universe supersedes the mpiuniverse. The mpi universe eventually
will be removed from Condor.

2.9.1 Prerequisites to Running Parallel Jobs

Condor must be configured such that resources (machines) running parallel jobs are dedicated. Note
thatdedicatedhas a very specific meaning in Condor: dedicated machines never vacate their exe-
cuting Condor jobs, should the machine’s interactive ownerreturn. This is implemented by running
a single dedicated scheduler process on a machine in the pool, which becomes the single machine
from which parallel universe jobs are submitted. Once the dedicated scheduler claims a dedicated
machine for use, the dedicated scheduler will try to use thatmachine to satisfy the requirements of
the queue of parallel universe or MPI universe jobs. If the dedicated scheduler cannot use a machine
for a configurable amount of time, it will release its claim onthe machine, making it available again
for the opportunistic scheduler.

Since Condor does not ordinarily run this way, (Condor usually uses opportunistic scheduling),
dedicated machines must be specially configured. Section 3.12.8 of the Administrator’s Manual
describes the necessary configuration and provides detailed examples.

To simplify the scheduling of dedicated resources, a singlemachine becomes the scheduler of
dedicated resources. This leads to a further restriction that jobs submitted to execute under the
parallel universe must be submitted from the machine actingas the dedicated scheduler.

2.9.2 Parallel Job Submission

Given correct configuration, parallel universe jobs may be submitted from the machine running
the dedicated scheduler. The dedicated scheduler claims machines for the parallel universe job,
and invokes the job when the correct number of machines of thecorrect platform (architecture and
operating system) are claimed. Note that the job likely consists of more than one process, each to
be executed on a separate machine. The first process (machine) invoked is treated different than the
others. When this first process exits, Condor shuts down all the others, even if they have not yet
completed their execution.

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 56

An overly simplified submit description file for a parallel universe job appears as

###
submit description file for a parallel program
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
queue

This job specifies theuniverse asparallel, letting Condor know that dedicated resources are
required. Themachine count command identifies the number of machines required by the job.

When submitted, the dedicated scheduler allocates eight machines with the same architecture
and operating system as the submit machine. It waits until all eight machines are available be-
fore starting the job. When all the machines are ready, it invokes the/bin/sleepcommand, with a
command line argument of 30 on all eight machines more or lesssimultaneously.

A more realistic example of a parallel job utilizes other features.

######################################
Parallel example submit description file
######################################
universe = parallel
executable = /bin/cat
log = logfile
input = infile.$(NODE)
output = outfile.$(NODE)
error = errfile.$(NODE)
machine_count = 4
queue

The specification of theinput , output, anderror files utilize the predefined macro$(NODE) .
See thecondorsubmitmanual page on page 795 for further description of predefinedmacros. The
$(NODE) macro is given a unique value as processes are assigned to machines. The$(NODE)
value is fixed for the entire length of the job. It can therefore be used to identify individual aspects
of the computation. In this example, it is used to utilize andassign unique names to input and output
files.

This example presumes a shared file system across all the machines claimed for the parallel
universe job. Where no shared file system is either availableor guaranteed, use Condor’s file transfer
mechanism, as described in section 2.5.4 on page 26. This example uses the file transfer mechanism.

######################################

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 57

Parallel example submit description file
without using a shared file system
######################################
universe = parallel
executable = /bin/cat
log = logfile
input = infile.$(NODE)
output = outfile.$(NODE)
error = errfile.$(NODE)
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
queue

The job requires exactly four machines, and queues four processes. Each of these processes
requires a correctly named input file, and produces an outputfile.

2.9.3 Parallel Jobs with Separate Requirements

The different machines executing for a parallel universe job may specify different machine require-
ments. A common example requires that the head node execute on a specific machine. It may be
also useful for debugging purposes.

Consider the following example.

######################################
Example submit description file
with multiple procs
######################################
universe = parallel
executable = example
machine_count = 1
requirements = (machine == "machine1")
queue

requirements = (machine =!= "machine1")
machine_count = 3
queue

The dedicated scheduler allocates four machines. All four executing jobs have the same value for
$(Cluster) macro. The$(Process) macro takes on two values; the value 0 will be assigned
for the single executable that must be executed on machine1,and the value 1 will be assigned for
the other three that must be executed anywhere but on machine1.

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 58

Carefully consider the ordering and nature of multiple setsof requirements in the same submit
description file. The scheduler matches jobs to machines based on the ordering within the sub-
mit description file. Mutually exclusive requirements eliminate the dependence on ordering within
the submit description file. Without mutually exclusive requirements, the scheduler may unable
to schedule the job. The ordering within the submit description file may preclude the scheduler
considering the specific allocation that could satisfy the requirements.

2.9.4 MPI Applications Within Condor’s Parallel Universe

MPI applications utilize a single executable that is invoked in order to execute in parallel on one or
more machines. Condor’s parallel universe provides the environment within which this executable is
executed in parallel. However, the various implementations of MPI (for example, LAM or MPICH)
require further framework items within a system-wide environment. Condor supports this necessary
framework through user visible and modifiable scripts. An MPI implementation-dependent script
becomes the Condor job. The script sets up the extra, necessary framework, and then invokes the
MPI application’s executable.

Condor provides these scripts in the$(RELEASE DIR)/etc/examples directory. The
script for the LAM implementation islamscript . The script for the MPICH implementation is
mp1script . Therefore, a Condor submit description file for these implementations would appear
similar to:

######################################
Example submit description file
for MPICH 1 MPI
works with MPICH 1.2.4, 1.2.5 and 1.2.6
######################################
universe = parallel
executable = mp1script
arguments = my_mpich_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
queue

or

######################################
Example submit description file
for LAM MPI
######################################
universe = parallel
executable = lamscript

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 59

arguments = my_lam_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_lam_linked_executable
queue

Theexecutableis the MPI implementation-dependent script. The first argument to the script is
the MPI application’s executable. Further arguments to thescript are the MPI application’s argu-
ments. Condor must transfer this executable; do this with the transfer input filescommand.

For other implementations of MPI, copy and modify one of the given scripts. Most MPI im-
plementations require two system-wide prerequisites. Thefirst prerequisite is the ability to run a
command on a remote machine without being prompted for a password. sshis commonly used, but
other command may be used. The second prerequisite is an ASCII file containing the list of ma-
chines that may utilizessh. These common prerequisites are implemented in a further script called
sshd.sh . sshd.sh generates ssh keys (to enable password-less remote execution), and starts an
sshddaemon. The machine name and MPI rank are given to the submit machine.

The sshd.shscript requires the definition of two Condor configuration variables. Configura-
tion variableCONDORSSHD is an absolute path to an implementation ofsshd. sshd.shhas been
tested withopensshversion 3.9, but should work with more recent versions. Configuration variable
CONDORSSHKEYGENpoints to the correspondingssh-keygenexecutable.

Scriptslamscriptandmp1scripteach have their own idiosyncrasies. Inmp1script, the PATH
to the MPICH installation must be set. The shell variable MPDIR indicates its proper value. This
directory contains the MPICHmpirunexecutable. For LAM, there is a similar path setting, but it is
calledLAMDIRin thelamscriptscript. In addition, this path must be part of the path set in the user’s
.cshrc script. As of this writing, the LAM implementation does not work if the user’s login shell
is the Bourne or compatible shell.

These MPI jobs operate as all parallel universe jobs do. The default policy is that when the first
node exits, the whole job is considered done, and Condor kills all other running nodes in that parallel
job. Alternatively, a parallel universe job that sets the attribute

+ParallelShutdownPolicy = "WAIT_FOR_ALL"

in its submit description file changes the policy, such that Condor will wait until every node in the
parallel job has completed to consider the job finished.

2.9.5 Outdated Documentation of the MPI Universe

The following sections on implementing MPI applications utilizing the MPI universe are superseded
by the sections describing MPI applications utilizing the parallel universe. These sections are in-
cluded in the manual as reference, until the time when the MPIuniverse is no longer supported
within Condor.

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 60

MPI stands for Message Passing Interface. It provides an environment under which parallel
programs may synchronize, by providing communication support. Running the MPI-based parallel
programs within Condor eases the programmer’s effort. Condor dedicates machines for running the
programs, and it does so using the same interface used when submitting non-MPI jobs.

The MPI universe in Condor currently supports MPICH versions 1.2.2, 1.2.3, and 1.2.4 using
the chp4 device. The MPI universe does not support MPICH version 1.2.5. These supported imple-
mentations are offered by Argonne National Labs without charge by download. See the web page at
http://www-unix.mcs.anl.gov/mpi/mpich/ for details andavailability. Programs to be submitted for
execution under Condor will have been compiled usingmpicc. No further compilation or linking is
necessary to run jobs under Condor.

The Parallel universe 2.9 is now the preferred way to run MPI jobs. Support for the MPI universe
will be removed from Condor at a future date.

MPI Details of Set Up

Administratively, Condor must be configured such that resources (machines) running MPI jobs are
dedicated. Dedicated machines never vacate their running condor jobs should the machine’s inter-
active owner return. Once the dedicated scheduler claims a dedicated machine for use, it will try to
use that machine to satisfy the requirements of the queue of MPI jobs.

Since Condor is not ordinarily used in this manner (Condor uses opportunistic scheduling), ma-
chines that are to be used as dedicated resources must be configured as such. Section 3.12.8 of
Administrator’s Manual describes the necessary configuration and provides detailed examples.

To simplify the dedicated scheduling of resources, a singlemachine becomes the scheduler of
dedicated resources. This leads to a further restriction that jobs submitted to execute under the MPI
universe (with dedicated machines) must be submitted from the machine running as the dedicated
scheduler.

MPI Job Submission

Once the programs are written and compiled, and Condor resources are correctly configured, jobs
may be submitted. Each Condor job requires a submit description file. The simplest submit descrip-
tion file for an MPI job:

###
submit description file for mpi_program
###
universe = MPI
executable = mpi_program
machine_count = 4
queue

Condor Version 7.2.3 Manual

http://www-unix.mcs.anl.gov/mpi/mpich/

2.9. Parallel Applications (Including MPI Applications) 61

This job specifies theuniverse asmpi , letting Condor know that dedicated resources will
be required. Themachine count command identifies the number of machines required by the
job. The four machines that run the program will default to beof the same architecture and oper-
ating system as the machine on which the job is submitted, since a platform is not specified as a
requirement.

The simplest example does not specify an input or output, meaning that the computation com-
pleted is useless, since both input comes from and the outputgoes to/dev/null . A more complex
example of a submit description file utilizes other features.

######################################
MPI example submit description file
######################################
universe = MPI
executable = simplempi
log = logfile
input = infile.$(NODE)
output = outfile.$(NODE)
error = errfile.$(NODE)
machine_count = 4
queue

The specification of the input, output, and error files utilize a predefined macro that is only rel-
evant to mpi universe jobs. See thecondorsubmitmanual page on page 795 for further description
of predefined macros. The$(NODE) macro is given a unique value as programs are assigned to ma-
chines. This value is what the MPICH version chp4 implementation terms the rank of a program.
Note that this term is unrelated and independent of the Condor term rank. The$(NODE) value is
fixed for the entire length of the job. It can therefore be usedto identify individual aspects of the
computation. In this example, it is used to give unique namesto input and output files.

If your site does NOT have a shared file system across all the nodes where your MPI computation
will execute, you can use Condor’s file transfer mechanism. You can find out more details about
these settings by reading thecondorsubmitman page or section 2.5.4 on page 26. Assuming your
job only reads input from STDIN, here is an example submit filefor a site without a shared file
system:

######################################
MPI example submit description file
without using a shared file system
######################################
universe = MPI
executable = simplempi
log = logfile
input = infile.$(NODE)
output = outfile.$(NODE)
error = errfile.$(NODE)

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 62

machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
queue

Consider the following C program that uses this example submit description file.

/ **************
* simplempi.c

************** /
#include <stdio.h>
#include "mpi.h"

int main(argc,argv)
int argc;
char * argv[];

{
int myid;
char line[128];

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

fprintf (stdout, "Printing to stdout...%d\n", myid);
fprintf (stderr, "Printing to stderr...%d\n", myid);
fgets (line, 128, stdin);
fprintf (stdout, "From stdin: %s", line);

MPI_Finalize();
return 0;

}

Here is a makefile that works with the example. It would build the MPI executable, using the
MPICH version chp4 implementation.

################
This is a very basic Makefile
################

the location of the MPICH compiler
CC = /usr/local/bin/mpicc
CLINKER = $(CC)

CFLAGS = -g
EXECS = simplempi

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 63

all: $(EXECS)

simplempi: simplempi.o
$(CLINKER) -o simplempi simplempi.o -lm

.c.o:
$(CC) $(CFLAGS) -c $ * .c

The submission to Condor requires exactly four machines, and queues four programs. Each of
these programs requires an input file (correctly named) and produces an output file.

If input file for $(NODE) = 0 (calledinfile.0) contains

Hello number zero.

and the input file for$(NODE) = 1 (calledinfile.1) contains

Hello number one.

then after the job is submitted to Condor, there will be eightfiles created:errfile.[0-3] and
outfile.[0-3] . outfile.0 will contain

Printing to stdout...0
From stdin: Hello number zero.

anderrfile.0 will contain

Printing to stderr...0

Different nodes for an MPI job can have different machine requirements. For example, often the
first node, sometimes called the head node, needs to run on a specific machine. This can be also
useful for debugging. Condor accomodates this by supporting multiple queue statements in the
submit file, much like with the other universes. For example:

######################################
MPI example submit description file
with multiple procs
######################################
universe = MPI
executable = simplempi
log = logfile
input = infile.$(NODE)
output = outfile.$(NODE)

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 64

error = errfile.$(NODE)
machine_count = 1
should_transfer_files = yes
when_to_transfer_output = on_exit
requirements = (machine == "machine1")
queue

requirements = (machine =!= "machine1")
machine_count = 3
queue

The dedicated scheduler will allocate four machines (nodes) total in two procs for this job. The
first proc has one node, (rank 0 in MPI terms) and will run on themachine named machine1. The
other three nodes, in the second proc, will run on other machines. Like in the other condor universes,
the second requirements command overwrites the first, but the other commands are inherited from
the first proc.

When submitting jobs with multiple requirements, it is bestto write the requirements to be mu-
tually exclusive, or to have the most selective requirementfirst in the submit file. This is because
the scheduler tries to match jobs to machine in submit file order. If the requirements are not mutu-
ally exclusive, it can happen that the scheduler may unable to schedule the job, even if all needed
resources are available.

2.10 DAGMan Applications

A directed acyclic graph (DAG) can be used to represent a set of computations where the input,
output, or execution of one or more computations is dependent on one or more other computations.
The computations are nodes (vertices) in the graph, and the edges (arcs) identify the dependencies.
Condor finds machines for the execution of programs, but it does not schedule programs based on de-
pendencies. The Directed Acyclic Graph Manager (DAGMan) isa meta-scheduler for the execution
of programs (computations). DAGMan submits the programs toCondor in an order represented by a
DAG and processes the results. A DAG input file describes the DAG, and further submit description
file(s) are used by DAGMan when submitting programs to run under Condor.

DAGMan is itself executed as a scheduler universe job withinCondor. As DAGMan submits
programs, it monitors log file(s) to enforce the ordering required within the DAG. DAGMan is also
responsible for scheduling, recovery, and reporting on theset of programs submitted to Condor.

2.10.1 DAGMan Terminology

To DAGMan, a node in a DAG may encompass more than a single program submitted to run under
Condor. Figure 2.2 illustrates the elements of a node.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 65

cluster number)

[optional]

PRE script

POST script

[optional]

Condor job(s)

or Stork job

(with a single

Figure 2.2: One Node within a DAG

At one time, the number of Condor jobs per node was restrictedto one. This restriction is
now relaxed such that all Condor jobs within a node must sharea single cluster number. See the
condorsubmitmanual page for a further definition of a cluster. A limitation exists such that all jobs
within the single cluster must use the same log file.

As DAGMan schedules and submits jobs within nodes to Condor,these jobs are defined to
succeed or fail based on their return values. This success orfailure is propagated in well-defined
ways to the level of a node within a DAG. Further progression of computation (towards completing
the DAG) may be defined based upon the success or failure of oneor more nodes.

The failure of a single job within a cluster of multiple jobs (within a single node) causes the entire
cluster of jobs to fail. Any other jobs within the failed cluster of jobs are immediately removed. Each
node within a DAG is further defined to succeed or fail, based upon the return values of a PRE script,
the job(s) within the cluster, and/or a POST script.

2.10.2 Input File Describing the DAG

The input file used by DAGMan is called a DAG input file. All items are optional, but there must be
at least oneJOBor DATA item.

Comments may be placed in the DAG input file. The pound character (#) as the first character
on a line identifies the line as a comment. Comments do not spanlines.

A simple diamond-shaped DAG, as shown in Figure 2.3 is presented as a starting point for

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 66

examples. This DAG contains 4 nodes.

A

B C

D

Figure 2.3: Diamond DAG

A very simple DAG input file for this diamond-shaped DAG is

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

A set of basic key words appearing in a DAG input file is described below.

• JOB

TheJOBkey word specifies a job to be managed by Condor. The syntax used for eachJOB
entry is

JOB JobName SubmitDescriptionFileName[DIR directory] [DONE]

A JOB entry maps aJobNameto a Condor submit description file. TheJobNameuniquely
identifies nodes within the DAGMan input file and in output messages. Note that the name
for each node within the DAG must be unique.

The key wordsJOB andDONE are not case sensitive. Therefore,DONE, Done, anddone
are all equivalent. The values defined forJobNameandSubmitDescriptionFileNameare case
sensitive, as file names in the Unix file system are case sensitive. TheJobNamecan be any
string that contains no white space, except for the stringsPARENTandCHILD (in upper,
lower, or mixed case).

TheDIR option specifies a working directory for this node, from which the Condor job will be
submitted, and from which aPREand/orPOSTscript will be run. Note that a DAG containing
DIR specifications cannot be run in conjunction with the-usedagdircommand-line argument
to condorsubmitdag. A rescue DAG generated by a DAG run with the-usedagdirargu-
ment will contain DIR specifications, so the rescue DAG must be runwithout the-usedagdir
argument.

The optionalDONE identifies a job as being already completed. This is useful insituations
where the user wishes to verify results, but does not need allprograms within the dependency
graph to be executed. TheDONE feature is also utilized when an error occurs causing the

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 67

DAG to be aborted without completion. DAGMan generates a Rescue DAG, a DAG input file
that can be used to restart and complete a DAG without re-executing completed nodes.

• DATA

TheDATAkey word specifies a job to be managed by the Stork data placement server. The
syntax used for eachDATAentry is

DATA JobName SubmitDescriptionFileName[DIR directory] [DONE]

A DATAentry maps aJobNameto a Stork submit description file. In all other respects, the
DATAkey word is identical to theJOBkey word.

Here is an example of a simple DAG that stages in data using Stork, processes the data using
Condor, and stages the processed data out using Stork. Depending upon the implementation,
multiple data jobs to stage in data or to stage out data may be run in parallel.

DATA STAGE_IN1 stage_in1.stork
DATA STAGE_IN2 stage_in2.stork
JOB PROCESS process.condor
DATA STAGE_OUT1 stage_out1.stork
DATA STAGE_OUT2 stage_out2.stork
PARENT STAGE_IN1 STAGE_IN2 CHILD PROCESS
PARENT PROCESS CHILD STAGE_OUT1 STAGE_OUT2

• SCRIPT

TheSCRIPTkey word specifies processing that is done either before a jobwithin the DAG
is submitted to Condor or Stork for execution or after a job within the DAG completes its
execution. Processing done before a job is submitted to Condor or Stork is called aPRE
script. Processing done after a job completes its executionunder Condor or Stork is called
a POSTscript. A node in the DAG is comprised of the job together withPREand/orPOST
scripts.

PREandPOSTscript lines within the DAG input file use the syntax:

SCRIPT PRE JobName ExecutableName[arguments]

SCRIPT POSTJobName ExecutableName[arguments]

The SCRIPTkey word identifies the type of line within the DAG input file. The PRE or
POSTkey word specifies the relative timing of when the script is tobe run. TheJobName
specifies the node to which the script is attached. TheExecutableNamespecifies the script
to be executed, and it may be followed by any command line arguments to that script. The
ExecutableNameand optionalargumentsare case sensitive; they have their case preserved.

Scripts are optional for each job, and any scripts are executed on the machine from which the
DAG is submitted; this is not necessarily the same machine upon which the node’s Condor
or Stork job is run. Further, a single cluster of Condor jobs may be spread across several
machines.

A PRE script is commonly used to place files in a staging area for the cluster of jobs to use. A
POST script is commonly used to clean up or remove files once the cluster of jobs is finished
running. An example uses PRE and POST scripts to stage files that are stored on tape. The
PRE script reads compressed input files from the tape drive, and it uncompresses them, placing

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 68

the input files in the current directory. The cluster of Condor jobs reads these input files. and
produces output files. The POST script compresses the outputfiles, writes them out to the
tape, and then removes both the staged input files and the output files.

DAGMan takes note of the exit value of the scripts as well as the job. A script with an exit
value not equal to 0 fails. If the PRE script fails, then neither the job nor the POST script runs,
and the node fails.

If the PRE script succeeds, the Condor or Stork job is submitted. If the job fails and there
is no POST script, the DAG node is marked as failed. An exit value not equal to 0 indicates
program failure. It is therefore important that a successful program return the exit value 0.

If the job fails and there is a POST script, node failure is determined by the exit value of the
POST script. A failing value from the POST script marks the node as failed. A succeeding
value from the POST script (even with a failed job) marks the node as successful. Therefore,
the POST script may need to consider the return value from thejob.

By default, the POST script is run regardless of the job’s return value.

A node not marked as failed at any point is successful. Table 2.1 summarizes the success or
failure of an entire node for all possibilities. AnSstands for success, anF stands for failure,
and the dash character (-) identifies that there is no script.

PRE - - F S S - - - - S S S S
JOB S F not run S F S S F F S F F S

POST - - not run - - S F S F S S F F

node S F F S F S F S F S S F F

Table 2.1: Node success or failure definition

Two variables may be used within the DAG input file, and may ease script writing. The
variables are often utilized in the arguments passed to a PREor POST script. The variable
$JOB evaluates to the (case sensitive) string defined forJobName. For use as an argument to
POST scripts, the$RETURNvariable evaluates to the return value of the Condor or Storkjob.
A job that dies due to a signal is reported with a$RETURNvalue representing the negative
signal number. For example, SIGKILL (signal 9) is reported as -9. A job whose batch system
submission fails is reported as -1001. A job that is externally removed from the batch system
queue (by something other thancondordagman) is reported as -1002.

As an example, consider the diamond-shaped DAG example. Suppose the PRE script ex-
pands a compressed file needed as input to nodes B and C. The fileis named of the form
JobName.gz . The DAG input file becomes

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 69

JOB D D.condor
SCRIPT PRE B pre.csh $JOB .gz
SCRIPT PRE C pre.csh $JOB .gz
PARENT A CHILD B C
PARENT B C CHILD D

The scriptpre.csh uses the arguments to form the file name of the compressed file:

#!/bin/csh
gunzip $argv[1]$argv[2]

• PARENT . . .CHILD

The PARENTandCHILD key words specify the dependencies within the DAG. Nodes are
parents and/or children within the DAG. A parent node must becompleted successfully before
any of its children may be started. A child node may only be started once all its parents have
successfully completed.

The syntax of a dependency line within the DAG input file:

PARENT ParentJobName. . . CHILD ChildJobName. . .

ThePARENTkey word is followed by one or moreParentJobNames. TheCHILD key word is
followed by one or moreChildJobNames. Each child job depends on every parent job within
the line. A single line in the input file can specify the dependencies from one or more parents
to one or more children. As an example, the line

PARENT p1 p2 CHILD c1 c2

produces four dependencies:

1. p1 to c1

2. p1 to c2

3. p2 to c1

4. p2 to c2

2.10.3 Submit Description File

Each node in a DAG may use a unique submit description file. Onekey limitation is that each Condor
submit description file must submit jobs described by a single cluster number. At the present time
DAGMan cannot deal with a submit file producing multiple job clusters.

At one time, DAGMan required that all jobs within all nodes specify the same, single log file.
This is no longer the case. However, if the DAG utilizes a large number of separate log files, perfor-
mance may suffer. Therefore, it is better to have fewer, or even only a single log file. Unfortunately,
each Stork job currently requires a separate log file. DAGManenforces the dependencies within a
DAG using the events recorded in the log file(s) produced by job submission to Condor.

Here is a modified version of the DAG input file for the diamond-shaped DAG. The modification
has each node use the same submit description file.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 70

File name: diamond.dag
#
JOB A diamond_job.condor
JOB B diamond_job.condor
JOB C diamond_job.condor
JOB D diamond_job.condor
PARENT A CHILD B C
PARENT B C CHILD D

Here is the single Condor submit description file for this DAG:

File name: diamond_job.condor
#
executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla
notification = NEVER
queue

This example uses the same Condor submit description file forall the jobs in the DAG. This
implies that each node within the DAG runs the same job. The$(cluster) macro produces
unique file names for each job’s output. As the Condor job within each node causes a separate job
submission, each has a unique cluster number.

Notification is set toNEVERin this example. This tells Condor not to send e-mail about the
completion of a job submitted to Condor. For DAGs with many nodes, this reduces or eliminates
excessive numbers of e-mails.

2.10.4 Job Submission

A DAG is submitted using the programcondorsubmitdag. See the manual page 825 for complete
details. A simple submission has the syntax

condorsubmitdag DAGInputFileName

The diamond-shaped DAG example may be submitted with

condor_submit_dag diamond.dag

In order to guarantee recoverability, the DAGMan program itself is run as a Condor job. As such,
it needs a submit description file.condorsubmitdagproduces this needed submit description file,
naming it by appending.condor.sub to theDAGInputFileName. This submit description file
may be edited if the DAG is submitted with

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 71

condor_submit_dag -no_submit diamond.dag

causingcondorsubmitdagto generate the submit description file, but not submit DAGMan to Con-
dor. To submit the DAG, once the submit description file is edited, use

condor_submit diamond.dag.condor.sub

An optional argument tocondorsubmitdag, -maxjobs, is used to specify the maximum number
of batch jobs that DAGMan may submit at one time. It is commonly used when there is a limited
amount of input file staging capacity. As a specific example, consider a case where each job will
require 4 Mbytes of input files, and the jobs will run in a directory with a volume of 100 Mbytes
of free space. Using the argument-maxjobs 25guarantees that a maximum of 25 jobs, using a
maximum of 100 Mbytes of space, will be submitted to Condor and/or Stork at one time.

While the-maxjobsargument is used to limit the number of batch system jobs submitted at one
time, it may be desirable to limit the number of scripts running at one time. The optional-maxpre
argument limits the number of PRE scripts that may be runningat one time, while the optional
-maxpostargument limits the number of POST scripts that may be running at one time.

An optional argument tocondorsubmitdag, -maxidle, is used to limit the number of idle jobs
within a given DAG. When the number of idle node jobs in the DAGreaches the specified value,
condordagmanwill stop submitting jobs, even if there are ready nodes in the DAG. Once some of
the idle jobs start to run,condordagmanwill resume submitting jobs. Note that this parameter only
limits the number of idle jobs submitted by a given instance of condordagman. Idle jobs submitted
by other sources (including othercondordagmanruns) are ignored.

2.10.5 Job Monitoring, Job Failure, and Job Removal

After submission, the progress of the DAG can be monitored bylooking at the log file(s), ob-
serving the e-mail that job submission to Condor causes, or by usingcondorq -dag. There is a
large amount of information in an extra file. The name of this extra file is produced by appending
.dagman.out to DAGInputFileName; for example, if the DAG file isdiamond.dag , this ex-
tra file is diamond.dag.dagman.out . If this extra file grows too large, limit its size with the
MAXDAGMANLOG configuration macro (see section 3.3.4).

If you have some kind of problem in your DAGMan run, please save the corresponding
dagman.out file; it is the most important debugging tool for DAGMan. As ofversion 6.8.2,
thedagman.out is appended to, rather than overwritten, with each new DAGMan run.

condorsubmitdag attempts to check the DAG input file. If a problem is detected,con-
dor submitdagprints out an error message and aborts.

To remove an entire DAG, consisting of DAGMan plus any jobs submitted to Condor or Stork,
remove the DAGMan job running under Condor.condorq will list the job number. Use the job
number to remove the job, for example

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 72

% condor_q
-- Submitter: turunmaa.cs.wisc.edu : <128.105.175.125:3 6165> : turunmaa.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
9.0 smoler 10/12 11:47 0+00:01:32 R 0 8.7 condor_dagman -f -

11.0 smoler 10/12 11:48 0+00:00:00 I 0 3.6 B.out
12.0 smoler 10/12 11:48 0+00:00:00 I 0 3.6 C.out

3 jobs; 2 idle, 1 running, 0 held

% condor_rm 9.0

Before the DAGMan job stops running, it usescondorrm and/orstork rm to remove any jobs
within the DAG that are running.

In the case where a machine is scheduled to go down, DAGMan will clean up memory and exit.
However, it will leave any submitted jobs in Condor’s queue.

2.10.6 Advanced Features of DAGMan

Retrying Failed Nodes

TheRETRYkey word provides a way to retry failed nodes. The use of retryis optional. The syntax
for retry is

RETRY JobName NumberOfRetries[UNLESS-EXIT value]

whereJobNameidentifies the node.NumberOfRetriesis an integer number of times to retry the
node after failure. The implied number of retries for any node is 0, the same as not having a retry
line in the file. Retry is implemented on nodes, not parts of a node.

The diamond-shaped DAG example may be modified to retry node C:

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3

If node C is marked as failed (for any reason), then it is started over as a first retry. The node
will be tried a second and third time, if it continues to fail.If the node is marked as successful, then
further retries do not occur.

Retry of a node may be short circuited using the optional key word UNLESS-EXIT(followed
by an integer exit value). If the node exits with the specifiedinteger exit value, then no further
processing will be done on the node.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 73

TheABORT-DAG-ONkey word provides a way to abort the entire DAG if a given node returns
a specific exit code. The syntax forABORT-DAG-ONis

ABORT-DAG-ON JobName AbortExitValue[RETURN DAGReturnValue]

If the node specified byJobNamereturns the specifiedAbortExitValue, the DAG is immediately
aborted. A DAG abort differs from a node failure, in that a DAGabort causes all nodes within
the DAG to be stopped immediately. This includes removing the jobs in nodes that are currently
running. A node failure allows the DAG to continue running, until no more progress can be made
due to dependencies.

An abort overrides node retries. If a node returns the abort exit value, the DAG is aborted, even
if the node has retry specified.

When a DAG aborts, by default it exits with the node return value that caused the abort.
This can be changed by using the optionalRETURNkey word along with specifying the desired
DAGReturnValue. The DAG abort return value can be used for DAGs within DAGs, allowing an
inner DAG to cause an abort of an outer DAG.

AddingABORT-DAG-ONfor node C in the diamond-shaped DAG

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3
ABORT-DAG-ON C 10 RETURN 1

causes the DAG to be aborted, if node C exits with a return value of 10. Any other currently
running nodes (only node B is a possibility for this particular example) are stopped and removed. If
this abort occurs, the return value for the DAG is 1.

Variable Values Associated with Nodes

The VARSkey word provides a method for defining a macro that can be referenced in the node’s
submit description file. These macros are defined on a per-node basis, using the following syntax:

VARS JobNamemacroname=”string” [macroname= ”string” . . .]

The macro may be used within the submit description file of therelevant node. Amacroname
consists of alphanumeric characters (a..Z and 0..9), as well as the underscore character. The space
character delimits macros, when there is more than one macrodefined for a node.

Correct syntax requires that thestringmust be enclosed in double quotes. To use a double quote
insidestring, escape it with the backslash character (\). To add the backslash character itself, use

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 74

two backslashes (\\). The string $(JOB) maybe used instring and will expand toJobName. If the
VARS line appears in a DAG file used as a splice file, then $(JOB) willbe the fully scoped name of
the node.

Note that macro names cannot begin with the string ”queue” (in any combination of upper and
lower case).

If the DAG input file contains

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
VARS A state="Wisconsin"
PARENT A CHILD B C
PARENT B C CHILD D

then fileA.condor may use the macrostate . This example submit description file for the
Condor job in node A passes the value of the macro as a command-line argument to the job.

file name: A.condor
executable = A.exe
log = A.log
error = A.err
arguments = $(state)
queue

This Condor job’s command line will be

A.exe Wisconsin

The use of macros may allow a reduction in the necessary number of unique submit description files.

A separate example shows an intended use of aVARSentry in the DAG input file. This use may
dramatically reduce the number of Condor submit description files needed for a DAG. In the case
where the submit description file for each node varies only infile naming, the use of a substitution
macro within the submit description file reduces the need to asingle submit description file. Note
that the user log file for a job currently cannot be specified using a macro passed from the DAG.

The example uses a single submit description file in the DAG input file, and uses theVarsentry
to name output files.

The relevant portion of the DAG input file appears as

JOB A theonefile.sub
JOB B theonefile.sub

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 75

JOB C theonefile.sub

VARS A outfilename="A"
VARS B outfilename="B"
VARS C outfilename="C"

The submit description file appears as

submit description file called: theonefile.sub
executable = progX
universe = standard
output = $(outfilename)
error = error.$(outfilename)
log = progX.log
queue

For a DAG such as this one, but with thousands of nodes, being able to write and maintain a
single submit description file and a single, yet more complex, DAG input file is preferable.

Setting Priorities for Nodes

ThePRIORITYkey word assigns a priority to a DAG node. The syntax for PRIORITY is

PRIORITY JobName PriorityValue

The node priority affects the order in which nodes that are ready at the same time will be sub-
mitted. Note that node priority doesnot override the DAG dependencies.

Node priority is mainly relevant if node submission is throttled via the-maxjobsor -maxidle
command-line flags or theDAGMANMAXJOBS SUBMITTEDor DAGMANMAXJOBS IDLE con-
figuration macros. Note that PRE scripts can affect the orderin which jobs run, so DAGs containing
PRE scripts may not run the nodes in exact priority order, even if doing so would satisfy the DAG
dependencies.

The priority value is an integer (which can be negative). A larger numerical priority is better
(will be run before a smaller numerical value). The default priority is 0.

AddingPRIORITYfor node C in the diamond-shaped DAG

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3
PRIORITY C 1

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 76

This will cause node C to be submitted before node B (normally, node B would be submitted
first).

Limiting the Number of Submitted Job Clusters within a DAG

In order to limit the number of submitted job clusters withina DAG, the nodes may be placed
into categories by assignment of a name. Then, a maximum number of submitted clusters may be
specified for each category.

TheCATEGORYkey word assigns a category name to a DAG node. The syntax for CATEGORY
is

CATEGORY JobName CategoryName

Category names cannot contain white space.

TheMAXJOBSkey word limits the number of submitted job clusters on a per category basis.
The syntax forMAXJOBSis

MAXJOBS CategoryName MaxJobsValue

If the number of submitted job clusters for a given category reaches the limit, no further job
clusters in that category will be submitted until other job clusters within the category terminate.
If MAXJOBS is not set for a defined category, then there is no limit placed on the number of
submissions within that category.

Note that a single invocation ofcondorsubmitresults in one job cluster. The number of Condor
jobs within a cluster may be greater than 1.

The configuration variableDAGMANMAXJOBS SUBMITTED and the condorsubmitdag
-maxjobscommand-line option are still enforced if theseCATEGORYandMAXJOBSthrottles are
used.

Configuration Specific to a DAG

TheCONFIGkeyword specifies a configuration file to be used to setcondordagmanconfiguration
options when running this DAG. The syntax forCONFIG is

CONFIG ConfigFileName

If the DAG file contains a line like this:

CONFIG dagman.config

the configuration values in the filedagman.config will be used for this DAG.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 77

Configuration macros forcondordagmancan be specified in several ways, as given within the
ordered list:

1. In a Condor configuration file.

2. With an environment variable. Prepend the string"_CONDOR_"to the macro name.

3. In a condordagman-specific configuration file specified in the DAG file or on thecon-
dor submitdagcommand line.

4. For some configuration macros, there is a correspondingcondorsubmitdag command line
flag (for example,DAGMANMAXJOBS SUBMITTED/-maxjobs).

In the above list, configuration values specified later in thelist override ones specified earlier
(e.g., a value specified on thecondorsubmitdagcommand line overrides corresponding values in
any configuration file; a value specified in a DAGMan-specific configuration file overrides values
specified in a general Condor configuration file).

Non-condordagman, non-daemoncore configuration macros in acondordagman-specific con-
figuration file are ignored.

Only a single configuration file can be specified for a givencondordagmanrun. For example,
if one file is specified in a DAG, and a different file is specifiedon thecondorsubmitdagcommand
line, this is a fatal error at submit time. The same is true if different configuration files are specified
in multiple DAG files referenced in a singlecondorsubmitdagcommand.

If multiple DAGs are run in a singlecondordagmanrun, the configuration options specified in
thecondordagmanconfiguration file, if any, apply to all DAGs, even if some of the DAGs specify
no configuration file.

Configuration variables relating to DAGMan may be found in section 3.3.25.

Single Submission of Multiple, Independent DAGs

A single use ofcondorsubmitdag may execute multiple, independent DAGs. Each independent
DAG has its own DAG input file. These DAG input files are command-line arguments tocon-
dor submitdag(see thecondorsubmitdagmanual page at 9).

Internally, all of the independent DAGs are combined into a single, larger DAG, with no depen-
dencies between the original independent DAGs. As a result,any generated rescue DAG file repre-
sents all of the input DAGs as a single DAG. The file name of thisrescue DAG is based on the DAG
input file listed first within the command-line arguments tocondorsubmitdag (unlike a single-
DAG rescue DAG file, however, the file name will be<whatever >.dag multi.rescue or
<whatever >.dag multi.rescueNNN , as opposed to just<whatever >.dag.rescue or
<whatever >.dag.rescueNNN). Other files such asdagman.out and the lock file also have
names based on this first DAG input file.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 78

The success or failure of the independent DAGs is well defined. When multiple, independent
DAGs are submitted with a single command, the success of the composite DAG is defined as the
logical AND of the success of each independent DAG. This implies that failure is defined as the
logical OR of the failure of any of the independent DAGs.

By default, DAGMan internally renames the nodes to avoid node name collisions. If all node
names are unique, the renaming of nodes may be disabled by setting the configuration variable
DAGMANMUNGENODENAMESto False (see 3.3.25).

A DAG Within a DAG Is a SUBDAG

The organization and dependencies of the jobs within a DAG are the keys to its utility. There are
cases when a DAG is easier to visualize and construct hierarchically, in other words when a node
within a DAG is also a DAG. Condor DAGMan handles this situation quite easily. (Note that DAGs
can be nested to any depth.)

Since more than one DAG is being discussed, terminology is introduced to clarify which DAG
is which. Reuse the example diamond-shaped DAG as given in Figure 2.3. Assume that node B of
this diamond-shaped DAG will itself be a DAG. The DAG of node Bis called the inner DAG, and
the diamond-shaped DAG is called the outer DAG.

Work on the inner DAG first. Here is a very simple linear DAG input file used as an example of
the inner DAG.

File name: inner.dag
#
JOB X X.submit
JOB Y Y.submit
JOB Z Z.submit
PARENT X CHILD Y
PARENT Y CHILD Z

The Condor submit file corresponding to this DAG will be namedinner.dag.condor.sub .
(The DAGMan submit file is always named<DAG file name>.condor.sub .)

A simple example of a DAG input file for the outer DAG is

File name: diamond.dag
#

JOB A A.submit
SUBDAG EXTERNAL B inner.dag
JOB C C.submit
JOB D D.submit
PARENT A CHILD B C
PARENT B C CHILD D

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 79

This is equivalent, but the version above is now preferred:

File name: diamond.dag
#

JOB A A.submit
JOB B inner.dag.condor.sub
JOB C C.submit
JOB D D.submit
PARENT A CHILD B C
PARENT B C CHILD D

Within the DAG input file, theSUBDAGkeyword specifies a special case of aJOB node, where
the job is a DAG.

SUBDAG EXTERNAL JobName DagFileName[DIR directory] [DONE]

A SUBDAG node is essentially the same as a ”normal” node, except that the nested DAG file
is specified instead of the Condor submit file. (”SUBDAG EXTERNAL A foo.dag” is functionally
equivalent to ”JOB A foo.dag.condor.sub”, but SUBDAG EXTERNAL is now the preferred syntax
for specifying such a node.) ”EXTERNAL” means that the SUBDAG is run in its own instance of
condordagman.

• condorsubmitdagrecursion

The outer DAG is then submitted as before, with the command

condor_submit_dag diamond.dag

In Condor 7.1.4 and later, when you runcondorsubmitdag on the outer DAG file,con-
dor submitdag -nosubmit -updatesubmitis automatically run on the inner DAG file before
the outer DAG is actually run. (If you want to disable this feature, you can do so by passing
the-no recursecommand-line flag tocondorsubmitdag.)

The following command-line flags are passed to the lower-level condorsubmitdag:

– -verbose

– -force

– -notification

– -dagman

– -debug

– -usedagdir

– -outfile dir

– -oldrescue

– -autorescue

– -dorescuefrom

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 80

– -allowversionmismatch

The following command-line flags are preserved in existing lower-level DAG submit files (if
any exist):

– -maxjobs

– -maxidle

– -maxpre

– -maxpost

Note that the-force option will cause existing DAG submit files to be overwrittenwithout
preserving any existing values.

Because of the automatic recursion incondorsubmitdag, normally you only need to run
condorsubmitdag on your outermost DAG. But you can manually runcondorsubmitdag
on an inner DAG or DAGs to set-maxjobs or other values. For instance, using the example
in the previous section, you could do the following:

condor_submit_dag -no_submit -maxjobs 1 inner.dag
condor_submit_dag diamond.dag

This would set maxjobs to 1 for the inner DAG, and then run the entire work flow.

• Interaction with Rescue DAGs

When using nested DAGs, it is strongly recommended that you use ”new-style” rescue DAGs
(this is the default). Using ”new-style” rescue DAGs will automatically run the proper rescue
DAG(s) if there is a failure in your work flow. For example, if one of the nodes ininner.dag
fails, this will produce a rescue DAG for inner.dag (inner.dag.rescue.001 , etc.). Then,
sinceinner.dag failed, node B ofdiamond.dag will fail, producing a rescue DAG for
diamond.dag (diamond.dag.rescue.001 , etc.). If you re-runcondorsubmitdag
diamond.dagthe most recent outer rescue DAG will be run, and this will re-run the inner
DAG, which will actually run the most recent inner rescue DAG. If you use ”old-style” rescue
DAGs, you would have to either rename the inner rescue DAG or run it manually.

• File Paths

Remember that, unless you use the DIR keyword in your outer DAG, the inner DAG will be
submitted from the directory in which you run the outer DAG. Therefore, all paths in the inner
DAG file (to submit files, etc.) must be specified accordingly.

DAG Splicing

A weakness in scalability exists when submitting a DAG within a DAG. Each executing independent
DAG requires its own invocation ofcondordagmanto be running. The scaling issue presents itself
when the same semantic DAG is reused hundreds or thousands oftimes in a larger DAG. Further,
there may be many rescue DAGs created if a problem occurs. To alleviate these concerns, the
DAGMan language introduces the concept of graph splicing.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 81

A splice is a named instance of a subgraph which is specified ina separate DAG file. The splice is
treated as a whole entity during dependency specification inthe including DAG. The same DAG file
may be reused as differently named splices, each one incorporating a copy of the dependency graph
(and nodes therein) into the including DAG. Any splice in an including DAG may have dependencies
between the sets of initial and final nodes. A splice may be incorporated into an including DAG
without any dependencies; it is considered a disjoint DAG within the including DAG. The nodes
within a splice are scoped according to a hierarchy of names associated with the splices, as the
splices are parsed from the top level DAG file. The scoping character to describe the inclusion
hierarchy of nodes into the top level dag is'+' . This character is chosen due to a restriction in the
allowable characters which may be in a file name across the variety of ports that Condor supports.
In any DAG file, all splices must have unique names, but the same splice name may be reused in
different DAG files.

Condor does not detect nor support splices that form a cycle within the DAG. A DAGMan job
that causes a cyclic inclusion of splices will eventually exhaust available memory and crash.

The SPLICEkeyword in a DAG input file creates a named instance of a DAG as specified in
another file as an entity which may havePARENTandCHILD dependencies associated with other
splice names or node names in the including DAG file. The syntax for SPLICEis

SPLICE SpliceName DagFileName[DIR directory]

After parsing incorporates a splice, all nodes within the spice become nodes within the including
DAG.

The following series of examples illustrate potential usesof splicing. To simplify the examples,
presume that each and every job uses the same, simple Condor submit description file:

BEGIN SUBMIT FILE submit.condor
executable = /bin/echo
arguments = OK
universe = vanilla
output = $(jobname).out
error = $(jobname).err
log = submit.log
notification = NEVER
queue
END SUBMIT FILE submit.condor

This first simple example splices a diamond-shaped DAG in between the two nodes of a top level
DAG. Here is the DAG input file for the diamond-shaped DAG:

BEGIN DAG FILE diamond.dag
JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 82

VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

PARENT A CHILD B C
PARENT B C CHILD D
END DAG FILE diamond.dag

The top level DAG incorporates the diamond-shaped splice:

BEGIN DAG FILE toplevel.dag
JOB X submit.condor
VARS X jobname="$(JOB)"

JOB Y submit.condor
VARS Y jobname="$(JOB)"

This is an instance of diamond.dag, given the symbolic name DIAMOND
SPLICE DIAMOND diamond.dag

Set up a relationship between the nodes in this dag and the sp lice

PARENT X CHILD DIAMOND
PARENT DIAMOND CHILD Y

END DAG FILE toplevel.dag

Figure 2.4 illustrates the resulting top level DAG and the dependencies produced. Notice the
naming of nodes scoped with the splice name. This hierarchy of splice names assures unique names
associated with all nodes.

Figure 2.5 illustrates the starting point for a more complexexample. The DAG input fileX.dag
describes this X-shaped DAG. The completed example displays more of the spatial constructs pro-
vided by splices. Pay particular attention to the notion that each named splice creates a new graph,
even when the same DAG input file is specified.

BEGIN DAG FILE X.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 83

DIAMOND+A

DIAMOND+B DIAMOND+C

DIAMOND+D

Y

X

Figure 2.4: The diamond-shaped DAG spliced between two nodes.

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

JOB E submit.condor
VARS E jobname="$(JOB)"

JOB F submit.condor
VARS F jobname="$(JOB)"

JOB G submit.condor
VARS G jobname="$(JOB)"

Make an X-shaped dependency graph
PARENT A B C CHILD D
PARENT D CHILD E F G

END DAG FILE X.dag

File s1.dag continues the example, presenting the DAG input file that incorporates two sepa-

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 84

A

D

B C

E F G

Figure 2.5: The X-shaped DAG.

rate splices of the X-shaped DAG. Figure 2.6 illustrates theresulting DAG.

BEGIN DAG FILE s1.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

name two individual splices of the X-shaped DAG
SPLICE X1 X.dag
SPLICE X2 X.dag

Define dependencies
A must complete before the initial nodes in X1 can start
PARENT A CHILD X1
All final nodes in X1 must finish before the initial nodes in X2 can begin
PARENT X1 CHILD X2
All final nodes in X2 must finish before B may begin.
PARENT X2 CHILD B

END DAG FILE s1.dag

The top level DAG in the hierarchy of this complex example is described by the DAG input file
toplevel.dag . Figure 2.7 illustrates the final DAG. Notice that the DAG hastwo disjoint graphs
in it as a result of splice S3 not having any dependencies associated with it in this top level DAG.

BEGIN DAG FILE toplevel.dag

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 85

A

X1+A X1+B X1+C

B

X1+D

X1+E X1+F X1+G

X2+A X2+B X2+C

X2+D

X2+E X2+F X2+G

Figure 2.6: The DAG described bys1.dag .

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 86

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

a diamond-shaped DAG
PARENT A CHILD B C
PARENT B C CHILD D

This splice of the X-shaped DAG can only run after
the diamond dag finishes
SPLICE S2 X.dag
PARENT D CHILD S2

Since there are no dependencies for S3,
the following splice is disjoint
SPLICE S3 s1.dag

END DAG FILE toplevel.dag

TheDIR option specifies a working directory for a splice, from whichthe splice will be parsed
and the containing jobs submitted. The directory associated with the splices’DIR specification will
be propagated as a prefix to all nodes in the splice and any included splices. If a node already has a
DIR specification, then the splice’sDIR specification will be a prefix to the nodes and separated by
a directory separator character. Jobs in included splices with an absolute path for theirDIR specifi-
cation will have theirDIR specification untouched. Note that a DAG containingDIR specifications
cannot be run in conjunction with the-usedagdircommand-line argument tocondorsubmitdag. A
rescue DAG generated by a DAG run with the-usedagdirargument will contain DIR specifications,
so the rescue DAG must be runwithout the-usedagdirargument.

2.10.7 Job Recovery: The Rescue DAG

DAGMan can help with the resubmission of uncompleted portions of a DAG, when one or more
nodes result in failure. If any node in the DAG fails, the remainder of the DAG is continued until
no more forward progress can be made based on the DAG’s dependencies. At this point, DAGMan
produces a file called a Rescue DAG.

The Rescue DAG is a DAG input file, functionally the same as theoriginal DAG file. The Rescue
DAG additionally contains an indication of successfully completed nodes by appending theDONE
key word to the node’sJOBor DATAlines. If the DAG is resubmitted utilizing the Rescue DAG, the
successfully completed nodes will not be re-executed.

Note that if multiple DAG files are specified on thecondorsubmitdagcommand line, a single
rescue DAG encompassing all of the input DAGs is generated.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 87

A

B C

D

S2+A S2+B S2+C

S2+D

S2+E S2+F S2+G

S3+A

S3+X1+A S3+X1+B S3+X1+C

S3+B

S3+X1+D

S3+X1+E S3+X1+F S3+X1+G

S3+X2+A S3+X2+B S3+X2+C

S3+X2+D

S3+X2+E S3+X2+F S3+X2+G

Figure 2.7: The complex splice example DAG.

If the Rescue DAG file is generated before all retries of a nodeare completed, then the Res-
cue DAG file will also containRetryentries. The number of retries will be set to the appropriate
remaining number of retries.

The granularity defining success or failure in the Rescue DAGis the node. For a node that fails,
all parts of the node will be re-run, even if some parts were successful the first time. For example,
if a node’s PRE script succeeds, but then the node’s Condor job cluster fails, the entire node, which
includes the PRE script will be re-run. A job cluster may result in the submission of multiple Condor
jobs. If one of the multiple jobs fails, the node fails. Therefore, a the Rescue DAG will re-run the
entire node, implying the submission of the entire cluster of jobs, not just the one(s) that failed.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 88

Statistics about the failed DAG execution are presented as comments at the beginning of the
Rescue DAG input file.

The Rescue DAG is automatically generated by DAGMan when a node within the DAG fails
or whencondordagmanitself is removed withcondorrm. The file name of the Rescue DAG,
and usage of the Rescue DAG changed from explicit specification to implicit usage beginning with
Condor version 7.1.0.

Current naming of the Rescue DAG appends the string.rescue<XXX> to the original DAG
input file. Values for<XXX>start at001 and continue to002 , 003 , and beyond. If a Rescue DAG
exists, the Rescue DAG with the largest magnitude value for<XXX>will be used, and its usage is
implied.

Here is an example showing file naming and DAG submission for the case of a failed DAG. The
initial DAG is submitted with

condor_submit_dag my.dag

A failure of this DAG results in the Rescue DAG calledmy.dag.rescue001 . The DAG is
resubmitted using the same command:

condor_submit_dag my.dag

This resubmission of the DAG uses the Rescue DAG filemy.dag.rescue001 , because it exists.
Failure of this Rescue DAG results in another Rescue DAG calledmy.dag.rescue002 . If the
DAG is again submitted, using the same command as with the first two submissions, but not repeated
here, then this third submission uses the Rescue DAG filemy.dag.rescue002 , because it exists,
and because the value002 is larger in magnitude than001 .

To explicitly specify a particular Rescue DAG, use the optional command-line argument
-dorescuefromwith condorsubmitdag. Note that this will have the side effect of renaming ex-
isting Rescue DAG files with larger magnitude values of<XXX>. Each renamed file has its
existing name appended with the string.old . For example, assume thatmy.dag has failed
4 times, resulting in the Rescue DAGs namedmy.dag.rescue001 , my.dag.rescue002 ,
my.dag.rescue003 , and my.dag.rescue004 . A decision is made to re-run using
my.dag.rescue002 . The submit command is

condor_submit_dag -dorescuefrom 2 my.dag

The DAG specified by the DAG input filemy.dag.rescue002 is submitted. And, the exist-
ing Rescue DAGmy.dag.rescue003 is renamed to bemy.dag.rescue003.old , while the
existing Rescue DAGmy.dag.rescue004 is renamed to bemy.dag.rescue004.old .

A maximum value forXXXmay be configured by theDAGMANMAXRESCUENUMconfigura-
tion macro (see 228).

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 89

Prior to Condor version 7.1.0, the naming of a Rescue DAG appended the string.rescue to the
existing DAG input file name. And, the Rescue DAG file would be explicitly placed in the command
line that submitted it. For example a first submission is

condor_submit_dag my.dag

Assuming that this DAG failed, the filemy.dag.rescue would be created. To run this Rescue
DAG, the submission command is

condor_submit_dag my.dag.rescue

If this Rescue DAG also failed, a new Rescue DAG namedmy.dag.rescue.rescue would be
created.

The behavior of DAGMan with respect to Rescue DAGs can be forced to the old be-
havior by setting the configuration variablesDAGMANOLDRESCUE (see 228) toTrue and
DAGMANAUTORESCUE(see 228) toFalse .

2.10.8 File Paths in DAGs

By default, condordagmanassumes that all relative paths in a DAG input file and the asso-
ciated Condor submit description files are relative to the current working directory whencon-
dor submitdag is run. Note that relative paths in submit description files can be modified by the
submit commandinitialdir ; see thecondorsubmitmanual page at 9 for more details. The rest of
this discussion ignoresinitialdir .

In most cases, path names relative to the current working directory is the desired behavior.
However, if running multiple DAGs with a singlecondordagman, and each DAG is in its own
directory, this will cause problems. In this case, use the-usedagdircommand-line argument to
condorsubmitdag(see thecondorsubmitdagmanual page at 9 for more details). This tellscon-
dor dagmanto run each DAG as ifcondorsubmitdaghad been run in the directory in which the
relevant DAG file exists.

For example, assume that a directory calledparent contains two subdirectories calleddag1
anddag2 , and thatdag1 contains the DAG input fileone.dag anddag2 contains the DAG input
file two.dag . Further, assume that each DAG is set up to be run from its own directory with the
following command:

cd dag1; condor_submit_dag one.dag

This will correctly runone.dag .

The goal is to run the two, independent DAGs located withindag1 anddag2 while the current
working directory isparent . To do so, run the following command:

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 90

condor_submit_dag -usedagdir dag1/one.dag dag2/two.dag

Of course, if all paths in the DAG input file(s) and the relevant submit description files are
absolute, the-usedagdirargument is not needed; however, using absolute paths is NOTgenerally a
good idea.

If you do notuse-usedagdir, relative paths can still work for multiple DAGs, if all file paths
are given relative to the current working directory ascondorsubmitdag is executed. However,
this means that, if the DAGs are in separate directories, they cannot be submitted from their own
directories, only from the parent directory the paths are set up for.

Note that if you use the-usedagdirargument, and your run results in a rescue DAG, the rescue
DAG file will be written to the current working directory, andshould be run from that directory. The
rescue DAG includes all the path information necessary to run each node job in the proper directory.

2.10.9 Visualizing DAGs withdot

It can be helpful to see a picture of a DAG. DAGMan can assist you in visualizing a DAG by
creating the input files used by the AT&T Research Labsgraphvizpackage.dot is a program within
this package, available from http://www.graphviz.org/, and it is used to draw pictures of DAGs.

DAGMan produces one or more dot files as the result of an extra line in a DAGMan input file.
The line appears as

DOT dag.dot

This creates a file calleddag.dot . which contains a specification of the DAG before any jobs
within the DAG are submitted to Condor. Thedag.dot file is used to create a visualization of the
DAG by using this file as input todot. This example creates a Postscript file, with a visualization of
the DAG:

dot -Tps dag.dot -o dag.ps

Within the DAGMan input file, the DOT command can take severaloptional parameters:

• UPDATE This will update the dot file every time a significant update happens.

• DONT-UPDATE Creates a single dot file, when the DAGMan begins executing. This is the
default if the parameterUPDATE is not used.

• OVERWRITE Overwrites the dot file each time it is created. This is the default, unless
DONT-OVERWRITE is specified.

• DONT-OVERWRITE Used to create multiple dot files, instead of overwriting thesingle one
specified. To create file names, DAGMan uses the name of the fileconcatenated a period and
an integer. For example, the DAGMan input file line

Condor Version 7.2.3 Manual

http://www.graphviz.org/

2.11. Virtual Machine Applications 91

DOT dag.dot DONT-OVERWRITE

causes filesdag.dot.0 , dag.dot.1 , dag.dot.2 , etc. to be created. This option is
most useful combined with theUPDATE option to visualize the history of the DAG after it
has finished executing.

• INCLUDE path-to-filenameIncludes the contents of a file given bypath-to-filename
in the file produced by theDOT command. The include file contents are always placed after
the line of the formlabel= . This may be useful if further editing of the created files would
be necessary, perhaps because you are automatically visualizing the DAG as it progresses.

If conflicting parameters are used in a DOT command, the last one listed is used.

2.11 Virtual Machine Applications

Thevm universe facilitates a Condor job that matches and then lands a disk image on an execute
machine within a Condor pool. This disk image is intended to be a virtual machine.

This section describes this Condor job. See section 3.3.28 for details of configuration variables.

2.11.1 The Submit Description File

Different than all other universe jobs, thevm universe job specifies a disk image, not an executable.
Therefore, the submit commandsinput , output, anderror do not apply. If specified,condorsubmit
rejects the job with an error. Theexecutablecommand changes definition within avm universe job.
It no longer specifies an executable file, but instead provides a string that identifies the job for tools
such ascondorq.

Use of theargs command creates a file namedcondor.arg , which is added to the set of
CD-ROM files. The contents of this file are the arguments specified.

VMware and Xen virtual machine software are supported. As the two differ from each other, the
submit description file specifies either

vm_type = vmware

or

vm_type = xen

The job specifies its memory needs for the disk image withvm memory, which is given in
Mbytes. Condor uses this number to assure a match with a machine that can provide the needed
memory space.

Condor Version 7.2.3 Manual

2.11. Virtual Machine Applications 92

A CD-ROM for the virtual machine is composed of a set of files. These files are specified in the
submit description file with a comma-separated list of file names.

vm_cdrom_files = a.txt,b.txt,c.txt

Condor must also be told to transfer these files from the submit machine to the machine that will run
thevm universe job with

vm_should_transfer_cdrom_files = YES

Creating a checkpoint is straightforward for a virtual machine, as a checkpoint is a set of files
that represent a snapshot of both disk image and memory. The checkpoint is created and all files are
transferred back to the$(SPOOL) directory on the machine from which the job was submitted.vm
universe jobs can not use a checkpoint server. The submit command to create checkpoints is

vm_checkpoint = true

Without this command, no checkpoints are created (by default).

Virtual machine networking is enabled with the command

vm_networking = true

And, when networking is enabled, a definition ofvm networking type as bridge matches
the job only with a machine that is configured to use bridge networking. A definition of
vm networking type asnat matches the job only with a machine that is configured to use NAT
networking. When no definition ofvm networking type is given, Condor may match the job with
a machine that enables networking, and further, the choice of bridge or NAT networking is deter-
mined by the machine’s configuration.

A current limitation restricts the use of networking tovm universe jobs that do not create check-
points such that the job may migrate to another machine.

When both checkpoints and networking are enabled, the job further specifies

when_to_transfer_output = ON_EXIT_OR_EVICT

Modified disk images are transferred back to the machine fromwhich the job was submitted
as thevm universe job completes. Job completion for avm universe job occurs when the virtual
machine is shut down, and Condor notices (as the result of a periodic check on the state of the virtual
machine). Should the job not want any files transferred back (modified or not), for example because
the job explicitly transferred its own files, the submit command to prevent the transfer is

vm_no_output_vm = true

Further commands specify information that is specific to thevirtual machine type targeted.

Condor Version 7.2.3 Manual

2.11. Virtual Machine Applications 93

VMware-Specific Submit Commands

Specific to VMware, the submit description file commandvmware dir gives the path and directory
(on the machine from which the job is submitted) where VMware-specific files and applications
reside. Examples of these VMware-specific applications areVMDK and VMX.

Condor must be told whether or not the contents of thevmware dir directory must be transferred
to the machine where the job is to be executed. This required information is given with the submit
commandvmware should transfer files. With a value ofTrue , Condor does transfer the contents
of the directory. With a value ofFalse , Condor does not transfer the contents of the directory, and
instead presumes that access to this directory is availablethrough a shared file system.

By default, Condor uses a snapshot disk for new and modified files. They may also be utilized
for checkpoints. The snapshot disk is initially quite small, growing only as new files are created or
files are modified. Whenvmware should transfer files is True , a job may specify that a snapshot
disk isnot to be used with the command

vmware_snapshot_disk = False

In this case, Condor will utilize original disk files in producing checkpoints. Note thatcondorsubmit
issues an error message and does not submit the job if bothvmware should transfer files and
vmware snapshotdisk areFalse .

Note that if snapshot disks are requested and file transfer isnot being used, thevmware dir
setting given in the submit file should not contain any symlink path components. This is to work
around the issue discussed in the FAQ entry in section 7.3.

Xen-Specific Submit Commands

The required disk image must be identified for a Xen virtual machine. Thisxen disk command
specifies a list of comma-separated files. Each disk file is specified by 3 colon separated fields. The
first field is the path and file name of the disk file. The second field specifies the device, and the third
field specifies permissions. Here is an example that identifies two files:

xen_disk = /myxen/diskfile.img:sda1:w,/myxen/swap.img :sda2:w

If any files need to be transferred from the submit machine to the machine where thevm universe
job will execute, Condor must be explicitly told to do so withthexen transfer filescommand:

xen_transfer_files = /myxen/diskfile.img,/myxen/swap. img

Any and all needed files on a system without a shared file system(between the submit machine and
the machine where the job will execute) must be listed.

A Xen vm universe job requires specification of the guest kernel. Thexen kernel command
accomplishes this, utilizing one of the following definitions.

Condor Version 7.2.3 Manual

2.11. Virtual Machine Applications 94

1. xen kernel = any tells Condor that the kernel is pre-staged, and its locationis specified by
configuration of thecondorvm-gahp.

2. xen kernel = included implies that the kernel is to be found in disk image given by the
definition of the single file specified inxen disk.

3. xen kernel = path-to-kernel gives a full path and file name of the required kernel. If this
kernel must be transferred to machine on which thevm universe job will execute, it must also
be included in thexen transfer filescommand.

This form of thexen kernel command also requires further definition of thexen root com-
mand.xen root defines the device containing files needed byroot .

Transfer of CD-ROM files under Xen requires the definition of the associated device in addition
to the specification of the files. The submit description file contains

vm_cdrom_files = a.txt,b.txt,c.txt
vm_should_transfer_cdrom_files = YES
xen_cdrom_device = device-name

where the last line of this example defines the device.

2.11.2 Checkpoints

This section has not yet been written

2.11.3 Disk Images

VMware on Windows and Linux

Following the platform-specific guest OS installation instructions found at
http://pubs.vmware.com/guestnotes, creates a VMware disk image.

Xen

This section has not yet been written

2.11.4 Job Completion in the vm Universe

Job completion for avm universe job occurs when the virtual machine is shut down, and Condor
notices (as the result of a periodic check on the state of the virtual machine). This is different from
jobs executed under the environment of other universes.

Condor Version 7.2.3 Manual

http://pubs.vmware.com/guestnotes

2.12. Time Scheduling for Job Execution 95

Shut down of a virtual machine occurs from within the virtualmachine environment. Under a
Windows 2000, Windows XP, or Vista virtual machine, an administrator issues the command

shutdown -s -t 01

For older versions of Windows operating systems, directions are given at
http://www.aumha.org/win4/a/shutcut.php.

Under a Linux virtual machine, theroot user executes

/sbin/poweroff

The command/sbin/halt will not completely shut down some Linux distributions, andinstead
causes the job to hang.

Since the successful completion of thevm universe job requires the successful shut down of the
virtual machine, it is good advice to try the shut down procedure outside of Condor, before avm
universe job is submitted.

2.12 Time Scheduling for Job Execution

Jobs may be scheduled to begin execution at a specified time inthe future with Condor’s job deferral
functionality. All specifications are in a job’s submit description file. Job deferral functionality is
expanded to provide for the periodic execution of a job, known as the CronTab scheduling.

2.12.1 Job Deferral

Job deferral allows the specification of the exact date and time at which a job is to begin executing.
Condor attempts to match the job to an execution machine justlike any other job, however, the job
will wait until the exact time to begin execution. A user can specify Condor to allow some flexibility
to execute jobs that miss their execution time.

Deferred Execution Time

A job’s deferral time is the exact time that Condor should attempt to execute the job. The deferral
time attribute is defined as an expression that evaluates to aUnix Epoch timestamp (the number of
seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time). This is the time
that Condor will begin to execute the job.

After a job is matched and all of its files have been transferedto an execution machine, Condor
checks to see if the job’s ad contains a deferral time. If it does, Condor calculates the number

Condor Version 7.2.3 Manual

http://www.aumha.org/win4/a/shutcut.php

2.12. Time Scheduling for Job Execution 96

of seconds between the execution machine’s current system time to the job’s deferral time. If the
deferral time is in the future, the job waits to begin execution. While a job waits, its job ClassAd
attributeJobStatus indicates the job is running. As the deferral time arrives, the job begins to
execute. If a job misses its execution time, that is, if the deferral time is in the past, the job is evicted
from the execution machine and put on hold in the queue.

The specification of a deferral time does not interfere with Condor’s behavior. For example,
if a job is waiting to begin execution when acondorhold command is issued, the job is removed
from the execution machine and is put on hold. If a job is waiting to begin execution when a
condorsuspendcommand is issued, the job continues to wait. When the deferral time arrives,
Condor begins execution for the job, but immediately suspends it.

Missed Execution Window

If a job arrives at its execution machine after the deferral time passes, the job is evicted from the
machine and put on hold in the job queue. This may occur, for example, because the transfer
of needed files took too long due to a slow network connection.A deferral window permits the
execution of a job that misses its deferral time by specifying a window of time within which the job
may begin.

The deferral window is the number of seconds after the deferral time, within which the job
may begin. When a job arrives too late, Condor calculates thedifference in seconds between the
execution machine’s current time and the job’s deferral time. If this difference is less than or equal
to the deferral window, the job immediately begins execution. If this difference is greater than the
deferral window, the job is evicted from the execution machine and is put on hold in the job queue.

Preparation Time

When a job defines a deferral time far in the future and then is matched to an execution machine,
potential computation cycles are lost because the deferredjob has claimed the machine, but is not
actually executing. Other jobs could execute during the interval when the job waits for its deferral
time. To make use of the wasted time, a job defines adeferral prep time with an integer expression
that evaluates to a number of seconds. At this number of seconds before the deferral time, the job
may be matched with a machine.

Usage Examples

Here are examples of how the job deferral time, deferral window, and the preparation time may be
used.

The job’s submit description file specifies that the job is to begin execution on January 1st, 2006
at 12:00 pm:

deferral_time = 1136138400

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 97

The Unixdateprogram may be used to calculate a Unix epoch time. The syntaxof the command
to do this appears as

% date --date "MM/DD/YYYY HH:MM:SS" +%s

MMis a 2-digit month number,DDis a 2-digit day of the month number, andYYYYis a 4-digit
year. HHis the 2-digit hour of the day,MMis the 2-digit minute of the hour, andSS are the 2-digit
seconds within the minute. The characters+%s tell thedateprogram to give the output as a Unix
epoch time.

The job always waits 60 seconds before beginning execution:

deferral_time = (CurrentTime + 60)

In this example, assume that the deferral time is 45 seconds in the past as the job is available.
The job begins execution, because 75 seconds remain in the deferral window:

deferral_window = 120

In this example, a job is scheduled to execute far in the future, on January 1st, 2010 at 12:00 pm.
Thedeferral prep time attribute delays the job from being matched until 60 secondsbefore the job
is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Limitations

There are some limitations to Condor’s job deferral feature.

• Job deferral is not available for scheduler universe jobs.A scheduler universe job defining the
deferral time produces a fatal error when submitted.

• The time that the job begins to execute is based on the execution machine’s system clock, and
not the submission machine’s system clock. Be mindful of theramifications when the two
clocks show dramatically different times.

• A job’s JobStatus attribute is always in the running state when job deferral isused. There
is currently no way to distinguish between a job that is executing and a job that is waiting for
its deferral time.

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 98

Submit Command Allowed Values
cron minute 0 - 59
cron hour 0 - 23
cron day of Month 1 - 31
cron month 1 - 12
cron day of week 0 - 7 (Sunday is 0 or 7)

Table 2.2: The list of submit commands and their value ranges.

2.12.2 CronTab Scheduling

Condor’s CronTab scheduling functionality allows jobs to be scheduled to executed periodically. A
job’s execution schedule is defined by commands within the submit description file. The notation
is much like that used by the Unixcron daemon. The scheduling of jobs using Condor’s CronTab
feature calculates and utilizes theDeferralTime ClassAd attribute.

Also, unlike the Unixcron daemon, Condor never runs more than one instance of a job at the
same time.

The capability for repetitive or periodic execution of the job is enabled by specifying an
on exit removecommand for the job, such that the job does not leave the queueuntil desired.

Semantics for CronTab Specification

A job’s execution schedule is defined by a set specifications within the submit description file. Con-
dor uses these to calculate aDeferralTime for the job.

Table 2.2 lists the submit commands and acceptable values for these commands. At least one
of these must be defined in order for Condor to calculate aDeferralTime for the job. Once
one CronTab value is defined, the default for all the others uses all the values in the allowed values
ranges.

The day of a job’s execution can be specified by both thecron day of month and the
cron day of weekattributes. The day will be the logical or of both.

The semantics allow more than one value to be specified by using the* operator, ranges, lists,
and steps (strides) within ranges.

The asterisk operator The* (asterisk) operator specifies that all of the allowed valuesare used for
scheduling. For example,

cron_month = *

becomes any and all of the list of possible months: (1,2,3,4,5,6,7,8,9,10,11,12). Thus, a job
runs any month in the year.

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 99

Ranges A range creates a set of integers from all the allowed values between two integers separated
by a hyphen. The specified range is inclusive, and the integerto the left of the hyphen must
be less than the right hand integer. For example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 4:00 am, or (0,1,2,3,4).

Lists A list is the union of the values or ranges separated by commas. Multiple entries of the same
value are ignored. For example,

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

cron minute represents (15,20,25,30) andcron hour represents (0,1,2,3,9,10,11,12,15).

Steps Steps select specific numbers from a range, based on an interval. A step is specified by
appending a range or the asterisk operator with a slash character (/), followed by an integer
value. For example,

cron_minute = 10-30/5
cron_hour = * /3

cron minute specifies every five minutes within the specified range to represent
(10,15,20,25,30). cron hour specifies every three hours of the day to represent
(0,3,6,9,12,15,18,21).

Preparation Time and Execution Window

Thecron prep time command is analogous to the deferral time’sdeferral prep time command. It
specifies the number of seconds before the deferral time thatthe job is to be matched and sent to the
execution machine. This permits Condor to make necessary preparations before the deferral time
occurs.

Consider the submit description file example that includes

cron_hour = *
cron_prep_time = 300

The job is scheduled to begin execution at the top of every hour. The job will be matched and sent
to an execution machine no more than five minutes before the next deferral time. For example, if
a job is submitted at 9:30am, then the next deferral time willbe calculated to be 10:00am. Condor
may attempt to match the job to a machine and send the job once it is 9:55am.

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 100

As the CronTab scheduling calculates and uses deferral time, jobs may also make use of the
deferral window. The submit commandcron window is analogous to the submit commanddefer-
ral window. Consider the submit description file example that includes

cron_hour = *
cron_window = 360

As the previous example, the job is scheduled to begin execution at the top of every hour. Yet with
no preparation time, the job is likely to miss its deferral time. The 6-minute window allows the job
to begin execution, as long as it arrives and can begin within6 minutes of the deferral time, as seen
by the time kept on the execution machine.

Scheduling

When a job using the CronTab functionality is submitted to Condor, use of at least one of the submit
description file commands beginning withcron_ causes Condor to calculate and set a deferral time
for when the job should run. A deferral time is determined based on the current time rounded later
in time to the next minute. The deferral time is the job’sDeferralTime attribute. A new deferral
time is calculated when the job first enters the job queue, when the job is re-queued, or when the job
is released from the hold state. New deferral times forall jobs in the job queue using the CronTab
functionality are recalculated when acondorreconfigor acondorrestartcommand that affects the
job queue is issued.

A job’s deferral time is not always the same time that a job will receive a match and be sent to the
execution machine. This is because Condor operates on the job queue at times that are independent
of job events, such as when job execution completes. Therefore, Condor may operate on the job
queue just after a job’s deferral time states that it is to begin execution. Condor attempts to start a
job when the following pseudo-code boolean expression evaluates toTrue :

(CurrentTime + SCHEDD_INTERVAL) >= (DeferralTime - CronPr epTime)

If the CurrentTime plus the number of seconds until the next time Condor checks the job
queue is greater than or equal to the time that the job should be submitted to the execution machine,
then the job is to be matched and sent now.

Jobs using the CronTab functionality are not automaticallyre-queued by Condor after their exe-
cution is complete. The submit description file for a job mustspecify an appropriateon exit remove
command to ensure that a job remains in the queue. This job maintains its originalClusterId
andProcId .

Usage Examples

Here are some examples of the submit commands necessary to schedule jobs to run at multifarious
times. Please note that it is not necessary to explicitly define each attribute; the default value is* .

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 101

Run 23 minutes after every two hours, every day of the week:

on_exit_remove = false
cron_minute = 23
cron_hour = 0-23/2
cron_day_of_month = *
cron_month = *
cron_day_of_week = *

Run at 10:30pm on each of May 10th to May 20th, as well as every remaining Monday within
the month of May:

on_exit_remove = false
cron_minute = 30
cron_hour = 20
cron_day_of_month = 10-20
cron_month = 5
cron_day_of_week = 2

Run on every 10 minutes and every 6 minutes before noon on January 18th with a 2-minute
preparation time:

on_exit_remove = false
cron_minute = * /10, * /6
cron_hour = 0-11
cron_day_of_month = 18
cron_month = 1
cron_day_of_week = *
cron_prep_time = 120

Limitations

The use of the CronTab functionality has all of the same limitations of deferral times, because the
mechanism is based upon deferral times.

• It is impossible to schedule vanilla and standard universejobs at intervals that are smaller than
the interval at which Condor evaluates jobs. This interval is determined by the configuration
variableSCHEDDINTERVAL . As a vanilla or standard universe job completes execution and
is placed back into the job queue, it may not be placed in the idle state in time. This problem
does not afflict local universe jobs.

• Condor cannot guarantee that a job will be matched in order to make its scheduled deferral
time. A job must be matched with an execution machine just as any other Condor job; if
Condor is unable to find a match, then the job will miss its chance for executing and must wait
for the next execution time specified by the CronTab schedule.

Condor Version 7.2.3 Manual

2.13. Stork Applications 102

2.13 Stork Applications

Today’s scientific applications have huge data requirements, which continue to increase drastically
every year. These data are generally accessed by many users from all across the the globe. This
requires moving huge amounts of data around wide area networks to complete the computation
cycle, which brings with it the problem of efficient and reliable data placement.

Stork is a scheduler for data placement. With Stork,data placement jobshave been elevated to
the same level as Condor’s computational jobs; data placements are queued, managed, queried and
autonomously restarted upon error. Stork understands the semantics and protocols of data place-
ment.

The underlying data placement jobs are performed by Storkmodules, typically installed in the
Condorlibexec directory. The module name is encoded from the data placement type and func-
tions. For example, thestork.transfer.file-file module transfers data from thefile:/
(local file system) to thefile:/ protocol. Thestork.transfer.file-file module is the
only module bundled with Condor/Stork. Additionally, contributed modules may be downloaded
for these data transfer protocols:

ftp:// FTP File Transfer Protocol
http:// HTTP Hypertext Transfer Protocol
gsiftp:// Globus Grid FTP
nest:// Condor NeST network storage appliance (see http://www.cs.wisc.edu/condor/nest/)
srb:// SDSC Storage Resource Broker (SRB) (see http://www.sdsc.edu/srb/)
srm:// Storage Resource Manager (SRM) (see http://sdm.lbl.gov/srm-wg/)
csrm:// Castor Storage Resource Manager (Castor SRM) (see http://castor.web.cern.ch/castor/)
unitree:// NCSA UniTree (see http://www.ncsa.uiuc.edu/Divisions/CC/HPDM/unitree/)

The Stork module API is simple and extensible, enabling users to create and use their own
modules.

Stork includes high level features for managing data transfers. By configuration, the number of
active jobs running from a Stork server may be limited. Storkincludes built in fault tolerance, with
capabilities for retrying failed jobs, together with the specification of alternate protocols. Stork users
also have access to a higher level job manager, Condor DAGMan(section 2.10), which can manage
both Stork data placement jobs and traditional Condor jobs at the same time.

2.13.1 Submitting Stork Jobs

As with Condor jobs, Stork jobs are specified with a submit description file. It is important to note
the syntax of the submit description file for a Stork job is different than that used by Condor jobs.
Specifically, Stork submit description files are written in the ClassAd language. See the ClassAd
Language Reference Manual for complete details. Please note that while most of Condor uses
ClassAds, Stork utilizes the most recent version of this language, which has evolved over time.
Stork defines keywords. When present in the job submit file, keywords define the function of the

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/stork/download.html
http://www.cs.wisc.edu/condor/nest/
http://www.sdsc.edu/srb/
http://sdm.lbl.gov/srm-wg/
http://castor.web.cern.ch/castor/
http://www.ncsa.uiuc.edu/Divisions/CC/HPDM/unitree/
http://www.cs.wisc.edu/condor/classad

2.13. Stork Applications 103

job.

Here is sample Stork job submit description file, showing filesyntax and keywords. A job
specifies a 1-to-1 mapping of a data source URL to destinationURL.

// This is a comment line.
[

dap_type = transfer;
src_url = "file:/etc/termcap";
dest_url = "file:/tmp/stork/file-termcap";

]

This example shows the ClassAd pairs that form the heart of a Stork job specification. The
minimum keywords required to specify a Stork job are:

dap type Currently, the data type is constrained totransfer.

src url Specify the data protocol and URL of the source.

dest url Specify the data protocol and URL of the destination.

Additionally, the following keywords may be used in a Stork submit description file:

x509proxy Specifies the location of the X.509 proxy file for protocols that use GSI authentication,
such asgsiftp://. The special value of”default” (quotes are required) invokes GSI libraries to
search for the user credential in the standard locations.

alt protocols A comma separated list of alternative protocol pairs (for source and destination pro-
tocols), used in a round robin fashion when transfers fail. See section 2.13.3 for a further
discussion and examples.

Stork places no restriction on the submit file name or extension, and will accept any valid file
name for a Stork submit description file.

Submit data placement jobs to Stork using thestork submittool. For example, after creating
the submit description filesample.stork with an editor, submit the data transfer job with the
command:

stork_submit sample.stork

Stork then returns the associated job id, which is used by other Stork job control tools.

Only the first ClassAd (a record expression within brackets)within a Stork submit description
file becomes a data placement job upon submission. Other ClassAds within the file are ignored.

Condor Version 7.2.3 Manual

2.13. Stork Applications 104

2.13.2 Managing Stork Jobs

Stork provides a set of command-line user tools for job management, including submitting, query-
ing, and removing data placement jobs.

Querying Stork Jobs

Usestork statusto check the status of any active or completed Stork job.stork statustakes a single
argument: the job id. For example, to check the status of the Stork job with job id 3:

stork_status 3

Usestork q to query all active Stork jobs.stork q does not report on completed Stork jobs.

For example, to check the status all active Stork jobs:

stork_q

Removing Stork Jobs

Active jobs may be removed from the job queue with thestork rm tool. stork rm takes a single
argument: the job id of the job to remove. All jobs may be removed, provided they have not
completed.

For example, to remove the queued job with job id 4:

stork_rm 4

2.13.3 Fault Tolerance

In an ideal world, all data transfers succeed on the first attempt. However, data transfers do fail for
various reasons. Stork is designed with data transfer faulttolerance. Based on configuration, Stork
retries failed data transfer jobs using specified protocols.

If a transfer fails, Stork attempts the transfer again, until the number of attempts reaches the
limit, as defined by the configuration variableSTORKMAXRETRY (section 3.3.33).

For each attempt at transfer, the transfer protocols to be used at both source and destination
are defined. These transfer protocols may vary, when defined by an alt protocols entry in the
submit description file. The location of the data at the source and destination is unchanged by
thealt protocols entry. alt protocols defines an ordered list of alternative translation protocols to
be used. Each entry in the list is a pair. The first of the pair defines the protocol to be used at the

Condor Version 7.2.3 Manual

2.13. Stork Applications 105

source of the transfer. The second of the pair defines the protocol to be used at the destination of the
transfer.

The syntax is a comma-separated list of pairs. A dash character separated the pairs. The protocol
name is given in all lower case letters, without colons or slash characters. Stork uses these strings to
identify the protocol translation and transfer module to beused.

The initial translation protocol (specified in thesrc url anddest url entries) together with the
list defined by analt protocolsentry form the ordered list of protocols to be utilized in a round robin
fashion.

For example, ifSTORKMAXRETRYhas the value 4, and the Stork job submit description file
contains

[
dap_type = transfer;
src_url = "gsiftp://serverA/dirA/fileA";
dest_url = "http://serverB/dirB/fileB";

]

then Stork will attempt up to 4 transfers, with each using thesame translation protocol.gsiftp://
is used at the source, andhttp:// is used at the destination. The Stork job fails if it has not been
completed after 4 attempts.

A second example shows the transfer protocols used for each attempted transfer, when
alt protocols is used. For this example, assume thatSTORKMAXRETRYhas the value 7.

[
dap_type = transfer;
src_url = "gsiftp://no-such-server/dir/file";
dest_url = "file:/dir/file";
alt_protocols = "ftp-file, http-file";

]

Stork attempts the following transfers, in the given order,stopping when the transfer succeeds.

1. fromgsiftp://no-such-server/dir/file to file:/dir/file

2. from ftp://no-such-server/dir/file to file:/dir/file

3. fromhttp://no-such-server/dir/file to file:/dir/file

4. fromgsiftp://no-such-server/dir/file to file:/dir/file

5. from ftp://no-such-server/dir/file to file:/dir/file

6. fromhttp://no-such-server/dir/file to file:/dir/file

7. fromgsiftp://no-such-server/dir/file to file:/dir/file

Condor Version 7.2.3 Manual

2.13. Stork Applications 106

2.13.4 Running Stork Jobs Under DAGMan

Condor DAGMan (section 2.10) provides high level management of both traditional CPU jobs and
Stork data placement jobs. Using DAGMan, users can specify data placement using theDATA
keyword. DAGMan can mix Stork data transfer jobs and Condor jobs. This capability lends itself
well to grid computing, as data is often staged in (transferred) before processing the data. After
processing, output is often staged out (transferred).

Here is a sample DAGMan input file that stages in input files using Stork transfers, processes the
data as a Condor job, and stages out the result using a Stork transfer.

Transfer input files using Stork
DATA INPUT1 transfer_input_data1.stork
DATA INPUT1 transfer_input_data2.stork

DATA INPUT2 transfer_data
#
Process the data using Condor
JOB PROCESS process.condor
#
Transfer output file using Stork
DATA RESULT transfer_result_data.stork
#
Specify job dependencies
PARENT INPUT1 INPUT2 CHILD PROCESS
PARENT PROCESS CHILD RESULT

2.13.5 The Lease Manager

The Lease Manager provides a mechanism for managing leases to resources, as described by Con-
dor’s ClassAd mechanism. The resources and leases are persistent, so that state may be restored
after a shutdown or crash.

Resources are advertised to the Lease Manager by publishinga Condor ClassAd with acon-
dor collector. These leases describe the number of resources available (the number of leases), and
they can also specify a requirements expression using Condor’s ClassAd mechanism. The resource
may also specify the maximum duration of the leases it will allow.

Similarly, leases are requested by through the Condor ClassAd mechanism; a Condor daemon
client API provides an interface through which to request a lease. This request ClassAd may specify
the number of and the duration of the resource leases that arebeing requested. It may also specify a
requirements expression.

With both the resource and request able to specify requirements expressions, the Lease Manager
performs 2-way match making, providing a great deal of flexibility.

Condor Version 7.2.3 Manual

2.14. Job Monitor 107

2.14 Job Monitor

The Condor Job Monitor is a Java application designed to allow users to view user log files.

To view a user log file, select it using the open file command in the File menu. After the file
is parsed, it will be visually represented. Each horizontalline represents an individual job. The
x-axis is time. Whether a job is running at a particular time is represented by its color at that time –
white for running, black for idle. For example, a job which appears predominantly white has made
efficient progress, whereas a job which appears predominantly black has received an inordinately
small proportion of computational time.

2.14.1 Transition States

A transition state is the state of a job at any time. It is called a ”transition” because it is defined by the
two events which bookmark it. There are two basic transitionstates: running and idle. An idle job
typically is a job which has just been submitted into the Condor pool and is waiting to be matched
with an appropriate machine or a job which has vacated from a machine and has been returned to
the pool. A running job, by contrast, is a job which is making active progress.

Advanced users may want a visual distinction between two types of running transitions: ”good-
put” or ”badput”. Goodput is the transition state precedingan eventual job completion or checkpoint.
Badput is the transition state preceding a non-checkpointed eviction event. Note that ”badput” is po-
tentially a misleading nomenclature; a job which is not checkpointed by the Condor program may
checkpoint itself or make progress in some other way. To viewthese two transition as distinct
transitions, select the appropriate option from the ”View”menu.

2.14.2 Events

There are two basic kinds of events: checkpoint events and error events. Plus advanced users can
ask to see more events.

2.14.3 Selecting Jobs

To view any arbitrary selection of jobs in a job file, use the job selector tool. Jobs appear visually
by order of appearance within the actual text log file. For example, the log file might contain jobs
775.1, 775.2, 775.3, 775.4, and 775.5, which appear in that order. A user who wishes to see only
jobs 775.2 and 775.5 can select only these two jobs in the job selector tool and click the ”Ok” or
”Apply” button. The job selector supports double clicking;double click on any single job to see it
drawn in isolation.

Condor Version 7.2.3 Manual

2.15. Special Environment Considerations 108

2.14.4 Zooming

To view a small area of the log file, zoom in on the area which youwould like to see in greater
detail. You can zoom in, out and do a full zoom. A full zoom redraws the log file in its entirety. For
example, if you have zoomed in very close and would like to go all the way back out, you could do
so with a succession of zoom outs or with one full zoom.

There is a difference between using the menu driven zooming and the mouse driven zooming.
The menu driven zooming will recenter itself around the current center, whereas mouse driven zoom-
ing will recenter itself (as much as possible) around the mouse click. To help you re-find the clicked
area, a box will flash after the zoom. This is called the ”zoom finder” and it can be turned off in the
zoom menu if you prefer.

2.14.5 Keyboard and Mouse Shortcuts

1. The Keyboard shortcuts:

• Arrows - an approximate ten percent scrollbar movement

• PageUp and PageDown - an approximate one hundred percent scrollbar movement

• Control + Left or Right - approximate one hundred percent scrollbar movement

• End and Home - scrollbar movement to the vertical extreme

• Others - as seen beside menu items

2. The mouse shortcuts:

• Control + Left click - zoom in

• Control + Right click - zoom out

• Shift + left click - re-center

2.15 Special Environment Considerations

2.15.1 AFS

The Condor daemons do not run authenticated to AFS; they do not possess AFS tokens. Therefore,
no child process of Condor will be AFS authenticated. The implication of this is that you must set
file permissions so that your job can access any necessary files residing on an AFS volume without
relying on having your AFS permissions.

If a job you submit to Condor needs to access files residing in AFS, you have the following
choices:

Condor Version 7.2.3 Manual

2.15. Special Environment Considerations 109

1. Copy the needed files from AFS to either a local hard disk where Condor can access them
using remote system calls (if this is a standard universe job), or copy them to an NFS volume.

2. If you must keep the files on AFS, then set a host ACL (using the AFSfs setaclcommand) on
the subdirectory to serve as the current working directory for the job. If a standard universe
job, then the host ACL needs to give read/write permission toany process on the submit
machine. If vanilla universe job, then you need to set the ACLsuch that any host in the pool
can access the files without being authenticated. If you do not know how to use an AFS host
ACL, ask the person at your site responsible for the AFS configuration.

The Condor Team hopes to improve upon how Condor deals with AFS authentication in a sub-
sequent release.

Please see section 3.12.1 on page 390 in the Administrators Manual for further discussion of this
problem.

2.15.2 NFS Automounter

If your current working directory when you runcondorsubmitis accessed via an NFS automounter,
Condor may have problems if the automounter later decides tounmount the volume before your
job has completed. This is becausecondorsubmitlikely has stored the dynamic mount point as the
job’s initial current working directory, and this mount point could become automatically unmounted
by the automounter.

There is a simple work around: When submitting your job, use the initialdir com-
mand in your submit description file to point to the stable access point. For exam-
ple, suppose the NFS automounter is configured to mount a volume at mount point
/a/myserver.company.com/vol1/johndoe whenever the directory/home/johndoe is
accessed. Adding the following line to the submit description file solves the problem.

initialdir = /home/johndoe

2.15.3 Condor Daemons That Do Not Run as root

Condor is normally installed such that the Condor daemons have root permission. This allows
Condor to run the condorshadow process and your job with your UID and file access rights. When
Condor is started as root, your Condor jobs can access whatever files you can.

However, it is possible that whomever installed Condor did not have root access, or decided not
to run the daemons as root. That is unfortunate, since Condoris designed to be run as the Unix user
root. To see if Condor is running as root on a specific machine,enter the command

condor_status -master -l <machine-name>

Condor Version 7.2.3 Manual

2.15. Special Environment Considerations 110

wheremachine-name is the name of the specified machine. This command displays a con-
dor master ClassAd; if the attributeRealUid equals zero, then the Condor daemons are indeed
running with root access. If theRealUid attribute is not zero, then the Condor daemons do not
have root access.

NOTE: The Unix programps is not an effective method of determining if Condor is running
with root access. When usingps, it may often appear that the daemons are running as the condor
user instead of root. However, note that theps, command shows the currenteffectiveowner of the
process, not thereal owner. (See thegetuid(2) andgeteuid(2) Unix man pages for details.) In
Unix, a process running under the real UID of root may switch its effective UID. (See theseteuid(2)
man page.) For security reasons, the daemons only set the effective UID to root when absolutely
necessary (to perform a privileged operation).

If they are not running with root access, you need to make any/all files and/or directories that
your job will touch readable and/or writable by the UID (userid) specified by the RealUid attribute.
Often this may mean using the Unix commandchmod 777 on the directory where you submit
your Condor job.

2.15.4 Job Leases

A job lease specifies how long a given job will attempt to run ona remote resource, even if that
resource loses contact with the submitting machine. Similarly, it is the length of time the submitting
machine will spend trying to reconnect to the (now disconnected) execution host, before the submit-
ting machine gives up and tries to claim another resource to run the job. The goal aims at run only
once semantics, so that thecondorschedddaemon does not allow the same job to run on multiple
sites simultaneously.

If the submitting machine is alive, it periodically renews the job lease, and all is well. If the
submitting machine is dead, or the network goes down, the joblease will no longer be renewed.
Eventually the lease expires. While the lease has not expired, the execute host continues to try to
run the job, in the hope that the submit machine will come backto life and reconnect. If the job
completes and the lease has not expired, yet the submitting machine is still dead, thecondorstarter
daemon will wait for acondorshadowdaemon to reconnect, before sending final information on
the job, and its output files. Should the lease expire, thecondorstartd daemon kills off thecon-
dor starterdaemon and user job.

A default value equal to 20 minutes exists for a job’s ClassAdattribute
job lease duration , or this attribute may be set in the submit description file tokeep a
job running in the case that the submit side no longer renews the lease. There is a trade off in setting
the value ofjob lease duration . Too small a value, and the job might get killed before the
submitting machine has a chance to recover. Forward progress on the job will be lost. Too large a
value, and an execute resource will be tied up waiting for thejob lease to expire. The value should
be chosen based on how long is the user willing to tie up the execute machines, how quickly submit
machines come back up, and how much work would be lost if the lease expires, the job is killed,
and the job must start over from its beginning.

Condor Version 7.2.3 Manual

2.16. Potential Problems 111

As a special case, a submit description file setting of

job_lease_duration = 0

as well as utilizing submission other thancondorsubmit that do not setJobLeaseDuration
(such as using the web services interface) results in the corresponding job ClassAd attribute to be
explicitly undefined. This has the further effect of changing the duration of a claim lease, the amount
of time that the execution machine waits before dropping a claim due to missing keep alive messages.

2.16 Potential Problems

2.16.1 Renaming of argv[0]

When Condor starts up your job, it renames argv[0] (which usually contains the name of the pro-
gram) to condorexec. This is convenient when examining a machine’s processes with the Unix
commandps; the process is easily identified as a Condor job.

Unfortunately, some programs read argv[0] expecting theirown program name and get confused
if they find something unexpected like condorexec.

Condor Version 7.2.3 Manual

CHAPTER

THREE

Administrators’ Manual

3.1 Introduction

This is the Condor Administrator’s Manual for Unix. Its purpose is to aid in the installation and
administration of a Condor pool. For help on using Condor, see the Condor User’s Manual.

A Condor pool is comprised of a single machine which serves asthecentral manager, and an
arbitrary number of other machines that have joined the pool. Conceptually, the pool is a collection
of resources (machines) and resource requests (jobs). The role of Condor is to match waiting re-
quests with available resources. Every part of Condor sendsperiodic updates to the central manager,
the centralized repository of information about the state of the pool. Periodically, the central man-
ager assesses the current state of the pool and tries to matchpending requests with the appropriate
resources.

Each resource has an owner, the user who works at the machine.This person has absolute power
over their own resource and Condor goes out of its way to minimize the impact on this owner caused
by Condor. It is up to the resource owner to define a policy for when Condor requests will serviced
and when they will be denied.

Each resource request has an owner as well: the user who submitted the job. These people want
Condor to provide as many CPU cycles as possible for their work. Often the interests of the resource
owners are in conflict with the interests of the resource requesters.

The job of the Condor administrator is to configure the Condorpool to find the happy medium
that keeps both resource owners and users of resources satisfied. The purpose of this manual is to
help you understand the mechanisms that Condor provides to enable you to find this happy medium
for your particular set of users and resource owners.

112

3.1. Introduction 113

3.1.1 The Different Roles a Machine Can Play

Every machine in a Condor pool can serve a variety of roles. Most machines serve more than one
role simultaneously. Certain roles can only be performed bysingle machines in your pool. The
following list describes what these roles are and what resources are required on the machine that is
providing that service:

Central Manager There can be only one central manager for your pool. The machine is the col-
lector of information, and the negotiator between resources and resource requests. These two
halves of the central manager’s responsibility are performed by separate daemons, so it would
be possible to have different machines providing those two services. However, normally they
both live on the same machine. This machine plays a very important part in the Condor pool
and should be reliable. If this machine crashes, no further matchmaking can be performed
within the Condor system (although all current matches remain in effect until they are broken
by either party involved in the match). Therefore, choose for central manager a machine that
is likely to be up and running all the time, or at least one thatwill be rebooted quickly if some-
thing goes wrong. The central manager will ideally have a good network connection to all the
machines in your pool, since they all send updates over the network to the central manager.
All queries go to the central manager.

Execute Any machine in your pool (including your Central Manager) can be configured for whether
or not it should execute Condor jobs. Obviously, some of yourmachines will have to serve
this function or your pool won’t be very useful. Being an execute machine doesn’t require
many resources at all. About the only resource that might matter is disk space, since if the
remote job dumps core, that file is first dumped to the local disk of the execute machine before
being sent back to the submit machine for the owner of the job.However, if there isn’t much
disk space, Condor will simply limit the size of the core file that a remote job will drop. In
general the more resources a machine has (swap space, real memory, CPU speed, etc.) the
larger the resource requests it can serve. However, if thereare requests that don’t require many
resources, any machine in your pool could serve them.

Submit Any machine in your pool (including your Central Manager) can be configured for whether
or not it should allow Condor jobs to be submitted. The resource requirements for a submit
machine are actually much greater than the resource requirements for an execute machine.
First of all, every job that you submit that is currently running on a remote machine generates
another process on your submit machine. So, if you have lots of jobs running, you will need a
fair amount of swap space and/or real memory. In addition allthe checkpoint files from your
jobs are stored on the local disk of the machine you submit from. Therefore, if your jobs have
a large memory image and you submit a lot of them, you will needa lot of disk space to hold
these files. This disk space requirement can be somewhat alleviated with a checkpoint server
(described below), however the binaries of the jobs you submit are still stored on the submit
machine.

Checkpoint Server One machine in your pool can be configured as a checkpoint server. This is
optional, and is not part of the standard Condor binary distribution. The checkpoint server is
a centralized machine that stores all the checkpoint files for the jobs submitted in your pool.

Condor Version 7.2.3 Manual

3.1. Introduction 114

This machine should have lots of disk space and a good networkconnection to the rest of your
pool, as the traffic can be quite heavy.

Now that you know the various roles a machine can play in a Condor pool, we will describe the
actual daemons within Condor that implement these functions.

3.1.2 The Condor Daemons

The following list describes all the daemons and programs that could be started under Condor and
what they do:

condor master This daemon is responsible for keeping all the rest of the Condor daemons running
on each machine in your pool. It spawns the other daemons, andperiodically checks to see
if there are new binaries installed for any of them. If there are, the master will restart the
affected daemons. In addition, if any daemon crashes, the master will send e-mail to the
Condor Administrator of your pool and restart the daemon. The condormasteralso supports
various administrative commands that let you start, stop orreconfigure daemons remotely. The
condormasterwill run on every machine in your Condor pool, regardless of what functions
each machine are performing.

condor startd This daemon represents a given resource (namely, a machine capable of running jobs)
to the Condor pool. It advertises certain attributes about that resource that are used to match
it with pending resource requests. The startd will run on anymachine in your pool that you
wish to be able to execute jobs. It is responsible for enforcing the policy that resource owners
configure which determines under what conditions remote jobs will be started, suspended,
resumed, vacated, or killed. When the startd is ready to execute a Condor job, it spawns the
condorstarter, described below.

condor starter This program is the entity that actually spawns the remote Condor job on a given
machine. It sets up the execution environment and monitors the job once it is running. When
a job completes, the starter notices this, sends back any status information to the submitting
machine, and exits.

condor scheddThis daemon represents resource requests to the Condor pool. Any machine that
you wish to allow users to submit jobs from needs to have acondorscheddrunning. When
users submit jobs, they go to the schedd, where they are stored in the job queue, which the
schedd manages. Various tools to view and manipulate the jobqueue (such ascondorsubmit,
condorq, or condorrm) all must connect to the schedd to do their work. If the scheddis
down on a given machine, none of these commands will work.

The schedd advertises the number of waiting jobs in its job queue and is responsible for
claiming available resources to serve those requests. Oncea schedd has been matched with a
given resource, the schedd spawns acondorshadow(described below) to serve that particular
request.

Condor Version 7.2.3 Manual

3.1. Introduction 115

condor shadow This program runs on the machine where a given request was submitted and acts
as the resource manager for the request. Jobs that are linkedfor Condor’s standard universe,
which perform remote system calls, do so via thecondorshadow. Any system call performed
on the remote execute machine is sent over the network, back to thecondorshadowwhich
actually performs the system call (such as file I/O) on the submit machine, and the result is
sent back over the network to the remote job. In addition, theshadow is responsible for making
decisions about the request (such as where checkpoint files should be stored, how certain files
should be accessed, etc).

condor collector This daemon is responsible for collecting all the information about the status of
a Condor pool. All other daemons periodically send ClassAd updates to the collector. These
ClassAds contain all the information about the state of the daemons, the resources they repre-
sent or resource requests in the pool (such as jobs that have been submitted to a given schedd).
Thecondorstatuscommand can be used to query the collector for specific information about
various parts of Condor. In addition, the Condor daemons themselves query the collector
for important information, such as what address to use for sending commands to a remote
machine.

condor negotiator This daemon is responsible for all the match-making within the Condor system.
Periodically, the negotiator begins anegotiation cycle, where it queries the collector for the
current state of all the resources in the pool. It contacts each schedd that has waiting resource
requests in priority order, and tries to match available resources with those requests. The
negotiator is responsible for enforcing user priorities inthe system, where the more resources
a given user has claimed, the less priority they have to acquire more resources. If a user with
a better priority has jobs that are waiting to run, and resources are claimed by a user with a
worse priority, the negotiator can preempt that resource and match it with the user with better
priority.

NOTE: A higher numerical value of the user priority in Condor translate into worse priority
for that user. The best priority you can have is 0.5, the lowest numerical value, and your
priority gets worse as this number grows.

condor kbdd This daemon is only needed on Digital Unix. On that platforms, thecondorstartd
cannot determine console (keyboard or mouse) activity directly from the system. Thecon-
dor kbddconnects to the X Server and periodically checks to see if there has been any activity.
If there has, the kbdd sends a command to the startd. That way,the startd knows the machine
owner is using the machine again and can perform whatever actions are necessary, given the
policy it has been configured to enforce.

condor ckpt server This is the checkpoint server. It services requests to storeand retrieve check-
point files. If your pool is configured to use a checkpoint server but that machine (or the server
itself is down) Condor will revert to sending the checkpointfiles for a given job back to the
submit machine.

condor quill This daemon builds and manages a database that represents a copy of the Condor job
queue. Thecondorq andcondorhistory tools can then query the database.

condor dbmsd This daemon assists thecondorquill daemon.

Condor Version 7.2.3 Manual

3.2. Installation 116

condor gridmanager This daemon handles management and execution of allgrid universe jobs.
Thecondorscheddinvokes thecondorgridmanagerwhen there aregrid universe jobs in the
queue, and thecondorgridmanagerexits when there are no moregrid universe jobs in the
queue.

condor credd This daemon runs on Windows platforms to manage password storage in a secure
manner.

condor had This daemon implements the high availability of a pool’s central manager through
monitoring the communication of necessary daemons. If the current, functioning, central
manager machine stops working, then this daemon ensures that another machine takes its
place, and becomes the central manager of the pool.

condor replication This daemon assists thecondorhaddaemon by keeping an updated copy of the
pool’s state. This state provides a better transition from one machine to the next, in the event
that the central manager machine stops working.

condor procd This daemon controls and monitors process families within Condor. Its use is op-
tional in general but it must be used if privilege separation(see Section 3.6.12) or group-ID
based tracking (see Section 3.12.10) is enabled.

condor job router This daemon transformsvanilla universe jobs intogrid universe jobs, such that
the transformed jobs are capable of running elsewhere, as appropriate.

condor leasemanager This daemon manages leases in a persistent manner. Leases are represented
by ClassAds.

stork server This daemon handles requests for Stork data placement jobs.

See figure 3.1 for a graphical representation of the pool architecture.

3.2 Installation

This section contains the instructions for installing Condor at your Unix site.

The installation will have a default configuration that can be customized. Sections of the manual
that follow this one explain customization.

Read this entire section before starting installation.

Please read the copyright and disclaimer information in section ??on page??of the manual, or
in the fileLICENSE.TXT , before proceeding. Installation and use of Condor is acknowledgment
that you have read and agree to the terms.

Condor Version 7.2.3 Manual

3.2. Installation 117

Condor_Syscall_Library

User’s Code

User’s Job

Controlling Daemons
Controlling Daemons

Condor_Shadow Process

Central Manager

Submit Machine Execution Machine

Checkpoint File is

All System Calls
Performed As
Remote Procedure
Calls back to the
Submit Machine.

Saved to Disk

Control via Unix Signals to alert
job when to checkpoint.

Condor_Collector

Condor_Negotiator

Figure 3.1: Pool Architecture

3.2.1 Obtaining Condor

The first step to installing Condor is to download it from the Condor web site,
http://www.cs.wisc.edu/condor. The downloads are available from the downloads page, at
http://www.cs.wisc.edu/condor/downloads/.

The platform-dependent Condor files are currently available from two sites. The main site is
at the University of Wisconsin–Madison, Madison, Wisconsin, USA. A second site is the Istituto
Nazionale di Fisica Nucleare Sezione di Bologna, Bologna, Italy. Please choose the site nearest to
you.

Make note of the location of where you download the binary into.

The Condor binary distribution is packaged in the following5 files and 2 directories:

DOC directions on where to find Condor documentation

INSTALL these installation directions

LICENSE.TXT the licensing agreement. By installing Condor, you agree tothe contents of this
file

README general information

condor install the Perl script used to install and configure Condor

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor/downloads/

3.2. Installation 118

examples directory containing C, Fortran and C++ example programs torun with Condor

bin directory which contains the distribution Condor user programs.

sbin directory which contains the distribution Condor system programs.

etc directory which contains the distribution Condor configuration data.

lib directory which contains the distribution Condor libraries.

libexec directory which contains the distribution Condor programsthat are only used internally
by Condor.

man directory which contains the distribution Condor manual pages.

sql directory which contains the distribution Condor files usedfor SQL operations.

src directory which contains the distribution Condor source code for CHIRP and DRMAA.

Before you install, please consider joining the condor-world mailing list. Traffic on this list is
kept to an absolute minimum. It is only used to announce new releases of Condor. To subscribe,
send a message to majordomo@cs.wisc.edu with the body:

subscribe condor-world

3.2.2 Preparation

Before installation, make a few important decisions about the basic layout of your pool. The deci-
sions answer the questions:

1. What machine will be the central manager?

2. What machines should be allowed to submit jobs?

3. Will Condor run as root or not?

4. Who will be administering Condor on the machines in your pool?

5. Will you have a Unix user named condor and will its home directory be shared?

6. Where should the machine-specific directories for Condorgo?

7. Where should the parts of the Condor system be installed?

• Configuration files

• Release directory

– user binaries

– system binaries

Condor Version 7.2.3 Manual

mailto:majordomo@cs.wisc.edu

3.2. Installation 119

– lib directory

– etc directory

• Documentation

8. Am I using AFS?

9. Do I have enough disk space for Condor?

1. What machine will be the central manager?One machine in your pool must be the central
manager. Install Condor on this machine first. This is the centralized information reposi-
tory for the Condor pool, and it is also the machine that does match-making between available
machines and submitted jobs. If the central manager machinecrashes, any currently active
matches in the system will keep running, but no new matches will be made. Moreover, most
Condor tools will stop working. Because of the importance ofthis machine for the proper
functioning of Condor, install the central manager on a machine that is likely to stay up all the
time, or on one that will be rebooted quickly if it does crash.

Also consider network traffic and your network layout when choosing your central manager.
All the daemons send updates (by default, every 5 minutes) tothis machine. Memory require-
ments for the central manager differ by the number of machines in the pool. A pool with
up to about 100 machines will require approximately 25 Mbytes of memory for the central
manager’s tasks. A pool with about 1000 machines will require approximately 100 Mbytes of
memory for the central manager’s tasks.

A faster CPU will improve the time to do matchmaking.

2. Which machines should be allowed to submit jobs?Condor can restrict the machines allowed
to submit jobs. Alternatively, it can allow any machine the network allows to connect to a
submit machine to submit jobs. If the Condor pool is behind a firewall, and all machines
inside the firewall are trusted, theHOSTALLOWWRITE configuration entry can be set to *.
Otherwise, it should be set to reflect the set of machines permitted to submit jobs to this pool.
Condor tries to be secure by default, so out of the box, the configuration file ships with an
invalid definition for this configuration variable. This invalid value allows no machine to con-
nect and submit jobs, so after installation, change this entry. Look for the entry defined with
the valueYOUMUSTCHANGETHIS INVALID CONDORCONFIGURATIONVALUE.

3. Will Condor run as root or not? Start up the Condor daemons as the Unix user root. Without
this, Condor can do very little to enforce security and policy decisions. You can install Condor
as any user, however there are both serious security and performance consequences. Please
see section 3.6.11 on page 316 in the manual for the details and ramifications of running
Condor as a Unix user other than root.

4. Who will administer Condor? Either root will be administering Condor directly, or someone
else would be acting as the Condor administrator. If root hasdelegated the responsibility to
another person, keep in mind that as long as Condor is startedup as root, it should be clearly
understood that whoever has the ability to edit the condor configuration files can effectively
run arbitrary programs as root.

Condor Version 7.2.3 Manual

3.2. Installation 120

5. Will you have a Unix user named condor, and will its home directory be shared?To sim-
plify installation of Condor, create a Unix user named condor on all machines in the pool.
The Condor daemons will create files (such as the log files) owned by this user, and the home
directory can be used to specify the location of files and directories needed by Condor. The
home directory of this user can either be shared among all machines in your pool, or could
be a separate home directory on the local partition of each machine. Both approaches have
advantages and disadvantages. Having the directories centralized can make administration
easier, but also concentrates the resource usage such that you potentially need a lot of space
for a single shared home directory. See the section below on machine-specific directories for
more details.

If you choose not to create a user named condor, then you must specify either via the
CONDORIDS environment variable or theCONDORIDS config file setting which uid.gid
pair should be used for the ownership of various Condor files.See section 3.6.11 on UIDs in
Condor on page 315 in the Administrator’s Manual for details.

6. Where should the machine-specific directories for Condorgo? Condor needs a few directo-
ries that are unique on every machine in your pool. These arespool , log , andexecute .
Generally, all three are subdirectories of a single machinespecific directory called the local
directory (specified by theLOCALDIR macro in the configuration file). Each should be
owned by the user that Condor is to be run as.

If you have a Unix user named condor with a local home directory on each machine, the
LOCALDIR could just be user condor’s home directory (LOCALDIR = $(TILDE) in the
configuration file). If this user’s home directory is shared among all machines in your pool,
you would want to create a directory for each host (named by host name) for the local directory
(for example,LOCALDIR = $(TILDE) /hosts/$(HOSTNAME)). If you do not have a condor
account on your machines, you can put these directories wherever you’d like. However, where
to place them will require some thought, as each one has its own resource needs:

execute This is the directory that acts as the current working directory for any Condor jobs
that run on a given execute machine. The binary for the remotejob is copied into this
directory, so there must be enough space for it. (Condor willnot send a job to a machine
that does not have enough disk space to hold the initial binary). In addition, if the remote
job dumps core for some reason, it is first dumped to the execute directory before it is
sent back to the submit machine. So, put the execute directory on a partition with enough
space to hold a possible core file from the jobs submitted to your pool.

spool Thespool directory holds the job queue and history files, and the checkpoint files
for all jobs submitted from a given machine. As a result, diskspace requirements for
the spool directory can be quite large, particularly if users are submitting jobs with
very large executables or image sizes. By using a checkpointserver (see section 3.8
on Installing a Checkpoint Server on page 346 for details), you can ease the disk space
requirements, since all checkpoint files are stored on the server instead of the spool
directories for each machine. However, the initial checkpoint files (the executables for
all the clusters you submit) are still stored in the spool directory, so you will need some
space, even with a checkpoint server.

log Each Condor daemon writes its own log file, and each log file is placed in thelog
directory. You can specify what size you want these files to grow to before they are

Condor Version 7.2.3 Manual

3.2. Installation 121

rotated, so the disk space requirements of the directory areconfigurable. The larger
the log files, the more historical information they will holdif there is a problem,
but the more disk space they use up. If you have a network file system installed at
your pool, you might want to place the log directories in a shared location (such as
/usr/local/condor/logs/$(HOSTNAME)), so that you can view the log files
from all your machines in a single location. However, if you take this approach, you will
have to specify a local partition for thelock directory (see below).

lock Condor uses a small number of lock files to synchronize accessto certain files that are
shared between multiple daemons. Because of problems encountered with file lock-
ing and network file systems (particularly NFS), these lock files should be placed on a
local partition on each machine. By default, they are placedin the log directory. If
you place yourlog directory on a network file system partition, specify a localpar-
tition for the lock files with theLOCK parameter in the configuration file (such as
/var/lock/condor).

Generally speaking, it is recommended that you do not put these directories (exceptlock)
on the same partition as/var , since if the partition fills up, you will fill up/var as well.
This will cause lots of problems for your machines. Ideally,you will have a separate partition
for the Condor directories. Then, the only consequence of filling up the directories will be
Condor’s malfunction, not your whole machine.

7. Where should the parts of the Condor system be installed? • Configuration Files

• Release directory

– User Binaries

– System Binaries

– lib Directory

– etc Directory

• Documentation

Configuration Files There are a number of configuration files that allow you different levels
of control over how Condor is configured at each machine in your pool. The global
configuration file is shared by all machines in the pool. For ease of administration, this
file should be located on a shared file system, if possible. In addition, there is a local
configuration file for each machine, where you can override settings in the global file.
This allows you to have different daemons running, different policies for when to start
and stop Condor jobs, and so on. You can also have configuration files specific to each
platform in your pool. See section 3.12.2 on page 391 about Configuring Condor for
Multiple Platforms for details.

In general, there are a number of places that Condor will lookto find its configura-
tion files. The first file it looks for is the global configuration file. These locations are
searched in order until a configuration file is found. If none contain a valid configuration
file, Condor will print an error message and exit:

1. File specified in theCONDORCONFIGenvironment variable

2. /etc/condor/condor config

Condor Version 7.2.3 Manual

3.2. Installation 122

3. /usr/local/etc/condor config
4. ˜condor/condor config

5. $(GLOBUSLOCATION)/etc/condor config

If you specify a file in theCONDORCONFIGenvironment variable and there’s a problem
reading that file, Condor will print an error message and exitright away, instead of
continuing to search the other options. However, if noCONDORCONFIGenvironment
variable is set, Condor will search through the other options.
Next, Condor tries to load the local configuration file(s). The only way to
specify the local configuration file(s) is in the global configuration file, with the
LOCALCONFIGFILE macro. If that macro is not set, no local configuration file
is used. This macro can be a list of files or a single file.

Release DirectoryEvery binary distribution contains a contains five subdirectories: bin ,
etc , lib , sbin , andlibexec . Wherever you choose to install these five directories
we call the release directory (specified by theRELEASEDIR macro in the configuration
file). Each release directory contains platform-dependentbinaries and libraries, so you
will need to install a separate one for each kind of machine inyour pool. For ease of
administration, these directories should be located on a shared file system, if possible.

• User Binaries:
All of the files in thebin directory are programs the end Condor users should ex-
pect to have in their path. You could either put them in a well known location (such
as/usr/local/condor/bin) which you have Condor users add to theirPATH
environment variable, or copy those files directly into a well known place already
in the user’s PATHs (such as/usr/local/bin). With the above examples, you
could also leave the binaries in/usr/local/condor/bin and put in soft links
from /usr/local/bin to point to each program.

• System Binaries:
All of the files in thesbin directory are Condor daemons and agents, or programs
that only the Condor administrator would need to run. Therefore, add these pro-
grams only to thePATHof the Condor administrator.

• Private Condor Binaries:
All of the files in thelibexec directory are Condor programs that should never
be run by hand, but are only used internally by Condor.

• lib Directory:
The files in thelib directory are the Condor libraries that must be linked in with
user jobs for all of Condor’s checkpointing and migration features to be used.lib
also contains scripts used by thecondorcompileprogram to help re-link jobs with
the Condor libraries. These files should be placed in a location that is world-
readable, but they do not need to be placed in anyone’sPATH. Thecondorcompile
script checks the configuration file for the location of thelib directory.

• etc Directory:
etc contains anexamples subdirectory which holds various example configu-
ration files and other files used for installing Condor.etc is the recommended
location to keep the master copy of your configuration files. You can put in soft
links from one of the places mentioned above that Condor checks automatically to
find its global configuration file.

Condor Version 7.2.3 Manual

3.2. Installation 123

Documentation The documentation provided with Condor is currently available in HTML,
Postscript and PDF (Adobe Acrobat). It can be locally installed wherever is cus-
tomary at your site. You can also find the Condor documentation on the web at:
http://www.cs.wisc.edu/condor/manual.

7. Am I using AFS? If you are using AFS at your site, be sure to read the section 3.12.1 on
page 389 in the manual. Condor does not currently have a way toauthenticate itself to AFS.
A solution is not ready for Version 7.2.3. This implies that you are probably not going to want
to have theLOCALDIR for Condor on AFS. However, you can (and probably should) have
the CondorRELEASEDIR on AFS, so that you can share one copy of those files and upgrade
them in a centralized location. You will also have to do something special if you submit jobs
to Condor from a directory on AFS. Again, read manual section3.12.1 for all the details.

8. Do I have enough disk space for Condor?Condor takes up a fair amount of space. This is an-
other reason why it is a good idea to have it on a shared file system. The size requirements for
the downloads are given on the downloads page. They currently vary from about 20 Mbytes
(statically linked HP Unix on a PA RISC) to more than 50 Mbytes(dynamically linked Irix
on an SGI).

In addition, you will need a lot of disk space in the local directory of any machines that are
submitting jobs to Condor. See question 6 above for details on this.

3.2.3 Newer Unix Installation Procedure

The Perl scriptcondorconfigureinstalls Condor. Command-line arguments specify all needed in-
formation to this script. The script can be executed multiple times, to modify or further set the
configuration.condorconfigurehas been tested using Perl 5.003. Use this or a more recent version
of Perl.

After download, all the files are in a compressed, tar format.They need to be untarred, as

tar xzf completename.tar.gz

After untarring, the directory will have the Perl scriptscondorconfigureandcondor install, as well
as a “bin”, “etc”, “examples”, “include”, “lib”, “libexec”, “man”, “sbin”, “sql” and “src” subdirec-
tories.

condorconfigureand condor install are the same program, but have different default behav-
iors. condor install is identical to running “condorconfigure–install=.”. condorconfigureandcon-
dor install work on above directories (“sbin”, etc.). As the names imply, condor install is used to
install Condor, whereascondorconfigureis used to modify the configuration of an existing Condor
install.

condorconfigureandcondor install are completely command-line driven; it is not interactive.
Several command-line arguments are always needed withcondorconfigureandcondor install. The
argument

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/manual

3.2. Installation 124

--install=/path/to/release.

specifies the path to the Condor release directories (see above). The default forcondor install is
“–install=.”. The argument

--install-dir=directory

or

--prefix=directory

specifies the path to the install directory.

The argument

--local-dir=directory

specifies the path to the local directory.

The–typeoption tocondorconfigurespecifies one or more of the roles that a machine may take
on within the Condor pool: central manager, submit or execute. These options are given in a comma
separated list. So, if a machine is both a submit and execute machine, the proper command-line
option is

--type=manager,execute

Install Condor on the central manager machine first. If Condor will run as root in this pool (Item
3 above), runcondor install as root, and it will install and set the file permissions correctly. On the
central manager machine, runcondor install as follows.

% condor_install --prefix=˜condor \
--local-dir=/scratch/condor --type=manager

To update the above Condor installation, for example, to also be submit machine:

% condor_configure --prefix=˜condor \
--local-dir=/scratch/condor --type=manager,submit

As in the above example, the central manager can also be a submit point or and execute machine,
but this is only recommended for very small pools. If this is the case, the–type option changes to
manager,execute or manager,submit or manager,submit,execute .

After the central manager is installed, the execute and submit machines should then be config-
ured. Decisions about whether to run Condor as root should beconsistent throughout the pool. For
each machine in the pool, run

Condor Version 7.2.3 Manual

3.2. Installation 125

% condor_install --prefix=˜condor \
--local-dir=/scratch/condor --type=execute,submit

See thecondorconfiguremanual page in section 9 on page 704 for details.

3.2.4 Condor is installed Under Unix ... now what?

Now that Condor has been installed on your machine(s), thereare a few things you should check
before you start up Condor.

1. Read through the<release dir >/etc/condor config file. There are a lot of pos-
sible settings and you should at least take a look at the first two main sections to make sure
everything looks okay. In particular, you might want to set up security for Condor. See the
section 3.6.1 on page 282 to learn how to do this.

2. Condor can monitor the activity of your mouse and keyboard, provided that you tell it where
to look. You do this with theCONSOLEDEVICES entry in the condorstartd section of the
configuration file. On most platforms, reasonable defaults are provided. For example, the
default device for the mouse on Linux is ’mouse’, since most Linux installations have a soft
link from /dev/mouse that points to the right device (such astty00 if you have a serial
mouse,psaux if you have a PS/2 bus mouse, etc). If you do not have a/dev/mouse link,
you should either create one (you will be glad you did), or change theCONSOLEDEVICES
entry in Condor’s configuration file. This entry is a comma separated list, so you can have any
devices in/dev count as ’console devices’ and activity will be reported in the condorstartd’s
ClassAd asConsoleIdleTime .

3. (Linux only) Condor needs to be able to find theutmp file. According to the Linux File
System Standard, this file should be/var/run/utmp . If Condor cannot find it there, it
looks in/var/adm/utmp . If it still cannot find it, it gives up. So, if your Linux distribution
places this file somewhere else, be sure to put a soft link from/var/run/utmp to point to
the real location.

To start up the Condor daemons, execute<release dir >/sbin/condor master . This
is the Condor master, whose only job in life is to make sure theother Condor daemons are running.
The master keeps track of the daemons, restarts them if they crash, and periodically checks to see if
you have installed new binaries (and if so, restarts the affected daemons).

If you are setting up your own pool, you should start Condor onyour central manager machine
first. If you have done a submit-only installation and are adding machines to an existing pool, the
start order does not matter.

To ensure that Condor is running, you can run either:

ps -ef | egrep condor_

Condor Version 7.2.3 Manual

3.2. Installation 126

or

ps -aux | egrep condor_

depending on your flavor of Unix. On a central manager machinethat can submit jobs as well as
execute them, there will be processes for:

• condormaster

• condorcollector

• condornegotiator

• condorstartd

• condorschedd

On a central manager machine that does not submit jobs nor execute them, there will be processes
for:

• condormaster

• condorcollector

• condornegotiator

For a machine that only submits jobs, there will be processesfor:

• condormaster

• condorschedd

For a machine that only executes jobs, there will be processes for:

• condormaster

• condorstartd

Once you are sure the Condor daemons are running, check to make sure that they are commu-
nicating with each other. You can runcondorstatusto get a one line summary of the status of each
machine in your pool.

Once you are sure Condor is working properly, you should addcondormaster into your
startup/bootup scripts (i.e./etc/rc) so that your machine runscondormasterupon bootup.
condormasterwill then fire up the necessary Condor daemons whenever your machine is rebooted.

Condor Version 7.2.3 Manual

3.2. Installation 127

If your system uses System-V style init scripts, you can lookin
<release dir >/etc/examples/condor.boot for a script that can be used to
start and stop Condor automatically by init. Normally, you would install this script as
/etc/init.d/condor and put in soft link from various directories (for example,
/etc/rc2.d) that point back to/etc/init.d/condor . The exact location of these
scripts and links will vary on different platforms.

If your system uses BSD style boot scripts, you probably havean /etc/rc.local file. Add
a line to start up<release dir >/sbin/condor master .

Now that the Condor daemons are running, there are a few things you can and should do:

1. (Optional) Do a full install for thecondorcompilescript. condorcompile assists in linking
jobs with the Condor libraries to take advantage of all of Condor’s features. As it is currently
installed, it will work by placing it in front of any of the following commands that you would
normally use to link your code: gcc, g++, g77, cc, acc, c89, CC, f77, fort77 and ld. If
you complete the full install, you will be able to use condorcompile with any command
whatsoever, in particular, make. See section 3.12.3 on page394 in the manual for directions.

2. Try building and submitting some test jobs. Seeexamples/README for details.

3. If your site uses the AFS network file system, see section 3.12.1 on page 389 in the manual.

4. We strongly recommend that you start up Condor (run thecondormasterdaemon) as user
root. If you must start Condor as some user other than root, see section 3.6.11 on page 316.

3.2.5 Installation on Windows

This section contains the instructions for installing the Microsoft Windows version of Condor. The
install program will set up a slightly customized configuration file that may be further customized
after the installation has completed.

Please read the copyright and disclaimer information in section ??on page??of the manual, or
in the fileLICENSE.TXT , before proceeding. Installation and use of Condor is acknowledgment
that you have read and agreed to these terms.

Be sure that the Condor tools run are of the same version as thedaemons installed. If they were
not (such as 6.9.12 daemons, when running 6.8.4condorsubmit), then things will not work. There
may be errors generated by thecondorschedddaemon in the log. It is likely that a job would be
correctly placed in the queue, but the job will never run.

The Condor executable for distribution is packaged in a single file such as:

condor-6.7.8-winnt40-x86.msi

This file is approximately 80 Mbytes in size, and may be removed once Condor is fully installed.

Condor Version 7.2.3 Manual

3.2. Installation 128

Before installing Condor, please consider joining the condor-world mailing list. Traffic on this
list is kept to an absolute minimum. It is only used to announce new releases of Condor. To sub-
scribe, follow the directions given at http://www.cs.wisc.edu/condor/mail-lists/.

Installation Requirements

• Condor for Windows requires Windows 2000 (or better) or Windows XP.

• 300 megabytes of free disk space is recommended. Significantly more disk space could be
desired to be able to run jobs with large data files.

• Condor for Windows will operate on either an NTFS or FAT file system. However, for security
purposes, NTFS is preferred.

Preparing to Install Condor under Windows

Before installing the Windows version of Condor, there are two major decisions to make about the
basic layout of the pool.

1. What machine will be the central manager?

2. Do I have enough disk space for Condor?

If you feel that you already know the answers to these questions, skip to the Windows Installation
Procedure section below, section 3.2.5 on page 129. If you are unsure, read on.

• What machine will be the central manager?

One machine in your pool must be the central manager. This is the centralized information
repository for the Condor pool and is also the machine that matches available machines with
waiting jobs. If the central manager machine crashes, any currently active matches in the
system will keep running, but no new matches will be made. Moreover, most Condor tools
will stop working. Because of the importance of this machinefor the proper functioning of
Condor, we recommend you install it on a machine that is likely to stay up all the time, or at
the very least, one that will be rebooted quickly if it does crash. Also, because all the services
will send updates (by default every 5 minutes) to this machine, it is advisable to consider
network traffic and your network layout when choosing the central manager.

For Personal Condor, your machine will act as your central manager.

Install Condor on the central manager before installing on the other machines within the pool.

• Do I have enough disk space for Condor?

The Condor release directory takes up a fair amount of space.The size requirement for the
release directory is approximately 200 Mbytes.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/mail-lists/

3.2. Installation 129

Condor itself, however, needs space to store all of your jobs, and their input files. If you will
be submitting large amounts of jobs, you should consider installing Condor on a volume with
a large amount of free space.

Installation Procedure Using the Included Set Up Program

Installation of Condor must be done by a user with administrator privileges. After installation, the
Condor services will be run under the local system account. When Condor is running a user job,
however, it will run that user job with normal user permissions.

Download Condor, and start the installation process by running the file (or by double clicking on
the file). The Condor installation is completed by answeringquestions and choosing options within
the following steps.

If Condor is already installed. For upgrade purposes, you may be running the installation ofCon-
dor after it has been previously installed. In this case, a dialog box will appear before the
installation of Condor proceeds. The question asks if you wish to preserve your current Con-
dor configuration files. Answer yes or no, as appropriate.

If you answer yes, your configuration files will not be changed, and you will proceed to the
point where the new binaries will be installed.

If you answer no, then there will be a second question that asks if you want to use answers
given during the previous installation as default answers.

STEP 1: License Agreement.The first step in installing Condor is a welcome screen and license
agreement. You are reminded that it is best to run the installation when no other Windows
programs are running. If you need to close other Windows programs, it is safe to cancel the
installation and close them. You are asked to agree to the license. Answer yes or no. If you
should disagree with the License, the installation will notcontinue.

After agreeing to the license terms, the next Window is wherefill in your name and company
information, or use the defaults as given.

STEP 2: Condor Pool Configuration. The Condor installation will require different information
depending on whether the installer will be creating a new pool, or joining an existing one.

If you are creating a new pool, the installation program requires that this machine is the central
manager. For the creation of a new Condor pool, you will be asked some basic information
about your new pool:

Name of the pool

hostname of this machine.

Size of pool Condor needs to know if this a Personal Condor installation,or if there will be
more than one machine in the pool. A Personal Condor pool implies that there is only
one machine in the pool. For Personal Condor, several of the following steps are omitted
as noted.

Condor Version 7.2.3 Manual

3.2. Installation 130

If you are joining an existing pool, all the installation program requires is the host name of the
central manager for your pool.

STEP 3: This Machine’s Roles.This step is omitted for the installation of Personal Condor.

Each machine within a Condor pool may either submit jobs or execute submitted jobs, or both
submit and execute jobs. This step allows the installation on this machine to choose if the
machine will only submit jobs, only execute submitted jobs,or both. The common case is
both, so the default is both.

STEP 4: Where will Condor be installed? The next step is where the destination of the Condor
files will be decided. It is recommended that Condor be installed in the location shown as the
default in the dialog box:C:\Condor .

Installation on the local disk is chosen for several reasons.

The Condor services run as local system, and within Microsoft Windows, local system has no
network privileges. Therefore, for Condor to operate, Condor should be installed on a local
hard drive as opposed to a network drive (file server).

The second reason for installation on the local disk is that the Windows usage of drive letters
has implications for where Condor is placed. The drive letter used must be not change, even
when different users are logged in. Local drive letters do not change under normal operation
of Windows.

While it is strongly discouraged, it may be possible to placeCondor on a hard drive that is not
local, if a dependency is added to the service control manager such that Condor starts after the
required file services are available.

STEP 5: Where is the Java Virtual Machine? While not required, it is possible for Condor to run
jobs in the Java universe. In order for Condor to have supportfor java, you must supply a
path tojava.exe on your system. The installer will tell you if the path is invalid before
proceeding to the next step. To disable the Java universe, simply leave this field blank.

STEP 6: Where should Condor send e-mail if things go wrong?Various parts of Condor will
send e-mail to a Condor administrator if something goes wrong and requires human atten-
tion. You specify the e-mail address and the SMTP relay host of this administrator. Please
pay close attention to this email since it will indicate problems in your Condor pool.

STEP 7: The domain. This step is omitted for the installation of Personal Condor.

Enter the machine’s accounting (or UID) domain. On this version of Condor for Windows,
this setting only used for User priorities (see section 3.4 on page 244) and to form a default
email address for the user.

STEP 8: Access permissions.This step is omitted for the installation of Personal Condor.

Machines within the Condor pool will need various types of access permission. The three
categories of permission are read, write, and administrator. Enter the machines to be given
access permissions.

Read Read access allows a machine to obtain information about Condor such as the status of
machines in the pool and the job queues. All machines in the pool should be given read

Condor Version 7.2.3 Manual

3.2. Installation 131

access. In addition, giving read access to *.cs.wisc.edu will allow the Condor team to
obtain information about your Condor pool in the event that debugging is needed.

Write All machines in the pool should be given write access. It allows the machines you
specify to send information to your local Condor daemons, for example, to start a Condor
Job. Note that for a machine to join the Condor pool, it must have both read and write
access to all of the machines in the pool.

Administrator A machine with administrator access will be allowed more extended permis-
sion to to things such as change other user’s priorities, modify the job queue, turn Condor
services on and off, and restart Condor. The central managershould be given adminis-
trator access and is the default listed. This setting is granted to the entire machine, so
care should be taken not to make this too open.

For more details on these access permissions, and others that can be manually changed in
your condor config file, please see the section titled Setting Up IP/Host-BasedSecurity
in Condor in section section 3.6.9 on page 307.

STEP 9: Job Start Policy. Condor will execute submitted jobs on machines based on a preference
given at installation. Three options are given, and the firstis most commonly used by Condor
pools. This specification may be changed or refined in the machine ClassAd requirements
attribute.

The three choices:

After 15 minutes of no console activity and low CPU activity.

Always run Condor jobs.

After 15 minutes of no console activity.

Console activity is the use of the mouse or keyboard. For instance, if you are reading this
document on line, and are using either the mouse or the keyboard to change your position,
you are generating Console activity.

Low CPU activity is defined as a load of less than 30%(and is configurable in your
condor config file). If you have a multiple processor machine, this is the average per-
centage of CPU activity for both processors.

For testing purposes, it is often helpful to use use the Always run Condor jobs option. For
production mode, however, most people chose the After 15 minutes of no console activity and
low CPU activity.

STEP 10: Job Vacate Policy.This step is omitted if Condor jobs are always run as the option cho-
sen in STEP 9.

If Condor is executing a job and the user returns, Condor willimmediately suspend the job,
and after five minutes Condor will decide what to do with the partially completed job. There
are currently two options for the job.

The job is killed 5 minutes after your return. The job is suspended immediately once there
is console activity. If the console activity continues, then the job is vacated (killed) after
5 minutes. Since this version does not include check-pointing, the job will be restarted
from the beginning at a later time. The job will be placed backinto the queue.

Condor Version 7.2.3 Manual

3.2. Installation 132

Suspend job, leaving it in memory. The job is suspended immediately. At a later time,
when the console activity has stopped for ten minutes, the execution of Condor job will
be resumed (the job will be unsuspended). The drawback to this option is that since the
job will remain in memory, it will occupy swap space. In many instances, however, the
amount of swap space that the job will occupy is small.

So which one do you choose? Killing a job is less intrusive on the workstation owner than
leaving it in memory for a later time. A suspended job left in memory will require swap space,
which could possibly be a scarce resource. Leaving a job in memory, however, has the benefit
that accumulated run time is not lost for a partially completed job.

STEP 11: Review entered information.Check that the entered information is correctly entered.
You have the option to return to previous dialog boxes to fix entries.

Unattended Installation Procedure Using the Included Set Up Program

This section details how to run the Condor for Windows installer in an unattended batch mode. This
mode is one that occurs completely from the command prompt, without the GUI interface.

The Condor for Windows installer uses the Microsoft Installer (MSI) technology, and it can be
configured for unattended installs analogous to any other ordinary MSI installer.

The following is a sample batch file that is used to set all the properties necessary for an unat-
tended install.

@echo on
set ARGS=
set ARGS=%ARGS% NEWPOOL="N"
set ARGS=%ARGS% POOLNAME=""
set ARGS=%ARGS% RUNJOBS="C"
set ARGS=%ARGS% VACATEJOBS="Y"
set ARGS=%ARGS% SUBMITJOBS="Y"
set ARGS=%ARGS% CONDOREMAIL="you@yours.com"
set ARGS=%ARGS% SMTPSERVER="smtp.localhost"
set ARGS=%ARGS% HOSTALLOWREAD="* "
set ARGS=%ARGS% HOSTALLOWWRITE="* "
set ARGS=%ARGS% HOSTALLOWADMINISTRATOR="$(FULL_HOSTNAME)"
set ARGS=%ARGS% INSTALLDIR="C:\Condor"
set ARGS=%ARGS% INSTALLDIR_NTS="C:\Condor"
set ARGS=%ARGS% POOLHOSTNAME="$(FULL_HOSTNAME)"
set ARGS=%ARGS% ACCOUNTINGDOMAIN="none"
set ARGS=%ARGS% JVMLOCATION="C:\Windows\system32\java .exe"
set ARGS=%ARGS% USEVMUNIVERSE="N"
set ARGS=%ARGS% VMVERSION="server1.4"
set ARGS=%ARGS% VMMEMORY="128"
set ARGS=%ARGS% VMMAXNUMBER="$(NUM_CPUS)"

Condor Version 7.2.3 Manual

3.2. Installation 133

set ARGS=%ARGS% VMNETWORKING="N"

msiexec /qb /l * condor-install-log.txt /i condor-7.1.0-winnt50-x86.ms i %ARGS%

Each property corresponds to answers that would have been supplied while running an inter-
active installer. The following is a brief explanation of each property as it applies to unattended
installations:

NEWPOOL = < Y | N > determines whether the installer will create a new pool withthe target
machine as the central manager.

POOLNAME sets the name of the pool, if a new pool is to be created. Possible values are either
the name or the empty string"" .

RUNJOBS =< N | A | I | C > determines when Condor will run jobs. This can be set to:

• Never run jobs (N)

• Always run jobs (A)

• Only run jobs when the keyboard and mouse are Idle (I)

• Only run jobs when the keyboard and mouse are idle and the CPUusage is low (C)

VACATEJOBS = < Y | N > determines what Condor should do when it has to stop the execution
of a user job. When set to Y, Condor will vacate the job and start it somewhere else if possible.
When set to N, Condor will merely suspend the job in memory andwait for the machine to
become available again.

SUBMITJOBS = < Y | N > will cause the installer to configure the machine as a submit node
when set to Y.

CONDOREMAIL sets the e-mail address of the Condor administrator. Possible values are an
e-mail address or the empty string"" .

HOSTALLOWREAD is a list of host names that are allowed to issue READ commandsto Condor
daemons. This value should be set in accordance with theHOSTALLOWREAD setting in the
configuration file, as described in section 3.6.9 on page 307.

HOSTALLOWWRITE is a list of host names that are allowed to issue WRITE commands to
Condor daemons. This value should be set in accordance with the HOSTALLOWWRITE
setting in the configuration file, as described in section 3.6.9 on page 307.

HOSTALLOWADMINISTRATOR is a list of host names that are allowed to issue ADMIN-
ISTRATOR commands to Condor daemons. This value should be set in accordance with
the HOSTALLOWADMINISTRATOR setting in the configuration file, as described in sec-
tion 3.6.9 on page 307.

INSTALLDIR defines the path to the directory where Condor will be installed.

Condor Version 7.2.3 Manual

3.2. Installation 134

INSTALLDIR NTS should be set to whatever INSTALLDIR is set to, with the additional restric-
tion that it cannot end in a backslash. The installer will be fixed in an upcoming version of
Condor to not require this property.

POOLHOSTNAME defines the host name of the pool’s central manager.

ACCOUNTINGDOMAIN defines the accounting (or UID) domain the target machine will be in.

JVMLOCATION defines the path to Java virtual machine on the target machine.

SMTPSERVER defines the host name of the SMTP server that the target machine is to use to send
e-mail.

VMVERSION defines the version of VMware installed on the target machine.

VMMEMORY an integer value that defines the maximum memory each VM run onthe target
machine.

VMMAXNUMBER an integer value that defines the number of VMs that can be run in parallel on
the target machine.

VMNETWORKING = < N | A | B | C > determines if VM Universe can use networking. This
can be set to:

• None (N)

• NAT (A)

• Bridged (B)

• NAT and Bridged (C)

USEVMUNIVERSE = < Y | N > will cause the installer to enable VM Universe jobs on the tar-
get machine.

PERLLOCATION defines the path toPerl on the target machine. This is required in order to use
thevm universe.

After defining each of these properties for the MSI installer, the installer can be started with the
msiexeccommand. The following command starts the installer in unattended mode, and it dumps a
journal of the installer’s progress to a log file:

msiexec /qb /lxv * condor-install-log.txt /i condor-7.2.2-winnt50-x86.ms i [property=value] ...

More information on the features ofmsiexeccan be found at Microsoft’s website at
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx.

Condor Version 7.2.3 Manual

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx

3.2. Installation 135

Manual Installation Condor on Windows

If you are to install Condor on many different machines, you may wish to use some other mechanism
to install Condor on additional machines rather than running the Setup program described above on
each machine.

WARNING: This is for advanced users only! All others should use the Setup program described
above.

Here is a brief overview of how to install Condor manually without using the provided GUI-
based setup program:

The Service The service that Condor will install is called ”Condor”. TheStartup Type is Automatic.
The service should log on as System Account, butdo not enable”Allow Service to Interact
with Desktop”. The program that is run iscondormaster.exe.

The Condor service can be installed and removed using thesc.exe tool, which is included
in Windows XP and Windows 2003 Server. The tool is also available as part of the Windows
2000 Resource Kit.

Installation can be done as follows:

sc create Condor binpath= c:\condor\bin\condor_master.e xe

To remove the service, use:

sc delete Condor

The Registry Condor uses a few registry entries in its operation. The key that Condor uses is
HKEY LOCAL MACHINE/Software/Condor. The values that Condor puts in this registry
key serve two purposes.

1. The values of CONDORCONFIG and RELEASEDIR are used for Condor to start its
service.
CONDOR CONFIG should point to thecondor config file. In this version of Con-
dor, it must reside on the local disk.
RELEASEDIR should point to the directory where Condor is installed.This is typically
C:\Condor , and again, thismust reside on the local disk.

2. The other purpose is storing the entries from the last installation so that they can be used
for the next one.

The File System The files that are needed for Condor to operate are identical to the Unix version
of Condor, except that executable files end in.exe . For example the on Unix one of the files
is condor master and on Condor the corresponding file iscondor master.exe .

These files currently must reside on the local disk for a variety of reasons. Advanced Windows
users might be able to put the files on remote resources. The main concern is twofold. First,
the files must be there when the service is started. Second, the files must always be in the
same spot (including drive letter), no matter who is logged into the machine.

Condor Version 7.2.3 Manual

3.2. Installation 136

Note also that when installing manually, you will need to create the directories that Condor
will expect to be present given your configuration. This normally is simply a matter of creating
the log , spool , andexecute directories.

Condor Is Installed Under Windows ... Now What?

After the installation of Condor is completed, the Condor service must be started. If you used the
GUI-based setup program to install Condor, the Condor service should already be started. If you
installed manually, Condor must be started by hand, or you can simply reboot. NOTE: The Condor
service will start automatically whenever you reboot your machine.

To start Condor by hand:

1. From the Start menu, choose Settings.

2. From the Settings menu, choose Control Panel.

3. From the Control Panel, choose Services.

4. From Services, choose Condor, and Start.

Or, alternatively you can enter the following command from acommand prompt:

net start condor

Run the Task Manager (Control-Shift-Escape) to check that Condor services are running. The
following tasks should be running:

• condormaster.exe

• condornegotiator.exe, if this machine is a central manager.

• condorcollector.exe, if this machine is a central manager.

• condorstartd.exe, if you indicated that this Condor node should start jobs

• condorschedd.exe, if you indicated that this Condor node should submit jobs tothe Condor
pool.

Also, you should now be able to open up a new cmd (DOS prompt) window, and the Condor bin
directory should be in your path, so you can issue the normal Condor commands, such ascondorq
andcondorstatus.

Condor is Running Under Windows ... Now What?

Once Condor services are running, try submitting test jobs.Example 2 within section 2.5.1 on
page 20 presents a vanilla universe job.

Condor Version 7.2.3 Manual

3.2. Installation 137

3.2.6 RPMs

RPMs are available in Version 7.2.3. This packaging method provides for installation and configu-
ration in one easy step. It is currently available for Linux systems only.

The format of the installation command is

rpm -i <filename> --prefix=<installation dir>

The user provides the path name to the directory used for the installation. Therpm program
calls condorconfigureto do portions of the installation. If the condor user is present on the sys-
tem, the installation script will assume that that is the effective user that Condor should run as (see
section 3.6.11 on page 315). If the condor user is not present, the daemon user will be used. This
user will be present on all Linux systems. Note that the user can later be changed by running the
condorconfigureprogram using theowner option, of the format:

condor_configure --owner=<user>

After a successful installation, theCONDORCONFIGconfiguration variable must be set to point
to

<installation dir>/etc/condor_config

before starting Condor daemons or invoking Condor tools.

RPM upgrade (-u option) does not currently work for Condor Version 7.2.3.

3.2.7 Upgrading - Installing a Newer Version of Condor

An upgrade changes the running version of Condor from the current installation to a newer version.
The safe method to install and start running a newer version of Condor in essence is: shutdown the
current installation of Condor, install the newer version,and then restart Condor using the newer
version.

To allow for falling back to the current version, place the new version in a separate directory.
Copy the existing configuration files, and modify the copy to point to and use the new version. Set
the CONDORCONFIGenvironment variable to point to the new copy of the configuration, so the
new version of Condor will use the new configuration when restarted.

When upgrading from an earlier version of Condor to a versionof 6.8, note that the configuration
settings must be modified for security reasons. Specifically, theHOSTALLOWWRITE configuration
variable must be explicitly changed, or no jobs may be submitted, and error messages will be issued
by Condor tools.

Condor Version 7.2.3 Manual

3.2. Installation 138

3.2.8 Installing the CondorView Client Contrib Module

The CondorView Client contrib module is used to automatically generate World Wide Web pages to
display usage statistics of a Condor pool. Included in the module is a shell script which invokes the
condorstatscommand to retrieve pool usage statistics from the CondorView server, and generate
HTML pages from the results. Also included is a Java applet, which graphically visualizes Condor
usage information. Users can interact with the applet to customize the visualization and to zoom in to
a specific time frame. Figure 3.2 on page 138 is a screen shot ofa web page created by CondorView.
To get a further feel for what pages generated by CondorView look like, view the statistics for
the University of Wisconsin-Madison pool by visiting the URL http://www.cs.wisc.edu/condor and
clicking on Condor View.

Figure 3.2: Screen shot of CondorView Client

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor

3.2. Installation 139

After unpacking and installing the CondorView Client, a script namedmakestatscan be invoked
to create HTML pages displaying Condor usage for the past hour, day, week, or month. By using
the Unixcron facility to periodically executemakestats, Condor pool usage statistics can be kept
up to date automatically. This simple model allows the CondorView Client to be easily installed; no
Web server CGI interface is needed.

Step-by-Step Installation of the CondorView Client

1. Make certain that the CondorView Server is configured. Section 3.12.5 describes configura-
tion of the server. The server logs information on disk in order to provide a persistent, his-
torical database of pool statistics. The CondorView Clientmakes queries over the network to
this database. Thecondorcollector includes this database support. To activate the persistent
database logging, add the following entries to the configuration file for thecondorcollector
chosen to act as the ViewServer.

POOL_HISTORY_DIR = /full/path/to/directory/to/store/h istorical/data
KEEP_POOL_HISTORY = True

2. Create a directory where CondorView is to place the HTML files. This directory should be one
published by a web server, so that HTML files which exist in this directory can be accessed
using a web browser. This directory is referred to as theVIEWDIR directory.

3. Download theview client contrib module.

4. Unpack or untar this contrib module into the directoryVIEWDIR. This creates several files
and subdirectories. Further unpack the jar file within theVIEWDIR directory with:

jar -xf condorview.jar

5. Edit themakestatsscript. At the beginning of the file are six parameters to customize. The
parameters are

ORGNAME A brief name that identifies an organization. An example is “Univ of Wisconsin”.
Do not use any slashes in the name or other special regular-expression characters. Avoid
the characters\ˆ and $.

CONDORADMIN The e-mail address of the Condor administrator at your site.This e-mail
address will appear at the bottom of the web pages.

VIEWDIR The full path name (not a relative path) to theVIEWDIR directory set by installa-
tion step 2. It is the directory that contains themakestatsscript.

STATSDIR The full path name of the directory which contains thecondorstatsbinary. The
condorstatsprogram is included in the<release dir >/bin directory. The value
for STATSDIR is added to thePATHparameter by default.

PATH A list of subdirectories, separated by colons, where themakestatsscript can find the
awk, bc, sed, date, and condorstatsprograms. Ifperl is installed, the path should
also include the directory whereperl is installed. The following default works on most
systems:

Condor Version 7.2.3 Manual

3.2. Installation 140

PATH=/bin:/usr/bin:$STATSDIR:/usr/local/bin

6. To create all of the initial HTML files, run

./make_stats setup

Open the fileindex.html to verify that things look good.

7. Add themakestatsprogram tocron. Runningmakestatsin step 6 created acronentries
file. This cronentries file is ready to be processed by the Unixcrontabcommand. The
crontab manual page contains details about thecrontab command and thecron daemon.
Look at thecronentries file; by default, it will runmakestats hourevery 15 minutes,
makestats dayonce an hour,makestats weektwice per day, andmakestats monthonce per
day. These are reasonable defaults. Add these commands to cron on any system that can ac-
cess theVIEWDIR andSTATSDIRdirectories, even on a system that does not have Condor
installed. The commands do not need to run as root user; in fact, they should probably not
run as root. These commands can run as any user that has read/write access to theVIEWDIR
directory. To add these commands to cron, run

crontab cronentries

8. Point the web browser at theVIEWDIR directory to complete the installation.

3.2.9 Dynamic Deployment

Dynamic deployment is a mechanism that allows rapid, automated installation and start up of Condor
resources on a given machine. In this way any machine can be added to a Condor pool. The dynamic
deployment tool set also provides tools to remove a machine from the pool, without leaving residual
effects on the machine such as leftover installations, log files, and working directories.

Installation and start up is provided bycondorcold start. Thecondorcold start program deter-
mines the operating system and architecture of the target machine, and transfers the correct installa-
tion package from an ftp, http, or grid ftp site. After transfer, it installs Condor and creates a local
working directory for Condor to run in. As a last step,condorcold start begins running Condor in
a manner which allows for later easy and reliable shut down.

The program that reliably shuts down and uninstalls a previously dynamically installed Condor
instance iscondorcold stop. condorcold stopbegins by safely and reliably shutting off the run-
ning Condor installation. It ensures that Condor has completely shut down before continuing, and
optionally ensures that there are no queued jobs at the site.Next,condorcold stopremoves and op-
tionally archives the Condor working directories, including thelog directory. These archives can
be stored to a mounted file system or to a grid ftp site. As a laststep,condorcold stopuninstalls the
Condor executables and libraries. The end result is that themachine resources are left unchanged
after a dynamic deployment of Condor leaves.

Condor Version 7.2.3 Manual

3.2. Installation 141

Configuration and Usage

Dynamic deployment is designed for the expert Condor user and administrator. Tool design choices
were made for functionality, not ease-of-use.

Like every installation of Condor, a dynamically deployed installation relies on a configuration.
To add a target machine to a previously created Condor pool, the global configuration file for that
pool is a good starting point. Modifications to that configuration can be made in a separate, local
configuration file used in the dynamic deployment. The globalconfiguration file must be placed
on an ftp, http, grid ftp, or file server accessible bycondorcold start. The local configuration file
is to be on a file system accessible by the target machine. There are some specific configuration
variables that may be set for dynamic deployment. A list of executables and directories which
must be present for Condor to start on the target machine may be set with the configuration vari-
ablesDEPLOYMENTREQUIREDEXECS andDEPLOYMENTREQUIREDDIRS . If defined and
the comma-separated list of executables or directories arenot present, thencondorcold start exits
with error. Note this does not affect what is installed, onlywhether start up is successful.

A list of executables and directories which are recommendedto be present for
Condor to start on the target machine may be set with the configuration variables
DEPLOYMENTRECOMMENDEDEXECS and DEPLOYMENTRECOMMENDEDDIRS . If defined
and the comma-separated lists of executables or directories are not present, thencondorcold start
prints a warning message and continues. Here is a portion of the configuration relevant to a dynamic
deployment of a Condor submit node:

DEPLOYMENT_REQUIRED_EXECS = MASTER, SCHEDD, PREEN, STARTER, \
STARTER_STANDARD, SHADOW, \
SHADOW_STANDARD, GRIDMANAGER, GAHP, CONDOR_GAHP

DEPLOYMENT_REQUIRED_DIRS = SPOOL, LOG, EXECUTE
DEPLOYMENT_RECOMMENDED_EXECS = CREDD
DEPLOYMENT_RECOMMENDED_DIRS = LIB, LIBEXEC

Additionally, the user must specify which Condor services will be started. This is done through
the DAEMONLIST configuration variable. Another excerpt from a dynamic submit node deploy-
ment configuration:

DAEMON_LIST = MASTER, SCHEDD

Finally, the location of the dynamically installed Condor executables is tricky to set, since the
location is unknown before installation. Therefore, the variableDEPLOYMENTRELEASEDIR is
defined in the environment. It corresponds to the location ofthe dynamic Condor installation. If,
as is often the case, the configuration file specifies the location of Condor executables in relation
to theRELEASEDIR variable, the configuration can be made dynamically deployable by setting
RELEASEDIR to DEPLOYMENTRELEASEDIR as

RELEASE_DIR = $(DEPLOYMENT_RELEASE_DIR)

Condor Version 7.2.3 Manual

3.3. Configuration 142

In addition to setting up the configuration, the user must also determine where the installation
package will reside. The installation package can be in either tar or gzipped tar form, and may
reside on a ftp, http, grid ftp, or file server. Create this installation package by tar’ing up the binaries
and libraries needed, and place them on the appropriate server. The binaries can be tar’ed in a flat
structure or withinbin andsbin . Here is a list of files to give an example structure for a dynamic
deployment of thecondorschedddaemon.

% tar tfz latest-i686-Linux-2.4.21-37.ELsmp.tar.gz
bin/
bin/condor_config_val
bin/condor_q
sbin/
sbin/condor_preen
sbin/condor_shadow.std
sbin/condor_starter.std
sbin/condor_schedd
sbin/condor_master
sbin/condor_gridmanager
sbin/gt4_gahp
sbin/gahp_server
sbin/condor_starter
sbin/condor_shadow
sbin/condor_c-gahp
sbin/condor_off

3.3 Configuration

This section describes how to configure all parts of the Condor system. General information about
the configuration files and their syntax is followed by a description of settings that affect all Condor
daemons and tools. The settings that control the policy under which Condor will start, suspend,
resume, vacate or kill jobs are described in section 3.5 on Startd Policy Configuration.

3.3.1 Introduction to Configuration Files

The Condor configuration files are used to customize how Condor operates at a given site. The basic
configuration as shipped with Condor works well for most sites.

Each Condor program will, as part of its initialization process, configure itself by calling a li-
brary routine which parses the various configuration files that might be used including pool-wide,
platform-specific, and machine-specific configuration files. Environment variables may also con-
tribute to the configuration.

The result of configuration is a list of key/value pairs. Eachkey is a configuration variable name,
and each value is a string literal that may utilize macro substitution (as defined below). Note that
the string literal value portion of a pair is not an expression, and therefore it is not evaluated. Those
configuration variables that express the policy for starting and stopping of jobs appear as expres-
sions in the configuration file. However, these expressions (for configuration) are string literals. At

Condor Version 7.2.3 Manual

3.3. Configuration 143

appropriate times, Condor daemons and tools use these strings as expressions, parsing them in order
to do evaluation.

Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment variablesdetermine the configuration. The order
in which attributes are defined is important, as later definitions override existing definitions. The
order in which the (multiple) configuration files are parsed is designed to ensure the security of
the system. Attributes which must be set a specific way must appear in the last file to be parsed.
This prevents both the naive and the malicious Condor user from subverting the system through its
configuration. The order in which items are parsed is

1. global configuration file

2. local configuration file

3. specific environment variables prefixed withCONDOR

The locations for these files are as given in section 3.2.2 on page 121.

Some Condor tools utilize environment variables to set their configuration. These tools search
for specifically-named environment variables. The variables are prefixed by the stringCONDORor
condor . The tools strip off the prefix, and utilize what remains as configuration. As the use of

environment variables is the last within the ordered evaluation, the environment variable definition
is used. The security of the system is not compromised, as only specific variables are considered for
definition in this manner, not any environment variables with the CONDORprefix.

Configuration File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

The macro name given on the left hand side of the definition is acase sensitive identifier. There
must be white space between the macro name, the equals sign (=), and the macro definition. The
macro definition is a string literal that may utilize macro substitution.

Macro invocations are of the form:

$(macro_name)

Macro definitions may contain references to other macros, even ones that are not yet defined, as
long as they are eventually defined in the configuration files.All macro expansion is done after all
configuration files have been parsed, with the exception of macros that reference themselves.

Condor Version 7.2.3 Manual

3.3. Configuration 144

A = xxx
C = $(A)

is a legal set of macro definitions, and the resulting value ofC is xxx . Note thatC is actually bound
to $(A) , not its value.

As a further example,

A = xxx
C = $(A)
A = yyy

is also a legal set of macro definitions, and the resulting value ofC is yyy .

A macro may be incrementally defined by invoking itself in itsdefinition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value ofA is xxxyyyzzz . Note that invocations
of a macro in its own definition are immediately expanded.$(A) is immediately expanded in line
3 of the example. If it were not, then the definition would be impossible to evaluate.

Recursively defined macros such as

A = $(B)
B = $(A)

are not allowed. They create definitions that Condor refusesto parse.

All entries in a configuration file must have an operator, which will be an equals sign (=). Identi-
fiers are alphanumerics combined with the underscore character, optionally with a subsystem name
and a period as a prefix. As a special case, a line without an operator that begins with a left square
bracket will be ignored. The following two-line example treats the first line as a comment, and
correctly handles the second line.

[Condor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variable name may be prefixed by a subsys-
tem (see the$(SUBSYSTEM)macro in section 3.3.1 for the list of subsystems) and the period (.)
character. For configuration variables defined this way, thevalue is applied to the specific subsystem.
For example, the ports that Condor may use can be restricted to a range using theHIGHPORTand
LOWPORTconfiguration variables. If the range of intended ports is different for specific daemons,
this syntax may be used.

Condor Version 7.2.3 Manual

3.3. Configuration 145

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100
NEGOTIATOR.LOWPORT = 22000
NEGOTIATOR.HIGHPORT = 22100

Note that all configuration variables may utilize this syntax, but nonsense configuration variables
may result. For example, it makes no sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since thecondornegotiatordaemon does not use theMASTERUPDATEINTERVAL variable.

It makes little sense to do so, but Condor will configure correctly with a definition such as

MASTER.MASTER_UPDATE_INTERVAL = 60

Thecondormasteruses this configuration variable, and the prefix ofMASTER.causes this config-
uration to be specific to thecondormasterdaemon.

This syntax has been further expanded to allow for the specification of a local name on the
command line using the command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by the same condormasterdaemon, each
instance with its own local configuration variable.

The ordering used to look up a variable, called<parameter name> :

1. <subsystem name>.<local name>.<parameter name>

2. <local name>.<parameter name>

3. <subsystem name>.<parameter name>

4. <parameter name>

If this local name is not specified on the command line, numbers 1 and 2 are skipped. As soon
as the first match is found, the search is completed, and the corresponding value is used.

This example configures acondormasterto run 2condorschedddaemons. Thecondormaster
daemon needs the configuration:

XYZZY = $(SCHEDD)
XYZZY_ARGS = -local-name xyzzy
DAEMON_LIST = $(DAEMON_LIST) XYZZY
DC_DAEMON_LIST = + XYZZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

Condor Version 7.2.3 Manual

3.3. Configuration 146

Using this example configuration, thecondormasterstarts up a secondcondorschedddaemon,
where this secondcondorschedddaemon is passed-local-namexyzzyon the command line.

Continuing the example, configure thecondorschedddaemon namedxyzzy . This con-
dor schedddaemon will share all configuration variable definitions with the othercondorschedd
daemon, except for those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

Note that the exampleSCHEDDNAMEandSPOOLare specific to thecondorschedddaemon,
as opposed to a different daemon such as thecondorstartd. Other Condor daemons using this
feature will have different requirements for which parameters need to be specified individually.
This example works for thecondorschedd, and more local configuration can, and likely would be
specified.

Also note that each daemon’s log file must be specified individually, and in two places: one
specification is for use by thecondormaster, and the other is for use by the daemon itself. In
the example, theXYZZY condorscheddconfiguration variableSCHEDD.XYZZY.SCHEDDLOG
definition references thecondormasterdaemon’sXYZZYLOG.

Comments and Line Continuations

A Condor configuration file may contain comments and line continuations. A comment is any line
beginning with a pound character (#). A continuation is any entry that continues across multiples
lines. Line continuation is accomplished by placing the backslash character (\) at the end of any
line to be continued onto another. Valid examples of line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu , \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu
HOSTALLOW_ADMIN = $(ADMIN_MACHINES)

Note that a line continuation character may currently be used within a comment, so the following
example doesnot set the configuration variableFOO:

This comment includes the following line, so FOO is NOT set \
FOO = BAR

Condor Version 7.2.3 Manual

3.3. Configuration 147

It is a poor idea to use this functionality, as it is likely to stop working in future Condor releases.

Executing a Program to Produce Configuration Macros

Instead of reading from a file, Condor may run a program to obtain configuration macros. The ver-
tical bar character (|) as the last character defining a file name provides the syntaxnecessary to tell
Condor to run a program. This syntax may only be used in the definition of theCONDORCONFIG
environment variable, or theLOCALCONFIGFILE configuration variable.

The command line for the program is formed by the characters preceding the vertical bar char-
acter. The standard output of the program is parsed as a configuration file would be.

An example:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Program/bin/makethe configis executed, and its output is the set of configuration macros.

Note that either a program is executed to generate the configuration macros or the configuration
is read from one or more files. The syntax uses space characters to separate command line elements,
if an executed program produces the configuration macros. Space characters would otherwise sepa-
rate the list of files. This syntax does not permit distinguishing one from the other, so only one may
be specified.

Pre-Defined Macros

Condor provides pre-defined macros that help configure Condor. Pre-defined macros are listed as
$(macro name) .

This first set are entries whose values are determined at run time and cannot be overwritten.
These are inserted automatically by the library routine which parses the configuration files.

$(FULL HOSTNAME) The fully qualified host name of the local machine, which is host name plus
domain name.

$(HOSTNAME) The host name of the local machine (no domain name).

$(IP ADDRESS) The ASCII string version of the local machine’s IP address.

$(TILDE) The full path to the home directory of the Unix user condor, ifsuch a user exists on the
local machine.

$(SUBSYSTEM) The subsystem name of the daemon or tool that is evaluating the macro. This
is a unique string which identifies a given daemon within the Condor system. The possible
subsystem names are:

Condor Version 7.2.3 Manual

3.3. Configuration 148

• STARTD

• SCHEDD

• MASTER

• COLLECTOR

• NEGOTIATOR

• KBDD

• SHADOW

• STARTER

• CKPT_SERVER

• SUBMIT

• GRIDMANAGER

• TOOL

• STORK

• HAD

• REPLICATION

• QUILL

• DBMSD

• JOB_ROUTER

• LEASEMANAGER

This second set of macros are entries whose default values are determined automatically at run
time but which can be overwritten.

$(ARCH) Defines the string used to identify the architecture of the local machine to Condor. The
condorstartdwill advertise itself with this attribute so that users can submit binaries compiled
for a given platform and force them to run on the correct machines. condorsubmitwill
append a requirement to the job ClassAd that it must run on thesameARCHandOPSYSof
the machine where it was submitted, unless the user specifiesARCHand/orOPSYSexplicitly
in their submit file. See the thecondorsubmitmanual page on page 795 for details.

$(OPSYS) Defines the string used to identify the operating system of the local machine to Condor.
If it is not defined in the configuration file, Condor will automatically insert the operating
system of this machine as determined byuname.

$(UNAME ARCH) The architecture as reported byuname(2)’s machine field. Always the same
asARCHon Windows.

$(UNAME OPSYS) The operating system as reported byuname(2)’s sysname field. Always the
same asOPSYSon Windows.

$(PID) The process ID for the daemon or tool.

Condor Version 7.2.3 Manual

3.3. Configuration 149

$(PPID) The process ID of the parent process for the daemon or tool.

$(USERNAME) The user name of the UID of the daemon or tool. For daemons started as root, but
running under another UID (typically the user condor), thiswill be the other UID.

$(FILESYSTEMDOMAIN) Defaults to the fully qualified host name of the machine it is evaluated
on. See section 3.3.7, Shared File System Configuration FileEntries for the full description
of its use and under what conditions you would want to change it.

$(UID DOMAIN) Defaults to the fully qualified host name of the machine it is evaluated on. See
section 3.3.7 for the full description of this configurationvariable.

Since$(ARCH) and$(OPSYS) will automatically be set to the correct values, we recommend
that you do not overwrite them. Only do so if you know what you are doing.

3.3.2 The Special Configuration Macros $ENV(), $RANDOMCHOICE(),
and $RANDOM INTEGER()

References to the Condor process’s environment are allowedin the configuration files. Environment
references use theENV macro and are of the form:

$ENV(environment_variable_name)

For example,

A = $ENV(HOME)

bindsA to the value of the HOME environment variable. Environment references are not currently
used in standard Condor configurations. However, they can sometimes be useful in custom configu-
rations.

This same syntax is used in theRANDOMCHOICE() macro to allow a random choice of a
parameter within a configuration file. These references are of the form:

$RANDOM_CHOICE(list of parameters)

This allows a random choice within the parameter list to be made at configuration time. Of the list
of parameters, one is chosen when encountered during configuration. For example, if one of the
integers 0-8 (inclusive) should be randomly chosen, the macro usage is

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

TheRANDOMINTEGER() macro is similar to theRANDOMCHOICE() macro, and is used to
select a random integer within a configuration file. References are of the form:

Condor Version 7.2.3 Manual

3.3. Configuration 150

$RANDOM_INTEGER(min, max [, step])

A random integer within the rangemin andmax, inclusive, is selected at configuration time. The
optionalstep parameter controls the stride within the range, and it defaults to the value 1. For
example, to randomly chose an even integer in the range 0-8 (inclusive), the macro usage is

$RANDOM_INTEGER(0, 8, 2)

See section 7.2 on page 555 for an actual use of this specialized macro.

3.3.3 Condor-wide Configuration File Entries

This section describes settings which affect all parts of the Condor system. Other system-wide
settings can be found in section 3.3.6 on “Network-Related Configuration File Entries”, and sec-
tion 3.3.7 on “Shared File System Configuration File Entries”.

CONDOR HOST This macro may be used to define the$(NEGOTIATORHOST) and is used
to define the$(COLLECTORHOST) macro. Normally thecondorcollector and con-
dor negotiatorwould run on the same machine. If for some reason they were notrun on
the same machine,$(CONDORHOST) would not be needed. Some of the host-based secu-
rity macros use$(CONDORHOST)by default. See section 3.6.9, on Setting up IP/host-based
security in Condor for details.

COLLECTORHOST The host name of the machine where thecondorcollector is running for your
pool. Normally, it is defined relative to the$(CONDORHOST) macro. There is no default
value for this macro;COLLECTORHOSTmust be defined for the pool to work properly.

In addition to defining the host name, this setting can optionally be used to specify the network
port of thecondorcollector. The port is separated from the host name by a colon (’: ’). For
example,

COLLECTOR_HOST = $(CONDOR_HOST):1234

If no port is specified, the default port of 9618 is used. Usingthe default port is recommended
for most sites. It is only changed if there is a conflict with another service listening on the
same network port. For more information about specifying a non-standard port for thecon-
dor collectordaemon, see section 3.7.1 on page 326.

NEGOTIATORHOST This configuration variable is no longer used. It previouslydefined the host
name of the machine where thecondornegotiatoris running. At present, the port where the
condornegotiatoris listening is dynamically allocated.

CONDOR VIEW HOST The host name of the machine, optionally appended by a colon and the
port number, where the CondorView server is running. This service is optional, and requires

Condor Version 7.2.3 Manual

3.3. Configuration 151

additional configuration to enable it. There is no default value for CONDORVIEW HOST. If
CONDORVIEW HOSTis not defined, no CondorView server is used. See section 3.12.5 on
page 396 for more details.

SCHEDD HOST The host name of the machine where thecondorscheddis running for your pool.
This is the host that queues submitted jobs. Note that, in most condor installations, there is
a condorscheddrunning on each host from which jobs are submitted. The default value of
SCHEDDHOST is the current host. For most pools, this macro is not defined.

RELEASE DIR The full path to the Condor release directory, which holds the bin , etc , lib ,
andsbin directories. Other macros are defined relative to this one. There is no default value
for RELEASEDIR .

BIN This directory points to the Condor directory where user-level programs are installed. It is
usually defined relative to the$(RELEASE DIR) macro. There is no default value forBIN .

LIB This directory points to the Condor directory where libraries used to link jobs for Condor’s
standard universe are stored. Thecondorcompileprogram uses this macro to find these li-
braries, so it must be defined forcondorcompileto function. $(LIB) is usually defined
relative to the$(RELEASE DIR) macro, and has no default value.

LIBEXEC This directory points to the Condor directory where supportcommands that Condor
needs will be placed. Do not add this directory to a user or system-wide path.

INCLUDE This directory points to the Condor directory where header files reside.$(INCLUDE)
would usually be defined relative to the$(RELEASE DIR) configuration macro. There is no
default value, but if defined, it can make inclusion of necessary header files for compilation
of programs (such as those programs that uselibcondorapi.a) easier through the use of
condorconfigval.

SBIN This directory points to the Condor directory where Condor’s system binaries (such as the
binaries for the Condor daemons) and administrative tools are installed. Whatever directory
$(SBIN) points to ought to be in thePATHof users acting as Condor administrators.SBIN
has no default value.

LOCAL DIR The location of the local Condor directory on each machine inyour pool. One
common option is to use the condor user’s home directory which may be specified with
$(TILDE) . There is no default value forLOCALDIR . For example:

LOCAL_DIR = $(tilde)

On machines with a shared file system, where either the$(TILDE) directory or another
directory you want to use is shared among all machines in yourpool, you might use the
$(HOSTNAME)macro and have a directory with many subdirectories, one foreach machine
in your pool, each named by host names. For example:

LOCAL_DIR = $(tilde)/hosts/$(hostname)

Condor Version 7.2.3 Manual

3.3. Configuration 152

or:

LOCAL_DIR = $(release_dir)/hosts/$(hostname)

LOG Used to specify the directory where each Condor daemon writes its log files. The names of the
log files themselves are defined with other macros, which use the$(LOG) macro by default.
The log directory also acts as the current working directoryof the Condor daemons as the run,
so if one of them should produce a core file for any reason, it would be placed in the directory
defined by this macro.LOGis required to be defined. Normally,$(LOG) is defined in terms
of $(LOCAL DIR) .

SPOOL The spool directory is where certain files used by thecondorscheddare stored, such as
the job queue file and the initial executables of any jobs thathave been submitted. In addition,
for systems not using a checkpoint server, all the checkpoint files from jobs that have been
submitted from a given machine will be store in that machine’s spool directory. Therefore,
you will want to ensure that the spool directory is located ona partition with enough disk
space. If a given machine is only set up to execute Condor jobsand not submit them, it would
not need a spool directory (or this macro defined). There is nodefault value forSPOOL,
and thecondorscheddwill not function without itSPOOLdefined. Normally,$(SPOOL) is
defined in terms of$(LOCAL DIR) .

EXECUTE This directory acts as a place to create the scratch directory of any Condor job that is
executing on the local machine. The scratch directory is thedestination of any input files that
were specified for transfer. It also serves as the job’s working directory if the job is using
file transfer mode and no other working directory was specified. If a given machine is set up
to only submit jobs and not execute them, it would not need an execute directory, and this
macro need not be defined. There is no default value forEXECUTE, and thecondorstartd
will not function if EXECUTEis undefined. Normally,$(EXECUTE) is defined in terms of
$(LOCAL DIR) . To customize the execute directory independently for eachbatch slot, use
SLOTx EXECUTE.

SLOTx EXECUTE Specifies an execute directory for use by a specific batch slot. (x should be the
number of the batch slot, such as 1, 2, 3, etc.) This execute directory serves the same purpose
asEXECUTE, but it allows you to configure the directory independently for each batch slot.
Having slots each using a different partition would be useful, for example, in preventing one
job from filling up the same disk that other jobs are trying to write to. If this parameter is
undefined for a given batch slot, it will useEXECUTEas the default. Note that each slot will
advertiseTotalDisk andDisk for the partition containing its execute directory.

LOCAL CONFIG FILE Identifies the location of the local, machine-specific configuration file for
each machine in the pool. The two most common choices would beputting this file in the
$(LOCAL DIR) , or putting all local configuration files for the pool in a shared directory,
each one named by host name. For example,

LOCAL_CONFIG_FILE = $(LOCAL_DIR)/condor_config.local

Condor Version 7.2.3 Manual

3.3. Configuration 153

or,

LOCAL_CONFIG_FILE = $(release_dir)/etc/$(hostname).lo cal

or, not using the release directory

LOCAL_CONFIG_FILE = /full/path/to/configs/$(hostname) .local

The value of$(LOCAL CONFIGFILE) is treated as a list of files, not a single file. The items
in the list are delimited by either commas or space characters. This allows the specification
of multiple files as the local configuration file, each one processed in the order given (with
parameters set in later files overriding values from previous files). This allows the use of
one global configuration file for multiple platforms in the pool, defines a platform-specific
configuration file for each platform, and uses a local configuration file for each machine. If
the list of files is changed in one of the later read files, the new list replaces the old list, but
any files that have already been processed remain processed,and are removed from the new
list if they are present to prevent cycles. See section 3.3.1on page 147 for directions on using
a program to generate the configuration macros that would otherwise reside in one or more
files as described here. IfLOCALCONFIGFILE is not defined, no local configuration files
are processed. For more information on this, see section 3.12.2 about Configuring Condor for
Multiple Platforms on page 391.

REQUIRE LOCAL CONFIG FILE A boolean value that defaults toTrue . WhenTrue , Con-
dor exits with an error, if any file listed inLOCALCONFIGFILE cannot be read. A value
of False allows local configuration files to be missing. This is most useful for sites that
have both large numbers of machines in the pool and a local configuration file that uses the
$(HOSTNAME)macro in its definition. Instead of having an empty file for every host in the
pool, files can simply be omitted.

LOCAL CONFIG DIR Beginning in Condor 6.7.18, a directory may be used as a container for
local configuration files. The files found in the directory aresorted into lexicographi-
cal order, and then each file is treated as though it was listedin LOCALCONFIGFILE .
LOCALCONFIGDIR is processed before any files listed inLOCALCONFIGFILE , and is
checked again after processing theLOCALCONFIGFILE list. It is a list of directories, and
each directory is processed in the order it appears in the list. The process is not recursive, so
any directories found inside the directory being processedare ignored.

CONDOR IDS The User ID (UID) and Group ID (GID) pair that the Condor daemons should
run as, if the daemons are spawned as root. This value can alsobe specified in the
CONDORIDS environment variable. If the Condor daemons are not startedas root, then
neither thisCONDORIDS configuration macro nor theCONDORIDS environment vari-
able are used. The value is given by two integers, separated by a period. For example,
CONDOR_IDS = 1234.1234. If this pair is not specified in either the configuration file or
in the environment, and the Condor daemons are spawned as root, then Condor will search
for a condor user on the system, and run as that user’s UID and GID. See section 3.6.11 on
UIDs in Condor for more details.

Condor Version 7.2.3 Manual

3.3. Configuration 154

CONDOR ADMIN The email address that Condor will send mail to if something goes wrong in
your pool. For example, if a daemon crashes, thecondormastercan send anobituary to this
address with the last few lines of that daemon’s log file and a brief message that describes what
signal or exit status that daemon exited with. There is no default value forCONDORADMIN.

CONDOR SUPPORT EMAIL The email address to be included at the bottom of all email Con-
dor sends out under the label “Email address of the local Condor administrator:”. This is
the address where Condor users at your site should send theirquestions about Condor and
get technical support. If this setting is not defined, Condorwill use the address specified in
CONDORADMIN(described above).

MAIL The full path to a mail sending program that uses-s to specify a subject for the message.
On all platforms, the default shipped with Condor should work. Only if you installed things
in a non-standard location on your system would you need to change this setting. There is no
default value forMAIL, and thecondorscheddwill not function unlessMAIL is defined.

RESERVED SWAP Determines how much swap space you want to reserve for your own machine.
Condor will not start up morecondorshadowprocesses if the amount of free swap space on
your machine falls below this level.RESERVEDSWAPis specified in megabytes. The default
value ofRESERVEDSWAPis 5 megabytes.

RESERVED DISK Determines how much disk space you want to reserve for your own machine.
When Condor is reporting the amount of free disk space in a given partition on your machine,
it will always subtract this amount. An example is thecondorstartd, which advertises the
amount of free space in the$(EXECUTE) directory. The default value ofRESERVEDDISK
is zero.

LOCK Condor needs to create lock files to synchronize access to various log files. Because of
problems with network file systems and file locking over the years, wehighly recommend
that you put these lock files on a local partition on each machine. If you do not have your
$(LOCAL DIR) on a local partition, be sure to change this entry.

Whatever user or group Condor is running as needs to have write access to this directory. If
you are not running as root, this is whatever user you startedup thecondormasteras. If you
are running as root, and there is a condor account, it is most likely condor. Otherwise, it is
whatever you set in theCONDORIDS environment variable, or whatever you define in the
CONDORIDS setting in the Condor config files. See section 3.6.11 on UIDs in Condor for
details.

If no value forLOCKis provided, the value ofLOGis used.

HISTORY Defines the location of the Condor history file, which stores information about all
Condor jobs that have completed on a given machine. This macro is used by both the
condorscheddwhich appends the information andcondorhistory, the user-level program
used to view the history file. This configuration macro is given the default value of
$(SPOOL)/history in the default configuration. If not defined, no history file iskept.

ENABLE HISTORY ROTATION If this is defined to be true, then the history file will be rotated.
If it is false, then it will not be rotated, and it will grow indefinitely, to the limits allowed by
the operating system. If this is not defined, it is assumed to be true. The rotated files will be
stored in the same directory as the history file.

Condor Version 7.2.3 Manual

3.3. Configuration 155

MAX HISTORY LOG Defines the maximum size for the history file, in bytes. It defaults to 20MB.
This parameter is only used if history file rotation is enabled.

MAX HISTORY ROTATIONS When history file rotation is turned on, this controls how many
backup files there are. It default to 2, which means that theremay be up to three history
files (two backups, plus the history file that is being currently written to). When the history
file is rotated, and this rotation would cause the number of backups to be too large, the oldest
file is removed.

MAX JOB QUEUE LOG ROTATIONS The schedd periodically rotates the job queue database file
in order to save disk space. This option controls how many rotated files are saved. It defaults
to 1, which means there may be up to two history files (the previous one, which was rotated
out of use, and the current one that is being written to). Whenthe job queue file is rotated,
and this rotation would cause the number of backups to be larger the the maximum specified,
the oldest file is removed. The primary reason to save one or more rotated job queue files
is if you are using Quill, and you want to ensure that Quill keeps an accurate history of all
events logged in the job queue file. Quill keeps track of whereit last left off when reading
logged events, so when the file is rotated, Quill will resume reading from where it last left
off, provided that the rotated file still exists. If Quill finds that it needs to read events from
a rotated file that has been deleted, it will be forced to skip the missing events and resume
reading in the next chronological job queue file that can be found. Such an event should not
lead to an inconsistency in Quill’s view of the current queuecontents, but it would create a
inconsistency in Quill’s record of the history of the job queue.

DEFAULT DOMAIN NAME The value to be appended to a machine’s host name, representing a
domain name, which Condor then uses to form a fully qualified host name. This is required
if there is no fully qualified host name in file/etc/hosts or in NIS. Set the value in the
global configuration file, as Condor may depend on knowing this value in order to locate the
local configuration file(s). The default value as given in thesample configuration file of the
Condor download is bogus, and must be changed. If this variable is removed from the global
configuration file, or if the definition is empty, then Condor attempts to discover the value.

NO DNS A boolean value that defaults toFalse . WhenTrue , Condor constructs host names
using the host’s IP address together with the value defined for DEFAULTDOMAINNAME.

CM IP ADDR If neitherCOLLECTORHOSTnorCOLLECTORIP ADDRmacros are defined, then
this macro will be used to determine the IP address of the central manager (collector daemon).
This macro is defined by an IP address.

EMAIL DOMAIN By default, if a user does not specifynotify user in the submit description
file, any email Condor sends about that job will go to ”username@UID DOMAIN”. If your
machines all share a common UID domain (so that you would setUID DOMAINto be the
same across all machines in your pool), but email to user@UIDDOMAIN is not the right
place for Condor to send email for your site, you can define thedefault domain to use for
email. A common example would be to setEMAIL DOMAINto the fully qualified host name
of each machine in your pool, so users submitting jobs from a specific machine would get
email sent to user@machine.your.domain, instead of user@your.domain. You would do this

Condor Version 7.2.3 Manual

3.3. Configuration 156

by settingEMAIL DOMAINto $(FULL HOSTNAME). In general, you should leave this set-
ting commented out unless two things are true: 1)UID DOMAINis set to your domain, not
$(FULL HOSTNAME), and 2) email to user@UIDDOMAIN will not work.

CREATE CORE FILES Defines whether or not Condor daemons are to create a core file in the
LOG directory if something really bad happens. It is used to set the resource limit for the
size of a core file. If not defined, it leaves in place whatever limit was in effect when the
Condor daemons (normally thecondormaster) were started. This allows Condor to inherit
the default system core file generation behavior at start up.For Unix operating systems, this
behavior can be inherited from the parent shell, or specifiedin a shell script that starts Condor.
If this parameter is set andTrue , the limit is increased to the maximum. If it is set toFalse ,
the limit is set at 0 (which means that no core files are created). Core files greatly help the
Condor developers debug any problems you might be having. Byusing the parameter, you
do not have to worry about tracking down where in your boot scripts you need to set the core
limit before starting Condor. You set the parameter to whatever behavior you want Condor
to enforce. This parameter defaults to undefined to allow theinitial operating system default
value to take precedence, and is commented out in the defaultconfiguration file.

CKPT PROBE Defines the path and executable name of the helper process Condor will use to
determine information for theCheckpointPlatform attribute in the machine’s ClassAd.
The default value is$(LIBEXEC)/condor ckpt probe .

ABORT ON EXCEPTION When Condor programs detect a fatal internal exception, they normally
log an error message and exit. If you have turned onCREATECOREFILES , in some cases
you may also want to turn onABORTONEXCEPTIONso that core files are generated when
an exception occurs. Set the following to True if that is whatyou want.

Q QUERY TIMEOUT Defines the timeout (in seconds) thatcondorq uses when trying to connect
to thecondorschedd. Defaults to 20 seconds.

DEAD COLLECTORMAX AVOIDANCETIME Defines the interval of time (in seconds) between
checks for a failed primarycondorcollectordaemon. If connections to the dead primarycon-
dor collector take very little time to fail, new attempts to query the primary condorcollector
may be more frequent than the specified maximum avoidance time. The default value equals
one hour. This variable has relevance to flocked jobs, as it defines the maximum time they
may be reporting to the primarycondorcollectorwithout thecondornegotiatornoticing.

PASSWD CACHE REFRESH Condor can cause NIS servers to become overwhelmed by queries for
uid and group information in large pools. In order to avoid this problem, Condor caches UID
and group information internally. This integer value allows pool administrators to specify
(in seconds) how long Condor should wait until refreshes a cache entry. The default is set
to 300 seconds, or 5 minutes, plus a random number of seconds between 0 and 60 to avoid
having lots of processes refreshing at the same time. This means that if a pool administrator
updates the user or group database (for example,/etc/passwd or /etc/group), it can
take up to 6 minutes before Condor will have the updated information. This caching feature
can be disabled by setting the refresh interval to 0. In addition, the cache can also be flushed
explicitly by running the command

Condor Version 7.2.3 Manual

3.3. Configuration 157

condor_reconfig -full

This configuration variable has no effect on Windows.

SYSAPI GET LOADAVG If set to False, then Condor will not attempt to compute the load average
on the system, and instead will always report the system loadaverage to be 0.0. Defaults to
True.

NETWORK MAX PENDING CONNECTS This specifies a limit to the maximum number of simulta-
neous network connection attempts. This is primarily relevant tocondorschedd, which may
try to connect to large numbers of startds when claiming them. The negotiator may also con-
nect to large numbers of startds when initiating security sessions used for sending MATCH
messages. On Unix, the default for this parameter is eighty percent of the process file descrip-
tor limit. On windows, the default is 1600.

WANT UDP COMMAND SOCKET This setting, added in version 6.9.5, controls if Condor daemons
should create a UDP command socket in addition to the TCP command socket (which is
required). The default isTrue , and modifying it requires restarting all Condor daemons, not
just acondorreconfigor SIGHUP.

Normally, updates sent to thecondorcollector use UDP, in addition to certain keep alive
messages and other non-essential communication. However,in certain situations, it might
be desirable to disable the UDP command port (for example, toreduce the number of ports
represented by a GCB broker, etc).

Unfortunately, due to a limitation in how these command sockets are created, it is not
possible to define this setting on a per-daemon basis, for example, by trying to set
STARTD.WANTUDPCOMMANDSOCKET. At least for now, this setting must be defined ma-
chine wide to function correctly.

If this setting is set to true on a machine running acondorcollector, the pool should be config-
ured to use TCP updates to that collector (see section 3.7.4 on page 345 for more information).

3.3.4 Daemon Logging Configuration File Entries

These entries control how and where the Condor daemons writeto log files. Many of the entries in
this section represents multiple macros. There is one for each subsystem (listed in section 3.3.1).
The macro name for each substitutes<SUBSYS>with the name of the subsystem corresponding to
the daemon.

<SUBSYS> LOG The name of the log file for a given subsystem. For example,$(STARTD LOG)
gives the location of the log file forcondorstartd.

MAX <SUBSYS> LOG Controls the maximum length in bytes to which a log will be allowed to
grow. Each log file will grow to the specified length, then be saved to a file with the suffix
.old . The .old files are overwritten each time the log is saved, thus the maximum space
devoted to logging for any one program will be twice the maximum length of its log file. A
value of 0 specifies that the file may grow without bounds. The default is 1 Mbyte.

Condor Version 7.2.3 Manual

3.3. Configuration 158

TRUNC <SUBSYS> LOG ON OPEN If this macro is defined and set toTrue , the affected log will
be truncated and started from an empty file with each invocation of the program. Otherwise,
new invocations of the program will append to the previous log file. By default this setting is
False for all daemons.

<SUBSYS> LOCK This macro specifies the lock file used to synchronize append operations to the
log file for this subsystem. It must be a separate file from the$(<SUBSYS> LOG) file, since
the$(<SUBSYS> LOG) file may be rotated and you want to be able to synchronize access
across log file rotations. A lock file is only required for log files which are accessed by more
than one process. Currently, this includes only theSHADOWsubsystem. This macro is defined
relative to the$(LOCK) macro.

FILE LOCK VIA MUTEX This macro setting only works on Win32 – it is ignored on Unix.If set
to beTrue , then log locking is implemented via a kernel mutex instead of via file locking. On
Win32, mutex access is FIFO, while obtaining a file lock is non-deterministic. Thus setting to
True fixes problems on Win32 where processes (usually shadows) could starve waiting for a
lock on a log file. Defaults toTrue on Win32, and is alwaysFalse on Unix.

ENABLE USERLOG LOCKING WhenTrue (the default value), a user’s job log (as specified in
a submit description file) will be locked before being written to. If False , Condor will not
lock the file before writing.

TOUCH LOG INTERVAL The time interval in seconds between when daemons touch their log
files. The change in last modification time for the log file is useful when a daemon restarts
after failure or shut down. The last modification date is printed, and it provides an upper
bound on the length of time that the daemon was not running. Defaults to 60 seconds.

LOGS USE TIMESTAMP This macro controls how the current time is formatted at the start of each
line in the daemon log files. WhenTrue , the Unix time is printed (number of seconds since
00:00:00 UTC, January 1, 1970). WhenFalse (the default value), the time is printed like
so:<Month>/<Day> <Hour>:<Minute>:<Second> in the local timezone.

<SUBSYS> DEBUG All of the Condor daemons can produce different levels of output depending
on how much information is desired. The various levels of verbosity for a given daemon are
determined by this macro. All daemons have the default levelD ALWAYS, and log messages
for that level will be printed to the daemon’s log, regardless of this macro’s setting. Settings
are a comma- or space-separated list of the following values:

D ALL This flag turns onall debugging output by enabling all of the debug levels at once.
There is no need to list any other debug levels in addition toD ALL; doing so would be
redundant. Be warned: this will generate about aHUGE amount of output. To obtain a
higher level of output than the default, consider usingD FULLDEBUGbefore using this
option.

D FULLDEBUG This level provides verbose output of a general nature into the log files. Fre-
quent log messages for very specific debugging purposes would be excluded. In those
cases, the messages would be viewed by having that another flag andD FULLDEBUG
both listed in the configuration file.

Condor Version 7.2.3 Manual

3.3. Configuration 159

D DAEMONCORE Provides log file entries specific to DaemonCore, such as timers the dae-
mons have set and the commands that are registered. If bothD FULLDEBUGand
D DAEMONCOREare set, expectveryverbose output.

D PRIV This flag provides log messages about theprivilege stateswitching that the daemons
do. See section 3.6.11 on UIDs in Condor for details.

D COMMAND With this flag set, any daemon that uses DaemonCore will printout a log mes-
sage whenever a command comes in. The name and integer of the command, whether
the command was sent via UDP or TCP, and where the command was sent from are all
logged. Because the messages about the command used bycondorkbddto communi-
cate with thecondorstartdwhenever there is activity on the X server, and the command
used for keep-alives are both only printed withD FULLDEBUGenabled, it is best if this
setting is used for all daemons.

D LOAD Thecondorstartd keeps track of the load average on the machine where it is run-
ning. Both the general system load average, and the load average being generated by
Condor’s activity there are determined. With this flag set, the condorstartd will log
a message with the current state of both of these load averages whenever it computes
them. This flag only affects thecondorstartd.

D KEYBOARD With this flag set, thecondorstartd will print out a log message with the
current values for remote and local keyboard idle time. Thisflag affects only thecon-
dor startd.

D JOB When this flag is set, thecondorstartdwill send to its log file the contents of any job
ClassAd that thecondorscheddsends to claim thecondorstartd for its use. This flag
affects only thecondorstartd.

D MACHINE When this flag is set, thecondorstartdwill send to its log file the contents of its
resource ClassAd when thecondorscheddtries to claim thecondorstartd for its use.
This flag affects only thecondorstartd.

D SYSCALLS This flag is used to make thecondorshadowlog remote syscall requests and
return values. This can help track down problems a user is having with a particular job
by providing the system calls the job is performing. If any are failing, the reason for
the failure is given. Thecondorscheddalso uses this flag for the server portion of the
queue management code. WithD SYSCALLSdefined inSCHEDDDEBUGthere will be
verbose logging of all queue management operations thecondorscheddperforms.

D MATCH When this flag is set, thecondornegotiatorlogs a message for every match.

D NETWORK When this flag is set, all Condor daemons will log a message on every TCP
accept, connect, and close, and on every UDP send and receive. This flag is not yet fully
supported in thecondorshadow.

D HOSTNAME When this flag is set, the Condor daemons and/or tools will print verbose mes-
sages explaining how they resolve host names, domain names,and IP addresses. This is
useful for sites that are having trouble getting Condor to work because of problems with
DNS, NIS or other host name resolving systems in use.

D CKPT When this flag is set, the Condor process checkpoint support code, which is linked
into a STANDARD universe user job, will output some low-level details about the check-
point procedure into the$(SHADOWLOG).

Condor Version 7.2.3 Manual

3.3. Configuration 160

D SECURITY This flag will enable debug messages pertaining to the setup of secure net-
work communication, including messages for the negotiation of a socket authentication
mechanism, the management of a session key cache. and messages about the authentica-
tion process itself. See section 3.6.1 for more informationabout secure communication
configuration.

D PROCFAMILY Condor often times needs to manage an entire family of processes, (that is,
a process and all descendants of that process). This debug flag will turn on debugging
output for the management of families of processes.

D ACCOUNTANT When this flag is set, thecondornegotiatorwill output debug messages
relating to the computation of user priorities (see section3.4).

D PROTOCOL Enable debug messages relating to the protocol for Condor’smatchmaking
and resource claiming framework.

D PID This flag is different from the other flags, because it is used to change the formatting
of all log messages that are printed, as opposed to specifying what kinds of messages
should be printed. IfD PID is set, Condor will always print out the process identi-
fier (PID) of the process writing each line to the log file. Thisis especially helpful for
Condor daemons that can fork multiple helper-processes (such as thecondorscheddor
condorcollector) so the log file will clearly show which thread of execution isgenerat-
ing each log message.

D FDS This flag is different from the other flags, because it is used to change the formatting
of all log messages that are printed, as opposed to specifying what kinds of messages
should be printed. IfD FDS is set, Condor will always print out the file descriptor that
the open of the log file was allocated by the operating system.This can be helpful in
debugging Condor’s use of system file descriptors as it will generally track the number
of file descriptors that Condor has open.

ALL DEBUG Used to make all subsystems share a debug flag. Set the parameter ALL DEBUG
instead of changing all of the individual parameters. For example, to turn on all debugging in
all subsystems, setALL_DEBUG = D_ALL.

TOOL DEBUG Uses the same values (debugging levels) as<SUBSYS>DEBUGto describe the
amount of debugging information sent tostderr for Condor tools.

SUBMIT DEBUG Uses the same values (debugging levels) as<SUBSYS>DEBUGto describe the
amount of debugging information sent tostderr for condorsubmit.

Log files may optionally be specified per debug level as follows:

<SUBSYS> <LEVEL> LOG This is the name of a log file for messages at a specific debug level
for a specific subsystem. If the debug level is included in$(<SUBSYS> DEBUG), then all
messages of this debug level will be written both to the$(<SUBSYS> LOG) file and the
$(<SUBSYS> <LEVEL> LOG) file. For example,$(SHADOWSYSCALLSLOG) specifies
a log file for all remote system call debug messages.

MAX <SUBSYS> <LEVEL> LOG Similar toMAX<SUBSYS>LOG.

Condor Version 7.2.3 Manual

3.3. Configuration 161

TRUNC <SUBSYS> <LEVEL> LOG ON OPEN Similar toTRUNC<SUBSYS>LOGONOPEN.

The following macros control where and what is written to theevent log, a file that receives job
user log events, but across all users and user’s jobs.

EVENT LOG The full path and file name of the event log. There is no defaultvalue for this variable,
so no event log will be written, if not defined.

EVENT LOG MAX SIZE Controls the maximum length in bytes to which the event log will be
allowed to grow. The log file will grow to the specified length,then be saved to a file with the
suffix .old. The .old files are overwritten each time the log issaved. A value of 0 specifies
that the file may grow without bounds (and disables rotation). The default is 1 Mbyte. For
backwards compatibility,MAXEVENTLOGwill be used ifEVENTLOGMAXSIZE is not
defined. IfEVENTLOGis not defined, this parameter has no affect.

MAX EVENT LOG SeeEVENTLOGMAXSIZE .

EVENT LOG MAX ROTATIONS Controls the maximum number of rotations of the event log that
will be stored. If this value is 1 (the default), the event logwill be rotated to a “.old” file as de-
scribed above. However, if this is greater than 1, then multiple rotation files will be stores, up
to EVENTLOGMAXROTATIONSof them. These files will be named, instead of the “.old”
suffix, “.1”, “.2”, with the “.1” being the most recent rotation. This is an integer parameter
with a default value of 1. IfEVENTLOGis not defined, or ifEVENTLOGMAXSIZE has a
value of 0 (which disables event log rotation), this parameter has no affect.

EVENT LOG ROTATION LOCK Controls the lock file that will be used to ensure that, when ro-
tating files, the rotation is done by a single process. This isa string parameter; it’s default
value is the file path of the event log itself, with a “.lock” appended. IfEVENTLOGis not
defined, or ifEVENTLOGMAXSIZE has a value of 0 (which disables event log rotation),
this parameter has no affect.

EVENT LOG FSYNC A boolean value that controls whether Condor will perform anfsync()
after writing each event to the event log. WhenTrue , an fsync() operation is performed
after each event. Thisfsync() operation forces the operating system to synchronize the
updates to the event log to the disk, but can negatively affect the performance of the system.
Defaults toFalse .

EVENT LOG LOCKING A boolean value that defaults toTrue . WhenTrue , the event log (as
specified byEVENTLOG) will be locked before being written to. WhenFalse , Condor
does not lock the file before writing.

EVENT LOG USE XML A boolean value that defaults toFalse . WhenTrue , events are logged
in XML format. If EVENTLOGis not defined, this parameter has no affect.

EVENT LOG JOB AD INFORMATIONATTRS A comma-separated list of job ClassAd attributes,
whose evaluated values form a new event, the JobAdInformationEvent. This new event is
placed in the event log in addition to each logged event. IfEVENTLOGis not defined, this
parameter has no affect.

Condor Version 7.2.3 Manual

3.3. Configuration 162

3.3.5 DaemonCore Configuration File Entries

Please read section 3.9 for details on DaemonCore. There arecertain configuration file settings that
DaemonCore uses which affect all Condor daemons (except thecheckpoint server, standard universe
shadow, and standard universe starter, none of which use DaemonCore).

HOSTALLOW. . . All macros that begin with eitherHOSTALLOWor HOSTDENYare settings for
Condor’s host-based security. See section 3.6.9 on Settingup IP/host-based security in Condor
for details on these macros and how to configure them.

ENABLE RUNTIME CONFIG Thecondorconfigval tool has an option-rset for dynamically set-
ting run time configuration values (which only effect the in-memory configuration variables).
Because of the potential security implications of this feature, by default, Condor daemons will
not honor these requests. To use this functionality, Condoradministrators must specifically
enable it by settingENABLERUNTIMECONFIGto True , and specify what configuration
variables can be changed using theSETTABLEATTRS. . . family of configuration options
(described below). Defaults toFalse .

ENABLE PERSISTENTCONFIG The condorconfigval tool has a-set option for dynamically
setting persistent configuration values. These values override options in the normal Condor
configuration files. Because of the potential security implications of this feature, by default,
Condor daemons will not honor these requests. To use this functionality, Condor admin-
istrators must specifically enable it by settingENABLEPERSISTENTCONFIGto True ,
creating a directory where the Condor daemons will hold these dynamically-generated persis-
tent configuration files (declared usingPERSISTENTCONFIGDIR, described below) and
specify what configuration variables can be changed using the SETTABLEATTRS. . . family
of configuration options (described below). Defaults toFalse .

PERSISTENTCONFIG DIR Directory where daemons should store dynamically-generated per-
sistent configuration files (used to supportcondorconfigval -set) This directory shouldonly
be writable by root, or the user the Condor daemons are running as (if non-root). There is no
default, administrators that wish to use this functionality must create this directory and define
this setting. This directory must not be shared by multiple Condor installations, though it can
be shared by all Condor daemons on the same host. Keep in mind that this directory should
not be placed on an NFS mount where “root-squashing” is in effect, or else Condor daemons
running as root will not be able to write to them. A directory (only writable by root) on the
local file system is usually the best location for this directory.

SETTABLE ATTRS. . . All macros that begin with SETTABLEATTRS or
<SUBSYS>SETTABLEATTRS are settings used to restrict the configuration values
that can be changed using thecondorconfigval command. Section 3.6.9 on Setting up
IP/Host-Based Security in Condor for details on these macros and how to configure them. In
particular, section 3.6.9 on page 307 contains details specific to these macros.

SHUTDOWN GRACEFUL TIMEOUT Determines how long Condor will allow daemons try their
graceful shutdown methods before they do a hard shutdown. Itis defined in terms of seconds.
The default is 1800 (30 minutes).

Condor Version 7.2.3 Manual

3.3. Configuration 163

<SUBSYS> ADDRESS FILE A complete path to a file that is to contain an IP address and port
number for a daemon. Every Condor daemon that uses DaemonCore has a command port
where commands are sent. The IP/port of the daemon is put in that daemon’s ClassAd, so that
other machines in the pool can query thecondorcollector (which listens on a well-known
port) to find the address of a given daemon on a given machine. When tools and daemons
are all executing on the same single machine, communications do not require a query of the
condorcollectordaemon. Instead, they look in a file on the local disk to find theIP/port. This
macro causes daemons to write the IP/port of their command socket to a specified file. In this
way, local tools will continue to operate, even if the machine running thecondorcollector
crashes. Using this file will also generate slightly less network traffic in the pool, since tools
including condorq andcondorrm do not need to send any messages over the network to
locate thecondorschedddaemon. This macro is not necessary for thecondorcollectordae-
mon, since its command socket is at a well-known port.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

<SUBSYS> DAEMON AD FILE A complete path to a file that is to contain the ClassAd for a dae-
mon. When the daemon sends a ClassAd describing itself to thecondorcollector, it will
also place a copy of the ClassAd in this file. Currently, this setting only works for thecon-
dor schedd(that isSCHEDDDAEMONAD FILE) and is required for Quill.

<SUBSYS> ATTRSor <SUBSYS> EXPRS Allows any DaemonCore daemon to advertise arbi-
trary expressions from the configuration file in its ClassAd.Give the comma-separated list of
entries from the configuration file you want in the given daemon’s ClassAd. Frequently used
to add attributes to machines so that the machines can discriminate between other machines
in a job’srank andrequirements.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

<SUBSYS>EXPRSis a historic setting that functions identically to<SUBSYS>ATTRS. Use
<SUBSYS>ATTRS.

NOTE: Thecondorkbdddoes not send ClassAds now, so this entry does not affect it. The
condorstartd, condorschedd, condormaster, andcondorcollector do send ClassAds, so
those would be valid subsystems to set this entry for.

SUBMIT EXPRSnot part of the<SUBSYS>EXPRS, it is documented in section 3.3.14

Because of the different syntax of the configuration file and ClassAds, a little extra work is
required to get a given entry into a ClassAd. In particular, ClassAds require quote marks (”)
around strings. Numeric values and boolean expressions cango in directly. For example, if
thecondorstartd is to advertise a string macro, a numeric macro, and a booleanexpression,
do something similar to:

STRING = This is a string
NUMBER = 666
BOOL1 = True
BOOL2 = CurrentTime >= $(NUMBER) || $(BOOL1)
MY_STRING = "$(STRING)"

Condor Version 7.2.3 Manual

3.3. Configuration 164

STARTD_ATTRS = MY_STRING, NUMBER, BOOL1, BOOL2

DAEMON SHUTDOWN Starting with Condor version 6.9.3, whenever a daemon is about to publish
a ClassAd update to thecondorcollector, it will evaluate this expression. If it evaluates to
True , the daemon will gracefully shut itself down, exit with the exit code 99, and will not be
restarted by thecondormaster(as if it sent itself acondoroff command). The expression is
evaluated in the context of the ClassAd that is being sent to thecondorcollector, so it can ref-
erence any attributes that can be seen withcondor_status -long [-daemon_type]
(for example,condor_status -long [-master] for thecondormaster). Since each
daemon’s ClassAd will contain different attributes, administrators should define these shut-
down expressions specific to each daemon, for example:

STARTD.DAEMON_SHUTDOWN = when to shutdown the startd
MASTER.DAEMON_SHUTDOWN = when to shutdown the master

Normally, these expressions would not be necessary, so if not defined, they default to FALSE.
One possible use case is for Condor glide-in, to have thecondorstartd shut itself down if it
has not been claimed by a job after a certain period of time.

NOTE: This functionality does not work in conjunction with Condor’s high-availability sup-
port (see section 3.10 on page 354 for more information). If you enable high-availability for
a particular daemon, you should not define this expression.

DAEMON SHUTDOWN FAST Identical toDAEMONSHUTDOWN(defined above), except the dae-
mon will use the fast shutdown mode (as if it sent itself acondoroff command using the-fast
option).

USE CLONE TO CREATE PROCESSES This setting controls how a Condor daemon creates a new
process under certain versions of Linux. If set toTrue (the default value), theclone system
call is used. Otherwise, thefork system call is used.clone provides scalability improve-
ments for daemons using a large amount of memory (e.g. acondorscheddwith a lot of jobs
in the queue). Currently, the use ofclone is available on Linux systems other than IA-64,
but not when GCB is enabled.

NOT RESPONDINGTIMEOUT When a Condor daemon’s parent process is another Condor dae-
mon, the child daemon will periodically send a short messageto its parent stating that it is
alive and well. If the parent does not hear from the child for awhile, the parent assumes that
the child is hung, kills the child, and restarts the child. This parameter controls how long the
parent waits before killing the child. It is defined in terms of seconds and defaults to 3600 (1
hour). The child sends its alive and well messages at an interval of one third of this value.

<SUBSYS> NOT RESPONDINGTIMEOUT Identical to NOTRESPONDINGTIMEOUT,
but controls the timeout for a specific type of daemon. For example,
SCHEDDNOTRESPONDINGTIMEOUT controls how long thecondorschedd’s parent
daemon will wait without receiving an alive and well messagefrom thecondorscheddbefore
killing it.

Condor Version 7.2.3 Manual

3.3. Configuration 165

NOT RESPONDINGWANT CORE A boolean parameter with a default value of false. This
parameter is for debugging purposes on UNIX systems, and controls the behavior of
the parent process when it determines that a child process isnot responding (see
164). If NOTRESPONDINGWANTCORE is true, the parent will send a SIGABRT
instead of SIGKILL to the child process. If the child processis configured with
CREATECOREFILES enabled, the child process will then generate a core dump. See
NOTRESPONDINGTIMEOUTon page 164, andCREATECOREFILES on page 156 for
related details.

LOCK FILE UPDATE INTERVAL An integer value representing seconds, controlling how often
valid lock files should have their on disk timestamps updated. Updating the timestamps pre-
vents administrative programs, such astmpwatch, from deleting long lived lock files. If set to
a value less than 60, the update time will be 60 seconds. The default value is 28800, which is
8 hours. This variable only takes effect at the start or restart of a daemon.

3.3.6 Network-Related Configuration File Entries

More information about networking in Condor can be found in section 3.7 on page 325.

BIND ALL INTERFACES For systems with multiple network interfaces, if this configuration set-
ting is False , Condor will only bind network sockets to the IP address specified with
NETWORKINTERFACE(described below). If set toTrue , the default value, Condor will
listen on all interfaces. However, currently Condor is still only able to advertise a single IP
address, even if it is listening on multiple interfaces. By default, it will advertise the IP address
of the network interface used to contact the collector, since this is the most likely to be acces-
sible to other processes which query information from the same collector. More information
about using this setting can be found in section 3.7.2 on page329.

NETWORK INTERFACE For systems with multiple network interfaces, if this configuration set-
ting is not defined, Condor binds all network sockets to first interface found. To bind to a
specific network interface other than the first one, thisNETWORKINTERFACEshould be set
to the IP address to use. WhenBIND ALL INTERFACESis set toTrue (the default), this
setting simply controls what IP address a given Condor host will advertise. More informa-
tion about configuring Condor on machines with multiple network interfaces can be found in
section 3.7.2 on page 329.

PRIVATE NETWORK NAME If two Condor daemons are trying to communicate with each other,
and they both belong to the same private network, this setting will allow them to commu-
nicate directly using the private network interface, instead of having to use the Generic
Connection Broker (GCB) or to go through a public IP address.Each private network
should be assigned a unique network name. This string can have any form, but it must
be unique for a particular private network. If another Condor daemon or tool is config-
ured with the samePRIVATE NETWORKNAME, it will attempt to contact this daemon us-
ing thePrivateIpAddr attribute from the classified ad. Even for sites using GCB, this
is an important optimization, since it means that two daemons on the same network can

Condor Version 7.2.3 Manual

3.3. Configuration 166

communicate directly, without having to go through the GCB broker. If GCB is enabled,
and thePRIVATE NETWORKNAMEis defined, thePrivateIpAddr will be defined auto-
matically. Otherwise, you can specify a particular privateIP address to use by defining the
PRIVATE NETWORKINTERFACEsetting (described below). There is no default for this
setting.

PRIVATE NETWORK INTERFACE For systems with multiple network interfaces, if this configu-
ration setting andPRIVATE NETWORKNAMEare both defined, Condor daemons will adver-
tise some additional attributes in their ClassAds to help other Condor daemons and tools in
the same private network to communicate directly. ThePRIVATE NETWORKINTERFACE
defines what IP address a given multi-homed machine should use for the private network.
If another Condor daemon or tool is configured with the samePRIVATE NETWORKNAME,
it will attempt to contact this daemon using the IP address specified here. Sites using the
Generic Connection Broker (GCB) only need to define thePRIVATE NETWORKNAME, and
the PRIVATE NETWORKINTERFACEwill be defined automatically. Unless GCB is en-
abled, there is no default for this setting.

HIGHPORT Specifies an upper limit of given port numbers for Condor to use, such that Condor is
restricted to a range of port numbers. If this macro is not explicitly specified, then Condor
will not restrict the port numbers that it uses. Condor will use system-assigned port numbers.
For this macro to work, bothHIGHPORTandLOWPORT(given below) must be defined.

LOWPORT Specifies a lower limit of given port numbers for Condor to use, such that Condor is
restricted to a range of port numbers. If this macro is not explicitly specified, then Condor
will not restrict the port numbers that it uses. Condor will use system-assigned port numbers.
For this macro to work, bothHIGHPORT(given above) andLOWPORTmust be defined.

IN LOWPORT An integer value that specifies a lower limit of given port numbers for Condor to
use on incoming connections (ports for listening), such that Condor is restricted to a range
of port numbers. This range implies the use of bothIN LOWPORTand IN HIGHPORT. A
range of port numbers less than 1024 may be used for daemons running as root. Do not
specify IN LOWPORTin combination withIN HIGHPORTsuch that the range crosses the
port 1024 boundary. Applies only to Unix machine configuration. Use ofIN LOWPORTand
IN HIGHPORToverrides any definition ofLOWPORTandHIGHPORT.

IN HIGHPORT An integer value that specifies an upper limit of given port numbers for Condor
to use on incoming connections (ports for listening), such that Condor is restricted to a range
of port numbers. This range implies the use of bothIN LOWPORTand IN HIGHPORT. A
range of port numbers less than 1024 may be used for daemons running as root. Do not
specify IN LOWPORTin combination withIN HIGHPORTsuch that the range crosses the
port 1024 boundary. Applies only to Unix machine configuration. Use ofIN LOWPORTand
IN HIGHPORToverrides any definition ofLOWPORTandHIGHPORT.

OUT LOWPORT An integer value that specifies a lower limit of given port numbers for Condor to
use on outgoing connections, such that Condor is restrictedto a range of port numbers. This
range implies the use of bothOUTLOWPORTandOUTHIGHPORT. A range of port numbers
less than 1024 is inappropriate, as not all daemons and toolswill be run as root. Applies only
to Unix machine configuration. Use ofOUTLOWPORTandOUTHIGHPORToverrides any
definition ofLOWPORTandHIGHPORT.

Condor Version 7.2.3 Manual

3.3. Configuration 167

OUT HIGHPORT An integer value that specifies an upper limit of given port numbers for Condor
to use on outgoing connections, such that Condor is restricted to a range of port numbers. This
range implies the use of bothOUTLOWPORTandOUTHIGHPORT. A range of port numbers
less than 1024 is inappropriate, as not all daemons and toolswill be run as root. Applies only
to Unix machine configuration. Use ofOUTLOWPORTandOUTHIGHPORToverrides any
definition ofLOWPORTandHIGHPORT.

UPDATE COLLECTORWITH TCP If your site needs to use TCP connections to send ClassAd
updates to your collector (which it almost certainly does NOT), set toTrue to enable this
feature. Please read section 3.7.4 on “Using TCP to Send Collector Updates” on page 345
for more details and a discussion of when this functionalityis needed. At this time, this
setting only affects the maincondorcollector for the site, not any sites that acondorschedd
might flock to. If enabled, also defineCOLLECTORSOCKETCACHESIZE at the central
manager, so that the collector will accept TCP connections for updates, and will keep them
open for reuse. Defaults toFalse .

TCP UPDATE COLLECTORS The list of collectors which will be updated with TCP insteadof
UDP. Please read section 3.7.4 on “Using TCP to Send Collector Updates” on page 345 for
more details and a discussion of when a site needs this functionality. If not defined, no collec-
tors use TCP instead of UDP.

<SUBSYS> TIMEOUT MULTIPLIER An integer value that defaults to 1. This value multiplies
configured timeout values for all targeted subsystem communications, thereby increasing the
time until a timeout occurs. This configuration variable is intended for use by developers for
debugging purposes, where communication timeouts interfere.

NONBLOCKINGCOLLECTORUPDATE A boolean value that defaults toTrue . WhenTrue , the
establishment of TCP connections to thecondorcollectordaemon for a security-enabled pool
are done in a nonblocking manner.

NEGOTIATORUSE NONBLOCKINGSTARTD CONTACT A boolean value that defaults toTrue .
WhenTrue , the establishment of TCP connections from thecondornegotiatordaemon to
thecondorstartddaemon for a security-enabled pool are done in a nonblockingmanner.

The following settings are specific to enabling Generic Connection Brokering or GCB in your
Condor pool. More information about GCB and how to configure it can be found in section 3.7.3 on
page 332.

NET REMAP ENABLE A boolean variable, that when defined toTrue , enables a network remap-
ping service for Condor. The service to use is controlled byNET REMAPSERVICE. This
boolean value defaults toFalse .

NET REMAP SERVICE If NET REMAPENABLEis defined toTrue , this setting controls what
network remapping service should be used. Currently, the only value supported isGCB. The
default is undefined.

NET REMAP INAGENT A comma or space-separated list of IP addresses for GCB brokers. Upon
start up, thecondormasterchooses one at random from among the working brokers in the
list. There is no default if not defined.

Condor Version 7.2.3 Manual

3.3. Configuration 168

NET REMAP ROUTE Hosts with the GCB network remapping service enabled that would like to
use a GCB routing table GCB broker specify the full path to their routing table with this
setting. There is no default value if undefined.

MASTER WAITS FOR GCB BROKER A boolean value that defaults toTrue . This variable
determines the behavior of thecondormaster with GCB enabled. With no GCB bro-
ker working upon either the start up of thecondormaster, or once thecondormaster
has successfully communicated with a GCB broker, but the communication fails, if
MASTERWAITS FORGCBBROKERis True , thecondormasterwaits while attempting to
find a working GCB broker. With no GCB broker working upon the start up of thecon-
dor master, if MASTERWAITS FORGCBBROKERis False , thecondormasterfails and
exits, without restarting. Once thecondormasterhas successfully communicated with a GCB
broker, but the communication fails, ifMASTERWAITS FORGCBBROKERis False , the
condormasterkills all its children, exits, and restarts.

The set up task ofcondorglidein explicitly setsMASTERWAITS FORGCBBROKERto
False in the configuration file it produces.

3.3.7 Shared File System Configuration File Macros

These macros control how Condor interacts with various shared and network file systems. If you are
using AFS as your shared file system, be sure to read section 3.12.1 on Using Condor with AFS. For
information on submitting jobs under shared file systems, see section 2.5.3.

UID DOMAIN The UID DOMAINmacro is used to decide under which user to run jobs. If the
$(UID DOMAIN)on the submitting machine is different than the$(UID DOMAIN)on the
machine that runs a job, then Condor runs the job as the usernobody . For example, if the
submit machine has a$(UID DOMAIN)of flippy.cs.wisc.edu, and the machine where the job
will execute has a$(UID DOMAIN)of cs.wisc.edu, the job will run as usernobody , because
the two$(UID DOMAIN)s are not the same. If the$(UID DOMAIN) is the same on both
the submit and execute machines, then Condor will run the jobas the user that submitted the
job.

A further check attempts to assure that the submitting machine can not lie about its
UID DOMAIN. Condor compares the submit machine’s claimed value forUID DOMAINto
its fully qualified name. If the two do not end the same, then the submit machine is presumed
to be lying about itsUID DOMAIN. In this case, Condor will run the job as usernobody . For
example, a job submission to the Condor pool at the UW Madisonfrom flippy.example.com,
claiming aUID DOMAINof of cs.wisc.edu, will run the job as the usernobody .

Because of this verification,$(UID DOMAIN)must be a real domain name. At the Computer
Sciences department at the UW Madison, we set the$(UID DOMAIN) to be cs.wisc.edu to
indicate that whenever someone submits from a department machine, we will run the job as
the user who submits it.

Also seeSOFTUID DOMAINbelow for information about one more check that Condor per-
forms before running a job as a given user.

Condor Version 7.2.3 Manual

3.3. Configuration 169

A few details:

An administrator could setUID DOMAINto *. This will match all domains, but it is a gaping
security hole. It is not recommended.

An administrator can also leaveUID DOMAINundefined. This will force Condor to always
run jobs as usernobody . Running standard universe jobs as usernobody enhances security
and should cause no problems, because the jobs use remote I/Oto access all of their files.
However, if vanilla jobs are run as usernobody , then files that need to be accessed by the job
will need to be marked as world readable/writable so the usernobody can access them.

When Condor sends e-mail about a job, Condor sends the e-mailto user@$(UID DOMAIN).
If UID DOMAINis undefined, the e-mail is sent touser@submitmachinename .

TRUST UID DOMAIN As an added security precaution when Condor is about to spawna job, it
ensures that theUID DOMAINof a given submit machine is a substring of that machine’s
fully-qualified host name. However, at some sites, there maybe multiple UID spaces that
do not clearly correspond to Internet domain names. In thesecases, administrators may wish
to use names to describe the UID domains which are not substrings of the host names of
the machines. For this to work, Condor must not do this regular security check. If the
TRUSTUID DOMAINsetting is defined toTrue , Condor will not perform this test, and will
trust whateverUID DOMAINis presented by the submit machine when trying to spawn a job,
instead of making sure the submit machine’s host name matches theUID DOMAIN. When not
defined, the default isFalse , since it is more secure to perform this test.

SOFT UID DOMAIN A boolean variable that defaults toFalse when not defined. When Condor
is about to run a job as a particular user (instead of as usernobody), it verifies that the UID
given for the user is in the password file and actually matchesthe given user name. However,
under installations that do not have every user in every machine’s password file, this check
will fail and the execution attempt will be aborted. To causeCondor not to do this check, set
this configuration variable toTrue . Condor will then run the job under the user’s UID.

SLOTx USER The name of a user for Condor to use instead of user nobody, as part of a solu-
tion that plugs a security hole whereby a lurker process can prey on a subsequent job run
as user name nobody.x is an integer associated with slots. On Windows,SLOTx USER
will only work if the credential of the specified user is stored on the execute machine using
condorstore cred. See Section 3.6.11 for more information.

STARTER ALLOW RUNAS OWNER This is a boolean expression (evaluated with the job ad as the
target) that determines whether the job may run under the jobowner’s account (true) or
whether it will run asSLOTx USERor nobody (false). In Unix, this defaults to true. In
windows, it defaults to false. The job ClassAd may also contain an attributeRunAsOwner
which is logically ANDed with the starter’s boolean value. Under Unix, if the job does not
specify it, this attribute defaults to true. Under windows,it defaults to false. In Unix, if the
UidDomain of the machine and job do not match, then there is no possibility to run the job
as the owner anyway, so, in that case, this setting has no effect. See Section 3.6.11 for more
information.

DEDICATEDEXECUTE ACCOUNT REGEXP This is a regular expression (i.e. a string matching
pattern) that matches the account name(s) that are dedicated to running condor jobs on the

Condor Version 7.2.3 Manual

3.3. Configuration 170

execute machine and which will never be used for more than onejob at a time. The default
matches no account name. If you have configuredSLOTx USERto be adifferentaccount for
each Condor slot, and no non-condor processes will ever be run by these accounts, then this
pattern should match the names of allSLOTx USERaccounts. Jobs run under a dedicated
execute account are reliably tracked by Condor, whereas other jobs, may spawn processes
that Condor fails to detect. Therefore, a dedicated execution account provides more reliable
tracking of CPU usage by the job and it also guarantees that when the job exits, no “lurker”
processes are left behind. When the job exits, condor will attempt to kill all processes owned
by the dedicated execution account. Example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2
STARTER_ALLOW_RUNAS_OWNER = False
DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

You can tell if the starter is in fact treating the account as adedicated account, because it will
print a line such as the following in its log file:

Tracking process family by login "cndrusr1"

EXECUTE LOGIN IS DEDICATED This configuration setting is deprecated because it cannot
handle the case where some jobs run as dedicated accounts andsome do not. Use
DEDICATEDEXECUTEACCOUNTREGEXPinstead.

A boolean value that defaults toFalse . WhenTrue , Condor knows that all jobs are being
run by dedicated execution accounts (whether they are running as the job owner or as nobody
or asSLOTx USER). Therefore, when the job exits, all processes running under the same
account will be killed.

FILESYSTEMDOMAIN TheFILESYSTEMDOMAINmacro is an arbitrary string that is used to
decide if two machines (a submitting machine and an execute machine) share a file system.
Although the macro name contains the word “DOMAIN”, the macro is not required to be a
domain name. It often is a domain name.

Note that this implementation is not ideal: machines may share some file systems but not
others. Condor currently has no way to express this automatically. You can express the need
to use a particular file system by adding additional attributes to your machines and submit
files, similar to the example given in Frequently Asked Questions, section 7 on how to run
jobs only on machines that have certain software packages.

Note that if you do not set$(FILESYSTEM DOMAIN), Condor defaults to setting the
macro’s value to be the fully qualified host name of the local machine. Since each machine
will have a different$(FILESYSTEM DOMAIN), they will not be considered to have shared
file systems.

RESERVE AFS CACHE If your machine is running AFS and the AFS cache lives on the same
partition as the other Condor directories, and you want Condor to reserve the space that your
AFS cache is configured to use, set this macro toTrue . It defaults toFalse .

Condor Version 7.2.3 Manual

3.3. Configuration 171

USE NFS This macro influences how Condor jobs running in the standarduniverse access their
files. Condor will redirect the file I/O requests of standard universe jobs to be executed on
the machine which submitted the job. Because of this, as a Condor job migrates around the
network, the file system always appears to be identical to thefile system where the job was
submitted. However, consider the case where a user’s data files are sitting on an NFS server.
The machine running the user’s program will send all I/O overthe network to the machine
which submitted the job, which in turn sends all the I/O over the network a second time back
to the NFS file server. Thus, all of the program’s I/O is being sent over the network twice.

If this macro toTrue , then Condor will attempt to read/write files without redirecting
I/O back to the submitting machine if both the submitting machine and the machine run-
ning the job are both accessing the same NFS servers (if they are both in the same
$(FILESYSTEM DOMAIN) and in the same$(UID DOMAIN), as described above). The
result is I/O performed by Condor standard universe jobs is only sent over the network once.
While sending all file operations over the network twice might sound really bad, unless you
are operating over networks where bandwidth as at a very highpremium, practical experience
reveals that this scheme offers very little real performance gain. There are also some (fairly
rare) situations where this scheme can break down.

Setting$(USE NFS) to False is always safe. It may result in slightly more network traffic,
but Condor jobs are most often heavy on CPU and light on I/O. Italso ensures that a remote
standard universe Condor job will always use Condor’s remote system calls mechanism to
reroute I/O and therefore see the exact same file system that the user sees on the machine
where she/he submitted the job.

Some gritty details for folks who want to know: If the you set$(USE NFS) to True , and the
$(FILESYSTEM DOMAIN)of both the submitting machine and the remote machine about to
execute the job match, and the$(FILESYSTEM DOMAIN)claimed by the submit machine is
indeed found to be a subset of what an inverse look up to a DNS (domain name server) reports
as the fully qualified domain name for the submit machine’s IPaddress (this security measure
safeguards against the submit machine from lying),thenthe job will access files using a local
system call, without redirecting them to the submitting machine (with NFS). Otherwise, the
system call will get routed back to the submitting machine using Condor’s remote system call
mechanism. NOTE: When submitting a vanilla job,condorsubmitwill, by default, append
requirements to the Job ClassAd that specify the machine to run the job must be in the same
$(FILESYSTEM DOMAIN)and the same$(UID DOMAIN).

IGNORE NFS LOCK ERRORS When set toTrue , all errors related to file locking errors from
NFS are ignored. Defaults toFalse , not ignoring errors.

USE AFS If your machines have AFS, this macro determines whether Condor will use remote
system calls for standard universe jobs to send I/O requeststo the submit machine, or if it
should use local file access on the execute machine (which will then use AFS to get to the
submitter’s files). Read the setting above on$(USE NFS) for a discussion of why you might
want to use AFS access instead of remote system calls.

One important difference between$(USE NFS) and$(USE AFS) is the AFS cache. With
$(USE AFS) set toTrue , the remote Condor job executing on some machine will start
modifying the AFS cache, possibly evicting the machine owner’s files from the cache to make

Condor Version 7.2.3 Manual

3.3. Configuration 172

room for its own. Generally speaking, since we try to minimize the impact of having a Condor
job run on a given machine, we do not recommend using this setting.

While sending all file operations over the network twice might sound really bad, unless you
are operating over networks where bandwidth as at a very highpremium, practical experience
reveals that this scheme offers very little real performance gain. There are also some (fairly
rare) situations where this scheme can break down.

Setting$(USE AFS) to False is always safe. It may result in slightly more network traffic,
but Condor jobs are usually heavy on CPU and light on I/O.False ensures that a remote
standard universe Condor job will always see the exact same file system that the user on sees
on the machine where he/she submitted the job. Plus, it will ensure that the machine where the
job executes does not have its AFS cache modified as a result ofthe Condor job being there.

However, things may be different at your site, which is why the setting is there.

3.3.8 Checkpoint Server Configuration File Macros

These macros control whether or not Condor uses a checkpointserver. If you are using a check-
point server, this section describes the settings that the checkpoint server itself needs defined. A
checkpoint server is installed separately. It is not included in the main Condor binary distribution
or installation procedure. See section 3.8 on Installing a Checkpoint Server for details on installing
and running a checkpoint server for your pool.

NOTE: If you are setting up a machine to join the UW-Madison CS Department Condor pool,
youshouldconfigure the machine to use a checkpoint server, and use “condor-ckpt.cs.wisc.edu” as
the checkpoint server host (see below).

CKPT SERVER HOST The host name of a checkpoint server.

STARTER CHOOSES CKPT SERVER If this parameter isTrue or undefined on the submit ma-
chine, the checkpoint server specified by$(CKPT SERVERHOST) on the execute ma-
chine is used. If it isFalse on the submit machine, the checkpoint server specified by
$(CKPT SERVERHOST)on the submit machine is used.

CKPT SERVER DIR The checkpoint server needs this macro defined to the full path of the direc-
tory the server should use to store checkpoint files. Depending on the size of your pool and the
size of the jobs your users are submitting, this directory (and its subdirectories) might need to
store many Mbytes of data.

USE CKPT SERVER A boolean which determines if you want a given submit machineto
use a checkpoint server if one is available. If a checkpoint server isn’t available or
USECKPTSERVERis set to False, checkpoints will be written to the local$(SPOOL) di-
rectory on the submission machine.

MAX DISCARDEDRUN TIME If the shadow is unable to read a checkpoint file from the check-
point server, it keeps trying only if the job has accumulatedmore than this many seconds of
CPU usage. Otherwise, the job is started from scratch. Defaults to 3600 (1 hour). This setting
is only used if$(USE CKPTSERVER)is True .

Condor Version 7.2.3 Manual

3.3. Configuration 173

CKPT SERVER CHECK PARENT INTERVAL This is the number of seconds between checks to
see whether the parent of the checkpoint server (i.e. thecondormaster) has died. If the
parent has died, the checkpoint server shuts itself down. The default is 120 seconds. A setting
of 0 disables this check.

3.3.9 condormaster Configuration File Macros

These macros control thecondormaster.

DAEMON LIST This macro determines what daemons thecondormasterwill start and keep its
watchful eyes on. The list is a comma or space separated list of subsystem names (listed in
section 3.3.1). For example,

DAEMON_LIST = MASTER, STARTD, SCHEDD

NOTE: This configuration variable cannot be changed by usingcondorreconfigor by sending
a SIGHUP. To change this configuration variable, restart thecondormasterdaemon by using
condorrestart. Only then will the change take effect.

NOTE: On your central manager, your$(DAEMONLIST) will be different from your regular
pool, since it will include entries for thecondorcollectorandcondornegotiator.

DC DAEMON LIST This macro lists the daemons inDAEMONLIST which use the Condor Dae-
monCore library. Thecondormastermust differentiate between daemons that use Daemon-
Core and those that don’t so it uses the appropriate inter-process communication mechanisms.
This list currently includes all Condor daemons except the checkpoint server by default.

As of 7.2.1, you can append to the default DCDAEMON LIST list by specifying a “+” as the
first character in the DCDAEMON LIST definition. For example:

DAEMON_LIST = NEW_DAEMON
DC_DAEMON_LIST = +NEW_DAEMON

<SUBSYS> Once you have defined which subsystems you want thecondormasterto start, you
must provide it with the full path to each of these binaries. For example:

MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd

These are most often defined relative to the$(SBIN) macro.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

Condor Version 7.2.3 Manual

3.3. Configuration 174

DAEMONNAMEENVIRONMENT For each subsystem defined inDAEMONLIST , you
may specify changes to the environment that daemon is started with by setting
DAEMONNAMEENVIRONMENT, where DAEMONNAMEis the name of a daemon listed
in DAEMONLIST . It should use the same syntax for specifying the environment as the
environment specification in acondorsubmitfile (see page 797). For example, if you wish to
redefine theTMPandCONDORCONFIGenvironment variables seen by thecondorschedd,
you could place the following in the config file:

SCHEDD_ENVIRONMENT = "TMP=/new/value CONDOR_CONFIG=/special/config"

When thecondorscheddwas started by thecondormaster, it would see the specified values
of TMPandCONDORCONFIG.

<SUBSYS> ARGS This macro allows the specification of additional command line arguments for
any process spawned by thecondormaster. List the desired arguments using the same syn-
tax as the arguments specification in acondorsubmitsubmit file (see page 796), with one
exception: do not escape double-quotes when using the old-style syntax (this is for backward
compatibility). Set the arguments for a specific daemon withthis macro, and the macro will
affect only that daemon. Define one of these for each daemon the condormasteris control-
ling. For example, set$(STARTD ARGS) to specify any extra command line arguments to
thecondorstartd.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

PREEN In addition to the daemons defined in$(DAEMONLIST) , thecondormasteralso starts
up a special process,condorpreento clean out junk files that have been left laying around
by Condor. This macro determines where thecondormasterfinds thecondorpreenbinary.
Comment out this macro, andcondorpreenwill not run.

PREEN ARGS Controls howcondorpreenbehaves by allowing the specification of command-line
arguments. This macro works as$(<SUBSYS> ARGS)does. The difference is that you must
specify this macro forcondorpreenif you want it to do anything.condorpreentakes action
only because of command line arguments.-m means you want e-mail about filescondorpreen
finds that it thinks it should remove.-r means you wantcondorpreento actually remove these
files.

PREEN INTERVAL This macro determines how oftencondorpreenshould be started. It is defined
in terms of seconds and defaults to 86400 (once a day).

PUBLISH OBITUARIES When a daemon crashes, thecondormastercan send e-mail to the ad-
dress specified by$(CONDORADMIN) with an obituary letting the administrator know that
the daemon died, the cause of death (which signal or exit status it exited with), and (option-
ally) the last few entries from that daemon’s log file. If you want obituaries, set this macro to
True .

OBITUARY LOG LENGTH This macro controls how many lines of the log file are part of obituar-
ies. This macro has a default value of 20 lines.

Condor Version 7.2.3 Manual

3.3. Configuration 175

START MASTER If this setting is defined and set toFalse when thecondormasterstarts up, the
first thing it will do is exit. This appears strange, but perhaps you do not want Condor to
run on certain machines in your pool, yet the boot scripts foryour entire pool are handled by
a centralized This is an entry you would most likely find in a local configuration file, not a
global configuration file.

START DAEMONS This macro is similar to the$(START MASTER)macro described above.
However, thecondormasterdoes not exit; it does not start any of the daemons listed in the
$(DAEMONLIST) . The daemons may be started at a later time with acondoroncommand.

MASTER UPDATE INTERVAL This macro determines how often thecondormaster sends a
ClassAd update to thecondorcollector. It is defined in seconds and defaults to 300 (every 5
minutes).

MASTER CHECK NEW EXEC INTERVAL This macro controls how often thecondormaster
checks the timestamps of the running daemons. If any daemonshave been modified, the
master restarts them. It is defined in seconds and defaults to300 (every 5 minutes).

MASTER NEW BINARY DELAY Once thecondormasterhas discovered a new binary, this macro
controls how long it waits before attempting to execute the new binary. This delay exists
because thecondormastermight notice a new binary while it is in the process of being copied,
in which case trying to execute it yields unpredictable results. The entry is defined in seconds
and defaults to 120 (2 minutes).

SHUTDOWN FAST TIMEOUT This macro determines the maximum amount of time daemons are
given to perform their fast shutdown procedure before thecondormasterkills them outright.
It is defined in seconds and defaults to 300 (5 minutes).

MASTER SHUTDOWN<Name> A full path and file name of a program that thecondormasteris
to execute via the Unixexecl() call, or the similar Win32execl() call, instead of the
normal call toexit() . Multiple programs to execute may be defined with multiple entries,
each with a uniqueName. These macros have no affect on acondormasterunlesscon-
dor set shutdownis run. TheNamespecified as an argument to thecondorset shutdownpro-
gram must match theNameportion of one of theseMASTERSHUTDOWN<Name> macros;
if not, the condormasterwill log an error and ignore the command. If a match is found,
thecondormasterwill attempt to verify the program, and it will store the pathand program
name. When thecondormastershuts down, the program is then executed as described above.
The manual page forcondorset shutdownon page 781 contains details on the use of this
program.

MASTER BACKOFF CONSTANT and MASTER <name> BACKOFF CONSTANT When a dae-
mon crashes,condormasteruses an exponential back off delay before restarting it; seethe
discussion at the end of this section for a detailed discussion on how these parameters work
together. These settings define the constant value of the expression used to determine how
long to wait before starting the daemon again (and, effectively becomes the initial backoff
time). It is an integer in units of seconds, and defaults to 9 seconds.

$(MASTER<name> BACKOFFCONSTANT) is the daemon-specific form of
MASTERBACKOFFCONSTANT; if this daemon-specific macro is not defined for a
specific daemon, the non-daemon-specific value will used.

Condor Version 7.2.3 Manual

3.3. Configuration 176

MASTER BACKOFF FACTOR and MASTER <name> BACKOFF FACTOR When a daemon
crashes,condormaster uses an exponential back off delay before restarting it; seethe
discussion at the end of this section for a detailed discussion on how these parameters work
together. This setting is the base of the exponent used to determine how long to wait before
starting the daemon again. It defaults to 2 seconds.

$(MASTER<name> BACKOFFFACTOR) is the daemon-specific form of
MASTERBACKOFFFACTOR; if this daemon-specific macro is not defined for a spe-
cific daemon, the non-daemon-specific value will used.

MASTER BACKOFF CEILING and MASTER <name> BACKOFF CEILING When a daemon
crashes,condormasteruses an exponential back off delay before restarting it; seethe dis-
cussion at the end of this section for a detailed discussion on how these parameters work
together. This entry determines the maximum amount of time you want the master to wait be-
tween attempts to start a given daemon. (With 2.0 as the$(MASTERBACKOFFFACTOR),
1 hour is obtained in 12 restarts). It is defined in terms of seconds and defaults to 3600 (1
hour).

$(MASTER<name> BACKOFFCEILING) is the daemon-specific form of
MASTERBACKOFFCEILING ; if this daemon-specific macro is not defined for a spe-
cific daemon, the non-daemon-specific value will used.

MASTER RECOVER FACTOR and MASTER <name> RECOVER FACTOR A macro to set how
long a daemon needs to run without crashing before it is consideredrecovered. Once a dae-
mon has recovered, the number of restarts is reset, so the exponential back off returns to its
initial state. The macro is defined in terms of seconds and defaults to 300 (5 minutes).

$(MASTER<name> RECOVERFACTOR) is the daemon-specific form of
MASTERRECOVERFACTOR; if this daemon-specific macro is not defined for a spe-
cific daemon, the non-daemon-specific value will used.

When a daemon crashes,condormasterwill restart the daemon after a delay (a back off). The
length of this delay is based on how many times it has been restarted, and gets larger after each
crashes. The equation for calculating this backoff time is given by:

t = c + kn

wheret is the calculated time,c is the constant defined by$(MASTERBACKOFFCONSTANT), k

is the “factor” defined by$(MASTERBACKOFFFACTOR), andn is the number of restarts already
attempted (0 for the first restart, 1 for the next, etc.).

With default values, after the first crash, the delay would bet = 9 + 2.00, giving 10 seconds
(remember,n = 0). If the daemon keeps crashing, the delay increases.

For example, take the$(MASTERBACKOFFFACTOR)(which defaults to 2.0) to the power
the number of times the daemon has restarted, and add$(MASTERBACKOFFCONSTANT)(which
defaults to 9). Thus:

1st crash:n = 0, so: t = 9 + 20 = 9 + 1 = 10 seconds

2nd crash:n = 1, so: t = 9 + 21 = 9 + 2 = 11 seconds

Condor Version 7.2.3 Manual

3.3. Configuration 177

3rd crash:n = 2, so:t = 9 + 22 = 9 + 4 = 13 seconds

...

6th crash:n = 5, so: t = 9 + 25 = 9 + 32 = 41 seconds

...

9th crash:n = 8, so: t = 9 + 28 = 9 + 256 = 265 seconds

And, after the 13 crashes, it would be:

13th crash:n = 12, so: t = 9 + 212 = 9 + 4096 = 4105 seconds

This is bigger than the$(MASTERBACKOFFCEILING) , which defaults to 3600, so the dae-
mon would really be restarted after only 3600 seconds, not 4105. Thecondormastertries again
every hour (since the numbers would get larger and would always be capped by the ceiling). Even-
tually, imagine that daemon finally started and did not crash. This might happen if, for example,
an administrator reinstalled an accidentally deleted binary after receiving e-mail about the daemon
crashing. If it stayed alive for$(MASTERRECOVERFACTOR)seconds (defaults to 5 minutes),
the count of how many restarts this daemon has performed is reset to 0.

The moral of the example is that the defaults work quite well,and you probably will not want to
change them for any reason.

MASTER NAME Defines a unique name given for acondormasterdaemon on a machine. For
a condormasterrunning asroot , it defaults to the fully qualified host name. Whennot
running asroot , it defaults to the user that instantiates thecondormaster, concatenated
with an at symbol (@), concatenated with the fully qualified host name. If more than one
condormasteris running on the same host, then theMASTERNAMEfor eachcondormaster
must be defined to uniquely identify the separate daemons.

A defined MASTERNAME is presumed to be of the form
identifying-string@full.host.name . If the string does not include an@
sign, Condor appends one, followed by the fully qualified host name of the local machine.
The identifying-string portion may contain any alphanumeric ASCII characters or
punctuation marks, except the@sign. We recommend that the string does not contain the:
(colon) character, since that might cause problems with certain tools. Previous to Condor
7.1.1, when the string included an@sign, Condor replaced whatever followed the@sign with
the fully qualified host name of the local machine. Condor does not modify any portion of
the string, if it contains an@sign. This is useful for remote job submissions under the high
availability of the job queue.

If the MASTERNAMEsetting is used, and thecondormasteris configured to spawn acon-
dor schedd, the name defined withMASTERNAMEtakes precedence over theSCHEDDNAME
setting (see section 3.3.11 on page 199). Since Condor makesthe assumption that there

is only one instance of thecondorstartd running on a machine, theMASTERNAMEis not
automatically propagated to thecondorstartd. However, in situations where multiplecon-
dor startd daemons are running on the same host (for example, when usingcondorglidein),
theSTARTDNAMEshould be set to uniquely identify thecondorstartddaemons (this is done

Condor Version 7.2.3 Manual

3.3. Configuration 178

automatically in the case ofcondorglidein).

If a Condor daemon (master, schedd or startd) has been given aunique name, all Condor tools
that need to contact that daemon can be told what name to use via the-namecommand-line
option.

MASTER ATTRS This macro is described in section 3.3.5 as<SUBSYS>ATTRS.

MASTER DEBUG This macro is described in section 3.3.4 as<SUBSYS>DEBUG.

MASTER ADDRESS FILE This macro is described in section 3.3.5 as
<SUBSYS>ADDRESSFILE .

SECONDARYCOLLECTORLIST This macro has been removed as of Condor version 6.9.3. Use
theCOLLECTORHOST configuration variable, which may define a list ofcondorcollector
daemons.

ALLOW ADMIN COMMANDS If set to NO for a given host, this macro disables administrative com-
mands, such ascondorrestart, condoron, andcondoroff, to that host.

MASTER INSTANCE LOCK Defines the name of a file for thecondormasterdaemon to lock in
order to prevent multiplecondormasters from starting. This is useful when using shared
file systems like NFS which do not technically support locking in the case where the lock
files reside on a local disk. If this macro is not defined, the default file name will be
$(LOCK)/InstanceLock . $(LOCK) can instead be defined to specify the location of
all lock files, not just thecondormaster’s InstanceLock . If $(LOCK) is undefined, then
the master log itself is locked.

ADD WINDOWS FIREWALL EXCEPTION When set toFalse , the condormasterwill not au-
tomatically add Condor to the Windows Firewall list of trusted applications. Such trusted
applications can accept incoming connections without interference from the firewall. This
only affects machines running Windows XP SP2 or higher. The default isTrue .

WINDOWS FIREWALL FAILURE RETRY An integer value (default value is 60) that represents
the number of times thecondormasterwill retry to add firewall exceptions. When a Win-
dows machine boots up, Condor starts up by default as well. Under certain conditions, the
condormastermay have difficulty adding exceptions to the Windows Firewall because of a
delay in other services starting up. Examples of services that may possibly be slow are the
SharedAccess service, the Netman service, or the Workstation service. This configuration
variable allows administrators to set the number of times (once every 10 seconds) that the
condormasterwill retry to add firewall exceptions. A value of 0 means that Condor will retry
indefinitely.

USE PROCESS GROUPS A boolean value that defaults toTrue . WhenFalse , Condor daemons
on Unix machines willnot create new sessions or process groups. Condor uses processes
groups to help it track the descendants of processes it creates. This can cause problems when
Condor is run under another job execution system (e.g. Condor Glidein).

Condor Version 7.2.3 Manual

3.3. Configuration 179

3.3.10 condorstartd Configuration File Macros

NOTE: If you are running Condor on a multi-CPU machine, be sure to also read section 3.12.7 on
page 399 which describes how to set up and configure Condor on SMP machines.

These settings control general operation of thecondorstartd. Examples using these configura-
tion macros, as well as further explanation is found in section 3.5 on Configuring The Startd Policy.

START A boolean expression that, whenTrue , indicates that the machine is willing to start run-
ning a Condor job.STARTis considered when thecondornegotiatordaemon is considering
evicting the job to replace it with one that will generate a better rank for thecondorstartd
daemon, or a user with a higher priority.

SUSPEND A boolean expression that, whenTrue , causes Condor to suspend running a Condor
job. The machine may still be claimed, but the job makes no further progress, and Condor
does not generate a load on the machine.

PREEMPT A boolean expression that, whenTrue , causes Condor to stop a currently running job.

CONTINUE A boolean expression that, whenTrue , causes Condor to continue the execution of a
suspended job.

KILL A boolean expression that, whenTrue , causes Condor to immediately stop the execution
of a currently running job, without delay, and without taking the time to produce a checkpoint
(for a standard universe job).

PERIODIC CHECKPOINT A boolean expression that, whenTrue , causes Condor to initiate a
checkpoint of the currently running job. This setting applies to all standard universe jobs and
to vm universe jobs that have setvm checkpoint to True in the submit description file.

RANK A floating point value that Condor uses to compare potential jobs. A larger value for a
specific job ranks that job above others with lower values forRANK.

IS VALID CHECKPOINTPLATFORM A boolean expression that is logically ANDed with the
with the STARTexpression to limit which machines a standard universe job may continue
execution on once they have produced a checkpoint. The default expression is

IS_VALID_CHECKPOINT_PLATFORM =
(

((TARGET.JobUniverse == 1) == FALSE) ||

(
(MY.CheckpointPlatform =!= UNDEFINED) &&
(

(TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatf orm) ||
(TARGET.NumCkpts == 0)

)
)

)

Condor Version 7.2.3 Manual

3.3. Configuration 180

WANT SUSPEND A boolean expression that, whenTrue , tells Condor to evaluate theSUSPEND
expression.

WANT VACATE A boolean expression that, whenTrue , defines that a preempted Condor job is to
be vacated, instead of killed.

IS OWNER A boolean expression that defaults to being defined as

IS_OWNER = (START =?= FALSE)

Used to describe the state of the machine with respect to its use by its owner. Job ClassAd
attributes are not used in definingIS OWNER, as they would beUndefined .

STARTER This macro holds the full path to thecondorstarterbinary that thecondorstartdshould
spawn. It is normally defined relative to$(SBIN) .

POLLING INTERVAL When acondorstartdenters the claimed state, this macro determines how
often the state of the machine is polled to check the need to suspend, resume, vacate or kill
the job. It is defined in terms of seconds and defaults to 5.

UPDATE INTERVAL Determines how often thecondorstartd should send a ClassAd update to
thecondorcollector. Thecondorstartdalso sends update on any state or activity change, or
if the value of itsSTARTexpression changes. See section 3.5.5 oncondorstartdstates, sec-
tion 3.5.6 oncondorstartdActivities, and section 3.5.2 oncondorstartdSTARTexpression
for details on states, activities, and theSTARTexpression. This macro is defined in terms of
seconds and defaults to 300 (5 minutes).

MAXJOBRETIREMENTTIME An integer value representing the number of seconds a preempted
job will be allowed to run before being evicted. The default value of 0 (when the configuration
variable is not present) implements the expected policy that there is no retirement time. See
MAXJOBRETIREMENTTIMEin section 3.5.8 for further explanation.

CLAIM WORKLIFE If provided, this expression specifies the number of secondsafter which a
claim will stop accepting additional jobs. By default, oncethe negotiator gives a schedd a
claim to a slot, the schedd will keep running jobs on that slotas long as it has more jobs with
matching requirements, without returning the slot to the unclaimed state and renegotiating for
machines. OnceCLAIM WORKLIFEexpires, any existing job may continue to run as usual,
but once it finishes or is preempted, the claim is closed. Thismay be useful if you want to
force periodic renegotiation of resources without preemption having to occur. For example, if
you have some low-priority jobs which should never be interrupted with kill signals, you could
prevent them from being killed withMaxJobRetirementTime , but now high-priority jobs
may have to wait in line when they match to a machine that is busy running one of these
uninterruptible jobs. You can prevent the high-priority jobs from ever matching to such a
machine by using a rank expression in the job or in the negotiator’s rank expressions, but then
the low-priority claim will never be interrupted; it can keep running more jobs. The solution
is to useCLAIM WORKLIFEto force the claim to stop running additional jobs after a certain
amount of time. The default value forCLAIM WORKLIFEis -1, which is treated as an infinite

Condor Version 7.2.3 Manual

3.3. Configuration 181

claim worklife, so claims may be held indefinitely (as long asthey are not preempted and the
schedd does not relinquish them, of course). A value of 0 has the effect of not allowing more
than one job to run per claim, since it immediately expires after the first job starts running.

MAX CLAIM ALIVES MISSED Thecondorscheddsends periodic updates to eachcondorstartd
as a keep alive (see the description ofALIVE INTERVAL on page 197). If thecondorstartd
does not receive any keep alive messages, it assumes that something has gone wrong with the
condorscheddand that the resource is not being effectively used. Once this happens, thecon-
dor startd considers the claim to have timed out, it releases the claim,and starts advertising
itself as available for other jobs. Because these keep alivemessages are sent via UDP, they
are sometimes dropped by the network. Therefore, thecondorstartd has some tolerance for
missed keep alive messages, so that in case a few keep alives are lost, thecondorstartd will
not immediately release the claim. This setting controls how many keep alive messages can
be missed before thecondorstartdconsiders the claim no longer valid. The default is 6.

STARTD HAS BAD UTMP When thecondorstartd is computing the idle time of all the users of
the machine (both local and remote), it checks theutmp file to find all the currently active
ttys, and only checks access time of the devices associated with active logins. Unfortunately,
on some systems,utmp is unreliable, and thecondorstartdmight miss keyboard activity by
doing this. So, if yourutmp is unreliable, set this macro toTrue and thecondorstartdwill
check the access time on all tty and pty devices.

CONSOLE DEVICES This macro allows thecondorstartd to monitor console (keyboard and
mouse) activity by checking the access times on special filesin /dev . Activity on these files
shows up asConsoleIdle time in thecondorstartd’s ClassAd. Give a comma-separated
list of the names of devices considered the console, withoutthe /dev/ portion of the path
name. The defaults vary from platform to platform, and are usually correct.

One possible exception to this is on Linux, where we use “mouse” as one of the entries. Most
Linux installations put in a soft link from/dev/mouse that points to the appropriate device
(for example,/dev/psaux for a PS/2 bus mouse, or/dev/tty00 for a serial mouse
connected to com1). However, if your installation does not have this soft link, you will either
need to put it in (you will be glad you did), or change this macro to point to the right device.

Unfortunately, there are no such devices on Digital Unix (don’t be fooled by
/dev/keyboard0 ; the kernel does not update the access times on these devices), so this
macro is not useful in these cases, and we must use thecondorkbdd to get this information
by connecting to the X server.

STARTD JOB EXPRS When the machine is claimed by a remote user, thecondorstartdcan also
advertise arbitrary attributes from the job ClassAd in the machine ClassAd. List the attribute
names to be advertised. NOTE: Since these are already ClassAd expressions, do not do
anything unusual with strings. This setting defaults to “JobUniverse”.

STARTD ATTRS This macro is described in section 3.3.5 as<SUBSYS>ATTRS.

STARTD DEBUG This macro (and other settings related to debug logging in the condorstartd) is
described in section 3.3.4 as<SUBSYS>DEBUG.

Condor Version 7.2.3 Manual

3.3. Configuration 182

STARTD ADDRESS FILE This macro is described in section 3.3.5 as
<SUBSYS>ADDRESSFILE

STARTD SENDS ALIVES A boolean value that defaults toFalse , such that thecondorschedd
daemon sends keep alive signals to thecondorstartddaemon. WhenTrue , thecondorstartd
daemon sends keep alive signals to thecondorschedddaemon, reversing the direction. This
may be useful if thecondorstartddaemon is on a private network or behind a firewall.

STARTD SHOULD WRITE CLAIM ID FILE The condorstartd can be configured to write out
theClaimId for the next available claim on all slots to separate files. This boolean attribute
controls whether thecondorstartdshould write these files. The default value isTrue .

STARTD CLAIM ID FILE This macro controls what file names are used if the above
STARTDSHOULDWRITECLAIM ID FILE is true. By default, Condor will write the
ClaimId into a file in the$(LOG) directory called.startd claim id.slotX , where
X is the value ofSlotID , the integer that identifies a given slot on the system, or1 on a
single-slot machine. If you define your own value for this setting, you should provide a full
path, and Condor will automatically append the.slotX portion of the file name.

NUM CPUS An integer value, which can be used to lie to thecondorstartd daemon about how
many CPUs a machine has. When set, it overrides the value determined with Condor’s au-
tomatic computation of the number of CPUs in the machine. Lying in this way can allow
multiple Condor jobs to run on a single-CPU machine, by having that machine treated like an
SMP machine with multiple CPUs, which could have different Condor jobs running on each
one. Or, an SMP machine may advertise more slots than it has CPUs. However, lying in this
manner will hurt the performance of the jobs, since now multiple jobs will run on the same
CPU, and the jobs will compete with each other. The option is only meant for people who
specifically want this behavior and know what they are doing.It is disabled by default.

Note that this setting cannot be changed with a simple reconfigure, either by sending a
SIGHUP or by using thecondorreconfigcommand. To change this, restart thecondorstartd
daemon for the change to take effect. The command will be

condor_restart -startd

If lying about a given machine, this fact should probably be advertised in the machine’s
ClassAd by using theSTARTDATTRSsetting. This way, jobs submitted in the pool could
specify that they did or did not want to be matched with machines that were only really offer-
ing these fractional CPUs.

MAX NUM CPUS An integer value used as a ceiling for the number of CPUs detected by Condor on
a machine. This value is ignored ifNUMCPUSis set. If set to zero, there is no ceiling. If not
defined, the default value is zero, and thus there is no ceiling.

Note that this setting cannot be changed with a simple reconfigure, either by sending a
SIGHUP or by using thecondorreconfigcommand. To change this, restart thecondorstartd
daemon for the change to take effect. The command will be

condor_restart -startd

Condor Version 7.2.3 Manual

3.3. Configuration 183

COUNT HYPERTHREADCPUS This macro controls how Condor sees hyper threaded processors.
When set toTrue (the default), it includes virtual CPUs in the default valueof NUMCPUS.
On dedicated cluster nodes, counting virtual CPUs can sometimes improve total throughput
at the expense of individual job speed. However, counting them on desktop workstations can
interfere with interactive job performance.

MEMORY Normally, Condor will automatically detect the amount of physical memory available on
your machine. DefineMEMORYto tell Condor how much physical memory (in MB) your
machine has, overriding the value Condor computes automatically.

RESERVED MEMORY How much memory would you like reserved from Condor? By default,
Condor considers all the physical memory of your machine as available to be used by Condor
jobs. If RESERVEDMEMORYis defined, Condor subtracts it from the amount of memory it
advertises as available.

STARTD NAME Used to give an alternative value to theNameattribute in thecondorstartd’s
ClassAd. This esoteric configuration macro might be used in the situation where there are
two condorstartd daemons running on one machine, and each reports to the samecon-
dor collector. Different names will distinguish the two daemons. See the description of
MASTERNAMEin section 3.3.9 on page 177 for defaults and composition of valid Condor
daemon names.

RUNBENCHMARKS Specifies when to run benchmarks. When the machine is in the Unclaimed
state and this expression evaluates toTrue , benchmarks will be run. If RunBenchmarks
is specified and set to anything other thanFalse , additional benchmarks will be run when
thecondorstartd initially starts. To disable start up benchmarks, setRunBenchmarks to
False , or comment it out of the configuration file.

DedicatedScheduler A string that identifies the dedicated scheduler this machine is managed
by. Section 3.12.8 on page 409 details the use of a dedicated scheduler.

STARTD NOCLAIM SHUTDOWN The number of seconds to run without receiving a claim before
shutting Condor down on this machine. Defaults to unset, which means to never shut down.
This is primarily intended for condorglidein. Use in other situations is not recommended.

These macros control if thecondorstartddaemon should perform backfill computations when-
ever resources would otherwise be idle. See section 3.12.9 on page 412 on Configuring Condor for
Running Backfill Jobs for details.

ENABLE BACKFILL A boolean value that, whenTrue , indicates that the machine is willing to
perform backfill computations when it would otherwise be idle. This is not a policy expression
that is evaluated, it is a simpleTrue or False . This setting controls if any of the other
backfill-related expressions should be evaluated. The default is False .

BACKFILL SYSTEM A string that defines what backfill system to use for spawning and managing
backfill computations. Currently, the only supported valuefor this is"BOINC" , which stands
for the Berkeley Open Infrastructure for Network Computing. See http://boinc.berkeley.edu
for more information about BOINC. There is no default value,administrators must define this.

Condor Version 7.2.3 Manual

http://boinc.berkeley.edu

3.3. Configuration 184

START BACKFILL A boolean expression that is evaluated whenever a Condor resource is
in the Unclaimed/Idle state and theENABLEBACKFILL expression isTrue . If
STARTBACKFILL evaluates toTrue , the machine will enter the Backfill state and attempt
to spawn a backfill computation. This expression is analogous to theSTART expression
that controls when a Condor resource is available to run normal Condor jobs. The default
value isFalse (which means do not spawn a backfill job even if the machine is idle and
ENABLEBACKFILL expression isTrue). For more information about policy expressions
and the Backfill state, see section 3.5 beginning on page 252,especially sections 3.5.5, 3.5.6,
and 3.5.7.

EVICT BACKFILL A boolean expression that is evaluated whenever a Condor resource is in the
Backfill state which, whenTrue , indicates the machine should immediately kill the currently
running backfill computation and return to the Owner state. This expression is a way for
administrators to define a policy where interactive users ona machine will cause backfill jobs
to be removed. The default value isFalse . For more information about policy expressions
and the Backfill state, see section 3.5 beginning on page 252,especially sections 3.5.5, 3.5.6,
and 3.5.7.

These macros only apply to thecondorstartd daemon when it is running on an SMP machine.
See section 3.12.7 on page 399 on Configuring The Startd for SMP Machines for details.

STARTD RESOURCE PREFIX A string which specifies what prefix to give the unique Condor
resources that are advertised on SMP machines. Previously,Condor used the termvirtual
machineto describe these resources, so the default value for this setting was “vm”. However,
to avoid confusion with other kinds of virtual machines (theones created using tools like
VMware or Xen), the oldvirtual machineterminology has been changed, and we now use
the termslot. Therefore, the default value of this prefix is now “slot”. Ifsites want to keep
using “vm”, or prefer something other “slot”, this setting enables sites to define what string
thecondorstartdwill use to name the individual resources on an SMP machine.

SLOTS CONNECTEDTO CONSOLE An integer which indicates how many of the machine slots
thecondorstartd is representing should be ”connected” to the console (in other words, notice
when there’s console activity). This defaults to all slots (N in a machine with N CPUs).

SLOTS CONNECTEDTO KEYBOARD An integer which indicates how many of the machine slots
thecondorstartd is representing should be ”connected” to the keyboard (for remote tty activ-
ity, as well as console activity). Defaults to 1.

DISCONNECTEDKEYBOARD IDLE BOOST If there are slots not connected to either the key-
board or the console, the corresponding idle time reported will be the time since thecon-
dor startd was spawned, plus the value of this macro. It defaults to 1200seconds (20 min-
utes). We do this because if the slot is configured not to care about keyboard activity, we want
it to be available to Condor jobs as soon as thecondorstartd starts up, instead of having to
wait for 15 minutes or more (which is the default time a machine must be idle before Condor
will start a job). If you do not want this boost, set the value to 0. If you change your START
expression to require more than 15 minutes before a job starts, but you still want jobs to start
right away on some of your SMP nodes, increase this macro’s value.

Condor Version 7.2.3 Manual

3.3. Configuration 185

STARTD SLOT ATTRS The list of ClassAd attribute names that should be shared across all
slots on the same machine. This setting was formerly know asSTARTDVMATTRS or
STARTDVMEXPRS (before version 6.9.3). For each attribute in the list, the attribute’s
value is taken from each slot’s machine ClassAd and placed into the machine ClassAd of all
the other slots within the machine. For example, if the configuration file for a 2-slot machine
contains

STARTD_SLOT_ATTRS = State, Activity, EnteredCurrentActi vity

then the machine ClassAd for both slots will contain attributes that will be of the form:

slot1_State = "Claimed"
slot1_Activity = "Busy"
slot1_EnteredCurrentActivity = 1075249233
slot2_State = "Unclaimed"
slot2_Activity = "Idle"
slot2_EnteredCurrentActivity = 1075240035

The following settings control the number of slots reportedfor a given SMP host, and what
attributes each one has. They are only needed if you do not want to have an SMP machine report to
Condor with a separate slot for each CPU, with all shared system resources evenly divided among
them. Please read section 3.12.7 on page 400 for details on how to properly configure these settings
to suit your needs.

NOTE: You can only change the number of each type of slot thecondorstartd is reporting with
a simple reconfig (such as sending a SIGHUP signal, or using the condorreconfigcommand). You
cannot change the definition of the different slot types witha reconfig. If you change them, you
must restart thecondorstartd for the change to take effect (for example, usingcondor restart
-startd).

NOTE: Prior to version 6.9.3, any settings that included the term“slot” used to use “virtual
machine” or “vm”. If you’re looking for information about one of these older settings, search for
the corresponding attribute names using “slot”, instead.

MAX SLOT TYPES The maximum number of different slot types. Note: this is themaximum
number of differenttypes, not of actual slots. Defaults to 10. (You should only need tochange
this setting if you define more than 10 separate slot types, which would be pretty rare.)

SLOT TYPE <N> This setting defines a given slot type, by specifying what part of each shared
system resource (like RAM, swap space, etc) this kind of slotgets. This setting hasno effect
unless you also defineNUMSLOTSTYPE <N>. N can be any integer from 1 to the value of
$(MAX SLOT TYPES), such asSLOT TYPE 1. The format of this entry can be somewhat
complex, so please refer to section 3.12.7 on page 400 for details on the different possibilities.

SLOT TYPE <N> PARTITIONABLE A boolean variable that defaults toFalse . WhenTrue ,
this slot permits dynamic provisioning, as specified in section 3.12.7.

Condor Version 7.2.3 Manual

3.3. Configuration 186

NUM SLOTS TYPE <N> This macro controls how many of a given slot type are actuallyreported
to Condor. There is no default.

NUM SLOTS If your SMP machine is being evenly divided, and the slot typesettings described
above are not being used, this macro controls how many slots will be reported. The default
is one slot for each CPU. This setting can be used to reserve some CPUs on an SMP which
would not be reported to the Condor pool. You cannot use this parameter to make Condor
advertise more slots than there are CPUs on the machine. To dothat, useNUMCPUS.

ALLOW VM CRUFT A boolean value that Condor sets and uses internally, currently defaulting to
True . WhenTrue , Condor looks for configuration variables named with the previously
used stringVMafter searching unsuccessfully for variables named with the currently used
string SLOT. WhenFalse , Condor doesnot look for variables named with the previously
used stringVMafter searching unsuccessfully for the stringSLOT.

The following macros describe thecron capabilities of Condor. Thecron mechanism is used to
run executables (called modules) directly from thecondorstartddaemon. The output from modules
is incorporated into the machine ClassAd generated by thecondorstartd. These capabilities are used
in Hawkeye, but can be used in other situations as well.

These configuration macros are divided into three sets. The three sets occurred as the function-
ality and usage of Condor’scron capabilities evolved. The first set applies to both new and older
macros and syntax. The second set applies to the new macros and syntax. The third set applies only
to the older (and outdated) macros and syntax.

This first set of configuration macros applies to both new and older macros and syntax.

STARTD CRON NAME Defines a logical name to be used in the formation of related configura-
tion macro names. While not required, this macro makes othermacros more readable and
maintainable. A common example is

STARTD_CRON_NAME = HAWKEYE

This example allows the naming of other related macros to contain the string"HAWKEYE"in
their name.

STARTD CRON CONFIG VAL This configuration variable can be used to specify thecon-
dor configval program which the modules (jobs) should use to get configuration information
from the daemon. If this is provided, a environment variableby the same name with the same
value will be passed to all modules.

If STARTDCRONNAMEis defined, then this configuration macro name is changed from
STARTDCRONCONFIGVAL to $(STARTD CRONNAME)CONFIGVAL. Example:

HAWKEYE_CONFIG_VAL = /usr/local/condor/bin/condor_con fig_val

Condor Version 7.2.3 Manual

3.3. Configuration 187

STARTD CRON AUTOPUBLISH Optional setting that determines if thecondorstartd should au-
tomatically publish a new update to thecondorcollectorafter any of the cron modules pro-
duce output. Beware that enabling this setting can greatly increase the network traffic in a
Condor pool, especially when many modules are executed, or if the period in which they run
is short. There are three possible (case insensitive) values for this setting:

Never This default value causes thecondorstartd to not automatically publish updates
based on any cron modules. Instead, updates rely on the usualbehavior for sending
updates, which is periodic, based on theUPDATEINTERVAL configuration setting, or
whenever a given slot changes state.

Always Causes thecondorstartd to always send a new update to thecondorcollector
whenever any module exits.

If Changed Causes thecondorstartd to only send a new update to thecondorcollector
if the output produced by a given module is different than theprevious output of the
same module. The only exception is theLastUpdate attribute (automatically set for
all cron modules to be the timestamp when the module last ran), which is ignored when
STARTDCRONAUTOPUBLISHis set toIf_Changed .

Beware thatSTARTDCRONAUTOPUBLISHdoes not honor theSTARTDCRONNAME
setting described above. Even if STARTDCRONNAME is defined,
STARTDCRONAUTOPUBLISHwill have the same name.

The following second set of configuration macros applies only to the new macros and syntax.
This set is to be used for all new applications.

STARTD CRON JOBLIST This configuration variable is defined by a white space separated list
of job names (called modules) to run. Each of these is the logical name of the module. This
name must be unique (no two modules may have the same name).

If STARTDCRONNAMEis defined, then this configuration macro name is changed from
STARTDCRONJOBLIST to $(STARTD CRONNAME)JOBLIST .

STARTD CRON <ModuleName>PREFIX Specifies a string which is prepended by Condor to
all attribute names that the module generates. For example,if a prefix is “xyz ”, and an
individual attribute is named “abc”, the resulting attribute would be “xyzabc”. Although it
can be quoted, the prefix can contain only alpha-numeric characters.

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> PREFIX to
$(STARTD CRONNAME)<ModuleName> PREFIX.

STARTD CRON <ModuleName>EXECUTABLE Used to specify the full path to the executable
to run for this module. Note that multiple modules may specify the same executable (although
they need to have different names).

If STARTDCRONNAME is defined, then this configuration macro name
is changed from STARTDCRON<ModuleName> EXECUTABLE to
$(STARTD CRONNAME)<ModuleName> EXECUTABLE.

Condor Version 7.2.3 Manual

3.3. Configuration 188

STARTD CRON <ModuleName>PERIOD The period specifies time intervals at which the mod-
ule should be run. For periodic modules, this is the time interval that passes between starting
the execution of the module. The value may be specified in seconds (append value with the
character ’s’), in minutes (append value with the character’m’), or in hours (append value
with the character ’h’). As an example, 5m starts the execution of the module every five min-
utes. If no character is appended to the value, seconds are used as a default. For “Wait For
Exit” mode, the value has a different meaning; in this case the period specifies the length of
time after the module ceases execution before it is restarted. The minimum valid value of the
period is 1 second.

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> PERIOD to
$(STARTD CRONNAME)<ModuleName> PERIOD.

STARTD CRON <ModuleName>MODE Used to specify the “Mode” in which the module oper-
ates. Legal values are “WaitForExit” and “Periodic” (the default).

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> MODE to
$(STARTD CRONNAME)<ModuleName> MODE.

The default “Periodic” mode is used for most modules. In thismode, the module is expected
to be started by thecondorstartddaemon, gather and publish its data, and then exit.

The “WaitForExit” mode is used to specify a module which runsin the “Wait For Exit” mode.
In this mode, thecondorstartd daemon interprets the “period” differently. In this case, it
refers to the amount of time to wait after the module exits before restarting it. With a value of
1, the module is kept running nearly continuously.

In general, “Wait For Exit” mode is for modules that produce aperiodic stream of updated
data, but it can be used for other purposes, as well.

STARTD CRON <ModuleName>RECONFIG The “ReConfig” macro is used to specify whether
a module can handle HUP signals, and should be sent a HUP signal when thecondorstartd
daemon is reconfigured. The module is expected to reread its configuration at that time. A
value of “True” enables this setting, and “False” disables it.

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> RECONFIG to
$(STARTD CRONNAME)<ModuleName> RECONFIG.

STARTD CRON <ModuleName>KILL The “Kill” macro is applicable on for modules running
in the “Periodic” mode. Possible values are “True” and “False” (the default).

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> KILL to
$(STARTD CRONNAME)<ModuleName> KILL .

This macro controls the behavior of thecondorstartd when it detects that the module’s ex-
ecutable is still running when it is time to start the module for a run. If enabled, thecon-
dor startdwill kill and restart the process in this condition. If not enabled, the existing process
is allowed to continue running.

Condor Version 7.2.3 Manual

3.3. Configuration 189

STARTD CRON <ModuleName>ARGS The command line arguments to pass to the module to
be executed.

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> ARGS to
$(STARTD CRONNAME)<ModuleName> ARGS.

STARTD CRON <ModuleName>ENV The environment string to pass to the module. The syntax
is the same as that ofDAEMONNAMEENVIRONMENTin 3.3.9.

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> ENV to
$(STARTD CRONNAME)<ModuleName> ENV.

STARTD CRON <ModuleName>CWD The working directory in which to start the module.

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> CWD to
$(STARTD CRONNAME)<ModuleName> CWD.

STARTD CRON <ModuleName>OPTIONS A colon separated list of options. Not all combina-
tions of options make sense; when a nonsense combination is listed, the last one in the list is
followed.

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> OPTIONS to
$(STARTD CRONNAME)<ModuleName> OPTIONS.

• The “WaitForExit” option enables the “Wait For Exit” mode (see above).

• The “ReConfig” option enables the “Reconfig” setting (see above).

• The “NoReConfig” option disables the “Reconfig” setting (see above).

• The “Kill” option enables the “Kill” setting (see above).

• The “NoKill” option disables the “Kill” setting (see above).

Here is a complete configuration example that uses Hawkeye.

Hawkeye Job Definitions
STARTD_CRON_NAME = HAWKEYE

Job 1
HAWKEYE_JOBLIST = job1
HAWKEYE_job1_PREFIX = prefix_
HAWKEYE_job1_EXECUTABLE = $(MODULES)/job1
HAWKEYE_job1_PERIOD = 5m
HAWKEYE_job1_MODE = WaitForExit
HAWKEYE_job1_KILL = false
HAWKEYE_job1_ARGS =-foo -bar
HAWKEYE_job1_ENV = xyzzy=somevalue

Condor Version 7.2.3 Manual

3.3. Configuration 190

Job 2
HAWKEYE_JOBLIST = $(HAWKEYE_JOBLIST) job2
HAWKEYE_job2_PREFIX = prefix_
HAWKEYE_job2_EXECUTABLE = $(MODULES)/job2
HAWKEYE_job2_PERIOD = 1h
HAWKEYE_job2_ENV = lwpi=somevalue

The following third set of configuration macros applies onlyto older macros and syntax. This
set is documented for completeness and backwards compatibility. Do not use these configuration
macros for any new application. Future releases of Condor may disable the use of this set.

STARTD CRON JOBS The list of the modules to execute. In Hawkeye, this is usually named
HAWKEYE JOBS. This configuration variable is defined by a white space or newline sepa-
rated list of jobs (called modules) to run, where each moduleis specified using the format

modulename:prefix:executable:period[:options]

Each of these fields can be surrounded by matching quote characters (single quote or double
quote, but they must match). This allows colon and white space characters to be specified.
For example, the following specifies an executable name witha colon and a space in it:

foo:foo_:"c:/some dir/foo.exe":10m

These individual fields are described below:

• modulename The logical name of the module. This must be unique (no two modules
may have the same name). SeeSTARTDCRONJOBLIST

• prefix SeeSTARTDCRON<ModuleName> PREFIX

• executable SeeSTARTDCRON<ModuleName> EXECUTABLE

• period SeeSTARTDCRON<ModuleName> PERIOD

• Several options are available. Using more than one of theseoptions for one mod-
ule does not make sense. If this happens, the last one in the list is followed. See
STARTDCRON<ModuleName> OPTIONS

– The “Continuous” option is used to specify a module which runs in continuous
mode (as described above). See the “WaitForExit” and “ReConfig” options which
replace “Continuous”.
This option is now deprecated, and its functionality has been replaced by the new
“WaitForExit” and “ReConfig” options, which together implement the capabilities
of “Continuous”. This option will be removed from a future version of Condor.

– The “WaitForExit” option
See the discussion of “WaitForExit” inSTARTDCRON<ModuleName> OPTIONS
above.

Condor Version 7.2.3 Manual

3.3. Configuration 191

– The “ReConfig” option
See the discussion of “ReConfig inSTARTDCRON<ModuleName> OPTIONS
above.

– The ‘NoReConfig” option
See the discussion of “NoReConfig inSTARTDCRON<ModuleName> OPTIONS
above.

– The “Kill” option
See the discussion of “Kill” inSTARTDCRON<ModuleName> OPTIONS
above.

– The “NoKill” option
See the discussion of “NoKill” inSTARTDCRON<ModuleName> OPTIONS
above.

NOTE: The configuration file parsing logic will strip white space from the beginning and end
of continuation lines. Thus, a job list like below will be misinterpreted and will not work as
expected:

Hawkeye Job Definitions
HAWKEYE_JOBS =\

JOB1:prefix_:$(MODULES)/job1:5m:nokill\
JOB2:prefix_:$(MODULES)/job1_co:1h

HAWKEYE_JOB1_ARGS =-foo -bar
HAWKEYE_JOB1_ENV = xyzzy=somevalue
HAWKEYE_JOB2_ENV = lwpi=somevalue

Instead, write this as below:

Hawkeye Job Definitions
HAWKEYE_JOBS =

Job 1
HAWKEYE_JOBS = $(HAWKEYE_JOBS) JOB1:prefix_:$(MODULES) /job1:5m:nokill
HAWKEYE_JOB1_ARGS =-foo -bar
HAWKEYE_JOB1_ENV = xyzzy=somevalue

Job 2
HAWKEYE_JOBS = $(HAWKEYE_JOBS) JOB2:prefix_:$(MODULES) /job2:1h
HAWKEYE_JOB2_ENV = lwpi=somevalue

The following macros control the optional computation of resource availability statistics in the
condorstartd.

STARTD COMPUTE AVAIL STATS A boolean that determines if thecondorstartdcomputes re-
source availability statistics. The default is False.

If STARTDCOMPUTEAVAIL STATS = True, thecondorstartd will define the following
ClassAd attributes for resources:

Condor Version 7.2.3 Manual

3.3. Configuration 192

AvailTime The proportion of the time (between 0.0 and 1.0) that this resource has been in
a state other than Owner.

LastAvailIntervalThe duration (in seconds) of the last period between Owner states.

The following attributes will also be included if the resource is not in the Owner state:

AvailSince The time at which the resource last left the Owner state. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

AvailTimeEstimateBased on past history, an estimate of how long the current period
between Owner states will last.

STARTD AVAIL CONFIDENCE A floating point number representing the confidence level of the
condorstartd daemon’s AvailTime estimate. By default, the estimate is based on the 80th
percentile of past values (that is, the value is initially set to 0.8).

STARTD MAX AVAIL PERIOD SAMPLES An integer that limits the number of samples of past
available intervals stored by thecondorstartd to limit memory and disk consumption. Each
sample requires 4 bytes of memory and approximately 10 bytesof disk space.

The following configuration variables support java universe jobs.

JAVA The full path to the Java interpreter (the Java Virtual Machine).

JAVA MAXHEAP ARGUMENT An incomplete command line argument to the Java interpreter(the
Java Virtual Machine) to specify the switch name for the Maxheap Argument. Condor uses it
to construct the maximum heap size for the Java Virtual Machine. For example, the value for
the Sun JVM is-Xmx.

JAVA CLASSPATHARGUMENT The command line argument to the Java interpreter (the Java Vir-
tual Machine) that specifies the Java Classpath. Classpath is a Java-specific term that denotes
the list of locations (.jar files and/or directories) where the Java interpreter can look for the
Java class files that a Java program requires.

JAVA CLASSPATHSEPARATOR The single character used to delimit constructed entries inthe
Classpath for the given operating system and Java Virtual Machine. If not defined, the oper-
ating system is queried for its default Classpath separator.

JAVA CLASSPATHDEFAULT A list of path names to.jar files to be added to the Java Class-
path by default. The comma and/or space character delimits list entries.

JAVA EXTRA ARGUMENTS A list of additional arguments to be passed to the Java executable.

These macros control the system of job hooks invoked by thecondorstartd to optionally fetch
work. See section 4.4 on page 460 on “Job Hooks” for more details.

Condor Version 7.2.3 Manual

3.3. Configuration 193

SLOTN JOB HOOK KEYWORD The keyword used to define which set of hooks a particu-
lar compute slot should invoke. Note that the “N” in “SLOTN” should be replaced
with the slot identification number, for example, on slot1, this setting would be called
[SLOT1 JOB HOOKKEYWORD. There is no default keyword. Sites that wish to use these
job hooks must explicitly define the keyword (and the corresponding hook paths).

STARTD JOB HOOK KEYWORD The keyword used to define which set of hooks a particularcon-
dor startd should invoke. This setting is only used if a slot-specific keyword is not defined
for a given compute slot. There is no default keyword. Sites that wish to use these job hooks
must explicitly define the keyword (and the corresponding hook paths).

HOOK FETCH WORK The full path to the program to invoke whenever thecondorstartd wants to
fetch work. The actual configuration setting must be prefixedwith a hook keyword. There is
no default.

HOOK REPLY CLAIM The full path to the program to invoke whenever thecondorstartdfinishes
fetching a job and decides what to do with it. The actual configuration setting must be prefixed
with a hook keyword. There is no default.

HOOK EVICT CLAIM The full path to the program to invoke whenever thecondorstartdneeds to
evict a fetched claim. The actual configuration setting mustbe prefixed with a hook keyword.
There is no default.

FetchWorkDelay An expression that defines the number of seconds that thecondorstartd
should wait after an invocation ofHOOKFETCHWORKcompletes before the hook should
be invoked again. The expression is evaluated in the contextof the slot ClassAd, and the
ClassAd of the currently running job (if any). The expression must evaluate to an integer. If
not defined, thecondorstartdwill wait 300 seconds (five minutes) between attempts to fetch
work. For more information about this expression, see section 4.4.1 on page 465.

These macros control the power management capabilities of thecondorstartd to optionally put
the machine in to a low power state. See section 3.15 on page 426 on Power Management for more
details.

HIBERNATECHECK INTERVAL An integer number of seconds that determines how often the
condorstartd checks to see if the machine is ready to enter a low power state. The default
value is 0, which disables the check. If not 0, theHIBERNATEexpression is evaluated within
the context of each slot at the given interval. If used, a value 300 (5 minutes) is recommended.

As a special case, the interval is ignored when the machine has just returned from a low power
state (excluding shutdown (5)). In order to avoid machines from volleying between a running
state and a low power state, an hour of uptime is enforced after a machine has been woken.
After the hour has passed, regular checks resume.

HIBERNATE An string expression that represents lower power state. When this state name evalu-
ates to a valid non-“NONE” state (see below), causes Condor to put the machine into a low
power state given by the evaluation of the expression. The following names are supported
(and are not case sensitive):

Condor Version 7.2.3 Manual

3.3. Configuration 194

”NONE”, ”0”: No-op: do not enter a low power state

”S1”, ”1”, ”STANDBY”, ”SLEEP”: On Windows, Sleep (standby)

”S2”, ”2”: On Windows, Sleep (standby)

”S3”, ”3”, ”RAM”, ”MEM”: Sleep (standby)

”S4”, ”4”, ”DISK”, ”HIBERNATE”: Hibernate

”S5”, ”5”, ”SHUTDOWN”: Shutdown (soft-off)

The HIBERNATEexpression is written in terms of the S-states as defined in the Advanced
Configuration and Power Interface (ACPI) specification. TheS-states take the form Sn, where
n is an integer in the range0 to 5, inclusive. The number that results from evaluating the
expression determines which S-state to enter. Then from Sn notation was adopted because at
this junction in time it appears to be the standard naming scheme for power states on several
popular Operating Systems, including various flavors of Windows and Linux distributions.
The other strings (“RAM”, “DISK”, etc.) are provided for ease of configuration.

Since this expression is evaluated in the context of each slot on the machine, any one slot
has veto power over the other slots. If the evaluation ofHIBERNATEin one slot evaluates
to “NONE” or “0”, then the machine will not be placed into a lowpower state. On the other
hand, if all slots evaluate to a non-zero value, but differ invalue, then the largest value is used
as the representative power state.

Strings that do not match any in the table above are treated as“NONE”.

LINUX HIBERNATIONMETHOD A string that can be used to override the default search used by
Condor on Linux platforms to detect the hibernation method to use. The default behavior
orders its search with:

1. Detect and use thepm-utilscommand line tools. The corresponding string is defined
with "pm-utils" .

2. Detect and use the directory in the virtual file system/sys/power . The corresponding
string is defined with"/sys" .

3. Detect and use the directory in the virtual file system/proc/ACPI . The corresponding
string is defined with"/proc" .

To override this ordered search behavior, and force the use of one particular method, set
LINUX HIBERNATIONMETHODto one of the defined strings.

OFFLINE LOG The full path and file name of a file that stores machine ClassAds for every hi-
bernating machine. This forms a persistent storage of theseClassAds, in case thecon-
dor collectordaemon crashes.

To avoid condorpreen removing this log, place it in a directory other than the directory
defined by$(SPOOL) . Alternatively, if this log file is to go in the directory defined by
$(SPOOL) , add the file to the list given byVALID SPOOLFILES .

OFFLINE EXPIRE ADS AFTER An integer number of seconds specifying the lifetime of the per-
sistent machine ClassAd representing a hibernating machine. Defaults to the largest 32-bit
integer.

Condor Version 7.2.3 Manual

3.3. Configuration 195

3.3.11 condorschedd Configuration File Entries

These macros control thecondorschedd.

SHADOW This macro determines the full path of thecondorshadowbinary that thecondorschedd
spawns. It is normally defined in terms of$(SBIN) .

START LOCAL UNIVERSE A boolean value that defaults toTrue . The condorschedduses
this macro to determine whether to start alocal universe job. At intervals determined by
SCHEDDINTERVAL, the condorschedddaemon evaluates this macro for each idlelocal
universe job that it has. For each job, if theSTARTLOCALUNIVERSEmacro isTrue , then
the job’sRequirements expression is evaluated. If both conditions are met, then the job
is allowed to begin execution.

The following example only allows 10local universe jobs to execute concurrently. The at-
tributeTotalLocalJobsRunning is supplied bycondorschedd’s ClassAd:

START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 10

STARTER LOCAL The complete path and executable name of thecondorstarter to run for local
universe jobs. This variable’s value is defined in the initial configuration provided with Condor
as

STARTER_LOCAL = $(SBIN)/condor_starter

This variable would only be modified or hand added into the configuration for a pool to be
upgraded from one running a version of Condor that existed before thelocal universe to one
that includes thelocal universe, but without utilizing the newer, provided configuration files.

START SCHEDULERUNIVERSE A boolean value that defaults toTrue . The condorschedd
uses this macro to determine whether to start ascheduleruniverse job. At intervals deter-
mined bySCHEDDINTERVAL, the condorschedddaemon evaluates this macro for each
idle scheduleruniverse job that it has. For each job, if theSTARTSCHEDULERUNIVERSE
macro isTrue , then the job’sRequirements expression is evaluated. If both conditions
are met, then the job is allowed to begin execution.

The following example only allows 10scheduleruniverse jobs to execute concurrently. The
attributeTotalSchedulerJobsRunning is supplied bycondorschedd’s ClassAd:

START_SCHEDULER_UNIVERSE = TotalSchedulerJobsRunning < 10

MAX JOBS RUNNING This macro limits the number of processes spawned by a givencon-
dor schedd, for all job universes except the grid universe. See section2.4.1. This includes,
but is not limited tocondorshadowprocesses, and scheduler universe processes, including
condordagman. The actual number ofcondorshadows may be less if you have reached your
$(RESERVEDSWAP)limit. This macro has a default value of 200.

Condor Version 7.2.3 Manual

3.3. Configuration 196

MAX JOBS SUBMITTED This integer value limits the number of jobs permitted in acon-
dor schedddaemon’s queue. Submission of a new cluster of jobs fails, ifthe total number
of jobs would exceed this limit. The default value for this variable is the largest positive
integer value.

MAX SHADOW EXCEPTIONS This macro controls the maximum number of times thatcon-
dor shadowprocesses can have a fatal error (exception) before thecondorscheddwill re-
linquish the match associated with the dying shadow. Defaults to 5.

MAX PENDING STARTD CONTACTS An integer value that limits the number of simultaneous
connection attempts by thecondorscheddwhen it is requesting claims from one or more
condorstartddaemons. The intention is to protect thecondorscheddfrom being overloaded
by authentication operations. The default value is 0. The special value 0 indicates no limit.

MAX CONCURRENTDOWNLOADS This specifies the maximum number of simultaneous transfers
of output files from execute machines to the submit machine. The limit applies to all jobs
submitted from the samecondorschedd. The default is 10. A setting of 0 means unlimited
transfers. This limit currently does not apply to grid universe jobs or standard universe jobs,
and it also does not apply to streaming output files. When the limit is reached, additional
transfers will queue up and wait before proceeding.

MAX CONCURRENTUPLOADS This specifies the maximum number of simultaneous transfersof
input files from the submit machine to execute machines. The limit applies to all jobs submit-
ted from the samecondorschedd. The default is 10. A setting of 0 means unlimited transfers.
This limit currently does not apply to grid universe jobs or standard universe jobs. When the
limit is reached, additional transfers will queue up and wait before proceeding.

SCHEDD QUERY WORKERS This specifies the maximum number of concurrent sub-processes that
thecondorscheddwill spawn to handle queries. The setting is ignored in Windows. In Unix,
the default is 3. If the limit is reached, the next query will be handled in thecondorschedd’s
main process.

SCHEDD INTERVAL This macro determines the maximum interval for both how often thecon-
dor scheddsends a ClassAd update to thecondorcollectorand how often thecondorschedd
daemon evaluates jobs. It is defined in terms of seconds and defaults to 300 (every 5 minutes).

SCHEDD INTERVAL TIMESLICE The bookkeeping done by thecondorscheddtakes more time
when there are large numbers of jobs in the job queue. However, when it is not too expensive
to do this bookkeeping, it is best to keep the collector up to date with the latest state of
the job queue. Therefore, this macro is used to adjust the bookkeeping interval so that it is
done more frequently when the cost of doing so is relatively small, and less frequently when
the cost is high. The default is 0.05, which means the schedd will adapt its bookkeeping
interval to consume no more than 5% of the total time available to the schedd. The lower
bound is configured bySCHEDDMIN INTERVAL (default 5 seconds), and the upper bound
is configured bySCHEDDINTERVAL (default 300 seconds).

JOB START COUNT This macro works together with theJOB STARTDELAY macro to throttle
job starts. The default and minimum values for this integer configuration variable are both 1.

Condor Version 7.2.3 Manual

3.3. Configuration 197

JOB START DELAY This integer-valued macro works together with theJOB STARTCOUNT
macro to throttle job starts. Thecondorschedddaemon starts$(JOB STARTCOUNT)
jobs at a time, then delays for$(JOB STARTDELAY) seconds before starting the
next set of jobs. This delay prevents a sudden, large load on resources required by
the jobs during their start up phase. The resulting job startrate averages as fast as
($(JOB STARTCOUNT)/$(JOB STARTDELAY)) jobs/second. This configuration vari-
able is also used during the graceful shutdown of thecondorschedddaemon. During grace-
ful shutdown, this macro determines the wait time in betweenrequesting eachcondorshadow
daemon to gracefully shut down. It is defined in terms of seconds and defaults to 0, which
means jobs will be started as fast as possible. If you wish to throttle the rate of specific types
of jobs, you can use the job attributeNextJobStartDelay .

MAX NEXT JOB START DELAY An integer number of seconds representing the maximum al-
lowed value of the job ClassAd attributeNextJobStartDelay . It defaults to 600, which
is 10 minutes.

JOB IS FINISHED INTERVAL Thecondorscheddmaintains a list of jobs that are ready to per-
manently leave the job queue, e.g. they have completed or been removed. This integer-valued
macro specifies a delay in seconds to place between the takingjobs permanently out of the
queue. The default value is 0, which tells thecondorscheddto not impose any delay.

ALIVE INTERVAL An initial value for an integer number of seconds defining howoften thecon-
dor scheddsends a UDP keep alive message to anycondorstartd it has claimed. When the
condorscheddclaims acondorstartd, thecondorscheddtells thecondorstartd how often
it is going to send these messages. The utilized interval forsending keep alive messages is the
smallest of the two valuesALIVE INTERVALand the expressionJobLeaseDuration/3 ,
formed with the job ClassAd attributeJobLeaseDuration . The value of the inter-
val is further constrained by the floor value of 10 seconds. Ifthe condorstartd does
not receive any of these keep alive messages during a certainperiod of time (defined via
MAXCLAIM ALIVES MISSED , described on page 181) thecondorstartd releases the
claim, and thecondorscheddno longer pays for the resource (in terms of user priority in
the system). The macro is defined in terms of seconds and defaults to 300, which is 5 minutes.

REQUEST CLAIM TIMEOUT This macro sets the time (in seconds) that thecondorscheddwill
wait for a claim to be granted by thecondorstartd. The default is 30 minutes. This is only
likely to matter if thecondorstartd has an existing claim and it takes a long time for the
existing claim to be preempted due toMaxJobRetirementTime . Once a request times
out, thecondorscheddwill simply begin the process of finding a machine for the job all over
again.

Normally, it is not a good idea to set this to be very small (e.g. a few minutes). Doing so can
lead to failure to preempt, because the preempting job will spend a significant fraction of its
time waiting to be re-matched. During that time, it would miss out on any opportunity to run
if the job it is trying to preempt gets out of the way.

SHADOW SIZE ESTIMATE This macro sets the estimated virtual memory size of eachcon-
dor shadowprocess. Specified in kilobytes. The default varies from platform to platform.

Condor Version 7.2.3 Manual

3.3. Configuration 198

SHADOW RENICE INCREMENT When thecondorscheddspawns a newcondorshadow, it can
do so with anice-level. A nice-level is a Unix mechanism that allows users to assigntheir
own processes a lower priority so that the processes run withless priority than other tasks on
the machine. The value can be any integer between 0 and 19, with a value of 19 being the
lowest priority. It defaults to 0.

SCHED UNIV RENICE INCREMENT Analogous to JOB RENICE INCREMENT and
SHADOWRENICE INCREMENT, scheduler universe jobs can be given a nice-level.
The value can be any integer between 0 and 19, with a value of 19being the lowest priority.
It defaults to 0.

QUEUE CLEAN INTERVAL Thecondorscheddmaintains the job queue on a given machine. It
does so in a persistent way such that if thecondorscheddcrashes, it can recover a valid state
of the job queue. The mechanism it uses is a transaction-based log file (thejob queue.log
file, not theSchedLog file). This file contains an initial state of the job queue, anda series of
transactions that were performed on the queue (such as new jobs submitted, jobs completing,
and checkpointing). Periodically, thecondorscheddwill go through this log, truncate all the
transactions and create a new file with containing only the new initial state of the log. This is
a somewhat expensive operation, but it speeds up when thecondorscheddrestarts since there
are fewer transactions it has to play to figure out what state the job queue is really in. This
macro determines how often thecondorscheddshould rework this queue to cleaning it up. It
is defined in terms of seconds and defaults to 86400 (once a day).

WALL CLOCK CKPT INTERVAL The job queue contains a counter for each job’s “wall clock”
run time, i.e., how long each job has executed so far. This counter is displayed bycon-
dor q. The counter is updated when the job is evicted or when the jobcompletes. When the
condorscheddcrashes, the run time for jobs that are currently running will not be added to
the counter (and so, the run time counter may become smaller than the CPU time counter).
Thecondorscheddsaves run time “checkpoints” periodically for running jobsso if thecon-
dor scheddcrashes, only run time since the last checkpoint is lost. This macro controls how
often thecondorscheddsaves run time checkpoints. It is defined in terms of seconds and
defaults to 3600 (one hour). A value of 0 will disable wall clock checkpoints.

QUEUE ALL USERS TRUSTED Defaults to False. If set to True, then unauthenticated users are
allowed to write to the queue, and also we always trust whatever theOwner value is set to be
by the client in the job ad. This was added so users can continue to use the SOAP web-services
interface over HTTP (w/o authenticating) to submit jobs in asecure, controlled environment
– for instance, in a portal setting.

QUEUE SUPER USERS This macro determines what user names on a given machine havesuper-
user accessto the job queue, meaning that they can modify or delete the job ClassAds of
other users. (Normally, you can only modify or delete ClassAds from the job queue that
you own). Whatever user name corresponds with the UID that Condor is running as (usually
the Unix user condor) will automatically be included in thislist because that is needed for
Condor’s proper functioning. See section 3.6.11 on UIDs in Condor for more details on this.
By default, we give root the ability to remove other user’s jobs, in addition to user condor.

SCHEDD LOCK This macro specifies what lock file should be used for access totheSchedLog
file. It must be a separate file from theSchedLog , since theSchedLog may be rotated

Condor Version 7.2.3 Manual

3.3. Configuration 199

and synchronization across log file rotations is desired. This macro is defined relative to the
$(LOCK) macro.

SCHEDD NAME Used to give an alternative value to theNameattribute in thecondorschedd’s
ClassAd.

See the description ofMASTERNAMEin section 3.3.9 on page 177 for defaults and composi-
tion of valid Condor daemon names. Also, note that if theMASTERNAMEsetting is defined
for the condormasterthat spawned a givencondorschedd, that name will take precedence
over whatever is defined inSCHEDDNAME.

SCHEDD ATTRS This macro is described in section 3.3.5 as<SUBSYS>ATTRS.

SCHEDD DEBUG This macro (and other settings related to debug logging in thecondorschedd) is
described in section 3.3.4 as<SUBSYS>DEBUG.

SCHEDD ADDRESS FILE This macro is described in section 3.3.5 as
<SUBSYS>ADDRESSFILE .

SCHEDD EXECUTE A directory to use as a temporary sandbox for local universe jobs. Defaults to
$(SPOOL)/execute .

FLOCK NEGOTIATORHOSTS This macro defines a list of negotiator host names (not including
the local$(NEGOTIATORHOST) machine) for pools in which thecondorscheddshould
attempt to run jobs. Hosts in the list should be in order of preference. Thecondorschedd
will only send a request to a central manager in the list if thelocal pool and pools earlier in
the list are not satisfying all the job requests.$(HOSTALLOWNEGOTIATORSCHEDD)
(see section 3.3.5) must also be configured to allow negotiators from all of the
$(FLOCK NEGOTIATORHOSTS) to contact thecondorschedd. Please make sure the
$(NEGOTIATORHOST) is first in the$(HOSTALLOWNEGOTIATORSCHEDD)list. Sim-
ilarly, the central managers of the remote pools must be configured to listen to requests from
thiscondorschedd.

FLOCK COLLECTORHOSTS This macro defines a list of collector host names for pools
in which the condorschedd should attempt to run jobs. The collectors must be
specified in order, corresponding to the$(FLOCK NEGOTIATORHOSTS) list. In
the typical case, where each pool has the collector and negotiator running on the
same machine,$(FLOCK COLLECTORHOSTS) should have the same definition as
$(FLOCK NEGOTIATORHOSTS).

NEGOTIATEALL JOBS IN CLUSTER If this macro is set to False (the default), when thecon-
dor scheddfails to start an idle job, it will not try to start any other idle jobs in the same
cluster during that negotiation cycle. This makes negotiation much more efficient for large
job clusters. However, in some cases other jobs in the cluster can be started even though an
earlier job can’t. For example, the jobs’ requirements may differ, because of different disk
space, memory, or operating system requirements. Or, machines may be willing to run only
some jobs in the cluster, because their requirements reference the jobs’ virtual memory size
or other attribute. Setting this macro to True will force thecondorscheddto try to start all
idle jobs in each negotiation cycle. This will make negotiation cycles last longer, but it will
ensure that all jobs that can be started will be started.

Condor Version 7.2.3 Manual

3.3. Configuration 200

PERIODIC EXPR INTERVAL This macro determines the minimum period, in seconds, between
evaluation of periodic job control expressions, such as periodic hold, periodicrelease, and
periodic remove, given by the user in a Condor submit file. By default, this value is 60
seconds. A value of 0 prevents thecondorscheddfrom performing the periodic evaluations.

PERIODIC EXPR TIMESLICE This macro is used to adapt the frequency with which thecon-
dor scheddevaluates periodic job control expressions. When the job queue is very large, the
cost of evaluating all of the ClassAds is high, so in order forthecondorscheddto continue
to perform well, it makes sense to evaluate these expressions less frequently. The default
time slice is 0.01, so thecondorscheddwill set the interval between evaluations so that it
spends only 1% of its time in this activity. The lower bound for the interval is configured by
PERIODIC EXPRINTERVAL (default 60 seconds).

SYSTEM PERIODIC HOLD This expression behaves identically to the job expression
periodic hold , but it is evaluated by thecondorschedd daemon individually for
each job in the queue. It defaults toFalse . WhenTrue , it causes the job to stop running
and go on hold. Here is an example that puts jobs on hold if theyhave been restarted too
many times, have an unreasonably large virtual memoryImageSize , or have unreasonably
large disk usage for an invented environment.

SYSTEM_PERIODIC_HOLD = \
(JobStatus == 1 || JobStatus == 2) && \
(JobRunCount > 10 || ImageSize > 3000000 || DiskUsage > 10000 000)

SYSTEM PERIODIC RELEASE This expression behaves identically to the job expression
periodic release , but it is evaluated by thecondorschedddaemon individually for
each job in the queue. It defaults toFalse . WhenTrue , it causes a held job to return to the
idle state. Here is an example that releases jobs from hold ifthey have tried to run less than
20 times, have most recently been on hold for over 20 minutes,and have gone on hold due to
“Connection timed out” when trying to execute the job, because the file system containing the
job’s executable is temporarily unavailable.

SYSTEM_PERIODIC_RELEASE = \
(JobRunCount < 20 && CurrentTime - EnteredCurrentStatus > 1 200) && (\

(HoldReasonCode == 6 && HoldReasonSubCode == 110) \
)

SYSTEM PERIODIC REMOVE This expression behaves identically to the job expression
periodic remove , but it is evaluated by thecondorschedddaemon individually for each
job in the queue. It defaults toFalse . WhenTrue , it causes the job to be removed from the
queue. Here is an example that removes jobs which have been onhold for 30 days:

SYSTEM_PERIODIC_REMOVE = \
(JobStatus == 5 && CurrentTime - EnteredCurrentStatus > 360 0* 24* 30)

Condor Version 7.2.3 Manual

3.3. Configuration 201

SCHEDD ASSUME NEGOTIATORGONE This macro determines the period, in seconds, that the
condorscheddwill wait for the condornegotiator to initiate a negotiation cycle before
the schedd will simply try to claim any localcondorstartd. This allows for a ma-
chine that is acting as both a submit and execute node to run jobs locally if it can-
not communicate with the central manager. The default value, if not specified, is 4
x $(NEGOTIATORINTERVAL) . If $(NEGOTIATORINTERVAL) is not defined, then
SCHEDDASSUMENEGOTIATORGONEwill default to 1200 (20 minutes).

SCHEDD ROUND ATTR <xxxx> This is used to round off attributes in the job ClassAd so that
similar jobs may be grouped together for negotiation purposes. There are two cases. One
is that a percentage such as 25% is specified. In this case, thevalue of the attribute named
<xxxx>\ in the job ClassAd will be rounded up to the next multiple of the specified percent-
age of the values order of magnitude. For example, a setting of 25% will cause a value near
100 to be rounded up to the next multiple of 25 and a value near 1000 will be rounded up to
the next multiple of 250. The other case is that an integer, such as 4, is specified instead of
a percentage. In this case, the job attribute is rounded up tothe specified number of decimal
places. Replace<xxxx> with the name of the attribute to round, and set this macro equal to
the number of decimal places to round up. For example, to round the value of job ClassAd
attributefoo up to the nearest 100, set

SCHEDD_ROUND_ATTR_foo = 2

When the schedd rounds up an attribute value, it will save theraw (un-rounded) actual value
in an attribute with the same name appended with “RAW”. So in the above example, the
raw value will be stored in attributefoo RAWin the job ClassAd. The following are set by
default:

SCHEDD_ROUND_ATTR_ImageSize = 25%
SCHEDD_ROUND_ATTR_ExecutableSize = 25%
SCHEDD_ROUND_ATTR_DiskUsage = 25%
SCHEDD_ROUND_ATTR_NumCkpts = 4

Thus, an ImageSize near 100MB will be rounded up to the next multiple of 25MB. If your
batch slots have less memory or disk than the rounded values,it may be necessary to reduce
the amount of rounding, because the job requirements will not be met.

SCHEDD BACKUP SPOOL This macro is used to enable thecondorscheddto make a backup of
the job queue as it starts. If set to “True”, thecondorscheddwill create host specific a backup
of the current spool file to the spool directory. This backup file will be overwritten each time
thecondorscheddstarts.SCHEDDBACKUPSPOOLdefaults to “False”.

MPI CONDOR RSH PATH The complete path to the special version ofrsh that is required to spawn
MPI jobs under Condor.$(LIBEXEC) is the proper value for this configuration variable,
required when running MPI dedicated jobs.

SCHEDD PREEMPTIONREQUIREMENTS This boolean expression is utilized only for machines
allocated by a dedicated scheduler. WhenTrue , a machine becomes a candidate for job
preemption. This configuration variable has no default; when not defined, preemption will
never be considered.

Condor Version 7.2.3 Manual

3.3. Configuration 202

SCHEDD PREEMPTIONRANK This floating point value is utilized only for machines allocated
by a dedicated scheduler. It is evaluated in context of a job ClassAd, and it represents a
machine’s preference for running a job. This configuration variable has no default; when not
defined, preemption will never be considered.

ParallelSchedulingGroup For parallel jobs which must be assigned within a group of ma-
chines (and not cross group boundaries), this configurationvariable identifies members of a
group. Each machine within a group sets this configuration variable with a string that identi-
fies the group.

PER JOB HISTORY DIR If set to a directory writable by the Condor user, when a job leaves the
condorschedd’s queue, a copy of its ClassAd will be written in that directory. The files are
named “history.” with the job’s cluster and process number appended. For example, job 35.2
will result in a file named “history.35.2”. Condor does not rotate or delete the files, so without
an external entity to clean the directory it can grow very large. This option defaults to being
unset. When not set, no such files are written.

DEDICATEDSCHEDULERUSE FIFO When this parameter is set to true (the default), parallel
and mpi universe jobs will be scheduled in a first-in, first-out manner. When set to false,
parallel and mpi jobs are scheduled using a best-fit algorithm. Using the best-fit algorithm is
not recommended, as it can cause starvation.

SCHEDD SEND VACATE VIA TCP A boolean value that defaults toFalse . WhenTrue , the
condorschedddaemon sends vacate signals via TCP, instead of the default UDP.

SCHEDD CLUSTER INITIAL VALUE An integer that specifies the initial cluster number value
to use within a job id when a job is first submitted. The defaultvalue is 1.

SCHEDD CLUSTER INCREMENTVALUE A positive integer that defaults to 1, representing a
stride used for assignment of cluster numbers within a job id. When a job is submitted, the
job will be assigned a job id. The cluster number of the job id will be equal to the previous
cluster number used plus the value of this setting.

3.3.12 condorshadow Configuration File Entries

These settings affect thecondorshadow.

SHADOW LOCK This macro specifies the lock file to be used for access to theShadowLog file.
It must be a separate file from theShadowLog , since theShadowLog may be rotated and
you want to synchronize access across log file rotations. This macro is defined relative to the
$(LOCK) macro.

SHADOW DEBUG This macro (and other settings related to debug logging in the shadow) is de-
scribed in section 3.3.4 as<SUBSYS>DEBUG.

SHADOW QUEUE UPDATE INTERVAL The amount of time (in seconds) between ClassAd up-
dates that thecondorshadowdaemon sends to thecondorschedddaemon. Defaults to 900
(15 minutes).

Condor Version 7.2.3 Manual

3.3. Configuration 203

SHADOW LAZY QUEUE UPDATE This boolean macro specifies if thecondorshadowshould im-
mediately update the job queue for certain attributes (at this time, it only effects the
NumJobStarts and NumJobReconnects counters) or if it should wait and only up-
date the job queue on the next periodic update. There is a trade-off between performance and
the semantics of these attributes, which is why the behavioris controlled by a configuration
macro. If thecondorshadowdo not use a lazy update, and immediately ensures the changes
to the job attributes are written to the job queue on disk, thesemantics for the attributes are
very solid (there’s only a tiny chance that the counters willbe out of sync with reality), but this
introduces a potentially large performance and scalability problem for a busycondorschedd.
If the condorshadowuses a lazy update, there’s no additional cost to thecondorschedd, but
it means thatcondorq and Quill won’t immediately see the changes to the job attributes, and
if the condorshadowhappens to crash or be killed during that time, the attributes are never
incremented. Given that the most obvious usage of these counter attributes is for the periodic
user policy expressions (which are evaluated directly by the condorshadowusing its own
copy of the job’s classified ad, which is immediately updatedin either case), and since the
additional cost for aggressive updates to a busycondorscheddcould potentially cause major
problems, the default isTrue to do lazy, periodic updates.

COMPRESS PERIODIC CKPT This boolean macro specifies whether the shadow should instruct
applications to compress periodic checkpoints (when possible). The default isFalse .

COMPRESS VACATE CKPT This boolean macro specifies whether the shadow should instruct ap-
plications to compress vacate checkpoints (when possible). The default isFalse .

PERIODIC MEMORY SYNC This boolean value specifies whether thecondorshadowshould in-
struct applications to commit dirty memory pages to swap space during a periodic checkpoint.
The default isFalse . This potentially reduces the number of dirty memory pages at vacate
time, thereby reducing swapping activity on the remote machine.

SLOW CKPT SPEED This macro specifies the speed at which vacate checkpoints should be writ-
ten, in kilobytes per second. If zero (the default), vacate checkpoints are written as fast as
possible. Writing vacate checkpoints slowly can avoid overwhelming the remote machine
with swapping activity.

SHADOW JOB CLEANUP RETRY DELAY This integer specifies the number of seconds to wait be-
tween tries to commit the final update to the job ClassAd in thecondorschedd’s job queue.
The default is 30.

SHADOW MAX JOB CLEANUP RETRIES This integer specifies the number of times to try com-
mitting the final update to the job ClassAd in thecondorschedd’s job queue. The default is
5.

3.3.13 condorstarter Configuration File Entries

These settings affect thecondorstarter.

Condor Version 7.2.3 Manual

3.3. Configuration 204

EXEC TRANSFER ATTEMPTS Sometimes due to a router misconfiguration, kernel bug, or other
network problem, the transfer of the initial checkpoint from the submit machine to the execute
machine will fail midway through. This parameter allows a retry of the transfer a certain
number of times that must be equal to or greater than 1. If thisparameter is not specified, or
specified incorrectly, then it will default to three. If the transfer of the initial executable fails
every attempt, then the job goes back into the idle state until the next renegotiation cycle.

NOTE: : This parameter does not exist in the NT starter.

JOB RENICE INCREMENT When thecondorstarter spawns a Condor job, it can do so with a
nice-level. A nice-level is a Unix mechanism that allows users to assigntheir own processes a
lower priority, such that these processes do not interfere with interactive use of the machine.
For machines with lots of real memory and swap space, such that the only scarce resource is
CPU time, use this macro in conjunction with a policy that allows Condor to always start jobs
on the machines. Condor jobs would always run, but interactive response on the machines
would never suffer. A user most likely will not notice Condoris running jobs. See section 3.5
on Startd Policy Configuration for more details on setting upa policy for starting and stopping
jobs on a given machine.

The integer value is set by thecondorstarter daemon for each job just before the job runs.
The range of allowable values are integers in the range of 0 to19 (inclusive), with a value of
19 being the lowest priority. If the integer value is outsidethis range, then on a Unix machine,
a value greater than 19 is auto-decreased to 19; a value less than 0 is treated as 0. For values
outside this range, a Windows machine ignores the value and uses the default instead. The
default value is 10, which maps to the idle priority class on aWindows machine.

STARTER LOCAL LOGGING This macro determines whether the starter should do local logging
to its own log file, or send debug information back to thecondorshadowwhere it will end up
in the ShadowLog. It defaults toTrue .

STARTER DEBUG This setting (and other settings related to debug logging inthe starter) is de-
scribed above in section 3.3.4 as$(<SUBSYS> DEBUG).

STARTER UPDATE INTERVAL An integer value representing the number of seconds between
ClassAd updates that thecondorstarter daemon sends to thecondorshadowand con-
dor startddaemons. Defaults to 300 (5 minutes).

STARTER UPDATE INTERVAL TIMESLICE A floating point value, specifying the highest frac-
tion of time that thecondorstarter daemon should spend collecting monitoring information
about the job, such as disk usage. The default value is 0.1. Ifmonitoring, such as checking
disk usage takes a long time, thecondorstarterwill monitor less frequently than specified by
STARTERUPDATEINTERVAL.

USER JOB WRAPPER The full path to an executable or script. This macro allows anadministrator
to specify a wrapper script to handle the execution of all user jobs. If specified, Condor
never directly executes a job, but instead invokes the program specified by this macro. The
command-line arguments passed to this program will includethe full-path to the actual user
job which should be executed, followed by all the command-line parameters to pass to the
user job. This wrapper program must ultimately replace its image with the user job; in other

Condor Version 7.2.3 Manual

3.3. Configuration 205

words, it mustexec() the user job, notfork() it. For instance, if the wrapper program is
a C/Korn shell script, the last line of execution should be:

exec $ *

This can potentially lose information about the arguments.Any argument with embedded
white space will be split into multiple arguments. For example the argument ”argument one”
will become the two arguments ”argument” and ”one”. For Bourne type shells (sh, bash, ksh),
the following preserves the arguments:

exec "$@"

For the C type shells (csh, tcsh), the following preserves the arguments:

exec $ * :q

For Windows machines, the wrapper will either be a batch script (with a file extension of
.bat or .cmd) or an executable (with a file extension of.exe or .com).

USE VISIBLE DESKTOP This setting is only meaningful on Windows machines. If True, Condor
will allow the job to create windows on the desktop of the execute machine and interact
with the job. This is particularly useful for debugging why an application will not run under
Condor. If False, Condor uses the default behavior of creating a new, non-visible desktop to
run the job on. See section 6.2 for details on how Condor interacts with the desktop.

STARTER JOB ENVIRONMENT This macro sets the default environment inherited by jobs. The
syntax is the same as the syntax for environment settings in the job submit file (see page 797).
If the same environment variable is assigned by this macro and by the user in the submit file,
the user’s setting takes precedence.

JOB INHERITS STARTER ENVIRONMENT A boolean value that defaults toFalse . When
True , it causes jobs to inherit all environment variables from thecondorstarter. This is use-
ful for glidein jobs that need to access environment variables from the batch system running
the glidein daemons. When both the user job andSTARTERJOB ENVIRONMENTdefine
an environment variable that is in thecondorstarter’s environment, the user job’s definition
takes precedence. This variable does not apply to standard universe jobs.

STARTER UPLOAD TIMEOUT An integer value that specifies the network communication time-
out to use when transferring files back to the submit machine.The default value is set by the
condorshadowdaemon to 300. Increase this value if the disk on the submit machine cannot
keep up with large bursts of activity, such as many jobs all completing at the same time.

3.3.14 condorsubmit Configuration File Entries

DEFAULT UNIVERSE The universe under which a job is executed may be specified in the submit
description file. If it is not specified in the submit description file, then this variable specifies
the universe (when defined). If the universe is not specified in the submit description file, and
if this variable is not defined, then the default universe fora job will be the vanilla universe.

Condor Version 7.2.3 Manual

3.3. Configuration 206

If you wantcondorsubmitto automatically append an expression to theRequirements ex-
pression orRank expression of jobs at your site use the following macros:

APPEND REQ VANILLA Expression to be appended to vanilla job requirements.

APPEND REQ STANDARD Expression to be appended to standard job requirements.

APPEND REQUIREMENTS Expression to be appended to any type of universe jobs. How-
ever, if APPENDREQVANILLA or APPENDREQSTANDARDis defined, then ignore the
APPENDREQUIREMENTSfor those universes.

APPEND RANK Expression to be appended to job rank.APPENDRANKSTANDARDor
APPENDRANKVANILLA will override this setting if defined.

APPEND RANK STANDARD Expression to be appended to standard job rank.

APPEND RANK VANILLA Expression to append to vanilla job rank.

NOTE: TheAPPENDRANKSTANDARDandAPPENDRANKVANILLA macros were called
APPENDPREFSTANDARDandAPPENDPREFVANILLA in previous versions of Condor.

In addition, you may provide defaultRank expressions if your users do not specify their own
with:

DEFAULT RANK Default rank expression for any job that does not specify itsown rank expression
in the submit description file. There is no default value, such that when undefined, the value
used will be 0.0.

DEFAULT RANK VANILLA Default rank for vanilla universe jobs. There is no default value,
such that when undefined, the value used will be 0.0. When bothDEFAULTRANKand
DEFAULTRANKVANILLA are defined, the value forDEFAULTRANKVANILLA is used
for vanilla universe jobs.

DEFAULT RANK STANDARD Default rank for standard universe jobs. There is no defaultvalue,
such that when undefined, the value used will be 0.0. When bothDEFAULTRANKand
DEFAULTRANKSTANDARDare defined, the value forDEFAULTRANKSTANDARDis used
for standard universe jobs.

DEFAULT IO BUFFER SIZE Condor keeps a buffer of recently-used data for each file an appli-
cation opens. This macro specifies the default maximum number of bytes to be buffered for
each open file at the executing machine. Thecondorstatusbuffer size command will
override this default. If this macro is undefined, a default size of 512 KB will be used.

DEFAULT IO BUFFER BLOCK SIZE When buffering is enabled, Condor will attempt to consol-
idate small read and write operations into large blocks. This macro specifies the default block
size Condor will use. Thecondorstatusbuffer block size command will override this
default. If this macro is undefined, a default size of 32 KB will be used.

Condor Version 7.2.3 Manual

3.3. Configuration 207

SUBMIT SKIP FILECHECKS If True, condorsubmitbehaves as if the-d command-line option
is used. This tellscondorsubmitto disable file permission checks when submitting a job.
This can significantly decrease the amount of time required to submit a large group of jobs.
The default value is False.

WARN ON UNUSED SUBMIT FILE MACROS A boolean variable that defaults toTrue . When
True , condorsubmitperforms checks on the job’s submit description file contents for com-
mands that define a macro, but do not use the macro within the file. A warning is issued, but
job submission continues. A definition of a new macro occurs when the lhs of a command
is not a known submit command. This check may help spot spelling errors of known submit
commands.

SUBMIT SEND RESCHEDULE A boolean expression that when False, preventscondorsubmit
from automatically sending acondor reschedulecommand as it completes. Thecon-
dor reschedulecommand causes thecondorschedddaemon to start searching for machines
with which to match the submitted jobs. When True, this step always occurs. In the case that
the machine where the job(s) are submitted is managing a hugenumber of jobs (thousands or
tens of thousands), this step would hurt performance in sucha way that it became an obstacle
to scalability. The default value is True.

SUBMIT EXPRS The given comma-separated, named expressions are insertedinto all the job
ClassAds thatcondorsubmitcreates. This is equivalent to the “+” syntax in submit files.
See the thecondorsubmitmanual page on page 795 for details on using the “+” syntax to add
attributes to the job ClassAd. Attributes defined in the submit description file with “+” will
override attributes defined in the config file withSUBMIT EXPRS.

LOG ON NFS IS ERROR A boolean value that controls whethercondorsubmitprohibits job sub-
mit files with user log files on NFS. IfLOGONNFS IS ERRORis set toTrue , such submit
files will be rejected. IfLOGONNFS IS ERRORis set toFalse , the job will be submitted.
If not defined,LOGONNFS IS ERRORdefaults toFalse .

SUBMIT MAX PROCS IN CLUSTER An integer value that limits the maximum number of jobs
that would be assigned within a single cluster. Job submissions that would exceed the defined
value fail, issuing an error message, and with no jobs submitted. The default value is 0, which
does not limit the number of jobs assigned a single cluster number.

3.3.15 condorpreen Configuration File Entries

These macros affectcondorpreen.

PREEN ADMIN This macro sets the e-mail address wherecondorpreenwill send e-mail (if it is
configured to send email at all; see the entry forPREEN). Defaults to$(CONDORADMIN).

VALID SPOOL FILES This macro contains a (comma or space separated) list of filesthatcon-
dor preen considers valid files to find in the$(SPOOL) directory. There is no default
value. condorpreenwill add to the list files and directories that are normally present in
the$(SPOOL) directory.

Condor Version 7.2.3 Manual

3.3. Configuration 208

INVALID LOG FILES This macro contains a (comma or space separated) list of filesthatcon-
dor preenconsiders invalid files to find in the$(LOG) directory. There is no default value.

3.3.16 condorcollector Configuration File Entries

These macros affect thecondorcollector.

CLASSAD LIFETIME This macro determines the default maximum age for ClassAds collected
by the condorcollector. ClassAd older than the maximum age are discarded by thecon-
dor collectoras stale.

If present, the ClassAd attribute “ClassAdLifetime” specifies the ad’s lifetime in seconds.
If “ClassAdLifetime” is not present in the ad, thecondorcollector will use the value of
$(CLASSAD LIFETIME) . The macro is defined in terms of seconds, and defaults to 900
(15 minutes).

MASTER CHECK INTERVAL This macro defines how often the collector should check for ma-
chines that have ClassAds from some daemons, but not from thecondormaster(orphaned
daemons) and send e-mail about it. It is defined in seconds and defaults to 10800 (3 hours).

COLLECTORREQUIREMENTS A boolean expression that filters out unwanted ClassAd updates.
The expression is evaluated for ClassAd updates that have passed through enabled security
authorization checks. The default behavior when this expression is not defined is to allow all
ClassAd updates to take place. IfFalse , a ClassAd update will be rejected.

Stronger security mechanisms are the better way to authorize or deny updates to thecon-
dor collector. This configuration variable exists to help those that use host-based security, and
do not trust all processes that run on the hosts in the pool. This configuration variable may
be used to throw out ClassAds that should not be allowed. For example, forcondorstartd
daemons that run on a fixed port, configure this expression to ensure that only machine Class-
Ads advertising the expected fixed port are accepted. As a convenience, before evaluating the
expression, some basic sanity checks are performed on the ClassAd to ensure that all of the
ClassAd attributes used by Condor to contain IP:port information are consistent. To validate
this information, the attribute to check isTARGET.MyAddress .

CLIENT TIMEOUT Network timeout that thecondorcollectoruses when talking to any daemons
or tools that are sending it a ClassAd update. It is defined in seconds and defaults to 30.

QUERY TIMEOUT Network timeout when talking to anyone doing a query. It is defined in seconds
and defaults to 60.

CONDOR DEVELOPERS By default, Condor will send e-mail once per week to this address with
the output of thecondorstatuscommand, which lists how many machines are in the pool
and how many are running jobs. The default value of condor-admin@cs.wisc.edu will send
this report to the Condor Team developers at the University of Wisconsin-Madison. The
Condor Team uses these weekly status messages in order to have some idea as to how many
Condor pools exist in the world. We appreciate getting the reports, as this is one way we can
convince funding agencies that Condor is being used in the real world. If you do not wish this

Condor Version 7.2.3 Manual

mailto:condor-admin@cs.wisc.edu

3.3. Configuration 209

information to be sent to the Condor Team, explicitly set thevalue toNONEto disable this
feature, or replace the address with a desired location. If undefined (commented out) in the
configuration file, Condor follows its default behavior.

COLLECTORNAME This macro is used to specify a short description of your pool. It should be
about 20 characters long. For example, the name of the UW-Madison Computer Science Con-
dor Pool is"UW-Madison CS" . While this macro might seem similar toMASTERNAME
or SCHEDDNAME, it is unrelated. Those settings are used to uniquely identify (and locate) a
specific set of Condor daemons, if there are more than one running on the same machine. The
COLLECTORNAMEsetting is just used as a human-readable string to describe the pool, which
is included in the updates set to theCONDORDEVELOPERSCOLLECTOR(see below).

CONDOR DEVELOPERSCOLLECTOR By default, every pool sends periodic updates to a central
condorcollectorat UW-Madison with basic information about the status of your pool. This
includes only the number of total machines, the number of jobs submitted, the number of ma-
chines running jobs, the host name of your central manager, and the$(COLLECTORNAME)
specified above. These updates help the Condor Team see how Condor is being used around
the world. By default, they will be sent tocondor.cs.wisc.edu . If you do not want these
updates to be sent from your pool, explicitly set this macro to NONE. If undefined (commented
out) in the configuration file, Condor follows its default behavior.

COLLECTORSOCKET BUFSIZE This specifies the buffer size, in bytes, reserved forcon-
dor collector network UDP sockets. The default is 10240000, or a ten megabyte buffer.
This is a healthy size, even for a large pool. The larger this value, the less likely thecon-
dor collector will have stale information about the pool due to dropping update packets. If
your pool is small or your central manager has very little RAM, considering setting this pa-
rameter to a lower value (perhaps 256000 or 128000).

NOTE: For some Linux distributions, it may be necessary to raise the OS’s system-
wide limit for network buffer sizes. The parameter that controls this limit is
/proc/sys/net/core/rmemmax. You can see the values that thecondorcollectoractually uses
by enabling DFULLDEBUG for the collector and looking at the log line that looks like this:

Reset OS socket buffer size to 2048k (UDP), 255k (TCP).

For changes to this parameter to take effect,condorcollectormust be restarted.

COLLECTORTCP SOCKET BUFSIZE This specifies the TCP buffer size, in bytes, reserved for
condorcollectornetwork sockets. The default is 131072, or a 128 kilobyte buffer. This is a
healthy size, even for a large pool. The larger this value, the less likely thecondorcollector
will have stale information about the pool due to dropping update packets. If your pool is
small or your central manager has very little RAM, considering setting this parameter to a
lower value (perhaps 65536 or 32768).

NOTE: See the note forCOLLECTORSOCKETBUFSIZE .

COLLECTORSOCKET CACHE SIZE If your site wants to use TCP connections to send ClassAd
updates to the collector, you must use this setting to enablea cache of TCP sockets (in addition
to enablingUPDATECOLLECTORWITH TCP). Please read section 3.7.4 on “Using TCP to
Send Collector Updates” on page 345 for more details and a discussion of when you would

Condor Version 7.2.3 Manual

3.3. Configuration 210

need this functionality. If you do not enable a socket cache,TCP updates will be refused by
the collector. The default value for this setting is 0, with no cache enabled. If you lower
this number, you must runcondorrestartand not justcondorreconfigfor the change to take
effect.

KEEP POOL HISTORY This boolean macro is used to decide if the collector will write out statis-
tical information about the pool to history files. The default is False . The location, size, and
frequency of history logging is controlled by the other macros.

POOL HISTORY DIR This macro sets the name of the directory where the history files reside (if
history logging is enabled). The default is theSPOOLdirectory.

POOL HISTORY MAX STORAGE This macro sets the maximum combined size of the history files.
When the size of the history files is close to this limit, the oldest information will be discarded.
Thus, the larger this parameter’s value is, the larger the time range for which history will be
available. The default value is 10000000 (10 Mbytes).

POOL HISTORY SAMPLING INTERVAL This macro sets the interval, in seconds, between sam-
ples for history logging purposes. When a sample is taken, the collector goes through the
information it holds, and summarizes it. The information iswritten to the history file once
for each 4 samples. The default (and recommended) value is 60seconds. Setting this macro’s
value too low will increase the load on the collector, while setting it to high will produce less
precise statistical information.

COLLECTORDAEMON STATS This macro controls whether or not the Collector keeps update
statistics on incoming updates. The default value is True. If this option is enabled, the collector
will insert several attributes into ClassAds that it storesand sends. ClassAds without the
“UpdateSequenceNumber” and “DaemonStartTime” attributes will not be counted, and will
not have attributes inserted (all modern Condor daemons which publish ClassAds publish
these attributes).

The attributes inserted are “UpdatesTotal”, “UpdatesSequenced”, and “UpdatesLost”. “Up-
datesTotal” is the total number of updates (of this ad type) the Collector has received from
this host. “UpdatesSequenced” is the number of updates thatthe Collector could have as lost.
In particular, for the first update from a daemon it is impossible to tell if any previous ones
have been lost or not. “UpdatesLost” is the number of updatesthat the Collector has detected
as being lost. See page 894 for more information on the added attributes.

COLLECTORSTATS SWEEP This value specifies the number of seconds between sweeps of the
condorcollector’s per-daemon update statistics. Records for daemons whichhave not re-
ported in this amount of time are purged in order to save memory. The default is two days. It
is unlikely that you would ever need to adjust this.

COLLECTORDAEMON HISTORY SIZE This macro controls the size of the published update his-
tory that the Collector inserts into the ClassAds it stores and sends. The default value is 128,
which means that history is stored and published for the latest 128 updates. This macro is
ignored if$(COLLECTORDAEMONSTATS) is not enabled.

If this has a non-zero value, the Collector will insert “UpdatesHistory” into the ClassAd (sim-
ilar to “UpdatesTotal” above). “UpdatesHistory” is a hexadecimal string which represents a

Condor Version 7.2.3 Manual

3.3. Configuration 211

bitmap of the lastCOLLECTORDAEMONHISTORYSIZE updates. The most significant
bit (MSB) of the bitmap represents the most recent update, and the least significant bit (LSB)
represents the least recent. A value of zero means that the update was not lost, and a value of
1 indicates that the update was detected as lost.

For example, if the last update was not lost, the previous lost, and the previous two not, the
bitmap would be 0100, and the matching hex digit would be “4”.Note that the MSB can never
be marked as lost because its loss can only be detected by a non-lost update (a “gap” is found
in the sequence numbers). Thus, UpdatesHistory = ”0x40” would be the history for the last 8
updates. If the next updates are all successful, the values published, after each update, would
be: 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x00.

See page 894 for more information on the added attribute.

COLLECTORCLASS HISTORY SIZE This macro controls the size of the published update his-
tory that the Collector inserts into the Collector ClassAdsit produces. The default value is
zero.

If this has a non-zero value, the Collector will insert “UpdatesClassHistory” into the Collector
ClassAd (similar to “UpdatesHistory” above). These are added “per class” of ClassAd, how-
ever. The classes refer to the “type” of ClassAds (i.e. “Start”). Additionally, there is a “Total”
class created which represents the history of all ClassAds that this Collector receives.

Note that the collector always publishes Lost, Total and Sequenced counts for all ClassAd
“classes”. This is similar to the statistics gathered if$(COLLECTORDAEMONSTATS) is
enabled.

COLLECTORQUERY WORKERS This macro sets the maximum number of “worker” processes
that the Collector can have. When receiving a query request,the UNIX Collector will “fork”
a new process to handle the query, freeing the main process tohandle other requests. When
the number of outstanding “worker” processes reaches this maximum, the request is handled
by the main process. This macro is ignored on Windows, and itsdefault value is zero. The
default configuration, however, has this set to 16.

COLLECTORDEBUG This macro (and other macros related to debug logging in the collector) is
described in section 3.3.4 as<SUBSYS>DEBUG.

3.3.17 condornegotiator Configuration File Entries

These macros affect thecondornegotiator.

NEGOTIATORINTERVAL Sets how often the negotiator starts a negotiation cycle. Itis defined
in seconds and defaults to 300 (5 minutes).

NEGOTIATORCYCLE DELAY An integer value that represents the minimum number of sec-
onds that must pass before a new negotiation cycle may start.The default value is 20.
NEGOTIATORCYCLEDELAYis intended only for use by Condor experts.

Condor Version 7.2.3 Manual

3.3. Configuration 212

NEGOTIATORTIMEOUT Sets the timeout that the negotiator uses on its network connections to
thecondorscheddandcondorstartds. It is defined in seconds and defaults to 30.

PRIORITY HALFLIFE This macro defines the half-life of the user priorities. See section 2.7.2
on User Priorities for details. It is defined in seconds and defaults to 86400 (1 day).

DEFAULT PRIO FACTOR This macro sets the priority factor for local users. See section 2.7.2 on
User Priorities for details. Defaults to 1.

NICE USER PRIO FACTOR This macro sets the priority factor for nice users. See section 2.7.2
on User Priorities for details. Defaults to 10000000.

REMOTE PRIO FACTOR This macro defines the priority factor for remote users (users who who
do not belong to the accountant’s local domain - see below). See section 2.7.2 on User Priori-
ties for details. Defaults to 10000.

ACCOUNTANTLOCAL DOMAIN This macro is used to decide if a user is local or remote. A user
is considered to be in the local domain if the UIDDOMAIN matches the value of this macro.
Usually, this macro is set to the local UIDDOMAIN. If it is not defined, all users are consid-
ered local.

MAX ACCOUNTANTDATABASE SIZE This macro defines the maximum size (in bytes) that the
accountant database log file can reach before it is truncated(which re-writes the file in a
more compact format). If, after truncating, the file is larger than one half the maximum size
specified with this macro, the maximum size will be automatically expanded. The default is 1
megabyte (1000000).

NEGOTIATORDISCOUNT SUSPENDEDRESOURCES This macro tells the negotiator to not
count resources that are suspended when calculating the number of resources a user is us-
ing. Defaults to false, that is, a user is still charged for a resource even when that resource has
suspended the job.

NEGOTIATORSOCKET CACHE SIZE This macro defines the maximum number of sockets that
thecondornegotiatorkeeps in its open socket cache. Caching open sockets makes the nego-
tiation protocol more efficient by eliminating the need for socket connection establishment for
each negotiation cycle. The default is currently 16. To be effective, this parameter should be
set to a value greater than the number ofcondorschedds submitting jobs to the negotiator at
any time. If you lower this number, you must runcondorrestartand not justcondorreconfig
for the change to take effect.

NEGOTIATORINFORM STARTD Boolean setting that controls if thecondornegotiatorshould
inform the condorstartd when it has been matched with a job. The default isTrue .
When this is set toFalse , the condorstartd will never enter the Matched state, and will
go directly from Unclaimed to Claimed. Because this notification is done via UDP, if a
pool is configured so that the execute hosts do not create UDP command sockets (see the
WANTUDPCOMMANDSOCKETsetting described in section 3.3.3 on page 157 for details),
thecondornegotiatorshould be configured not to attempt to contact thesecondorstartdsby
configuring this setting toFalse .

Condor Version 7.2.3 Manual

3.3. Configuration 213

NEGOTIATORPRE JOB RANK Resources that match a request are first sorted by this expres-
sion. If there are any ties in the rank of the top choice, the top resources are sorted by the
user-supplied rank in the job ClassAd, then byNEGOTIATORPOSTJOB RANK, then by
PREEMPTIONRANK(if the match would cause preemption and there are still any ties in the
top choice). MYrefers to attributes of the machine ClassAd andTARGETrefers to the job
ClassAd. The purpose of the pre job rank is to allow the pool administrator to override any
other rankings, in order to optimize overall throughput. For example, it is commonly used to
minimize preemption, even if the job rank prefers a machine that is busy. If undefined, this
expression has no effect on the ranking of matches. The standard configuration file shipped
with Condor specifies an expression to steer jobs away from busy resources:

NEGOTIATOR_PRE_JOB_RANK = RemoteOwner =?= UNDEFINED

NEGOTIATORPOST JOB RANK Resources that match a request are first sorted by
NEGOTIATORPREJOB RANK. If there are any ties in the rank of the top choice,
the top resources are sorted by the user-supplied rank in thejob ClassAd, then by
NEGOTIATORPOSTJOB RANK, then byPREEMPTIONRANK(if the match would cause
preemption and there are still any ties in the top choice).MYrefers to attributes of the machine
ClassAd andTARGETrefers to the job ClassAd. The purpose of the post job rank is to allow
the pool administrator to choose between machines that the job ranks equally. The default
value is undefined, which causes this rank to have no effect onthe ranking of matches. The
following example expression steers jobs toward faster machines and tends to fill a cluster of
multi-processors by spreading across all machines before filling up individual machines. In
this example, the expression is chosen to have no effect whenpreemption would take place,
allowing control to pass on toPREEMPTIONRANK.

UWCS_NEGOTIATOR_POST_JOB_RANK = \
(RemoteOwner =?= UNDEFINED) * (KFlops - VirtualMachineID)

PREEMPTIONREQUIREMENTS When considering user priorities, the negotiator will not pre-
empt a job running on a given machine unless thePREEMPTIONREQUIREMENTSexpres-
sion evaluates toTrue and the owner of the idle job has a better priority than the owner of the
running job. ThePREEMPTIONREQUIREMENTSexpression is evaluated within the con-
text of the candidate machine ClassAd and the candidate idlejob ClassAd; thus theMYscope
prefix refers to the machine ClassAd, and theTARGETscope prefix refers to the ClassAd of
the idle (candidate) job. There is no direct access to the currently running job, but attributes
of the currently running job that need to be accessed inPREEMPTIONREQUIREMENTScan
be placed in the machine ClassAd usingSTARTDJOB EXPRS. If not explicitly set in the
Condor configuration file, the default value for this expression isTrue . Note that this setting
does not influence other potential causes of preemption, such as startdRANK, or PREEMPT
expressions. See section 3.5.9 for a general discussion of limiting preemption.

PREEMPTIONREQUIREMENTSSTABLE A boolean value that defaults toTrue , implying that
all attributes utilized to define thePREEMPTIONREQUIREMENTSvariable will not change
within a negotiation period time interval. If utilized attributes will change during the negotia-
tion period time interval, then set this variable toFalse .

Condor Version 7.2.3 Manual

3.3. Configuration 214

PREEMPTIONRANK Resources that match a request are first sorted by
NEGOTIATORPREJOB RANK. If there are any ties in the rank of the top choice,
the top resources are sorted by the user-supplied rank in thejob ClassAd, then by
NEGOTIATORPOSTJOB RANK, then byPREEMPTIONRANK(if the match would cause
preemption and there are still any ties in the top choice).MYrefers to attributes of the machine
ClassAd andTARGETrefers to the job ClassAd. This expression is used to rank machines
that the job and the other negotiation expressions rank the same. For example, if the job has
no preference, it is usually preferable to preempt a job witha smallImageSize instead of
a job with a largeImageSize . The default is to rank all preemptable matches the same.
However, the negotiator will always prefer to match the job with an idle machine over a
preemptable machine, if none of the other ranks express a preference between them.

PREEMPTIONRANK STABLE A boolean value that defaults toTrue , implying that all attributes
utilized to define thePREEMPTIONRANKvariable will not change within a negotiation pe-
riod time interval. If utilized attributes will change during the negotiation period time interval,
then set this variable toFalse .

NEGOTIATORDEBUG This macro (and other settings related to debug logging in the negotiator)
is described in section 3.3.4 as<SUBSYS>DEBUG.

NEGOTIATORMAX TIME PER SUBMITTER The maximum number of seconds thecon-
dor negotiatorwill spend with a submitter during one negotiation cycle. Once this time limit
has been reached, thecondornegotiatorwill still finish its current pie spin, but it will skip
over the submitter if subsequent pie spins are needed to dishout all of the available machines.
It defaults to one year. SeeNEGOTIATORMAXTIME PERPIESPIN for more information.

NEGOTIATORMAX TIME PER PIESPIN The maximum number of seconds thecon-
dor negotiator will spend with a submitter in one pie spin. A negotiation cycle is
composed of at least one pie spin, possibly more, depending on whether there are still ma-
chines left over after computing fair shares and negotiating with each submitter. By limiting
the maximum length of a pie spin or the maximum time per submitter per negotiation cycle,
thecondornegotiatoris protected against spending a long time talking to one submitter, for
example someone with a very slowcondorschedddaemon. But, this can result in unfair
allocation of machines or some machines not being allocatedat all. See section 3.4.6 on
page 248 for a description of a pie slice.

NEGOTIATORMATCH EXPRS This macro specifies a list of macro names that are inserted as
ClassAd attributes into matched job ClassAds. The attribute name in the ClassAd will be
given the prefix NegotiatorMatchExpr if the macro name doesn’t already begin with that.
Example:

NegotiatorName = "My Negotiator"
NEGOTIATOR_MATCH_EXPRS = NegotiatorName

As a result of the above configuration, jobs that are matched by this negotiator will contain
the following attribute when they are sent to the startd:

NegotiatorMatchExprNegotiatorName = "My Negotiator"

Condor Version 7.2.3 Manual

3.3. Configuration 215

The expressions inserted by the negotiator may be useful in startd policy expressions when
the startd belongs to multiple Condor pools.

The following configuration macros affect negotiation for group users.

GROUP NAMES A comma-separated list of the recognized group names, case insensitive. If unde-
fined (the default), group support is disabled. Group names must not conflict with any user
names. That is, if there is aphysics group, there may not be aphysics user. Any group
that is defined here must also have a quota, or the group will beignored. Example:

GROUP_NAMES = group_physics, group_chemistry

GROUP QUOTA <groupname> A positive integer to represent a static quota specifying the ex-
act number of machines owned by this group. Note that Condor does not verify or check
consistency of quota values. Example:

GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

GROUP PRIO FACTOR <groupname> A floating point value greater than or equal to 1.0 to
specify the default user priority factor for<groupname> . The group name must also be
specified in theGROUPNAMESlist. GROUPPRIO FACTOR<groupname> is evaluated
when the negotiator first negotiates for the user as a member of the group. All members of
the group inherit the default priority factor when no other value is present. For example, the
following setting specifies that all members of the group namedgroup_physics inherit a
default user priority factor of 2.0:

GROUP_PRIO_FACTOR_group_physics = 2.0

GROUP AUTOREGROUP A boolean value (defaults toFalse) that whenTrue , causes users who
submitted to a specific group to also negotiate a second time with thenone group, to be con-
sidered with the independent job submitters. This allows group submitted jobs to be matched
with idle machines even if the group is over its quota.

GROUP AUTOREGROUP<groupname> This is the same asGROUPAUTOREGROUP, but it is
settable on a per-group basis. If no value is specified for a given group, the default behavior
is determined byGROUPAUTOREGROUP, which in turn defaults toFalse .

NEGOTIATORCONSIDER PREEMPTION For expert users only. A boolean value (defaults to
True), that whenFalse , can cause the negotiator to run faster and also have better spinning
pie accuracy.Only set this toFalse if PREEMPTION REQUIREMENTS is False, and if
all condor startd rank expressions areFalse.

Condor Version 7.2.3 Manual

3.3. Configuration 216

3.3.18 condorprocd Configuration File Macros

USE PROCD This boolean parameter is used to determine whether thecondorprocdwill be used
for managing process families. If thecondorprocd is not used, each daemon will run the
process family tracking logic on its own. Use of thecondorprocd results in improved scal-
ability because only one instance of this logic is required.The condorprocd is required
when using privilege separation (see Section 3.6.12) or group ID-based process tracking (see
Section 3.12.10). In either of these cases, theUSEPROCDsetting will be ignored and acon-
dor procd will always be used. By default, thecondormasterwill not use acondorprocd
but all other daemons that need process family tracking will. A daemon that uses thecon-
dor procdwill start acondorprocd for use by itself and all of its child daemons.

PROCD MAX SNAPSHOT INTERVAL This setting determines the maximum time that thecon-
dor procdwill wait between probes of the system for information aboutthe process families
it is tracking.

PROCD LOG Specifies a log file for the ProcD to use. Note that by design, the condorprocddoes
not include most of the other logic that is shared amongst thevarious Condor daemons. This is
because thecondorprocd is a component of the PrivSep Kernel (see Section 3.6.12 for more
information regarding privilege separation). This means that thecondorprocd does not in-
clude the normal Condor logging subsystem, and thus things like multiple debug levels and log
rotation are not supported. Therefore,PROCDLOGis not set by default and is only intended
to debug problems should they arise. Note, however, that enabling D PROCFAMILYin the
debug level for any other daemon will cause it to log all interactions with thecondorprocd.

PROCD ADDRESS This specifies the address that thecondorprocd will use to receive requests
from other Condor daemons. On Unix, this should point to a filesystem location that can be
used for a named pipe. On Windows, named pipes are also used but they do not exist in the
file system. The default setting therefore depends on the platform: $(LOCK)/procd_pipe
on Unix and\\.\pipe\procd_pipe on Windows.

3.3.19 condorcredd Configuration File Macros

These macros affect thecondorcredd.

CREDD HOST The host name of the machine running thecondorcredddaemon.

CREDD CACHE LOCALLY A boolean value that defaults toFalse . WhenTrue , the first success-
ful password fetch operation to thecondorcredddaemon causes the password to be stashed
in a local, secure password store. Subsequent uses of that password do not require communi-
cation with thecondorcredddaemon.

3.3.20 condorgridmanager Configuration File Entries

These macros affect thecondorgridmanager.

Condor Version 7.2.3 Manual

3.3. Configuration 217

GRIDMANAGERLOG Defines the path and file name for the log of thecondorgridmanager. The
owner of the file is thecondor user.

GRIDMANAGERCHECKPROXYINTERVAL The number of seconds between checks for an up-
dated X509 proxy credential. The default is 10 minutes (600 seconds).

GRIDMANAGERMINIMUM PROXY TIME The minimum number of seconds before expiration of
the X509 proxy credential for the gridmanager to continue operation. If seconds until expira-
tion is less than this number, the gridmanager will shutdownand wait for a refreshed proxy
credential. The default is 3 minutes (180 seconds).

HOLD JOB IF CREDENTIALEXPIRES True or False. Defaults to True. If
True, and for grid universe jobs only, Condor-G will place a job on hold
GRIDMANAGERMINIMUMPROXYTIME seconds before the proxy expires. If False,
the job will stay in the last known state, and Condor-G will periodically check to see if the
job’s proxy has been refreshed, at which point management ofthe job will resume.

GRIDMANAGERCONTACT SCHEDD DELAY The minimum number of seconds between connec-
tions to thecondorschedd. The default is 5 seconds.

GRIDMANAGERJOB PROBE INTERVAL The number of seconds between active probes of the
status of a submitted job. The default is 5 minutes (300 seconds).

CONDOR JOB POLL INTERVAL After a condor grid type job is submitted, how often (in seconds)
the condorgridmanagershould probe the remotecondorscheddto check the jobs status.
This defaults to 300 seconds (5 minutes). Setting this to a lower number will decrease latency
(Condor will discover that a job has finished more quickly), but will increase network traffic.

GRIDMANAGERRESOURCE PROBE INTERVAL When a resource appears to be down, how of-
ten (in seconds) thecondorgridmanagershould ping it to test if it is up again.

GRIDMANAGERRESOURCE PROBE DELAY The number of seconds between pings of a remote
resource that is currently down. The default is 5 minutes (300 seconds).

GRIDMANAGEREMPTY RESOURCE DELAY The number of seconds that thecon-
dor gridmanagerretains information about a grid resource, once thecondorgridmanager
has no active jobs on that resource. An active job is a grid universe job that is in the queue,
but is not in the HELD state. Defaults to 300 seconds.

GRIDMANAGERMAX SUBMITTEDJOBS PER RESOURCE Limits the number of jobs that a
condorgridmanagerdaemon will submit to a resource. It is useful for controlling the number
of jobmanagerprocesses running on the front-end node of a cluster. This number may be
exceeded if it is reduced through the use ofcondorreconfigwhile thecondorgridmanager
is running or if thecondorgridmanagerreceives new jobs from thecondorscheddthat were
already submitted (that is, theirGridJobId is not undefined). In these cases, submitted jobs
will not be killed, but no new jobs can be submitted until the number of submitted jobs falls
below the current limit. Defaults to 100.

Condor Version 7.2.3 Manual

3.3. Configuration 218

GRIDMANAGERMAX PENDING SUBMITS PER RESOURCE The maximum number of jobs
that can be in the process of being submitted at any time (thatis, how many
globus gram client job request() calls are pending). It is useful for controlling
the number of new connections/processes created at a given time. The default value is 5. This
variable allows you to set different limits for each resource. After the first integer in the value
comes a list of resourcename/number pairs, where each number is the limit for that resource.
If a resource is not in the list, Condor uses the first integer.An example usage:

GRIDMANAGER_MAX_PENDING_SUBMITS_PER_RESOURCE=20,nostos,5,beak,50

GRIDMANAGERMAX PENDING SUBMITS Configuration variable still recognized, but the name
has changed to beGRIDMANAGERMAXPENDINGSUBMITSPERRESOURCE.

GRIDMANAGERMAX JOBMANAGERSPER RESOURCE For grid jobs of typegt2, limits the num-
ber of globus-job-manager processes that thecondorgridmanagerlets run at a time on the
remote head node. Allowing too many globus-job-managers torun causes severe load on
the headnote, possibly making it non-functional. This number may be exceeded if it is re-
duced through the use ofcondorreconfigwhile thecondorgridmanageris running or if some
globus-job-managers take a few extra seconds to exit. The value 0 means there is no limit.
The default value is 10.

GRIDMANAGERMAX WS DESTROYS PER RESOURCE For grid jobs of typegt4, limits the num-
ber of destroy commands that thecondorgridmanagerwill issue at a time to each WS GRAM
server. Too many destroy commands can have severe effects onthe server. The default value
is 5.

GAHP The full path to the binary of the GAHP server. This configuration variable is no longer
used. UseGT2 GAHPat section 3.3.20 instead.

GAHP ARGS Arguments to be passed to the GAHP server. This configurationvariable is no longer
used.

GRIDMANAGERGAHP CALL TIMEOUT The number of seconds after which a pending GAHP
command should time out. The default is 5 minutes (300 seconds).

GRIDMANAGERMAX PENDING REQUESTS The maximum number of GAHP commands that
can be pending at any time. The default is 50.

GRIDMANAGERCONNECT FAILURE RETRY COUNT The number of times to retry a command
that failed due to a timeout or a failed connection. The default is 3.

GRIDMANAGERGLOBUS COMMIT TIMEOUT The duration, in seconds, of the two phase commit
timeout to Globus for gt2 jobs only. This maps directly to thetwo phase setting in the
Globus RSL.

GLOBUS GATEKEEPERTIMEOUT The number of seconds after which if a gt2 grid universe job
fails to ping the gatekeeper, the job will be put on hold. Defaults to 5 days (in seconds).

Condor Version 7.2.3 Manual

3.3. Configuration 219

GRIDFTP URL BASE Specifies an existingGridFTP server on the local system to be used for
file transfers for gt4 grid universe jobs. The value is given as the base of a URL, such as
gsiftp://mycomp.foo.edu:2118 . The default is for Condor to launch temporary
GridFTPservers as needed for file transfer.

C GAHP LOG The complete path and file name of the Condor GAHP server’s log. There
is no default value. The expected location as defined in the example configuration is
/temp/CGAHPLog.$(USERNAME) .

MAX C GAHP LOG The maximum size of theC GAHPLOG.

C GAHP WORKER THREAD LOG The complete path and file name of the Condor GAHP worker
process’ log. There is no default value. The expected location as defined in the example
configuration is/temp/CGAHPWorkerLog.$(USERNAME) .

GLITE LOCATION The complete path to the directory containing the Glite software. There
is no default value. The expected location as given in the example configuration is
$(LIB)/glite . The necessary Glite software is included with Condor, and is required
for pbs and lsf jobs.

AMAZON EC2 URL The URL Condor should use when contacting the Amazon EC2 service. The
default value ishttps://ec2.amazonaws.com/ .

AMAZON HTTP PROXY The http proxy that Condor should use when contacting the Amazon EC2
service. The default is to not use a proxy.

CONDOR GAHP The complete path and file name of the Condor GAHP executable.There
is no default value. The expected location as given in the example configuration is
$(SBIN)/condor c-gahp .

AMAZON GAHP The complete path and file name of the Amazon GAHP executable.There
is no default value. The expected location as given in the example configuration is
$(SBIN)/amazon-gahp .

GT2 GAHP The complete path and file name of the GT2 GAHP executable. There is
no default value. The expected location as given in the example configuration is
$(SBIN)/gahp server .

GT4 GAHP The complete path and file name of the wrapper script that invokes the GT4 GAHP
executable. There is no default value. The expected location as given in the example configu-
ration is$(SBIN)/gt4 gahp .

PBS GAHP The complete path and file name of the PBS GAHP executable. There is
no default value. The expected location as given in the example configuration is
$(GLITE LOCATION)/bin/batch gahp .

LSF GAHP The complete path and file name of the LSF GAHP executable. There is
no default value. The expected location as given in the example configuration is
$(GLITE LOCATION)/bin/batch gahp .

Condor Version 7.2.3 Manual

3.3. Configuration 220

UNICORE GAHP The complete path and file name of the wrapper script that invokes the Unicore
GAHP executable. There is no default value. The expected location as given in the example
configuration is$(SBIN)/unicore gahp .

NORDUGRIDGAHP The complete path and file name of the wrapper script that invokes the Nor-
duGrid GAHP executable. There is no default value. The expected location as given in the
example configuration is$(SBIN)/nordugrid gahp .

3.3.21 condorjob router Configuration File Entries

These macros affect thecondor job router daemon.

JOB ROUTER DEFAULTS Defined by a single ClassAd in New ClassAd syntax, used to provide
default values for all routes in thecondor job router daemon’s routing table. Where an at-
tribute is set outside of these defaults, that attribute value takes precedence.

JOB ROUTER ENTRIES Specification of the job routing table. It is a list of ClassAds, in New
ClassAd syntax, where each individual ClassAd is surrounded by square brackets, and the
ClassAds are separated from each other by spaces. Each ClassAd describes one entry in the
routing table, and each describes a site that jobs may be routed to.

A condorreconfigcommand causes thecondor job router daemon to rebuild the routing ta-
ble. Routes are distinguished by a routing table entry’s ClassAd attributeName. Therefore, a
Namechange in an existing route has the potential to cause the inaccurate reporting of routes.

Instead of setting job routes using this configuration variable, they may be read from an ex-
ternal source using theJOB ROUTERENTRIES FILE or be dynamically generated by an
external program via theJOB ROUTERENTRIES CMDconfiguration variable.

JOB ROUTER ENTRIES FILE A path and file name of a file that contains the ClassAds, in New
ClassAd syntax, describing the routing table. The specifiedfile is periodically reread to check
for new information. This occurs every$(JOB ROUTERENTRIES REFRESH)seconds.

JOB ROUTER ENTRIES CMD Specifies the command line of an external program to run. The
output of the program defines or updates the routing table, and the output must be given in
New ClassAd syntax. The specified command is periodically rerun to regenerate or update the
routing table. This occurs every$(JOB ROUTERENTRIES REFRESH)seconds. Specify
the full path and file name of the executable within this command line, as no assumptions
may be made about the current working directory upon commandinvocation. To enter spaces
in any command-line arguments or in the command name itself,surround the right hand side
of this definition with double quotes, and use single quotes around individual arguments that
contain spaces. This is the same as when dealing with spaces within job arguments in a
Condor submit description file.

JOB ROUTER ENTRIES REFRESH The number of seconds between updates to the routing table
described byJOB ROUTERENTRIES FILE or JOB ROUTERENTRIES CMD. The default
value is 0, meaning no periodic updates occur. With the default value of 0, the routing table

Condor Version 7.2.3 Manual

3.3. Configuration 221

can be modified when acondor reconfigcommand is invoked or when thecondor job router
daemon restarts.

JOB ROUTER SOURCE JOB CONSTRAINT Specifies a globalRequirements expression that
will be appended to all routed jobs, in addition to anyRequirements specified within a
routing table entry.

JOB ROUTER MAX JOBS An integer value representing the maximum number of jobs that may
be routed, summed over all routes. The default value is -1, which means an unlimited number
of jobs may be routed.

MAX JOB MIRROR UPDATE LAG An integer value that administrators will rarely consider chang-
ing, representing the maximum number of seconds thecondor job router daemon waits, be-
fore it decides that routed copies have gone awry, due to the failure of events to appear in the
condorschedd’s job queue log file. The default value is 600. As thecondor job router dae-
mon uses thecondorschedd’s job queue log file entries for synchronization of routed copies,
when an expected log file event fails to appear after this waitperiod, thecondor job router
daemon acts presuming the expected event will never occur.

JOB ROUTER POLLING PERIOD An integer value representing the number of seconds between
cycles in thecondor job router daemon’s task loop. The default is 10 seconds. A small value
makes thecondor job router daemon quick to see new candidate jobs for routing. A large
value makes thecondor job router daemon generate less overhead at the cost of being slower
to see new candidates for routing. For very large job queues where a few minutes of routing
latency is no problem, increasing this value to a few hundredseconds would be reasonable.

JOB ROUTER NAME A unique identifier utilized to name multiple instances of the con-
dor job router daemon within a single Condor pool. Each instance must have adifferent
name, or all but the first to start up will refuse to run.

3.3.22 condorleasemanager Configuration File Entries

These macros affect thecondor leasemanager.

Thecondor leasemanagerexpects to use the syntax

<subsystem name>.<parameter name>

in configuration. This allows multiple instances of thecondor leasemanagerto be easily configured
using the syntax

<subsystem name>.<local name>.<parameter name>

LeaseManager.GETADSINTERVAL An integer value, given in seconds, that controls the fre-
quency with which thecondor leasemanagerpulls relevant resource ClassAds from thecon-
dor collector. The default value is 60 seconds, with a minimum value of 2 seconds.

Condor Version 7.2.3 Manual

3.3. Configuration 222

LeaseManager.UPDATEINTERVAL An integer value, given in seconds, that controls the fre-
quency with which thecondor leasemanagersends its ClassAds to thecondorcollector. The
default value is 60 seconds, with a minimum value of 5 seconds.

LeaseManager.PRUNEINTERVAL An integer value, given in seconds, that controls the fre-
quency with which thecondor leasemanager prunesits leases. This involves checking all
leases to see if they have expired. The default value is 60 seconds, with no minimum value.

LeaseManager.DEBUGADS A boolean value that defaults toFalse . When True , it en-
ables extra debugging information about the resource ClassAds that it retrieves from thecon-
dor collectorand about the search ClassAds that it sends to thecondorcollector.

LeaseManager.MAXLEASE DURATION An integer value representing seconds which deter-
mines the maximum duration of a lease. This can be used to provide a hard limit on lease
durations. Normally, thecondor leasemanagerhonors theMaxLeaseDuration attribute
from the resource ClassAd. If this configuration variable isdefined, it limits the effective
maximum duration for all resources to this value. The default value is 1800 seconds.

Note that leases can be renewed, and thus can be extended beyond this limit. To provide a limit
on the total duration of a lease, useLeaseManager.MAX TOTALLEASEDURATION.

LeaseManager.MAXTOTAL LEASE DURATION An integer value representing seconds used
to limit the total duration of leases, over all its renewals. The default valueis 3600 seconds.

LeaseManager.DEFAULTMAX LEASE DURATION The condor leasemanager uses the
MaxLeaseDuration attribute from the resource ClassAd to limit the lease duration. If
this attribute is not present in a resource ClassAd, then this configuration variable is used
instead. This integer value is given in units of seconds, with a default value of 60 seconds.

LeaseManager.CLASSADLOG This variable defines a full path and file name to the location
where thecondor leasemanagerkeeps persistent state information. This variable has no
default value.

LeaseManager.QUERYADTYPE This parameter controls the type of the query in the ClassAd
sent to thecondorcollector, which will control the types of ClassAds returned by thecon-
dor collector. This parameter must be a valid ClassAd type name, with a default value of
"Any" .

LeaseManager.QUERYCONSTRAINTS A ClassAd expression that controls the constraint in
the query sent to thecondorcollector. It is used to further constrain the types of ClassAds
from thecondorcollector. There is no default value, resulting in no constraints being placed
on query.

3.3.23 grid monitor Configuration File Entries

These macros affect thegrid monitor.

Condor Version 7.2.3 Manual

3.3. Configuration 223

ENABLE GRID MONITOR When set toTrue enables thegrid monitor tool. Thegrid monitor
tool is used to reduce load on Globus gatekeepers. This parameter only affects grid jobs
of type gt2. GRID MONITORmust also be correctly configured. Defaults toFalse . See
section 5.3.2 on page 508 for more information.

GRID MONITOR The complete path name of thegrid monitor tool used to reduce load on Globus
gatekeepers. This parameter only affects grid jobs of typegt2. This parameter is not refer-
enced unlessENABLEGRID MONITORis set toTrue . See section 5.3.2 on page 508 for
more information.

GRID MONITOR HEARTBEATTIMEOUT If this many seconds pass without hearing from a
grid monitor, it is assumed to be dead. Defaults to 300 (5 minutes). Increasing this num-
ber will improve the ability of thegrid monitor to survive in the face of transient problems
but will also increase the time before Condor notices a problem.

GRID MONITOR RETRY DURATION If something goes wrong with thegrid monitorat a partic-
ular site (likeGRID MONITORHEARTBEATTIMEOUTexpiring), Condor-G will attempt to
restart thegrid monitor for this many seconds. Defaults to 900 (15 minutes). If this dura-
tion passes without success thegrid monitorwill be disabled for the site in question until 60
minutes have passed.

GRID MONITOR NO STATUS TIMEOUT Jobs can disappear from thegrid monitor’s status re-
ports for short periods of time under normal circumstances,but a prolonged absence is often
a sign of problems on the remote machine. This parameter setsthe amount of time (in sec-
onds) that a job can be absent before thecondorgridmanagerreacts by restarting the GRAM
jobmanager. The default is 15 minutes.

3.3.24 Configuration File Entries Relating to Grid Usage andGlidein

These macros affect the Condor’s usage of grid resources andglidein.

GLIDEIN SERVER URLS A comma or space-separated list of URLs that contain the binaries that
must be copied bycondorglidein. There are no default values, but working URLs that copy
from the UW site are provided in the distributed sample configuration files.

GLEXEC JOB A boolean value that defaults toFalse . WhenTrue , it enables the use ofglexec
on the machine.

GLEXEC The full path and file name of theglexecexecutable.

3.3.25 Configuration File Entries for DAGMan

These macros affect the operation of DAGMan and DAGMan jobs within Condor.

Condor Version 7.2.3 Manual

3.3. Configuration 224

DAGMAN DEBUG CACHE ENABLE A boolean value that determines if log line caching for the
dagman.out file should be enabled in thecondordagmanprocess to increase performance
(potentially by orders of magnitude) when writing the dagman.out file to an NFS server. Cur-
rently, this cache is only utilized in Recovery Mode. If not defined, it defaults toFalse .

DAGMAN DEBUG CACHE SIZE An integer value in bytes which controls how many bytes of log
lines are to be stored in the log line cache. When the cache surpasses this number the entries
are written out in one call to the logging subsystem. A value of zero is not recommended
since each log line would surpass the cache size and be emitted in addition to bracketing log
lines explaining that the flushing was happening. The legal range of values is 0 to INTMAX.
If defined with a value less than 0, the value 0 will be used. If not defined, it defaults to 5
Megabytes.

DAGMAN MAX SUBMITS PER INTERVAL An integer that controls how many individual jobs
condordagmanwill submit in a row before servicing other requests (such asa condorrm).
The legal range of values is 1 to 1000. If defined with a value less than 1, the value 1 will be
used. If defined with a value greater than 1000, the value 1000will be used. If not defined, it
defaults to 5.

DAGMAN MAX SUBMIT ATTEMPTS An integer that controls how many times in a rowcon-
dor dagmanwill attempt to executecondorsubmitfor a given job before giving up. Note
that consecutive attempts use an exponential backoff, starting with 1 second. The legal range
of values is 1 to 16. If defined with a value less than 1, the value 1 will be used. If defined
with a value greater than 16, the value 16 will be used. Note that a value of 16 would result in
condordagmantrying for approximately 36 hours before giving up. If not defined, it defaults
to 6 (approximately two minutes before giving up).

DAGMAN SUBMIT DELAY An integer that controls the number of seconds thatcondordagman
will sleep before submitting consecutive jobs. It can be increased to help reduce the load on
thecondorschedddaemon. The legal range of values is 0 to 60. If defined with a value less
than 0, the value 0 will be used. If defined with a value greaterthan 60, the value 60 will be
used. The default value is 0.

DAGMAN STARTUP CYCLE DETECT A boolean value that whenTrue causescondordagman
to check for cycles in the DAG before submitting DAG node jobs, in addition to its run time
cycle detection. If not defined, it defaults toFalse .

DAGMAN RETRY SUBMIT FIRST A boolean value that controls whether a failed submit is retried
first (before any other submits) or last (after all other ready jobs are submitted). If this value
is set toTrue , when a job submit fails, the job is placed at the head of the queue of ready
jobs, so that it will be submitted again before any other jobsare submitted (this has been the
behavior ofcondordagmanup to this point). If this value is set toFalse , when a job submit
fails, the job is placed at the tail of the queue of ready jobs.If not defined, it defaults toTrue .

DAGMAN RETRY NODE FIRST A boolean value that controls whether a failed node (with retries)
is retried first (before any other ready nodes) or last (afterall other ready nodes). If this value
is set toTrue , when a node with retries fails (after the submit succeeded), the node is placed
at the head of the queue of ready nodes, so that it will be triedagain before any other jobs are

Condor Version 7.2.3 Manual

3.3. Configuration 225

submitted. If this value is set toFalse , when a node with retries fails, the node is placed at
the tail of the queue of ready nodes (this has been the behavior of condordagmanup to this
point). If not defined, it defaults toFalse .

DAGMAN MAX JOBS IDLE An integer value that controls the maximum number of idle node
jobs allowed within the DAG beforecondordagmantemporarily stops submitting jobs.
Once idle jobs start to run,condordagmanwill resume submitting jobs. If both the
command-line flag and the configuration parameter are specified, the command-line flag
overrides the configuration parameter. Unfortunately,DAGMANMAXJOBS IDLE cur-
rently counts each individual process within a cluster as a job, which is inconsistent with
DAGMANMAXJOBS SUBMITTED. The default is that there is no limit on the maximum
number of idle jobs.

DAGMAN MAX JOBS SUBMITTED An integer value that controls the maximum number of node
jobs within the DAG that will be submitted to Condor at one time. Note that this parameter
is the same as the-maxjobscommand-line flag tocondorsubmitdag. If both the command-
line flag and the configuration parameter are specified, the command-line flag overrides the
configuration parameter. A single invocation ofcondorsubmitcounts as one job, even if the
submit file produces a multi-job cluster. The default is thatthere is no limit on the maximum
number of jobs run at one time.

DAGMAN MUNGE NODE NAMES A boolean value that controls whethercondordagmanautomat-
ically renames nodes when running multiple DAGs (the renaming is done to avoid possi-
ble name conflicts). If this value is set toTrue , all node names have the ”DAG number”
prepended to them. For example, the first DAG specified on thecondorsubmitdag com-
mand line is considered DAG number 0, the second is DAG number1, etc. So if DAG
number 2 has a node B, that node will internally be renamed to ”2.B”. If not defined,
DAGMANMUNGENODENAMESdefaults toTrue .

DAGMAN IGNORE DUPLICATEJOB EXECUTION This macro is no longer used. The improved
functionality of theDAGMANALLOWEVENTSmacro eliminates the need for this variable.

A boolean value that controls whethercondordagmanaborts or continues with a DAG
in the rare case that Condor erroneously executes the job within a DAG node more
than once. A bug in Condor very occasionally causes a job to run twice. Run-
ning a job twice is contrary to the semantics of a DAG. The configuration macro
DAGMANIGNOREDUPLICATEJOB EXECUTION determines whethercondordagman
considers this a fatal error or not. The default value isFalse ; condordagmanconsiders
running the job more than once a fatal error, logs this fact, and aborts the DAG. When set to
True , condordagmanstill logs this fact, but continues with the DAG.

This configuration macro is to remain at its default value except in the case where a site
encounters the Condor bug in which DAG job nodes are executedtwice, and where it is certain
that having a DAG job node run twice will not corrupt the DAG. The logged messages within
* .dagman.out files in the case of that a node job runs twice contain the string ”EVENT
ERROR.”

DAGMAN ALLOW EVENTS An integer that controls which ”bad” events are considered fatal er-
rors by condordagman. This macro replaces and expands upon the functionality of the

Condor Version 7.2.3 Manual

3.3. Configuration 226

DAGMANIGNOREDUPLICATEJOB EXECUTIONmacro. IfDAGMANALLOWEVENTSis
set, it overrides the setting ofDAGMANIGNOREDUPLICATEJOB EXECUTION.

TheDAGMANALLOWEVENTSvalue is a bitwise-OR of the following values:

0 = allow no ”bad” events

1 = allow almost all ”bad” events (all except ”job re-run after terminated event”)

2 = allow terminated/aborted event combination

4 = allow ”job re-run after terminated event” bug

8 = allow garbage/orphan events

16 = allow execute or terminate event before job’s submit event

32 = allow two terminated events per job (sometimes seen withgrid jobs)

64 = allow duplicated events in general

The default value is 114 (allow terminated/aborted event combination, allow execute and/or
terminated event before job’s submit event, allow double terminated events, and allow general
duplicate events).

For example, a value of 6 instructscondordagmanto allow both the terminated/aborted event
combination and the ”job re-run after terminated event” bug. A value of 0 means that any
”bad” event will be considered a fatal error.

A value of 5 (1 + 4) will never abort the DAG because of a ”bad” event – but you should
almost never use this setting, because the ”job re-run afterterminated event” bug breaks the
semantics of the DAG.

This macro should almost always remain set to the default value!

DAGMAN DEBUG This macro is described in section 3.3.4 as<SUBSYS>DEBUG.

MAX DAGMAN LOG This macro is described in section 3.3.4 asMAX<SUBSYS>LOG.

DAGMAN CONDOR SUBMIT EXE The executable thatcondordagmanwill use to submit Condor
jobs. If not defined,condordagmanlooks forcondorsubmitin the PATH.

DAGMAN STORK SUBMIT EXE The executable thatcondordagmanwill use to submit Stork jobs.
If not defined,condordagmanlooks forstork submitin the PATH.

DAGMAN CONDOR RM EXE The executable thatcondordagmanwill use to remove Condor jobs.
If not defined,condordagmanlooks forcondorrm in the PATH.

DAGMAN STORK RM EXE The executable thatcondordagmanwill use to remove Stork jobs. If
not defined,condordagmanlooks forstork rm in the PATH.

DAGMAN PROHIBIT MULTI JOBS A boolean value that controls whethercondordagmanpro-
hibits node job submit files that queue multiple job procs (other than parallel universe). If a
DAG references such a submit file, the DAG will abort during the initialization process. If not
defined,DAGMANPROHIBIT MULTI JOBSdefaults toFalse .

Condor Version 7.2.3 Manual

3.3. Configuration 227

DAGMAN LOG ON NFS IS ERROR A boolean value that controls whethercondordagmanpro-
hibits node job submit files with user log files on NFS. If a DAG references such a
submit file andDAGMANLOGONNFS IS ERRORis True , the DAG will abort dur-
ing the initialization process. IfDAGMANLOGONNFS IS ERRORis False , a warn-
ing will be issued but the DAG will still be submitted. It isstrongly recommended
that DAGMANLOGONNFS IS ERRORremain set to the default value, because run-
ning a DAG with node job log files on NFS will often cause errors. If not defined,
DAGMANLOGONNFS IS ERRORdefaults toTrue .

DAGMAN ABORT DUPLICATES A boolean value that controls whether to attempt to abort du-
plicate instances ofcondordagmanrunning the same DAG on the same machine. When
condordagmanstarts up, if no DAG lock file exists,condordagmancreates the lock file and
writes its PID into it. If the lock file does exist, andDAGMANABORTDUPLICATESis set
to True , condordagmanchecks whether a process with the given PID exists, and if so,it
assumes that there is already another instance ofcondordagmanrunning on the same DAG.
Note that this test is not foolproof: it is possible that, ifcondordagmancrashes, the same PID
gets reused by another process beforecondordagmangets rerun on that DAG. This should
be quite rare, however. If not defined,DAGMANABORTDUPLICATESdefaults toTrue .

DAGMAN SUBMIT DEPTH FIRST A boolean value that controls whether to submit ready DAG
node jobs in (more-or-less) depth first order, as opposed to breadth-first order. Setting
DAGMANSUBMIT DEPTHFIRST to True doesnot override dependencies defined in the
DAG. Rather, it causes newly-ready nodes to be added to the head, rather than the tail,
of the ready node list. If there are no PRE scripts in the DAG, this will cause the
ready nodes to be submitted depth-first. If there are PRE scripts, the order will not be
strictly depth-first, but it will tend to favor depth rather than breadth in executing the
DAG. If you set DAGMANSUBMIT DEPTHFIRST to True , you may also want to set
DAGMANRETRYSUBMIT FIRST and DAGMANRETRYNODEFIRST to True . If not
defined,DAGMANSUBMIT DEPTHFIRST defaults tofalse .

DAGMAN ON EXIT REMOVE TheOnExitRemove expression put into thecondordagmansub-
mit file by condorsubmitdag. The default expression is designed to ensure thatcon-
dor dagmanis automatically re-queued by the schedd if it exits abnormally or is killed (e.g.,
during a reboot). If this results incondordagmanstaying in the queue when it should exit,
you may want to change to a less restrictive expression, for example:

(ExitBySignal == false || ExitSignal =!= 9)

If not defined,DAGMANONEXIT REMOVEdefaults to

(ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >= 0 && ExitCode <= 2))

DAGMAN ABORT ON SCARY SUBMIT A boolean value that controls whether to abort a DAG
upon detection of a “scary” submit event (one in which the Condor ID does not match
the expected value). Note that in all versions prior to 6.9.3, condordagmanhas not

Condor Version 7.2.3 Manual

3.3. Configuration 228

aborted a DAG upon detection of a “scary” submit event (this behavior is what now
happens if DAGMANABORTONSCARYSUBMIT is set to false). If not defined,
DAGMANABORTONSCARYSUBMITdefaults totrue .

DAGMAN PENDING REPORT INTERVAL An integer value (in seconds) that controls how of-
ten condordagman will print a report of pending nodes to thedagman.out file.
Note that the report will only be printed ifcondordagmanhas been waiting at least
DAGMANPENDINGREPORTINTERVAL seconds without seeing any node job user log
events, in order to avoid cluttering thedagman.out file. (This feature is mainly intended
to help diagnose ”stuck”condordagmanprocesses that are waiting indefinitely for a job to
finish.) If not defined,DAGMANPENDINGREPORTINTERVALdefaults to 600 seconds (10
minutes).

DAGMAN INSERT SUB FILE A file name of a file containing submit file commands to be in-
serted into the.condor.sub file created bycondorsubmitdag. The specified file is
inserted into the.condor.sub file before thequeue command and before any com-
mands specified with the-append condorsubmitdag command-line option. Note that
the DAGMANINSERT SUBFILE value can be overridden by the-insert sub file con-
dor submitdagcommand-line option.

DAGMAN OLD RESCUE A boolean value that controls whethercondordagmanuses ”old-style”
rescue DAG naming when creating a rescue DAG. (With ”old-style” rescue DAG nam-
ing, if your DAG file is my.dag , the rescue DAG file will bemy.dag.rescue , and
that file will be overwritten if you re-runmy.dag and it fails again. With ”new-
style” rescue DAG naming, the first time a rescue DAG is created for my.dag , it will
be namedmy.dag.rescue001 ,and subsequent failures ofmy.dag will produce res-
cue DAGs namedmy.dag.rescue002 , my.dag.rescue003 , etc.) If not defined,
DAGMANOLDRESCUEdefaults tofalse .

DAGMAN AUTO RESCUE A boolean value that controls whethercondordagmanautomatically
runs rescue DAGs. IfDAGMANAUTORESCUEis true and you run the DAG filemy.dag , if
a rescue dag such asmy.dag.rescue001 , my.dag.rescue002 , etc., exists, the newest
(highest-numbered) such rescue DAG will be run. If not defined, DAGMANAUTORESCUE
defaults totrue .

Note: havingDAGMANOLDRESCUEandDAGMANAUTORESCUEboth set totrue is a
fatal error.

DAGMAN MAX RESCUE NUM An integer value that controls the maximum ”new-style” res-
cue DAG number that will be written (ifDAGMANOLDRESCUEis false) or run (if
DAGMANAUTORESCUEis true). The maximum legal value is 999; the minimum value
is 0 (which will prevent a rescue DAG from being written at all, or automatically run). If not
defined,DAGMANMAXRESCUENUMdefaults to 100.

DAGMAN COPY TO SPOOL A boolean value that controls whether the condordagman binary is
copied to the spool directory when a DAG is submitted. The main reason for setting this value
to true is if you have long-running DAGs that should survive a DAGManversion upgrade. If
you run large numbers of small DAGs, you should leave this macro unset (or set it tofalse).
If not defined,DAGMANAUTORESCUEdefaults tofalse .

Condor Version 7.2.3 Manual

3.3. Configuration 229

3.3.26 Configuration File Entries Relating to Security

These macros affect the secure operation of Condor. Many of these macros are described in sec-
tion 3.6 on Security.

SEC * AUTHENTICATION This section has not yet been written

SEC * ENCRYPTION This section has not yet been written

SEC * INTEGRITY This section has not yet been written

SEC * NEGOTIATION This section has not yet been written

SEC * AUTHENTICATIONMETHODS This section has not yet been written

SEC * CRYPTO METHODS This section has not yet been written

GSI DAEMON NAME This configuration variable is retired. Instead useALLOWCLIENT or
DENYCLIENT as appropriate. When used, this variable defined a comma separated list
of the subject name(s) of the certificate(s) that the daemonsuse.

GSI DAEMON DIRECTORY A directory name used in the construction of complete
paths for the configuration variablesGSI DAEMONCERT, GSI DAEMONKEY, and
GSI DAEMONTRUSTEDCA DIR, for any of these configuration variables are not explicitly
set.

GSI DAEMON CERT A complete path and file name to the X.509 certificate to be usedin GSI
authentication. If this configuration variable is not defined, andGSI DAEMONDIRECTORY
is defined, then Condor usesGSI DAEMONDIRECTORYto construct the path and file name
as

GSI_DAEMON_CERT = $(GSI_DAEMON_DIRECTORY)/hostcert.pe m

GSI DAEMON KEY A complete path and file name to the X.509 private key to be usedin GSI
authentication. If this configuration variable is not defined, andGSI DAEMONDIRECTORY
is defined, then Condor usesGSI DAEMONDIRECTORYto construct the path and file name
as

GSI_DAEMON_KEY = $(GSI_DAEMON_DIRECTORY)/hostkey.pem

GSI DAEMON TRUSTED CA DIR The directory that contains the list of trusted certification
authorities to be used in GSI authentication. The files in this directory are the pub-
lic keys and signing policies of the trusted certification authorities. If this configura-
tion variable is not defined, andGSI DAEMONDIRECTORYis defined, then Condor uses
GSI DAEMONDIRECTORYto construct the directory path as

Condor Version 7.2.3 Manual

3.3. Configuration 230

GSI_DAEMON_TRUSTED_CA_DIR = $(GSI_DAEMON_DIRECTORY)/certificates

GSI DAEMON PROXY A complete path and file name to the X.509 proxy to be used in GSIau-
thentication. When this configuration variable is defined, use of this proxy takes precedence
over use of a certificate and key.

DELEGATE JOB GSI CREDENTIALS A boolean value that defaults toTrue for Condor version
6.7.19 and more recent versions. WhenTrue , a job’s GSI X.509 credentials are delegated,
instead of being copied. This results in a more secure communication when not encrypted.

GRIDMAP The complete path and file name of the Globus Gridmap file. The Gridmap file is used
to map X.509 distinguished names to Condor user ids.

SEC DEFAULT SESSION DURATION The amount of time in seconds before a communication
session expires. Defaults to 86400 seconds (1 day). A session is a record of necessary in-
formation to do communication between a client and daemon, and is protected by a shared
secret key. The session expires to reduce the window of opportunity where the key may be
compromised by attack.

SEC INVALIDATESESSIONS VIA TCP Use TCP (if True) or UDP (if False) for responding to
attempts to use an invalid security session. This happens, for example, if a daemon restarts and
receives incoming commands from other daemons that are still using a previously established
security session. The default is True.

FS REMOTE DIR The location of a file visible to both server and client in Remote File System
authentication. The default when not defined is the directory /shared/scratch/tmp .

ENCRYPT EXECUTE DIRECTORY The execute directory for jobs on Windows platforms may be
encrypted by setting this configuration variable toTrue . Defaults toFalse . The method of
encryption uses the EFS (Encrypted File System) feature of Windows NTFS v5.

SEC TCP SESSION TIMEOUT The length of time in seconds until the timeout on individualnet-
work operations when establishing a UDP security session via TCP. The default value is 20
seconds. Scalability issues with a large pool would be the only basis for a change from the
default value.

SEC TCP SESSION DEADLINE An integer representing the total length of time in seconds until
giving up when establishing a security session. WhereasSECTCP SESSIONTIMEOUT
specifies the timeout for individual blocking operations (connect, read, write), this setting
specifies the total time across all operations, including non-blocking operations that have little
cost other than holding open the socket. The default value is120 seconds. The intention of
this setting is to avoid waiting for hours for a response in the rare event that the other side
freezes up and the socket remains in a connected state. This problem has been observed in
some types of operating system crashes.

SEC DEFAULT AUTHENTICATIONTIMEOUT The length of time in seconds that Condor should
attempt authenticating network connections before givingup. The default is 20 seconds. Like

Condor Version 7.2.3 Manual

3.3. Configuration 231

other security settings, the portion of the configuration variable name,DEFAULT, may be re-
placed by a different access level to specify the timeout to use for different types of commands,
for exampleSECCLIENT AUTHENTICATIONTIMEOUT.

SEC PASSWORD FILE For Unix machines, the path and file name of the file containingthe pool
password for password authentication.

AUTH SSL SERVER CAFILE The path and file name of a file containing one or more trusted
CA’s certificates for the server side of a communication authenticating with SSL.

AUTH SSL CLIENT CAFILE The path and file name of a file containing one or more trusted
CA’s certificates for the client side of a communication authenticating with SSL.

AUTH SSL SERVER CADIR The path to a directory that may contain the certificates (each in its
own file) for multiple trusted CAs for the server side of a communication authenticating with
SSL. When defined, the authenticating entity’s certificate is utilized to identify the trusted
CA’s certificate within the directory.

AUTH SSL CLIENT CADIR The path to a directory that may contain the certificates (each in its
own file) for multiple trusted CAs for the client side of a communication authenticating with
SSL. When defined, the authenticating entity’s certificate is utilized to identify the trusted
CA’s certificate within the directory.

AUTH SSL SERVER CERTFILE The path and file name of the file containing the public certifi-
cate for the server side of a communication authenticating with SSL.

AUTH SSL CLIENT CERTFILE The path and file name of the file containing the public certifi-
cate for the client side of a communication authenticating with SSL.

AUTH SSL SERVER KEYFILE The path and file name of the file containing the private key for
the server side of a communication authenticating with SSL.

AUTH SSL CLIENT KEYFILE The path and file name of the file containing the private key for
the client side of a communication authenticating with SSL.

CERTIFICATEMAPFILE A path and file name of the unified map file.

SEC ENABLE MATCH PASSWORD AUTHENTICATION This is a special authentication mecha-
nism designed to minimize overhead in thecondorscheddwhen communicating with the
execute machine. Essentially, matchmaking results in a secret being shared between thecon-
dor scheddandcondorstartd, and this is used to establish a strong security session between
the execute and submit daemons without going through the usual security negotiation proto-
col. This is especially important when operating at large scale over high latency networks
(e.g. a glidein pool with one schedd and thousands of startdson a network with 0.1 second
round trip times).

The default value for this configuration option isFalse . To have any effect, it must
be True in the configuration of both the execute side (startd) as wellas the submit side
(schedd). When this authentication method is used, all other security negotiation between
the submit and execute daemons is bypassed. All inter-daemon communication between the

Condor Version 7.2.3 Manual

3.3. Configuration 232

submit and execute side will use the startd’s settings forSECDAEMONENCRYPTIONand
SECDAEMONINTEGRITY; the configuration of these values in the schedd, shadow, and
starter are ignored.

Important: For strong security, at least one of the two, integrity or encryption, should be
enabled in the startd configuration. Also, some form of strong mutual authentication (e.g.
GSI) should be enabled between all daemons and the central manager or the shared secret
which is exchanged in matchmaking cannot be safely encrypted when transmitted over the
network.

The schedd and shadow will be authenticated assubmit-side@matchsession when
they talk to the startd and starter. The startd and starter will be authenticated as
execute-side@matchsession when they talk to the schedd and shadow. On the sub-
mit side, authorization of the execute side happens automatically. On the execute side, it is
necessary to explicitly authorize the submit side. Example:

ALLOW_DAEMON = submit-side@matchsession/192.168.123. *

Replace the example netmask with something suitable for your situation.

KERBEROS SERVER KEYTAB The path and file name of the keytab file that holds the necessary
Kerberos principals. If not defined, this variable’s value is set by the installed Kerberos; it is
/etc/v5srvtab on most systems.

KERBEROS SERVER PRINCIPAL An exact Kerberos principal to use. The default value
is host/<hostname>@<realm> , as set by the installed Kerberos. Where both
KERBEROSSERVERPRINCIPAL and KERBEROSSERVERSERVICE are defined, this
value takes precedence.

KERBEROS SERVER USER The user name that the Kerberos server principal will map to after
authentication. The default value iscondor .

KERBEROS SERVER SERVICE A string representing the Kerberos service name. This
string is prepended with a slash character (/) and the host name in order to form
the Kerberos server principal. This value defaults tohost , resulting in the same
default value as specified by usingKERBEROSSERVERPRINCIPAL . Where both
KERBEROSSERVERPRINCIPAL and KERBEROSSERVERSERVICE are defined, the
value ofKERBEROSSERVERPRINCIPAL takes precedence.

KERBEROS CLIENT KEYTAB The path and file name of the keytab file for the client in Kerberos
authentication. This variable has no default value.

3.3.27 Configuration File Entries Relating to PrivSep

PRIVSEP ENABLED A boolean variable that, whenTrue , enables PrivSep. WhenTrue , the
condorprocd is used, ignoring the definition of the configuration variableUSEPROCD. The
default value when this configuration variable is not definedis False .

PRIVSEP SWITCHBOARD The full (trusted) path and file name of thecondorroot switchboard
executable.

Condor Version 7.2.3 Manual

3.3. Configuration 233

3.3.28 Configuration File Entries Relating to Virtual Machines

These macros affect how Condor runsvm universe jobs on a matched machine within the pool. They
specify items related to thecondorvm-gahp.

VM GAHP SERVER The complete path and file name of thecondorvm-gahp. There is no default
value for this required configuration variable.

VM GAHP LOG The complete path and file name of thecondorvm-gahplog. If not specified on a
Unix platform, thecondorstarter log will be used forcondorvm-gahplog items. There is no
default value for this required configuration variable on Windows platforms.

MAX VM GAHP LOG Controls the maximum length (in bytes) to which thecondorvm-gahplog
will be allowed to grow.

VM TYPE Specifies the type of supported virtual machine software. Itwill be the valuexen or
vmware . There is no default value for this required configuration variable.

VM VERSION Specifies the version of supported virtual machine softwaredefined byVMTYPE.
There is no default value for this required configuration variable. This configuration vari-
able does not currently alter the behavior of thecondorvm-gahp; instead, it is used incon-
dor statuswhen printing VM-capable hosts and slots.

VM MEMORY An integer to specify the maximum amount of memory in Mbytes that will be allowed
to the virtual machine program.

VM MAX NUMBER An integer limit on the number of executing virtual machines. When not de-
fined, the default value is the sameNUMCPUS.

VM STATUS INTERVAL An integer number of seconds that defaults to 60, representing the inter-
val between job status checks by thecondorstarter to see if the job has finished. A minimum
value of 30 seconds is enforced.

VM GAHP REQ TIMEOUT An integer number of seconds that defaults to 300 (five minutes), rep-
resenting the amount of time Condor will wait for a command issued from thecondorstarter
to thecondorvm-gahpto be completed. When a command times out, an error is reported to
thecondorstartd.

VM RECHECK INTERVAL An integer number of seconds that defaults to 600 (ten minutes), rep-
resenting the amount of time thecondorstartdwaits after a virtual machine error as reported
by thecondorstarter, and before checking a final time on the status of the virtual machine. If
the check fails, Condor disables starting any new vm universe jobs by removing theVMType
attribute from the machine ClassAd.

VM SOFT SUSPEND A boolean value that defaults toFalse , causing Condor to free the memory
of a vm universe job when the job is suspended. WhenTrue , the memory is not freed.

VM UNIV NOBODY USER Identifies a login name of a user with a home directory that maybe used
for job owner of a vm universe job. Thenobody user normally utilized when the job arrives
from a different UID domain will not be allowed to invoke a VMware virtual machine.

Condor Version 7.2.3 Manual

3.3. Configuration 234

ALWAYS VM UNIV USE NOBODY A boolean value that defaults toFalse . When True , all
vm universe jobs (independent of their UID domain) will run as the user defined in
VMUNIV NOBODYUSER.

VM NETWORKING A boolean variable describing if networking is supported. When not defined,
the default value isFalse .

VM NETWORKINGTYPE A string describing the type of networking, required and relevant only
whenVMNETWORKINGis True . Defined strings are

bridge
nat
nat, bridge

VM NETWORKINGDEFAULT TYPE Where multiple networking types are given in
VMNETWORKINGTYPE, this optional configuration variable identifies which to use.
Therefore, for

VM_NETWORKING_TYPE = nat, bridge

this variable may be defined as eithernat or bridge . Where multiple networking types are
given inVMNETWORKINGTYPE, and this variable isnot defined, a default ofnat is used.

The following configuration variables are specific to the VMware virtual machine software.

VMWARE PERL The complete path and file name toPerl. There is no default value for this required
variable.

VMWARE SCRIPT The complete path and file name of the script that controls VMware. There is
no default value for this required variable.

VMWARE NETWORKINGTYPE An optional string used in networking that thecondorvm-gahp
inserts into the VMware configuration file to define a networking type. Defined types arenat
or bridged . If a default value is needed, the inserted string will benat .

VMWARE NAT NETWORKINGTYPE An optional string used in networking that thecondorvm-
gahp inserts into the VMware configuration file to define a networking type. If nat
networking is used, this variable’s definition takes precedence over one defined by
VMWARENETWORKINGTYPE.

VMWARE BRIDGE NETWORKINGTYPE An optional string used in networking that thecon-
dor vm-gahpinserts into the VMware configuration file to define a networking type. If
bridge networking is used, this variable’s definition takesprecedence over one defined by
VMWARENETWORKINGTYPE.

Condor Version 7.2.3 Manual

3.3. Configuration 235

VMWARE LOCAL SETTINGS FILE The complete path and file name to a file, whose contents
will be inserted into the VMware description file (i.e., the .vmx file) before Condor starts the
virtual machine. This parameter is optional.

The following configuration variables are specific to the Xenvirtual machine software.

XEN SCRIPT The complete path and file name of the script that controls Xen. There is no default
value for this required variable.

XEN DEFAULT KERNEL The complete path and executable name of a Xen kernel to be utilized if
the job’s submission does not specify its own kernel image.

XEN DEFAULT INITRD The complete path and image file name for the initrd image, if used with
the default kernel image.

XEN BOOTLOADER A required full path and executable for the Xen bootloader, if the kernel image
includes a disk image.

XEN BRIDGE SCRIPT A path, file name, and command-line arguments to specify a script that
will be run to set up a bridging network interface for guests.The interface should provide
direct access to the host system’s LAN, that is, not be NAT’d on the host. An example:

XEN_BRIDGE_SCRIPT = vif-bridge bridge=xenbr0

XEN LOCAL SETTINGS FILE A complete path and file name. The file’s contents will be in-
cluded in the Xen configuration file that Condor writes to run the virtual machine. This pa-
rameter is optional.

The following two macros affect the configuration of Condor where Condor is running on a host
machine, the host machine is running an inner virtual machine, and Condor is also running on that
inner virtual machine. These two variables have nothing to do with thevm universe.

VMP HOST MACHINE A configuration variable for the inner virtual machine, which specifies the
host name.

VMP VM LIST For the host, a comma separated list of the host names or IP addresses for machines
running inner virtual machines on a host.

3.3.29 Configuration File Entries Relating to High Availability

These macros affect the high availability operation of Condor.

Condor Version 7.2.3 Manual

3.3. Configuration 236

MASTER HA LIST Similar toDAEMONLIST , this macro defines a list of daemons that thecon-
dor masterstarts and keeps its watchful eyes on. However, theMASTERHA LIST daemons
are run in aHigh Availability mode. The list is a comma or space separated list of subsystem
names (as listed in section 3.3.1). For example,

MASTER_HA_LIST = SCHEDD

TheHigh Availability feature allows for severalcondormasterdaemons (most likely on sep-
arate machines) to work together to insure that a particularservice stays available. These
condormasterdaemons ensure that one and only one of them will have the listed daemons
running.

To use this feature, the lock URL must be set withHA LOCKURL.

Currently, only file URLs are supported (those withfile: . . .). The default value for
MASTERHA LIST is the empty string, which disables the feature.

HA LOCK URL This macro specifies the URL that thecondormasterprocesses use to synchro-
nize for theHigh Availability service. Currently, only file URLs are supported; for example,
file:/share/spool . Note that this URL must be identical for allcondormasterpro-
cesses sharing this resource. Forcondorscheddsharing, we recommend setting upSPOOL
on an NFS share and having allHigh Availability condorscheddprocesses sharing it, and
setting theHA LOCKURLto point at this directory as well. For example:

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = SCHEDD.lock

A separate lock is created for eachHigh Availabilitydaemon.

There is no default value forHA LOCKURL.

Lock files are in the form<SUBSYS>.lock. condorpreen is not currently aware of the
lock files and will delete them if they are placed in theSPOOLdirectory, so be sure to add
<SUBSYS>.lock toVALID SPOOLFILES for eachHigh Availabilitydaemon.

HA <SUBSYS> LOCK URL This macro controls theHigh Availability lock URL for a spe-
cific subsystem as specified in the configuration variable name, and it overrides the
system-wide lock URL specified byHA LOCKURL. If not defined for each subsystem,
HA <SUBSYS>LOCKURLis ignored, and the value ofHA LOCKURLis used.

HA LOCK HOLD TIME This macro specifies the number of seconds that thecondormasterwill
hold the lock for eachHigh Availability daemon. Upon gaining the shared lock, thecon-
dor masterwill hold the lock for this number of seconds. Additionally,the condormaster
will periodically renew each lock as long as thecondormasterand the daemon are running.
When the daemon dies, or thecondormasterexists, thecondormasterwill immediately re-
lease the lock(s) it holds.

HA LOCKHOLDTIME defaults to 3600 seconds (one hour).

Condor Version 7.2.3 Manual

3.3. Configuration 237

HA <SUBSYS> LOCK HOLD TIME This macro controls theHigh Availability lock hold time for
a specific subsystem as specified in the configuration variable name, and it overrides the sys-
tem wide poll period specified byHA LOCKHOLDTIME. If not defined for each subsystem,
HA <SUBSYS>LOCKHOLDTIME is ignored, and the value ofHA LOCKHOLDTIME is
used.

HA POLL PERIOD This macro specifies how often thecondormasterpolls theHigh Availability
locks to see if any locks are either stale (meaning not updated for HA LOCKHOLDTIME sec-
onds), or have been released by the owningcondormaster. Additionally, thecondormaster
renews any locks that it holds during these polls.

HA POLL PERIODdefaults to 300 seconds (five minutes).

HA <SUBSYS> POLL PERIOD This macro controls theHigh Availability poll period for a spe-
cific subsystem as specified in the configuration variable name, and it overrides the sys-
tem wide poll period specified byHA POLL PERIOD. If not defined for each subsystem,
HA <SUBSYS>POLL PERIODis ignored, and the value ofHA POLL PERIODis used.

MASTER <SUBSYS> CONTROLLER Used only in HA configurations involving thecondorhad.

The condormasterhas the concept of a controlling and controlled daemon, typically with
the condorhad daemon serving as the controlling process. In this case, allcondoron and
condoroff commands directed at controlled daemons are given to the controlling daemon,
which then handles the command, and, when required, sends appropriate commands to the
condormasterto do the actual work. This allows the controlling daemon to know the state of
the controlled daemon.

As of 6.7.14, this configuration variable must be specified for all configurations usingcon-
dor had. To configure thecondornegotiatorcontrolled bycondorhad:

MASTER_NEGOTIATOR_CONTROLLER = HAD

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

HAD LIST A comma-separated list of allcondorhad daemons in the formIP:port or
hostname:port . Each central manager machine that runs thecondorhaddaemon should
appear in this list. IfHADUSEPRIMARYis set toTrue , then the first machine in this list is
the primary central manager, and all others in the list are backups.

All central manager machines must be configured with an identical HADLIST . The machine
addresses are identical to the addresses defined inCOLLECTORHOST.

HAD USE PRIMARY Boolean value to determine if the first machine in theHADLIST configura-
tion variable is a primary central manager. Defaults toFalse .

HAD CONNECTIONTIMEOUT The time (in seconds) that thecondorhad daemon waits before
giving up on the establishment of a TCP connection. The failure of the communication con-
nection is the detection mechanism for the failure of a central manager machine. For a LAN,
a recommended value is 2 seconds. The use of authentication (by Condor) increases the con-
nection time. The default value is 5 seconds. If this value isset too low,condorhaddaemons
will incorrectly assume the failure of other machines.

Condor Version 7.2.3 Manual

3.3. Configuration 238

HAD ARGS Command line arguments passed by thecondormasterdaemon as it invokes thecon-
dor haddaemon. To make high availability work, thecondorhaddaemon requires the port
number it is to use. This argument is of the form

-p $(HAD_PORT_NUMBER)

whereHADPORTNUMBERis a helper configuration variable defined with the desired port
number. Note that this port number must be the same value hereas used inHADLIST . There
is no default value.

HAD The path to thecondorhad executable. Normally it is defined relative to$(SBIN) . This
configuration variable has no default value.

MAX HAD LOG Controls the maximum length in bytes to which thecondorhad daemon log will
be allowed to grow. It will grow to the specified length, then be saved to a file with the suffix
.old . The .old file is overwritten each time the log is saved, thus the maximum space
devoted to logging is twice the maximum length of this log file. A value of 0 specifies that
this file may grow without bounds. The default is 1 Mbyte.

HAD DEBUG Logging level for thecondorhaddaemon. See<SUBSYS>DEBUGfor values.

HAD LOG Full path and file name of the log file. There is no default value.

REPLICATIONLIST A comma-separated list of allcondorreplication daemons in the form
IP:port or hostname:port . Each central manager machine that runs thecondorhad
daemon should appear in this list. All potential central manager machines must be configured
with an identicalREPLICATION LIST .

STATE FILE A full path and file name of the file protected by the replication mechanism. When
not defined, the default path and file used is

$(SPOOL)/Accountantnew.log

REPLICATIONINTERVAL Sets how often thecondor replicationdaemon initiates its tasks of
replicating the$(STATE FILE) . It is defined in seconds and defaults to 300 (5 minutes).
This is the same as the defaultNEGOTIATORINTERVAL.

MAX TRANSFERERLIFETIME A timeout period within which the process that transfers the
state file must complete its transfer. The recommended valueis 2 * average size of
state file / network rate . It is defined in seconds and defaults to 300 (5 minutes).

HAD UPDATE INTERVAL Like UPDATEINTERVAL, determines how often thecondorhad is
to send a ClassAd update to thecondorcollector. Updates are also sent at each and every
change in state. It is defined in seconds and defaults to 300 (5minutes).

HAD USE REPLICATION A boolean value that defaults toFalse . WhenTrue , the use ofcon-
dor replicationdaemons is enabled.

Condor Version 7.2.3 Manual

3.3. Configuration 239

REPLICATIONARGS Command line arguments passed by thecondormasterdaemon as it in-
vokes thecondorreplicationdaemon. To make high availability work, thecondorreplication
daemon requires the port number it is to use. This argument isof the form

-p $(REPLICATION_PORT_NUMBER)

whereREPLICATION PORTNUMBERis a helper configuration variable defined with the
desired port number. Note that this port number must be the same value as used in
REPLICATION LIST . There is no default value.

REPLICATION The full path and file name of thecondorreplicationexecutable. It is normally
defined relative to$(SBIN) . There is no default value.

MAX REPLICATIONLOG Controls the maximum length in bytes to which thecondorreplication
daemon log will be allowed to grow. It will grow to the specified length, then be saved to a
file with the suffix.old . The .old file is overwritten each time the log is saved, thus the
maximum space devoted to logging is twice the maximum lengthof this log file. A value of 0
specifies that this file may grow without bounds. The default is 1 Mbyte.

REPLICATIONDEBUG Logging level for the condorreplication daemon. See
<SUBSYS>DEBUGfor values.

REPLICATIONLOG Full path and file name to the log file. There is no default value.

TRANSFERER The full path and file name of the condor transferer exe-
cutable. Versions of Condor previous to 7.2.2 hard coded thelocation as
$(RELEASE DIR)/sbin/condor transferer . This is now the default value.
The future default value is likely to change, and be defined relative to$(SBIN) .

TRANSFERERLOG Full path and file name to the log file. There is no default valuefor this
variable; a definition is required if thecondorreplicationdaemon does a file transfer.

TRANSFERERDEBUG Logging level for thecondor transfererdaemon. See<SUBSYS>DEBUG
for values.

MAX TRANSFERERLOG Controls the maximum length in bytes to which thecondor transferer
daemon log will be allowed to grow. A value of 0 specifies that this file may grow without
bounds. The default is 1 Mbyte.

3.3.30 Configuration File Entries Relating to Quill

These macros affect the Quill database management and interface to its representation of the job
queue.

QUILL The full path name to thecondorquill daemon.

QUILL ARGS Arguments to be passed to thecondorquill daemon upon its invocation.

Condor Version 7.2.3 Manual

3.3. Configuration 240

QUILL LOG Path to the Quill daemon’s log file.

QUILL ENABLED A boolean variable that defaults toFalse . WhenTrue , Quill functionality is
enabled. WhenFalse , the Quill daemon writes a message to its log and exits. Thecondorq
andcondorhistory tools then do not use Quill.

QUILL NAME A string that uniquely identifies an instance of thecondorquill daemon, as there
may be more thancondorquill daemon per pool. The string must not be the same as for any
condorschedddaemon.

See the description ofMASTERNAMEin section 3.3.9 on page 177 for defaults and composi-
tion of valid Condor daemon names.

QUILL USE SQL LOG In order for Quill to store historical job information or resource informa-
tion, the Condor daemons must write information to the SQL logfile. By default, this is set
to False , and the only information Quill stores in the database is thecurrent job queue.
This can be set on a per daemon basis. For example, to store information about historical
jobs, but not store execute resource information, setQUILL USESQL LOGto False and
setSCHEDD.QUILL USESQL LOGto True .

QUILL DB NAME A string that identifies a database within a database server.

QUILL DB USER A string that identifies thePostgreSQLuser that Quill will connect to the
database as. We recommend “quillwriter ” for this setting.

QUILL DB TYPE A string that distinguishes between database system types.Defaults to the only
database system currently defined,"PGSQL".

QUILL DB IP ADDR The host address of the database server. It can be either an IPaddress or an
IP address. It must match exactly what is used in the.pgpass file.

QUILL POLLING PERIOD The frequency, in number of seconds, at which the Quill daemon polls
the filejob queue.log for updates. New information in the log file is sent to the database.
The default value is 10.

QUILL NOT RESPONDINGTIMEOUT The length of time, in seconds, before thecondormaster
may decide that thecondorquill daemon is hung due to a lack of communication, potentially
causing thecondormasterto kill and restart thecondorquill daemon. When thecondorquill
daemon is processing a very long log file, it may not be able to communicate with the master.
The default is 3600 seconds, or one hour. It may be advisable to increase this to several hours.

QUILL MAINTAIN DB CONN A boolean variable that defaults toTrue . WhenTrue , thecon-
dor quill daemon maintains an open connection the database server, which speeds up updates
to the database. As each open connection consumes resourcesat the database server, we
recommend a setting ofFalse for large pools.

DATABASE PURGE INTERVAL The interval, in seconds, between scans of the database to iden-
tify and delete records that are beyond their history durations. The default value is 86400, or
one day.

Condor Version 7.2.3 Manual

3.3. Configuration 241

DATABASE REINDEX INTERVAL The interval, in seconds, between reindex commands on
the database. The default value is 86400, or one day. This is only used when the
QUILL DB TYPEis set to"PGSQL".

QUILL JOB HISTORY DURATION The number of days after entry into the database that a job
will remain in the database. AfterQUILL JOB HISTORYDURATIONdays, the job is
deleted. The job history is the final ClassAd, and contains all information necessary forcon-
dor historyto succeed. The default is 3650, or about 10 years.

QUILL RUN HISTORY DURATION The number of days after entry into the database
that extra information about the job will remain in the database. After
QUILL RUNHISTORYDURATIONdays, the records are deleted. This data includes
matches made for the job, file transfers the job performed, and user log events. The default is
7 days, or one week.

QUILL RESOURCE HISTORY DURATION The number of days after entry into
the database that a resource record will remain in the database. After
QUILL RESOURCEHISTORYDURATIONdays, the record is deleted. The resource
history data includes the ClassAd of a compute slot, submitter ClassAds, and daemon
ClassAds. The default is 7 days, or one week.

QUILL DBSIZE LIMIT After each purge, thecondorquill daemon estimates the size of the
database. If the size of the database exceeds this limit, thecondorquill daemon will e-mail
the administrator a warning. This size is given in gigabytes, and defaults to 20.

QUILL MANAGE VACUUM A boolean value that defaults toFalse . WhenTrue , thecondorquill
daemon takes on the maintenance task of vacuuming the database. As ofPostgreSQLversion
8.1, the database can perform this task automatically; therefore, having thecondorquill dae-
mon vacuum is not necessary. A value ofTrue causes warnings to be written to the log
file.

QUILL SHOULD REINDEX A boolean value that defaults toTrue . WhenTrue , thecondorquill
daemon will re-index the database tables when the history file is purged of old data. So, if
Quill is configured to never delete history data, the tables are never re-indexed.

QUILL IS REMOTELY QUERYABLE A boolean value that defaults toTrue . WhenFalse , the
remote database tables may not be remotely queryable.

QUILL DB QUERY PASSWORD Defines the password string needed bycondorq to gain read ac-
cess for remotely querying the Quill database.

QUILL ADDRESS FILE When defined, it specifies the path and file name of a local file containing
the IP address and port number of the Quill daemon. By using the file, tools executed on the
local machine do not need to query the central manager in order to find thecondorquill
daemon.

DBMSD The full path name to thecondordbmsd daemon. The default location is
$(SBIN)/condor dbmsd.

Condor Version 7.2.3 Manual

3.3. Configuration 242

DBMSD ARGS Arguments to be passed to thecondordbmsddaemon upon its invocation. The
default arguments are-f .

DBMSD LOG Path to the condordbmsd daemon’s log file. The default log location is
$(LOG)/DbmsdLog .

DBMSD NOT RESPONDINGTIMEOUT The length of time, in seconds, before thecondormaster
may decide that thecondordbmsdis hung due to a lack of communication, potentially causing
thecondormasterto kill and restart thecondordbmsddaemon. When thecondordbmsdis
purging or reindexing a very large database, it may not be able to communicate with the
master. The default is 3600 seconds, or one hour. It may be advisable to increase this to
several hours.

3.3.31 MyProxy Configuration File Macros

In some cases, Condor can autonomously refresh GSI certificate proxies viaMyProxy, available
from http://myproxy.ncsa.uiuc.edu/.

MYPROXY GET DELEGATION The full path name to themyproxy-get-delegationexecutable, in-
stalled as part of theMyProxysoftware. Often, it is necessary to wrap the actual executable
with a script that sets the environment, such as theLD LIBRARY PATH, correctly. If this
macro is defined, Condor-G andcondorcreddwill have the capability to autonomously re-
fresh proxy certificates. By default, this macro is undefined.

3.3.32 Configuration File Macros Affecting APIs

ENABLE SOAP A boolean value that defaults toFalse . When True , Condor daemons will
respond to HTTP PUT commands as if they were SOAP calls. WhenFalse , all HTTP PUT
commands are denied.

ENABLE WEB SERVER A boolean value that defaults toFalse . WhenTrue , Condor daemons
will respond to HTTP GET commands, and send the static files sitting in the subdirectory
defined by the configuration variableWEBROOTDIR. In addition, web commands are con-
sidered a READ command, so the client will be checked by host-based security.

SOAP LEAVE IN QUEUE A boolean value that whenTrue , causes a job in the completed state to
remain in the queue, instead of being removed based on the completion of file transfer. There
is no default value.

WEB ROOT DIR A complete path to the directory containing all the files served by the web server.

<SUBSYS> ENABLE SOAP SSL A boolean value that defaults toFalse . WhenTrue , enables
SOAP over SSL for the specified<SUBSYS>. Any specific<SUBSYS>ENABLESOAPSSL
setting overrides the value ofENABLESOAPSSL.

Condor Version 7.2.3 Manual

http://myproxy.ncsa.uiuc.edu/

3.3. Configuration 243

ENABLE SOAP SSL A boolean value that defaults toFalse . WhenTrue , enables SOAP over
SSL for all daemons.

<SUBSYS> SOAP SSL PORT A required port number on which SOAP over SSL messages are
accepted, when SOAP over SSL is enabled. The<SUBSYS>must be specified, because
multiple daemons running on a single machine may not share a port. There is no default
value.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

SOAP SSL SERVER KEYFILE A required complete path and file name to specify the daemon’s
identity, as used in authentication when SOAP over SSL is enabled. The file is to be an
OpenSSL PEM file containing a certificate and private key. There is no default value.

SOAP SSL SERVER KEYFILE PASSWORD An optional complete path and file name to specify
a password for unlocking the daemon’s private key. There is no default value.

SOAP SSL CA FILE A required complete path and file name to specify a file containing certifi-
cates of trusted Certificate Authorities (CAs). Only clients who present a certificate signed by
a trusted CA will be authenticated. There is no default value.

SOAP SSL CA DIR A required complete path to a directory containing certificates of trusted Cer-
tificate Authorities (CAs). Only clients who present a certificate signed by a trusted CA will
be authenticated. There is no default value.

SOAP SSL DH FILE An optional complete path and file name to a DH file containing keys for a
DH key exchange. There is no default value.

3.3.33 Stork Configuration File Macros

STORK MAX NUM JOBS An integer limit on the number of concurrent data placement jobs han-
dled by Stork. The default value when not defined is 10.

STORK MAX RETRY An integer limit on the number of attempts for a single data placement job.
For data transfers, this includes transfer attempts on the primary protocol, all alternate proto-
cols, and all retries. The default value when not defined is 10.

STORK MAXDELAY INMINUTES An integer limit (in minutes) on the run time for a data place-
ment job, after which the job is considered failed. The default value when not defined is 10,
and the minimum legal value is 1.

STORK TMP CRED DIR The full path to the temporary credential storage directoryused by Stork.
The default value is/tmp when not defined.

STORK MODULE DIR The full path to the directory containing Stork modules. Thedefault
value when not defined is as defined by$(LIBEXEC) . It is a fatal error for both
STORKMODULEDIR andLIBEXEC to be undefined.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 244

CRED SUPER USERS Access to a stored credential is restricted to the user who submitted the
credential, and any user names specified in this macro. The format is a space or comma
separated list of user names which are valid on thestork creddhost. The default value of this
macro isroot on Unix systems, andAdministrator on Windows systems.

CRED STORE DIR Directory for storing credentials. This directory must exist prior to starting
stork credd. It is highly recommended to restrict access permissions toonly the directory
owner. The default value is$(SPOOL DIR)/cred .

CRED INDEX FILE Index file path of saved credentials. This file will be automatically created if
it does not exist. The default value is$(CRED STOREDIR)/cred-index .

DEFAULT CRED EXPIRE THRESHOLD stork credd will attempt to refresh credentials when
their remaining lifespan is less than this value. Units = seconds. Default value = 3600 seconds
(1 hour).

CRED CHECK INTERVAL stork credd periodically checks remaining lifespan of stored creden-
tials, at this interval. Units = seconds. Default value = 60 seconds (1 minute).

3.4 User Priorities and Negotiation

Condor uses priorities to determine machine allocation forjobs. This section details the priorities
and the allocation of machines (negotiation).

For accounting purposes, each user is identified by username@uid domain. Each user is as-
signed a priority value even if submitting jobs from different machines in the same domain, or even
if submitting from multiple machines in the different domains.

The numerical priority value assigned to a user is inverselyrelated to thegoodnessof the priority.
A user with a numerical priority of 5 gets more resources thana user with a numerical priority of
50. There are two priority values assigned to Condor users:

• Real User Priority (RUP), which measures resource usage ofthe user.

• Effective User Priority (EUP), which determines the number of resources the user can get.

This section describes these two priorities and how they affect resource allocations in Condor. Doc-
umentation on configuring and controlling priorities may befound in section 3.3.17.

3.4.1 Real User Priority (RUP)

A user’s RUP measures the resource usage of the user through time. Every user begins with a RUP
of one half (0.5), and at steady state, the RUP of a user equilibrates to the number of resources used
by that user. Therefore, if a specific user continuously usesexactly ten resources for a long period
of time, the RUP of that user stabilizes at ten.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 245

However, if the user decreases the number of resources used,the RUP gets better. The rate at
which the priority value decays can be set by the macroPRIORITY HALFLIFE , a time period
defined in seconds. Intuitively, if thePRIORITY HALFLIFE in a pool is set to 86400 (one day),
and if a user whose RUP was 10 removes all his jobs, the user’s RUP would be 5 one day later, 2.5
two days later, and so on.

3.4.2 Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to determine how many resources that user may
receive. The EUP is linearly related to the RUP by apriority factor which may be defined on a
per-user basis. Unless otherwise configured, the priority factor for all users is 1.0, and so the EUP
is the same as the the RUP. However, if desired, the priority factors of specific users (such as remote
submitters) can be increased so that others are served preferentially.

The number of resources that a user may receive is inversely related to the ratio between the
EUPs of submitting users. Therefore userA with EUP=5 will receive twice as many resources as
userB with EUP=10 and four times as many resources as userC with EUP=20. However, ifA
does not use the full number of allocated resources, the available resources are repartitioned and
distributed among remaining users according to the inverseratio rule.

Condor supplies mechanisms to directly support two policies in which EUP may be useful:

Nice users A job may be submitted with the parameternice user set to TRUE in the submit
command file. A nice user job gets its RUP boosted by theNICE USERPRIO FACTOR
priority factor specified in the configuration file, leading to a (usually very large) EUP. This
corresponds to a low priority for resources. These jobs are therefore equivalent to Unix back-
ground jobs, which use resources not used by other Condor users.

Remote UsersThe flocking feature of Condor (see section 5.2) allows thecondorscheddto sub-
mit to more than one pool. In addition, the submit-only feature allows a user to run acon-
dor scheddthat is submitting jobs into another pool. In such situations, submitters from other
domains can submit to the local pool. It is often desirable tohave Condor treat local users
preferentially over these remote users. If configured, Condor will boost the RUPs of remote
users byREMOTEPRIO FACTORspecified in the configuration file, thereby lowering their
priority for resources.

The priority boost factors for individual users can be set with the setfactor option of con-
dor userprio. Details may be found in thecondoruserpriomanual page on page 838.

3.4.3 Priorities and Preemption

Priorities are used to ensure that users get their fair shareof resources. The priority values are used at
allocation time. In addition, Condor may preempt a machine claim and reallocate it when conditions
change.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 246

Too many preemptions lead to thrashing, a condition in whichnegotiation for a machine iden-
tifies a new job with a better priority most every cycle. Each job is, in turn, preempted, and no
job finishes. To avoid this situation, thePREEMPTIONREQUIREMENTSconfiguration variable is
defined for and used only by thecondornegotiatordaemon to specify the conditions that must be
met for a preemption to occur. It is usually defined to deny preemption if a current running job has
been running for a relatively short period of time. This effectively limits the number of preemptions
per resource per time interval.

Note thatPREEMPTIONREQUIREMENTSonly applies to preemptions due to user priority. It
does not have any effect if the machine’sRANKexpression prefers a different job, or if the machine’s
policy causes the job to vacate due to other activity on the machine. See section 3.5.9 for a general
discussion of limiting preemption.

The following attributes may be used within the definition ofPREEMPTIONREQUIREMENTS
and PREEMPTIONRANK. In these attributes, those with names that begin with the string
Submitter refer to characteristics about the candidate job’s user; those with names that begin
with the stringRemote refer to characteristics about the user currently using theresource. Further,
those with names that end with the stringResourcesInUse have values that may change within
the time period associated with a single negotiation cycle.Therefore, the configuration variables
PREEMPTIONREQUIREMENTSSTABLE and andPREEMPTIONRANKSTABLE exist to in-
form thecondornegotiatordaemon that values may change. See section 3.3.17 on page 213for
complete definitions.

SubmitterUserPrio: A floating point value representing the user priority of the candidate job.

SubmitterUserResourcesInUse: The integer number of slots currently utilized by the user
submitting the candidate job.

RemoteUserPrio: A floating point value representing the user priority of the job currently run-
ning on the machine.

RemoteUserResourcesInUse: The integer number of slots currently utilized by the user of
the job currently running on the machine.

SubmitterGroupResourcesInUse: If the owner of the candidate job is a member of a valid
accounting group, with a defined group quota, then this attribute is the integer number of slots
currently utilized by the group.

SubmitterGroupQuota: If the owner of the candidate job is a member of a valid accounting
group, with a defined group quota, then this attribute is the integer number of slots defined as
the group’s quota.

RemoteGroupResourcesInUse: If the owner of the currently running job is a member of a
valid accounting group, with a defined group quota, then thisattribute is the integer number
of slots currently utilized by the group.

RemoteGroupQuota: If the owner of the currently running job is a member of a validaccounting
group, with a defined group quota, then this attribute is the integer number of slots defined as
the group’s quota.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 247

3.4.4 Priority Calculation

This section may be skipped if the reader so feels, but for thecurious, here is Condor’s priority
calculation algorithm.

The RUP of a useru at timet, πr(u, t), is calculated every time intervalδt using the formula

πr(u, t) = β × π(u, t − δt) + (1 − β) × ρ(u, t)

whereρ(u, t) is the number of resources used by useru at timet, andβ = 0.5δt/h. h is the half life
period set byPRIORITY HALFLIFE .

The EUP of useru at timet, πe(u, t) is calculated by

πe(u, t) = πr(u, t) × f(u, t)

wheref(u, t) is the priority boost factor for useru at timet.

As mentioned previously, the RUP calculation is designed sothat at steady state, each user’s
RUP stabilizes at the number of resources used by that user. The definition ofβ ensures that the
calculation ofπr(u, t) can be calculated over non-uniform time intervalsδt without affecting the
calculation. The time intervalδt varies due to events internal to the system, but Condor guarantees
that unless the central manager machine is down, no matches will be unaccounted for due to this
variance.

3.4.5 Negotiation

Negotiation is the method Condor undergoes periodically tomatch queued jobs with resources ca-
pable of running jobs. Thecondornegotiatordaemon is responsible for negotiation.

During a negotiation cycle, thecondornegotiatordaemon accomplishes the following ordered
list of items.

1. Build a list of all possible resources, regardless of the state of those resources.

2. Obtain a list of all job submitters (for the entire pool).

3. Sort the list of all job submitters based on EUP (see section 3.4.2 for an explanation of EUP).
The submitter with the best priority is first within the sorted list.

4. Iterate until there are either no more resources to match,or no more jobs to match.

For each submitter (in EUP order):

For each submitter, get each job. Since jobs may be submittedfrom more than one ma-
chine (hence to more than onecondorschedddaemon), here is a further definition
of the ordering of these jobs. With jobs from a singlecondorschedddaemon, jobs
are typically returned in job priority order. When more thanonecondorschedd
daemon is involved, they are contacted in an undefined order.All jobs from a single
condorschedddaemon are considered before moving on to the next. For each job:

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 248

• For each machine in the pool that can execute jobs:
(a) If machine.requirements evaluates to False or

job.requirements evaluates toFalse , skip this machine
(b) If the machine is in the Claimed state, but not running a job, skip this ma-

chine.
(c) If this machine is not running a job, add it to the potential match list by reason

of No Preemption.
(d) If the machine is running a job

– If the machine.RANK on this job is better than the running job, add this
machine to the potential match list by reason of Rank.

– If the EUP of this job is better than the EUP of the currently running job,
andPREEMPTIONREQUIREMENTSis True , and themachine.RANK
on this job is not worse than the currently running job, add this machine
to the potential match list by reason of Priority.

• Of machines in the potential match list, sort
by NEGOTIATORPREJOB RANK, job.RANK ,
NEGOTIATORPOSTJOB RANK, Reason for claim (No Preemption,
then Rank, then Priority),PREEMPTIONRANK

• The job is assigned to the top machine on the potential matchlist. The machine
is removed from the list of resources to match (on this negotiation cycle).

Thecondornegotiatorasks thecondorscheddfor the ”next job” from a given submitter/user.
Typically, thecondorscheddreturns jobs in the order of job priority. If priorities are the same,
job submission time is used; older jobs go first. If a cluster has multiple procs in it and one of
the jobs cannot be matched, thecondorscheddwill not return any more jobs in that cluster on
that negotiation pass. This is an optimization based on the theory that the cluster jobs are similar.
The configuration variableNEGOTIATEALL JOBS IN CLUSTER disables the cluster-skipping
optimization. Use of the configuration variableSIGNIFICANT ATTRIBUTES will change the
definition of what thecondorscheddconsiders a cluster from the default definition of all jobs that
share the sameClusterId .

3.4.6 The Layperson’s Description of the Pie Spin and Pie Slice

Condor schedules in a variety of ways. First, it takes all users who have submitted jobs and calculates
their priority. Then, it totals the number of resources available at the moment, and using the ratios of
the user priorities, it calculates the number of machines each user could get. This is theirpie slice.

The Condor matchmaker goes in user priority order, contactseach user, and asks for job infor-
mation. Thecondorschedddaemon (on behalf of a user) tells the matchmaker about a job,and the
matchmaker looks at available resources to create a list of resources that match the requirements ex-
pression. With the list of resources that match, it sorts them according to the rank expressions within
ClassAds. If a machine prefers a job, the job is assigned to that machine, potentially preempting a
job that might already be running on that machine. Otherwise, give the machine to the job that the
job ranks highest. If the machine ranked highest is already running a job, we may preempt running

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 249

job for the new job. A default policy for preemption states that the user must have a 20% better
priority in order for preemption to succeed. If the job has nopreferences as to what sort of machine
it gets, matchmaking gives it the first idle resource to meet its requirements.

This matchmaking cycle continues until the user has recieved all of the machines in their pie
slice. The matchmaker then contacts the next highest priority user and offers that user their pie slice
worth of machines. After contacting all users, the cycle is repeated with any still available resources
and recomputed pie slices. The matchmaker continuesspinning the pieuntil it runs out of machines
or all thecondorschedddaemons say they have no more jobs.

3.4.7 Group Accounting

By default, Condor does all accounting on a per-user basis, and this accounting is primarily used to
compute priorities for Condor’s fair-share scheduling algorithms. However, accounting can also be
done on a per-group basis. Multiple users can all submit jobsinto the same accounting group, and
all of the jobs will be treated with the same priority.

To use an accounting group, each job inserts an attribute into the job ClassAd which defines the
accounting group name for the job. A common name is decided upon and used for the group. The
following line is an example that defines the attribute within the job’s submit description file:

+AccountingGroup = "group_physics"

TheAccountingGroup attribute is a string, and it therefore must be enclosed in double quote
marks. The string may have a maximum length of 40 characters.The name shouldnot be qualified
with a domain. Certain parts of the Condor system do append the value$(UID DOMAIN)(as spec-
ified in the configuration file on the submit machine) to this string for internal use. For example, if
the value ofUID DOMAINis example.com , and the accounting group name is as specified,con-
dor userpriowill show statistics for this accounting group using the appended domain, for example

Effective
User Name Priority
------------------------------ ---------
group_physics@example.com 0.50
user@example.com 23.11
heavyuser@example.com 111.13
...

Additionally, thecondoruserpriocommand allows administrators to remove an entity from the
accounting system in Condor. The-deleteoption tocondoruserprioaccomplishes this if all the jobs
from a given accounting group are completed, and the administrator wishes to remove that group
from the system. The-deleteoption identifies the accounting group with the fully-qualified name of
the accounting group. For example

condor_userprio -delete group_physics@example.com

Condor removes entities itself as they are no longer relevant. Intervention by an administrator to
delete entities can be beneficial when the use of thousands ofshort term accounting groups leads to
scalability issues.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 250

Note that the name of an accounting group may include a period(.). Inclusion of a period
character in the accounting group name only has relevance ifthe portion of the name before the
period matches a group name, as described in the next sectionon group quotas.

3.4.8 Group Quotas

The use of group quotas modifies the negotiation for available resources (machines) within a Con-
dor pool. This solves the difficulties inherent when priorities assigned based on each single user
are insufficient. This may be the case when different groups (of varying size) own computers, and
the groups choose to combine their computers to form a Condorpool. Consider an imaginary Con-
dor pool example with thirty computers; twenty computers are owned by the physics group and ten
computers are owned by the chemistry group. One notion of fair allocation could be implemented
by configuring the twenty machines owned by the physics groupto prefer (using theRANKconfigu-
ration macro) jobs submitted by the users identified as associated with the physics group. Likewise,
the ten machines owned by the chemistry group are configured to prefer jobs from users associated
with the the chemistry group. This routes jobs to execute on specific machines, perhaps causing
more preemption than necessary. The (fair allocation) policy desired is likely somewhat different,
if these thirty machines have been pooled. The desired policy does not tie users to specific sets of
machines, but to numbers of machines (a quota). Given thirtysimilar machines, the desired policy
allows users within the physics group to have preference on up to twenty of the machines within the
pool, and the machines can be any of the machines that are available.

A quota for a set of users requires an identification of the set; members are called group users.
Jobs under the group quota specify the group user with theAccountingGroup job ClassAd
attribute. This is the same attribute as is used with group accounting.

The submit file syntax for specifying a group user includes both a group name and a user name.
The syntax is

+AccountingGroup = "<group>.<user>"

The group is a name chosen for the group. Group names are case-insensitive for negotia-
tion. Group names are not required to begin with the string"group " , as in the examples
"group physics.newton" and "group chemistry.curie" , but it is a useful conven-
tion, because group names must not conflict with user names. The period character between the
group and the user name is a required part of the syntax. NOTE: An accounting group value lacking
the period will cause the job to not be considered part of the group when negotiating, even if the
group name has a quota. Furthermore, there will be no warnings that the group quota is not in effect
for the job, as this syntax defines group accounting.

Configuration controls the order of negotiation for groups and individual users, as well as sets
quotas (preferentially allocated numbers of machines) forthe groups. A declared number of slots
specifies the quota for each group (seeGROUPQUOTA<groupname> in section 3.3.17). The sum
of the quotas for all groups must be less than or equal to the number of slots in the entire pool. If
the sum is less than the number of slots in the entire pool, theslots are allocated to thenone group,
comprised of the general users not submitting jobs in a group.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 251

Where group users are specified for jobs, accounting is done per group user. It is no longer done
by group, or by individual user.

Negotiation is changed when group quotas are used. Condor negotiates first for defined groups,
and then for independent job submitters. Given jobs belonging to different groups, Condor nego-
tiates first for the group currently utilizing the smallest percentage of machines in its quota. After
this, Condor negotiates for the group currently utilizing the second smallest percentage of machines
in its quota. The last group will be the one with the highest percentage of machines in its quota.
As an example, again use the imaginary pool and groups given above. If various users within
group_physics have jobs running on 15 computers, then the physics group has75% of the
machines within its quota. If various users withingroup_chemistry have jobs running on 5
computers, then the chemistry group has 50% of the machines within its quota. Negotiation will
take place for the chemistry group first. For independent jobsubmissions (those not part of any
group), the classic Condor user fair share algorithm still applies.

Note that there is no verification that a user is a member of thegroup that he claims. We rely on
societal pressure for enforcement.

Configuration variables affect group quotas. See section 3.3.17 for detailed descriptions of the
variables mentioned. Group names that may be given quotas tobe used in negotiation are listed in
theGROUPNAMESmacro. The names chosen must not conflict with Condor user names. Quotas
(by group) are defined in numbers of machine slots. Each groupmay be assigned an initial value
for its user priority factor with theGROUPPRIO FACTOR<groupname> macro. If a group is
currently allocated its entire quota of machines, and a group user has a submitted job that is not
running, theGROUPAUTOREGROUPmacro allows the job to be considered a second time within
the negotiation cycle along with all other individual users’ jobs.

####################
#
Example 1
Configuration for group quotas
#
####################

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10
GROUP_PRIO_FACTOR_group_physics = 1.0
GROUP_PRIO_FACTOR_group_chemistry = 3.0
GROUP_AUTOREGROUP_group_physics = FALSE
GROUP_AUTOREGROUP_group_chemistry = TRUE

This configuration specifies that thegroup_physics users will get 20 machines and the
group_chemistry users will get ten machines.group_physics users will never get more
than 20 machines; however,group_chemistry users can potentially get more than ten machines
becauseGROUPAUTOREGROUPchemistry is true. This could happen, for example, if there are

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 252

only 15 jobs submitted bygroup_physics users. Also, the default priority factor for the physics
groups is 1.0, and the default priority factor for the chemistry group is 3.0.

####################
#
Submit description file for group quota user
#
####################
...
+AccountingGroup = "group_physics.newton"
...

This submit file specifies that this job is to be negotiated as part of thegroup_physics group
and that the user is newton. Remember that both the group nameand the user name are required for
the group quota to take effect.

3.5 Policy Configuration for the condor startd

This section describes the configuration of machines, such that they, through thecondorstartddae-
mon, implement a desired policy for when remote jobs should start, be suspended, (possibly) re-
sumed, vacate (with a checkpoint) or be killed (no checkpoint). This policy is the heart of Condor’s
balancing act between the needs and wishes of resource owners (machine owners) and resource users
(people submitting their jobs to Condor). Please read this section carefully if you plan to change
any of the settings described here, as a wrong setting can have a severe impact on either the owners
of machines in your pool (they may ask to be removed from the pool entirely) or the users of your
pool (they may stop using Condor).

Before the details, there are a few things to note:

• Much of this section refers to ClassAd expressions. Pleaseread through section 4.1 on
ClassAd expressions before continuing.

• If defining the policy for an SMP machine (a multi-CPU machine), also read section 3.12.7 for
specific information on configuring thecondorstartd daemon for SMP machines. Eachslot
represented by thecondorstartd daemon on an SMP machine has its ownstateandactivity
(as described below). In the future, each slot will be able tohave its own individual policy
expressions defined. Within this manual section, the word “machine” refers to an individual
slot within an SMP machine.

To define a policy, set expressions in the configuration file (see section 3.3 on Configuring Con-
dor for an introduction to Condor’s configuration files). Theexpressions are evaluated in the context
of the machine’s ClassAd and a job ClassAd. The expressions can therefore reference attributes
from either ClassAd. See the unnumbered Appendix on page 879for a list of job ClassAd attributes.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 253

See the unnumbered Appendix on page 886 for a list of machine ClassAd attributes. TheSTART
expression is explained. It describes the conditions that must be met for a machine to start a job.
TheRANKexpression for a machine is described. It allows the specification of the kinds of jobs a
machine prefers to run. A final discussion details how thecondorstartd daemon works. Included
are the machinestatesandactivities, to give an idea of what is possible in policy decisions. Two
example policy settings are presented.

3.5.1 Startd ClassAd Attributes

Thecondorstartd daemon represents the machine on which it is running to the Condor pool. The
daemon publishes characteristics about the machine in the machine’s ClassAd to aid matchmak-
ing with resource requests. The values of these attributes may be listed by using the command:
condorstatus -l hostname. On an SMP machine, thecondorstartd will break the machine up and
advertise it as separate slots, each with its own name and ClassAd.

3.5.2 TheSTARTexpression

The most important expression to thecondorstartd is the START expression. This expression
describes the conditions that must be met for a machine to runa job. This expression can reference
attributes in the machine’s ClassAd (such asKeyboardIdle andLoadAvg) and attributes in a
job ClassAd (such asOwner, Imagesize , andCmd, the name of the executable the job will run).
The value of theSTARTexpression plays a crucial role in determining the state andactivity of a
machine.

TheRequirements expression is used for matching machines with jobs.

Thecondorstartddefines theRequirements expression by logicallyanding theSTARTex-
pression and theIS VALID CHECKPOINTPLATFORMexpression.

In situations where a machine wants to make itself unavailable for further matches, the
Requirements expression is set to FALSE. When theSTARTexpression locally evaluates to
TRUE, the machine advertises theRequirements expression as TRUE and does not publish the
STARTexpression.

Normally, the expressions in the machine ClassAd are evaluated against certain request ClassAds
in the condornegotiatorto see if there is a match, or against whatever request ClassAd currently
has claimed the machine. However, by locally evaluating an expression, the machine only evaluates
the expression against its own ClassAd. If an expression cannot be locally evaluated (because it
references other expressions that are only found in a request ad, such asOwner or Imagesize),
the expression is (usually) undefined. See section 4.1 for specifics on how undefined terms are
handled in ClassAd expression evaluation.

A note of caution is in order when modifying theSTARTto reference job ClassAd attributes.
The defaultIs OWNERexpression is a function of theSTARTexpression

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 254

START =?= FALSE

See a detailed discussion of theIS OWNERexpression in section 3.5.7. However, the machine lo-
cally evaluates theIS OWNERexpression to determine if it is capable of running jobs for Condor.
Any job ClassAd attributes appearing in theSTARTexpression, and hence in theIS OWNERex-
pression are undefined in this context, and may lead to unexpected behavior. Whenever theSTART
expression is modified to reference job ClassAd attributes,the IS OWNERexpression should also
be modified to reference only machine ClassAd attributes.

NOTE: If you have machines with lots of real memory and swap space such that the only scarce
resource is CPU time, consider definingJOB RENICE INCREMENTso that Condor starts jobs on
the machine with low priority. Then, further configure to setup the machines with:

START = True
SUSPEND = False
PREEMPT = False
KILL = False

In this way, Condor jobs always run and can never be kicked offfrom activity on the machine.
However, because they would run with “nice priority”, interactive response on the machines will not
suffer. You probably would not notice Condor was running thejobs, assuming you had enough free
memory for the Condor jobs that there was little swapping.

3.5.3 TheIS VALID CHECKPOINTPLATFORM expression

A checkpoint is the platform-dependent information necessary to continue the execution of a stan-
dard universe job. Therefore, the machine (platform) upon which a job executed and produced a
checkpoint limits the machines (platforms) which may use the checkpoint to continue job execution.
This platform-dependent information is no longer the obvious combination of architecture and oper-
ating system, but may include subtle items such as the difference between the normal, bigmem, and
hugemem kernels within the Linux operating system. This results in the incorporation of a separate
expression to indicate the ability of a machine to resume andcontinue the execution of a job that has
produced a checkpoint. TheREQUIREMENTSexpression is dependent on this information.

At a high level,IS VALID CHECKPOINTPLATFORMis an expression which becomes true
when a job’s checkpoint platform matches the current checkpointing platform of the machine. Since
this expression isanded with theSTARTexpression to produce theREQUIREMENTSexpression, it
must also behave correctly when evaluating in the context ofjobs that are not standard universe.

In words, the current default policy for this expression:

Any non standard universe job may run on this machine. A standard universe job may
run on machines with the new checkpointing identification system. A standard universe job
may run if it has not yet produced a first checkpoint. If a standard universe job has produced a
checkpoint, then make sure the checkpoint platforms between the job and the machine match.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 255

The following is the default boolean expression for this policy. A JobUniverse value of 1
denotes the standard universe. This expression may be overridden in the Condor configuration files.

IS_VALID_CHECKPOINT_PLATFORM =
(

((TARGET.JobUniverse == 1) == FALSE) ||

(
(MY.CheckpointPlatform =!= UNDEFINED) &&
(

(TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatf orm) ||
(TARGET.NumCkpts == 0)

)
)

)

IS VALID CHECKPOINTPLATFORMis a separate policy expression because the complex-
ity of IS VALID CHECKPOINTPLATFORMcan be very high. While this functionality is con-
ceptually separate from the normalSTARTpolicies usually constructed, it is also a part of the
Requirements to allow the job to run.

3.5.4 TheRANK expression

A machine may be configured to prefer certain jobs over othersusing theRANKexpression. It is
an expression, like any other in a machine ClassAd. It can reference any attribute found in either
the machine ClassAd or a request ad (normally, in fact, it references things in the request ad). The
most common use of this expression is likely to configure a machine to prefer to run jobs from the
owner of that machine, or by extension, a group of machines toprefer jobs from the owners of those
machines.

For example, imagine there is a small research group with 4 machines called tenorsax, piano,
bass, and drums. These machines are owned by the 4 users coltrane, tyner, garrison, and jones,
respectively.

Assume that there is a large Condor pool in your department, but you spent a lot of money on
really fast machines for your group. You want to implement a policy that gives priority on your
machines to anyone in your group. To achieve this, set theRANKexpression on your machines to
reference theOwner attribute and prefer requests where that attribute matchesone of the people in
your group as in

RANK = Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

The RANKexpression is evaluated as a floating point number. However,like in C, boolean
expressions evaluate to either 1 or 0 depending on if they areTRUE or FALSE. So, if this expression
evaluated to 1 (because the remote job was owned by one of the preferred users), it would be a larger
value than any other user (for whom the expression would evaluate to 0).

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 256

A more complexRANKexpression has the same basic set up, where anyone from your group has
priority on your machines. Its difference is that the machine owner has better priority on their own
machine. To set this up for Jimmy Garrison, place the following entry in Jimmy Garrison’s local
configuration filebass.local :

RANK = (Owner == "coltrane") + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")

NOTE: The parentheses in this expression are important, because“+” operator has higher default
precedence than “==”.

The use of “+” instead of “| | ” allows us to distinguish which terms matched and which ones
didn’t. If anyone not in the John Coltrane quartet was running a job on the machine called bass, the
RANKwould evaluate numerically to 0, since none of the boolean terms evaluates to 1, and 0+0+0+0
still equals 0.

Suppose Elvin Jones submits a job. His job would match this machine (assuming theSTART
was True for him at that time) and theRANKwould numerically evaluate to 1. Therefore, Elvin
would preempt the Condor job currently running. Assume thatlater Jimmy submits a job. The
RANKevaluates to 10, since the boolean that matches Jimmy gets multiplied by 10. Jimmy would
preempt Elvin, and Jimmy’s job would run on Jimmy’s machine.

TheRANKexpression is not required to reference theOwner of the jobs. Perhaps there is one
machine with an enormous amount of memory, and others with not much at all. You can configure
your large-memory machine to prefer to run jobs with larger memory requirements:

RANK = ImageSize

That’s all there is to it. The bigger the job, the more this machine wants to run it. It is an altruistic
preference, always servicing the largest of jobs, no matterwho submitted them. A little less altruistic
is John’sRANKthat prefers his jobs over those with the largestImagesize :

RANK = (Owner == "coltrane" * 1000000000000) + Imagesize

ThisRANKbreaks if a job is submitted with an image size of more1012 Kbytes. However, with that
size, thisRANKexpression preferring that job would not be Condor’s only problem!

3.5.5 Machine States

A machine is assigned astateby Condor. The state depends on whether or not the machine is
available to run Condor jobs, and if so, what point in the negotiations has been reached. The possible
states are

Owner The machine is being used by the machine owner, and/or is not available to run Condor
jobs. When the machine first starts up, it begins in this state.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 257

Unclaimed The machine is available to run Condor jobs, but it is not currently doing so.

Matched The machine is available to run jobs, and it has been matched by the negotiator with a
specific schedd. That schedd just has not yet claimed this machine. In this state, the machine
is unavailable for further matches.

Claimed The machine has been claimed by a schedd.

Preempting The machine was claimed by a schedd, but is now preempting that claim for one of the
following reasons.

1. the owner of the machine came back

2. another user with higher priority has jobs waiting to run

3. another request that this resource would rather serve wasfound

Backfill The machine is running a backfill computation while waiting for either the machine owner
to come back or to be matched with a Condor job. This state is only entered if the machine is
specifically configured to enable backfill jobs.

Figure 3.3 shows the states and the possible transitions between the states.P r e e m p t i n g
M a t c h e dO w n e r

U n c l a i m e d B a c k fi l l
C l a i m e dS t a r t A B D CE F

G
HIJ

M L
K

Figure 3.3: Machine States

Each transition is labeled with a letter. The cause of each transition is described below.

• Transitions out of the Owner state

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 258

A The machine switches from Owner to Unclaimed whenever theSTARTexpression no
longer locally evaluates to FALSE. This indicates that the machine is potentially avail-
able to run a Condor job.

• Transitions out of the Unclaimed state

B The machine switches from Unclaimed back to Owner whenever theSTARTexpression lo-
cally evaluates to FALSE. This indicates that the machine isunavailable to run a Condor
job and is in use by the resource owner.

C The transition from Unclaimed to Matched happens whenever the condornegotiator
matches this resource with a Condor job.

D The transition from Unclaimed directly to Claimed also happens if thecondornegotiator
matches this resource with a Condor job. In this case thecondorscheddreceives the
match and initiates the claiming protocol with the machine before thecondorstartd
receives the match notification from thecondornegotiator.

E The transition from Unclaimed to Backfill happens if the machine is configured to run back-
fill computations (see section 3.12.9) and theSTARTBACKFILL expression evaluates
to TRUE.

• Transitions out of the Matched state

F The machine moves from Matched to Owner if either theSTARTexpression locally evalu-
ates to FALSE, or if theMATCHTIMEOUT timer expires. This timeout is used to ensure
that if a machine is matched with a givencondorschedd, but thatcondorschedddoes
not contact thecondorstartd to claim it, that the machine will give up on the match and
become available to be matched again. In this case, since theSTARTexpression does
not locally evaluate to FALSE, as soon as transitionF is complete, the machine will im-
mediately enter the Unclaimed state again (via transitionA). The machine might also go
from Matched to Owner if thecondorscheddattempts to perform the claiming protocol
but encounters some sort of error. Finally, the machine willmove into the Owner state
if the condorstartd receives acondorvacatecommand while it is in the Matched state.

G The transition from Matched to Claimed occurs when thecondorscheddsuccessfully com-
pletes the claiming protocol with thecondorstartd.

• Transitions out of the Claimed state

H From the Claimed state, the only possible destination is thePreempting state. This transi-
tion can be caused by many reasons:

– Thecondorscheddthat has claimed the machine has no more work to perform and
releases the claim

– The PREEMPTexpression evaluates to TRUE (which usually means the resource
owner has started using the machine again and is now using thekeyboard, mouse,
CPU, etc)

– Thecondorstartd receives acondorvacatecommand

– Thecondorstartd is told to shutdown (either via a signal or acondoroff command)

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 259

– The resource is matched to a job with a better priority (either a better user priority,
or one where the machine rank is higher)

• Transitions out of the Preempting state

I The resource will move from Preempting back to Claimed if theresource was matched to a
job with a better priority.

J The resource will move from Preempting to Owner if thePREEMPTexpression had evalu-
ated to TRUE, ifcondorvacatewas used, or if theSTARTexpression locally evaluates
to FALSE when thecondorstartd has finished evicting whatever job it was running
when it entered the Preempting state.

• Transitions out of the Backfill state

K The resource will move from Backfill to Owner for the following reasons:

– TheEVICT BACKFILL expression evaluates to TRUE

– Thecondorstartd receives acondorvacatecommand

– Thecondorstartd is being shutdown

L The transition from Backfill to Matched occurs whenever a resource running a backfill
computation is matched with acondorscheddthat wants to run a Condor job.

M The transition from Backfill directly to Claimed is similar to the transition from Unclaimed
directly to Claimed. It only occurs if thecondorscheddcompletes the claiming protocol
before thecondorstartd receives the match notification from thecondornegotiator.

The Claimed State and Leases

When acondorscheddclaims acondorstartd, there is a claim lease. So long as the keep alive
updates from thecondorscheddto thecondorstartd continue to arrive, the lease is reset. If the
lease duration passes with no updates, thecondorstartd drops the claim and evicts any jobs the
condorscheddsent over.

The alive interval is the amount of time between, or the frequency at which thecondorschedd
sends keep alive updates to allcondorschedddaemons. An alive update resets the claim lease at
thecondorstartd. Updates are UDP packets.

Initially, as when thecondorscheddstarts up, the alive interval starts at the value set by the con-
figuration variableALIVE INTERVAL . It may be modified when a job is started. The job’s ClassAd
attributeJobLeaseDuration is checked. If the value ofJobLeaseDuration/3 is less than
the current alive interval, then the alive interval is set toeither this lower value or the imposed lowest
limit on the alive interval of 10 seconds. Thus, the alive interval starts atALIVE INTERVAL and
goes down, never up.

If a claim lease expires, thecondorstartd will drop the claim. The length of the claim lease is
the job’s ClassAd attributeJobLeaseDuration . JobLeaseDuration defaults to 20 minutes
time, except when explicitly set within the job’s submit description file. If JobLeaseDuration

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 260

is explicitly set to 0, or it is not set as may be the case for a Web Services job that does not define the
attribute, thenJobLeaseDuration is given the Undefined value. Further, when undefined, the
claim lease duration is calculated withMAXCLAIM ALIVES MISSED * alive interval .
The alive interval is thecurrentvalue, as sent by thecondorschedd. If the condorscheddreduces
the current alive interval, it does not update thecondorstartd.

3.5.6 Machine Activities

Within some machine states,activitiesof the machine are defined. The state has meaning regardless
of activity. Differences between activities are significant. Therefore, a “state/activity” pair describes
a machine. The following list describes all the possible state/activity pairs.

• Owner

Idle This is the only activity for Owner state. As far as Condor is concerned the machine is
Idle, since it is not doing anything for Condor.

• Unclaimed

Idle This is the normal activity of Unclaimed machines. The machine is still Idle in that the
machine owner is willing to let Condor jobs run, but Condor isnot using the machine
for anything.

Benchmarking The machine is running benchmarks to determine the speed on this machine.
This activity only occurs in the Unclaimed state. How often the activity occurs is deter-
mined by theRUNBENCHMARKSexpression.

• Matched

Idle When Matched, the machine is still Idle to Condor.

• Claimed

Idle In this activity, the machine has been claimed, but the schedd that claimed it has yet to
activatethe claim by requesting acondorstarter to be spawned to service a job. The
machine returns to this state (usually briefly) when jobs (and thereforecondorstarter)
finish.

Busy Once acondorstarter has been started and the claim is active, the machine moves to
the Busy activity to signify that it is doing something as faras Condor is concerned.

SuspendedIf the job is suspended by Condor, the machine goes into the Suspended activity.
The match between the schedd and machine has not been broken (the claim is still valid),
but the job is not making any progress and Condor is no longer generating a load on the
machine.

Retiring When an active claim is about to be preempted for any reason, it enters retirement,
while it waits for the current job to finish. TheMaxJobRetirementTime expression
determines how long to wait (counting since the time the job started). Once the job
finishes or the retirement time expires, the Preempting state is entered.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 261

• Preempting The preempting state is used for evicting a Condor job from a given machine.
When the machine enters the Preempting state, it checks theWANTVACATEexpression to
determine its activity.

Vacating In the Vacating activity, the job that was running is in the process of checkpointing.
As soon as the checkpoint process completes, the machine moves into either the Owner
state or the Claimed state, depending on the reason for its preemption.

Killing Killing means that the machine has requested the running jobto exit the machine
immediately, without checkpointing.

• Backfill

Idle The machine is configured to run backfill jobs and is ready to doso, but it has not yet
had a chance to spawn a backfill manager (for example, the BOINC client).

Busy The machine is performing a backfill computation.

Killing The machine was running a backfill computation, but it is now killing the job to either
return resources to the machine owner, or to make room for a regular Condor job.

Figure 3.4 on page 262 gives the overall view of all machine states and activities and shows the
possible transitions from one to another within the Condor system. Each transition is labeled with a
number on the diagram, and transition numbers referred to inthis manual will bebold.

Various expressions are used to determine when and if many ofthese state and activity transi-
tions occur. Other transitions are initiated by parts of theCondor protocol (such as when thecon-
dor negotiatormatches a machine with a schedd). The following section describes the conditions
that lead to the various state and activity transitions.

3.5.7 State and Activity Transitions

This section traces through all possible state and activitytransitions within a machine and describes
the conditions under which each one occurs. Whenever a transition occurs, Condor records when the
machine entered its new activity and/or new state. These times are often used to write expressions
that determine when further transitions occurred. For example, enter the Killing activity if a machine
has been in the Vacating activity longer than a specified amount of time.

Owner State

When the startd is first spawned, the machine it represents enters the Owner state. The machine
remains in the Owner state while the expressionIS OWNERis TRUE. If theIS OWNERexpression
is FALSE, then the machine transitions to the Unclaimed state. The default value for theIS OWNER
expression is optimized for a shared resource

START =?= FALSE

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 262

P r e e m p t i n g

M a t c h e d
O w n e r

U n c l a i m e d B a c k fi l l

C l a i m e d

S t a r t
B u s yW a n tS u s p e n d ?W a n tV a c a t e ?V a c a t i n g

K i l l i n g
I d l e

I d l e
B e n c h m a r k i n gI d l e K i l l i n gB u s yI d l e

I d l e
S u s p e n d e d

R e t i r i n g

= S t a t e = A c t i v i t y = P o l i c y e x p r e s s i o n e v a l u a t i o n
2 7

y e sn o2 1

4 3 2 6 2 82 9

y e s1 4n o1 3 1 2 1 1
1 5

1 9 2 01 62 5
2 2

2 1 6 5
83 23 13 0

9

2 3
2 4

1 7
7

1 01 8

Figure 3.4: Machine States and Activities

So, the machine will remain in the Owner state as long as theSTARTexpression locally evaluates
to FALSE. Section 3.5.2 provides more detail on theSTARTexpression. If theSTART locally
evaluates to TRUE or cannot be locally evaluated (it evaluates to UNDEFINED), transition1 occurs
and the machine enters the Unclaimed state. TheIS OWNERexpression is locally evaluated by the
machine, and should not reference job ClassAd attributes, which would be UNDEFINED.

For dedicated resources, the recommended value for theIS OWNERexpression is FALSE.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 263

The Owner state represents a resource that is in use by its interactive owner (for example, if
the keyboard is being used). The Unclaimed state representsa resource that is neither in use by
its interactive user, nor the Condor system. From Condor’s point of view, there is little difference
between the Owner and Unclaimed states. In both cases, the resource is not currently in use by
the Condor system. However, if a job matches the resource’sSTARTexpression, the resource is
available to run a job, regardless of if it is in the Owner or Unclaimed state. The only differences
between the two states are how the resource shows up incondorstatusand other reporting tools,
and the fact that Condor will not run benchmarking on a resource in the Owner state. As long
as theIS OWNERexpression is TRUE, the machine is in the Owner State. When the IS OWNER
expression is FALSE, the machine goes into the Unclaimed State.

Here is an example that assumes that anIS OWNERexpression is not present in the configura-
tion. If theSTARTexpression is

START = KeyboardIdle > 15 * $(MINUTE) && Owner == "coltrane"

and if KeyboardIdle is 34 seconds, then the machine would remain in the Owner state. Owner
is undefined, andanything && FALSE is FALSE.

If, however, theSTARTexpression is

START = KeyboardIdle > 15 * $(MINUTE) || Owner == "coltrane"

andKeyboardIdle is 34 seconds, then the machine leaves the Owner state and becomes Un-
claimed. This is becauseFALSE || UNDEFINED is UNDEFINED. So, while this machine is not
available to just anybody, if user coltrane has jobs submitted, the machine is willing to run them.
Any other user’s jobs have to wait untilKeyboardIdle exceeds 15 minutes. However, since
coltrane might claim this resource, but has not yet, the machine goes to the Unclaimed state.

While in the Owner state, the startd polls the status of the machine everyUPDATEINTERVAL
to see if anything has changed that would lead it to a different state. This minimizes the impact on
the Owner while the Owner is using the machine. Frequently waking up, computing load averages,
checking the access times on files, computing free swap spacetake time, and there is nothing time
critical that the startd needs to be sure to notice as soon as it happens. If theSTARTexpression
evaluates to TRUE and five minutes pass before the startd notices, that’s a drop in the bucket of
high-throughput computing.

The machine can only transition to the Unclaimed state from the Owner state. It does so when
theIS OWNERexpression no longer evaluates to FALSE. By default, that happens whenSTARTno
longer locally evaluates to FALSE.

Whenever the machine is not actively running a job, it will transition back to the Owner state if
IS OWNERevaluates to TRUE. Once a job is started, the value ofIS OWNERdoes not matter; the
job either runs to completion or is preempted. Therefore, you must configure the preemption policy
if you want to transition back to the Owner state from ClaimedBusy.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 264

Unclaimed State

If the IS OWNERexpression becomes TRUE, then the machine returns to the Owner state. If
the IS OWNERexpression becomes FALSE, then the machine remains in the Unclaimed state. If
the IS OWNERexpression is not present in the configuration files, then thedefault value for the
IS OWNERexpression is

START =?= FALSE

so that while in the Unclaimed state, if theSTARTexpression locally evaluates to FALSE, the
machine returns to the Owner state by transition2.

When in the Unclaimed state, theRUNBENCHMARKSexpression is relevant. If
RUNBENCHMARKSevaluates to TRUE while the machine is in the Unclaimed state, then the ma-
chine will transition from the Idle activity to the Benchmarking activity (transition3) and perform
benchmarks to determineMIPS andKFLOPS. When the benchmarks complete, the machine returns
to the Idle activity (transition4).

The startd automatically inserts an attribute,LastBenchmark , whenever it runs benchmarks,
so commonlyRunBenchmarks is defined in terms of this attribute, for example:

BenchmarkTimer = (CurrentTime - LastBenchmark)
RunBenchmarks = $(BenchmarkTimer) >= (4 * $(HOUR))

Here, a macro,BenchmarkTimer is defined to help write the expression. This macro holds the
time since the last benchmark, so when this time exceeds 4 hours, we run the benchmarks again.
The startd keeps a weighted average of these benchmarking results to try to get the most accurate
numbers possible. This is why it is desirable for the startd to run them more than once in its lifetime.

NOTE: LastBenchmark is initialized to 0 before benchmarks have ever been run. To have the
condorstartd run benchmarks as soon as the machine is Unclaimed (if it has not done so already),
include a term usingLastBenchmark as in the example above.

NOTE: If RUNBENCHMARKSis defined and set to something other than FALSE, the startd
will automatically run one set of benchmarks when it first starts up. To disable benchmarks, both
at startup and at any time thereafter, setRUNBENCHMARKSto FALSE or comment it out of the
configuration file.

From the Unclaimed state, the machine can go to four other possible states: Owner (transition
2), Backfill/Idle, Matched, or Claimed/Idle.

Once thecondornegotiatormatches an Unclaimed machine with a requester at a given schedd,
the negotiator sends a command to both parties, notifying them of the match. If the schedd re-
ceives that notification and initiates the claiming procedure with the machine before the negotia-
tor’s message gets to the machine, the Match state is skipped, and the machine goes directly to
the Claimed/Idle state (transition5). However, normally the machine will enter the Matched state
(transition6), even if it is only for a brief period of time.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 265

If the machine has been configured to perform backfill jobs (see section 3.12.9), while it is
in Unclaimed/Idle it will evaluate theSTARTBACKFILL expression. OnceSTARTBACKFILL
evaluates to TRUE, the machine will enter the Backfill/Idle state (transition7) to begin the process
of running backfill jobs.

Matched State

The Matched state is not very interesting to Condor. Noteworthy in this state is that the machine lies
about itsSTARTexpression while in this state and says thatRequirements areFalse to prevent
being matched again before it has been claimed. Also interesting is that the startd starts a timer to
make sure it does not stay in the Matched state too long. The timer is set with theMATCHTIMEOUT
configuration file macro. It is specified in seconds and defaults to 120 (2 minutes). If the schedd

that was matched with this machine does not claim it within this period of time, the machine gives
up, and goes back into the Owner state via transition8. It will probably leave the Owner state right
away for the Unclaimed state again and wait for another match.

At any time while the machine is in the Matched state, if theSTARTexpression locally evaluates
to FALSE, the machine enters the Owner state directly (transition 8).

If the schedd that was matched with the machine claims it before theMATCHTIMEOUTexpires,
the machine goes into the Claimed/Idle state (transition9).

Claimed State

The Claimed state is certainly the most complex state. It hasthe most possible activities and the most
expressions that determine its next activities. In addition, thecondorcheckpointandcondorvacate
commands affect the machine when it is in the Claimed state. In general, there are two sets of
expressions that might take effect. They depend on the universe of the request: standard or vanilla.
The standard universe expressions are the normal expressions. For example:

WANT_SUSPEND = True
WANT_VACATE = $(ActivationTimer) > 10 * $(MINUTE)
SUSPEND = $(KeyboardBusy) || $(CPUBusy)
...

The vanilla expressions have the string“VANILLA” appended to their names. For example:

WANT_SUSPEND_VANILLA = True
WANT_VACATE_VANILLA = True
SUSPEND_VANILLA = $(KeyboardBusy) || $(CPUBusy)
...

Without specific vanilla versions, the normal versions willbe used for all jobs, including vanilla
jobs. In this manual, the normal expressions are referenced. The difference exists for the the re-

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 266

source owner that might want the machine to behave differently for vanilla jobs, since they cannot
checkpoint. For example, owners may want vanilla jobs to remain suspended for longer than stan-
dard jobs.

While Claimed, thePOLLING INTERVAL takes effect, and the startd polls the machine much
more frequently to evaluate its state.

If the machine owner starts typing on the console again, it isbest to notice this as soon as possible
to be able to start doing whatever the machine owner wants at that point. For SMP machines, if any
slot is in the Claimed state, the startd polls the machine frequently. If already polling one slot, it
does not cost much to evaluate the state of all the slots at thesame time.

There are a variety of events that may cause the startd to try to get rid of or temporarily suspend
a running job. Activity on the machine’s console, load from other jobs, or shutdown of the startd via
an administrative command are all possible sources of interference. Another one is the appearance
of a higher priority claim to the machine by a different Condor user.

Depending on the configuration, the startd may respond quitedifferently to activity on the ma-
chine, such as keyboard activity or demand for the cpu from processes that are not managed by
Condor. The startd can be configured to completely ignore such activity or to suspend the job or
even to kill it. A standard configuration for a desktop machine might be to go through successive
levels of getting the job out of the way. The first and least costly to the job is suspending it. This
works for both standard and vanilla jobs. If suspending the job for a short while does not satisfy
the machine owner (the owner is still using the machine aftera specific period of time), the startd
moves on to vacating the job. Vacating a standard universe job involves performing a checkpoint so
that the work already completed is not lost. Vanilla jobs aresent asoft kill signalso that they can
gracefully shut down if necessary; the default isSIGTERM. If vacating does not satisfy the machine
owner (usually because it is taking too long and the owner wants their machine backnow), the final,
most drastic stage is reached: killing. Killing is a quick death to the job, using a hard-kill signal
that cannot be intercepted by the application. For vanilla jobs that do no special signal handling,
vacating and killing are equivalent.

TheWANTSUSPENDexpression determines if the machine will evaluate theSUSPENDexpres-
sion to consider entering the Suspended activity. TheWANTVACATEexpression determines what
happens when the machine enters the Preempting state. It will go to the Vacating activity or directly
to Killing. If one or both of these expressions evaluates to FALSE, the machine will skip that stage
of getting rid of the job and proceed directly to the more drastic stages.

When the machine first enters the Claimed state, it goes to theIdle activity. From there, it has
two options. It can enter the Preempting state via transition 10 (if a condorvacatearrives, or if the
STARTexpression locally evaluates to FALSE), or it can enter the Busy activity (transition11) if
the schedd that has claimed the machine decides to activate the claim and start a job.

From Claimed/Busy, the machine can transition to three other state/activity pairs. The startd
evaluates theWANTSUSPENDexpression to decide which other expressions to evaluate. If
WANTSUSPENDis TRUE, then the startd evaluates theSUSPENDexpression. IfWANTSUSPEND
is FALSE, then the startd will evaluate thePREEMPTexpression and skip the Suspended activity
entirely. By transition, the possible state/activity destinations from Claimed/Busy:

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 267

Claimed/Idle If the starter that is serving a given job exits (for example because the jobs completes),
the machine will go to Claimed/Idle (transition12).

Claimed/Retiring If WANTSUSPENDis FALSE and thePREEMPTexpression is TRUE, the ma-
chine enters the Retiring activity (transition13). From there, it waits for a configurable amount
of time for the job to finish before moving on to preemption.

Another reason the machine would go from Claimed/Busy to Claimed/Retiring is if thecon-
dor negotiatormatched the machine with a “better” match. This better matchcould either
be from the machine’s perspective using the startdRANKexpression, or it could be from the
negotiator’s perspective due to a job with a higher user priority.

Another case resulting in a transition to Claimed/Retiringis when the startd is being shut
down. The only exception is a “fast” shutdown, which bypasses retirement completely.

Claimed/SuspendedIf both theWANTSUSPENDandSUSPENDexpressions evaluate to TRUE,
the machine suspends the job (transition14).

If a condorcheckpointcommand arrives, or thePERIODIC CHECKPOINTexpression eval-
uates to TRUE, there is no state change. The startd has no way of knowing when this process
completes, so periodic checkpointing can not be another state. Periodic checkpointing remains in
the Claimed/Busy state and appears as a running job.

From the Claimed/Suspended state, the following transitions may occur:

Claimed/Busy If the CONTINUEexpression evaluates to TRUE, the machine resumes the job and
enters the Claimed/Busy state (transition15) or the Claimed/Retiring state (transition16),
depending on whether the claim has been preempted.

Claimed/Retiring If the PREEMPT expression is TRUE, the machine will enter the
Claimed/Retiring activity (transition16).

Preempting If the claim is in suspended retirement and the retirement time expires, the job enters
the Preempting state (transition17). This is only possible ifMaxJobRetirementTime
decreasesduring the suspension.

For the Claimed/Retiring state, the following transitionsmay occur:

Preempting If the job finishes or the job’s run time exceedsMaxJobRetirementTime , the
Preempting state is entered (transition18). The run time is computed from the time when
the job was started by the startd minus any suspension time. (When retiring due to startd
shutdown or restart, it is possible for the admin to issue a “peaceful” shutdown command,
which causesMaxJobRetirementTime to effectively be infinite, avoiding any killing of
jobs.)

Claimed/Busy If the startd was retiring because of a preempting claim onlyand the preempting
claim goes away, the normal Claimed/Busy state is resumed (transition19). If instead the re-
tirement is due to owner activity (PREEMPT) or the startd is being shut down, no unretirement
is possible.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 268

Claimed/SuspendedIn exactly the same way that suspension may happen from the Claimed/Busy
state, it may also happen during the Claimed/Retiring state(transition20). In this case, when
the job continues from suspension, it moves back into Claimed/Retiring (transition16) instead
of Claimed/Busy (transition15).

Preempting State

The Preempting state is less complex than the Claimed state.There are two activities. Depending
on the value ofWANTVACATE, a machine will be in the Vacating activity (if TRUE) or the Killing
activity (if FALSE).

While in the Preempting state (regardless of activity) the machine advertises its
Requirements expression as FALSE to signify that it is not available for further matches, ei-
ther because it is about to transition to the Owner state, or because it has already been matched with
one preempting match, and further preempting matches are disallowed until the machine has been
claimed by the new match.

The main function of the Preempting state is to get rid of the starter associated with the resource.
If the condorstarter associated with a given claim exits while the machine is still in the Vacat-
ing activity, then the job successfully completed a graceful shutdown. For standard universe jobs,
this means that a checkpoint was saved. For other jobs, this means the application was given an
opportunity to do a graceful shutdown, by intercepting the soft kill signal.

If the machine is in the Vacating activity, it keeps evaluating theKILL expression. As soon as
this expression evaluates to TRUE, the machine enters the Killing activity (transition21).

When the starter exits, or if there was no starter running when the machine enters the Preempting
state (transition10), the other purpose of the Preempting state is completed: notifying the schedd
that had claimed this machine that the claim is broken.

At this point, the machine enters either the Owner state by transition22(if the job was preempted
because the machine owner came back) or the Claimed/Idle state by transition23 (if the job was
preempted because a better match was found).

If the machine enters the Killing activity, (because eitherWANTVACATEwas FALSE or the
KILL expression evaluated to TRUE), it attempts to force thecondorstarterto immediately kill the
underlying Condor job. Once the machine has begun to hard kill the Condor job, thecondorstartd
starts a timer, the length of which is defined by theKILLING TIMEOUT macro. This macro is
defined in seconds and defaults to 30. If this timer expires and the machine is still in the Killing
activity, something has gone seriously wrong with thecondorstarter and the startd tries to vacate
the job immediately by sending SIGKILL to all of thecondorstarter’s children, and then to the
condorstarter itself.

Once thecondorstarter has killed off all the processes associated with the job and exited, and
once the schedd that had claimed the machine is notified that the claim is broken, the machine will
leave the Preempting/Killing state. If the job was preempted because a better match was found, the
machine will enter Claimed/Idle (transition24). If the preemption was caused by the machine owner

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 269

(thePREEMPTexpression evaluated to TRUE,condorvacatewas used, etc), the machine will enter
the Owner state (transition25).

Backfill State

The Backfill state is used whenever the machine is performinglow priority background tasks to
keep itself busy. For more information about backfill support in Condor, see section 3.12.9 on
page 412. This state is only used if the machine has been configured to enable backfill computation,
if a specific backfill manager has been installed and configured, and if the machine is otherwise idle
(not being used interactively or for regular Condor computations). If the machine meets all these
requirements, and theSTARTBACKFILL expression evaluates to TRUE, the machine will move
from the Unclaimed/Idle state to Backfill/Idle (transition7).

Once a machine is in Backfill/Idle, it will immediately attempt to spawn whatever backfill man-
ager it has been configured to use (currently, only the BOINC client is supported as a backfill man-
ager in Condor). Once the BOINC client is running, the machine will enter Backfill/Busy (transition
26) to indicate that it is now performing a backfill computation.

NOTE: On SMP machines, thecondorstartd will only spawn a single instance of the BOINC
client, even if multiple slots are available to run backfill jobs. Therefore, only the first machine to
enter Backfill/Idle will cause a copy of the BOINC client to start running. If a given slot on an SMP
enters the Backfill state and a BOINC client is already running under thiscondorstartd, the slot will
immediately enter Backfill/Busy without waiting to spawn another copy of the BOINC client.

If the BOINC client ever exits on its own (which normally wouldn’t happen), the machine will
go back to Backfill/Idle (transition27) where it will immediately attempt to respawn the BOINC
client (and return to Backfill/Busy via transition26).

As the BOINC client is running a backfill computation, a number of events can occur that will
drive the machine out of the Backfill state. The machine can get matched or claimed for a Condor
job, interactive users can start using the machine again, the machine might be evicted withcon-
dor vacate, or thecondorstartdmight be shutdown. All of these events cause thecondorstartd to
kill the BOINC client and all its descendants, and enter the Backfill/Killing state (transition28).

Once the BOINC client and all its children have exited the system, the machine will enter the
Backfill/Idle state to indicate that the BOINC client is now gone (transition29). As soon as it enters
Backfill/Idle after the BOINC client exits, the machine willgo into another state, depending on what
caused the BOINC client to be killed in the first place.

If the EVICT BACKFILL expression evaluates to TRUE while a machine is in Backfill/Busy,
after the BOINC client is gone, the machine will go back into the Owner/Idle state (transition30).
The machine will also return to the Owner/Idle state after the BOINC client exits ifcondorvacate
was used, or if thecondorstartd is being shutdown.

When a machine running backfill jobs is matched with a requester that wants to run a Condor
job, the machine will either enter the Matched state, or go directly into Claimed/Idle. As with the
case of a machine in Unclaimed/Idle (described above), thecondornegotiatorinforms both thecon-

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 270

dor startdand thecondorscheddof the match, and the exact state transitions at the machine depend
on what order the various entities initiate communication with each other. If thecondorscheddis
notified of the match and sends a request to claim thecondorstartd before thecondornegotiator
has a chance to notify thecondorstartd, once the BOINC client exits, the machine will immediately
enter Claimed/Idle (transition31). Normally, the notification from thecondornegotiatorwill reach
thecondorstartdbefore thecondorscheddattempts to claim it. In this case, once the BOINC client
exits, the machine will enter Matched/Idle (transition32).

3.5.8 State/Activity Transition Expression Summary

This section is a summary of the information from the previous sections. It serves as a quick refer-
ence.

START When TRUE, the machine is willing to spawn a remote Condor job.

RUNBENCHMARKS While in the Unclaimed state, the machine will run benchmarks whenever
TRUE.

MATCH TIMEOUT If the machine has been in the Matched state longer than this value, it will
transition to the Owner state.

WANT SUSPEND If TRUE, the machine evaluates theSUSPENDexpression to see if it should
transition to the Suspended activity. If FALSE, the machinelook at thePREEMPTexpression.

SUSPEND If WANTSUSPENDis TRUE, and the machine is in the Claimed/Busy state, it enters
the Suspended activity ifSUSPENDis TRUE.

CONTINUE If the machine is in the Claimed/Suspended state, it enter the Busy activity if
CONTINUEis TRUE.

PREEMPT If the machine is either in the Claimed/Suspended activity,or is in the Claimed/Busy
activity andWANTSUSPENDis FALSE, the machine enters the Claimed/Retiring state when-
everPREEMPTis TRUE.

CLAIM WORKLIFE If provided, this expression specifies the number of secondsduring which a
claim will continue accepting new jobs. Once this time expires, any existing job may continue
to run as usual, but once it finishes or is preempted, the claimis closed. This may be useful
if you want to force periodic renegotiation of resources without preemption having to occur.
For example, if you have some low-priority jobs which shouldnever be interrupted with kill
signals, you could prevent them from being killed withMaxJobRetirementTime , but
now high-priority jobs may have to wait in line when they match to a machine that is busy
running one of these uninterruptible jobs. You can prevent the high-priority jobs from ever
matching to such a machine by using a rank expression in the job or in the negotiator’s rank
expressions, but then the low-priority claim will never be interrupted; it can keep running more
jobs. The solution is to useCLAIM WORKLIFEto force the claim to stop running additional
jobs after a certain amount of time. The default value forCLAIM WORKLIFEis -1, which is
treated as an infinite claim worklife, so claims may be held indefinitely (as long as they are
not preempted and the schedd does not relinquish them, of course).

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 271

MAXJOBRETIREMENTTIME If the machine is in the Claimed/Retiring state, this expression
specifies the maximum time (in seconds) that the startd will wait for the job to finish
naturally (without any kill signals from the startd). The clock starts when the job is
started and is paused during any suspension. The job may provide its own expression for
MaxJobRetirementTime , but this can only be used to takelessthan the time granted by
the startd, never more. (For convenience, standard universe and niceuser jobs are submit-
ted with a default retirement time of 0, so they will never wait in retirement unless the user
overrides the default.)

Once the job finishes or if the retirement time expires, the machine enters the Preempting
state.

This expression is evaluated in the context of the job ClassAd, so it may refer to attributes
of the current job as well as machine attributes. The expression is continually re-evaluated
while the job is running, so it is possible, though unusual, to have an expression that changes
over time. For example, if you want the retirement time to drop to 0 if an especially high
priority job is waiting for the current job to retire, you could usePreemptingRank in the
expression. Example:

MaxJobRetirementTime = 3600 * (\
MY.PreemptingRank =?= UNDEFINED || \
PreemptingRank < 600)

In this example, the retirement time is 3600 seconds, but if ajob gets matched to this machine
and it has aPreemptingRank of 600 or more, the retirement time drops to 0 and the current
job is immediately preempted.

WANT VACATE This is checked only when thePREEMPTexpression is TRUE and the machine
enters the Preempting state. IfWANTVACATEis TRUE, the machine enters the Vacating
activity. If it is FALSE, the machine will proceed directly to the Killing activity.

KILL If the machine is in the Preempting/Vacating state, it enters Preempting/Killing whenever
KILL is TRUE.

KILLING TIMEOUT If the machine is in the Preempting/Killing state for longerthan
KILLING TIMEOUTseconds, the startd sends a SIGKILL to thecondorstarter and all its
children to try to kill the job as quickly as possible.

PERIODIC CHECKPOINT If the machine is in the Claimed/Busy state and
PERIODIC CHECKPOINTis TRUE, the user’s job begins a periodic checkpoint.

RANK If this expression evaluates to a higher number for a pendingresource request than it does for
the current request, the machine preempts the current request (enters the Preempting/Vacating
state). When the preemption is complete, the machine entersthe Claimed/Idle state with the
new resource request claiming it.

START BACKFILL When TRUE, if the machine is otherwise idle, it will enter theBackfill state
and spawn a backfill computation (using BOINC).

EVICT BACKFILL When TRUE, if the machine is currently running a backfill computation, it
will kill the BOINC client and return to the Owner/Idle state.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 272

3.5.9 Policy Settings

This section describes the default configuration policy andthen provides examples of extensions to
these policies.

Default Policy Settings

These settings are the default as shipped with Condor. They have been used for many years with no
problems. The vanilla expressions are identical to the regular ones. (They are not listed here. If not
defined, the standard expressions are used for vanilla jobs as well).

The following are macros to help write the expressions clearly.

StateTimer Amount of time in the current state.

ActivityTimer Amount of time in the current activity.

ActivationTimer Amount of time the job has been running on this machine.

LastCkpt Amount of time since the last periodic checkpoint.

NonCondorLoadAvg The difference between the system load and the Condor load (the load
generated by everything but Condor).

BackgroundLoad Amount of background load permitted on the machine and stillstart a Condor
job.

HighLoad If the $(NonCondorLoadAvg) goes over this, the CPU is considered too busy, and
eviction of the Condor job should start.

StartIdleTime Amount of time the keyboard must to be idle before Condor willstart a job.

ContinueIdleTime Amount of time the keyboard must to be idle before resumptionof a sus-
pended job.

MaxSuspendTime Amount of time a job may be suspended before more drastic measures are
taken.

MaxVacateTime Amount of time a job may be checkpointing before we give up andkill it
outright.

KeyboardBusy A boolean expression that evaluates to TRUE when the keyboard is being used.

CPUIdle A boolean expression that evaluates to TRUE when the CPU is idle.

CPUBusy A boolean expression that evaluates to TRUE when the CPU is busy.

MachineBusy The CPU or the Keyboard is busy.

CPUIsBusy A boolean value set to the same value asCPUBusy.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 273

CPUBusyTime The value 0 ifCPUBusy is False; the time in seconds sinceCPUBusy became
True.

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)
ActivityTimer = (CurrentTime - EnteredCurrentActivity)
ActivationTimer = (CurrentTime - JobStart)
LastCkpt = (CurrentTime - LastPeriodicCheckpoint)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)
MaxVacateTime = 10 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPUBusy = $(NonCondorLoadAvg) >= $(HighLoad)
KeyboardNotBusy = ($(KeyboardBusy) == False)
MachineBusy = ($(CPUBusy) || $(KeyboardBusy)

Macros are defined to want to suspend jobs (instead of killingthem) in the case of jobs that
use little memory, when the keyboard is not being used, and for vanilla universe jobs. We want to
gracefully vacate jobs which have been running for more than10 minutes or are vanilla universe
jobs.

WANT_SUSPEND = ($(SmallJob) || $(KeyboardNotBusy) \
|| $(IsVanilla))

WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \
|| $(IsVanilla))

Finally, definitions of the actual expressions. Start a job if the keyboard has been idle long
enough and the load average is low enough OR the machine is currently running a Condor job. Note
that Condor would only run one job at a time. It just may preferto run a different job, as defined by
the machine rank or user priorities.

START = ((KeyboardIdle > $(StartIdleTime)) \
&& ($(CPUIdle) || \

(State != "Unclaimed" && State != "Owner")))

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 274

Suspend a job if the keyboard has been touched. Alternatively, suspend if the CPU has been
busy for more than two minutes and the job has been running formore than 90 seconds.

SUSPEND = ($(KeyboardBusy) || \
((CpuBusyTime > 2 * $(MINUTE)) \

&& $(ActivationTimer) > 90))

Continue a suspended job if the CPU is idle, the Keyboard has been idle for long enough, and
the job has been suspended more than 10 seconds.

CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 10) \
&& (KeyboardIdle > $(ContinueIdleTime)))

There are two conditions that signal preemption. The first condition is if the job is suspended,
but it has been suspended too long. The second condition is ifsuspension is not desired and the
machine is busy.

PREEMPT = (((Activity == "Suspended") && \
($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

Do not give jobs any time to retire on their own when they are about to be preempted.

MaxJobRetirementTime = 0

Kill jobs that take too long leaving gracefully.

KILL = $(ActivityTimer) > $(MaxVacateTime)

Finally, specify periodic checkpointing. For jobs smallerthan 60 Mbytes, do a periodic check-
point every 6 hours. For larger jobs, only checkpoint every 12 hours.

PERIODIC_CHECKPOINT = ((ImageSize < 60000) && \
($(LastCkpt) > (6 * $(HOUR)))) || \

($(LastCkpt) > (12 * $(HOUR)))

At UW-Madison, we have a fast network. We simplify our expression considerably to

PERIODIC_CHECKPOINT = $(LastCkpt) > (3 * $(HOUR))

For reference, the entire set of policy settings are included once more without comments:

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 275

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)
ActivityTimer = (CurrentTime - EnteredCurrentActivity)
ActivationTimer = (CurrentTime - JobStart)
LastCkpt = (CurrentTime - LastPeriodicCheckpoint)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)
MaxVacateTime = 10 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPUBusy = $(NonCondorLoadAvg) >= $(HighLoad)
KeyboardNotBusy = ($(KeyboardBusy) == False)
MachineBusy = ($(CPUBusy) || $(KeyboardBusy)

WANT_SUSPEND = ($(SmallJob) || $(KeyboardNotBusy) \
|| $(IsVanilla))

WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \
|| $(IsVanilla))

START = ((KeyboardIdle > $(StartIdleTime)) \
&& ($(CPUIdle) || \

(State != "Unclaimed" && State != "Owner")))
SUSPEND = ($(KeyboardBusy) || \

((CpuBusyTime > 2 * $(MINUTE)) \
&& $(ActivationTimer) > 90))

CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 10) \
&& (KeyboardIdle > $(ContinueIdleTime)))

PREEMPT = (((Activity == "Suspended") && \
($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

MaxJobRetirementTime = 0
KILL = $(ActivityTimer) > $(MaxVacateTime)
PERIODIC_CHECKPOINT = ((ImageSize < 60000) && \

($(LastCkpt) > (6 * $(HOUR)))) || \
($(LastCkpt) > (12 * $(HOUR)))

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 276

Test-job Policy Example

This example shows how the default macros can be used to set upa machine for running test jobs
from a specific user. Suppose we want the machine to behave normally, except if user coltrane
submits a job. In that case, we want that job to start regardless of what is happening on the machine.
We do not want the job suspended, vacated or killed. This is reasonable if we know coltrane is
submitting very short running programs for testing purposes. The jobs should be executed right
away. This works with any machine (or the whole pool, for thatmatter) by adding the following 5
expressions to the existing configuration:

START = ($(START)) || Owner == "coltrane"
SUSPEND = ($(SUSPEND)) && Owner != "coltrane"
CONTINUE = $(CONTINUE)
PREEMPT = ($(PREEMPT)) && Owner != "coltrane"
KILL = $(KILL)

Notice that there is nothing special in either theCONTINUEor KILL expressions. If Coltrane’s jobs
never suspend, they never look atCONTINUE. Similarly, if they never preempt, they never look at
KILL .

Time of Day Policy

Condor can be configured to only run jobs at certain times of the day. In general, we discourage
configuring a system like this, since you can often get lots ofgood cycles out of machines, even
when their owners say “I’m always using my machine during theday.” However, if you submit
mostly vanilla jobs or other jobs that cannot checkpoint, itmight be a good idea to only allow the
jobs to run when you know the machines will be idle and when they will not be interrupted.

To configure this kind of policy, you should use theClockMin and ClockDay attributes,
defined in section 3.5.1 on “Startd ClassAd Attributes”. These are special attributes which are
automatically inserted by thecondorstartd into its ClassAd, so you can always reference them in
your policy expressions.ClockMin defines the number of minutes that have passed since midnight.
For example, 8:00am is 8 hours after midnight, or 8 * 60 minutes, or 480. 5:00pm is 17 hours after
midnight, or 17 * 60, or 1020.ClockDay defines the day of the week, Sunday = 0, Monday = 1,
and so on.

To make the policy expressions easy to read, we recommend using macros to define the time
periods when you want jobs to run or not run. For example, assume regular “work hours” at your
site are from 8:00am until 5:00pm, Monday through Friday:

WorkHours = ((ClockMin >= 480 && ClockMin < 1020) && \
(ClockDay > 0 && ClockDay < 6))

AfterHours = ((ClockMin < 480 || ClockMin >= 1020) || \
(ClockDay == 0 || ClockDay == 6))

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 277

Of course, you can fine-tune these settings by changing the definition of AfterHours and
WorkHours for your site.

Assuming you are using the default policy expressions discussed above, there are only a few
minor changes required to force Condor jobs to stay off of your machines during work hours:

Only start jobs after hours.
START = $(AfterHours) && $(CPUIdle) && KeyboardIdle > $(Sta rtIdleTime)

Consider the machine busy during work hours, or if the keybo ard or
CPU are busy.
MachineBusy = ($(WorkHours) || $(CPUBusy) || $(KeyboardBu sy))

By default, theMachineBusy macro is used to define theSUSPENDandPREEMPTexpres-
sions. If you have changed these expressions at your site, you will need to add$(WorkHours) to
yourSUSPENDandPREEMPTexpressions as appropriate.

Depending on your site, you might also want to avoid suspending jobs during work hours, so
that in the morning, if a job is running, it will be immediately preempted, instead of being suspended
for some length of time:

WANT_SUSPEND = $(AfterHours)

Desktop/Non-Desktop Policy

Suppose you have two classes of machines in your pool: desktop machines and dedicated cluster
machines. In this case, you might not want keyboard activityto have any effect on the dedicated
machines. For example, when you log into these machines to debug some problem, you probably
do not want a running job to suddenly be killed. Desktop machines, on the other hand, should do
whatever is necessary to remain responsive to the user.

There are many ways to achieve the desired behavior. One way is to make a standard desktop
policy and a standard non-desktop policy and to copy the desired one into the local configuration
file for each machine. Another way is to define one standard policy (in condorconfig) with a simple
toggle that can be set in the local configuration file. The following example illustrates the latter
approach.

For ease of use, an entire policy is included in this example.Some of the expressions are just the
usual default settings.

If "IsDesktop" is configured, make it an attribute of the ma chine ClassAd.
STARTD_ATTRS = IsDesktop

Only consider starting jobs if:

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 278

1) the load average is low enough OR the machine is currently
running a Condor job
2) AND the user is not active (if a desktop)
START = (($(CPUIdle) || (State != "Unclaimed" && State != "Ow ner")) \

&& (IsDesktop =!= True || (KeyboardIdle > $(StartIdleTime))))

Suspend (instead of vacating/killing) for the following c ases:
WANT_SUSPEND = ($(SmallJob) || $(JustCpu) \

|| $(IsVanilla))

When preempting, vacate (instead of killing) in the follow ing cases:
WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \

|| $(IsVanilla))

Suspend jobs if:
1) The CPU has been busy for more than 2 minutes, AND
2) the job has been running for more than 90 seconds
3) OR suspend if this is a desktop and the user is active
SUSPEND = (((CpuBusyTime > 2 * $(MINUTE)) && ($(ActivationTimer) > 90)) \

|| (IsDesktop =?= True && $(KeyboardBusy)))

Continue jobs if:
1) the CPU is idle, AND
2) we've been suspended more than 5 minutes AND
3) the keyboard has been idle for long enough (if this is a des ktop)
CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 300) \

&& (IsDesktop =!= True || (KeyboardIdle > $(ContinueIdleTi me))))

Preempt jobs if:
1) The job is suspended and has been suspended longer than we want
2) OR, we don't want to suspend this job, but the conditions t o
suspend jobs have been met (someone is using the machine)
PREEMPT = (((Activity == "Suspended") && \

($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

Replace 0 in the following expression with whatever amount of
retirement time you want dedicated machines to provide. Th e other part
of the expression forces the whole expression to 0 on deskto p
machines.
MaxJobRetirementTime = (IsDesktop =!= True) * 0

Kill jobs if they have taken too long to vacate gracefully
KILL = $(ActivityTimer) > $(MaxVacateTime)

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 279

With this policy in condorconfig, the local configuration files for desktops can be easily config-
ured with the following line:

IsDesktop = True

In all other cases, the default policy described above will ignore keyboard activity.

Disabling Preemption

Preemption can result in jobs being killed by Condor. When this happens, the jobs remain in the
queue and will be automatically rescheduled. We highly recommend designing jobs that work well
in this environment, rather than simply disabling preemption.

Planning for preemption makes jobs more robust in the face ofother sources of failure. One way
to live happily with preemption is to use Condor’s standard universe, which provides the ability to
produce checkpoints. If a job is incompatible with the requirements of standard universe, the job
can still gracefully shutdown and restart by intercepting the soft kill signal.

All that being said, there may be cases where it is appropriate to force Condor to never kill jobs
within some upper time limit. This can be achieved with the following policy in the configuration
of the execute nodes:

When we want to kick a job off, let it run uninterrupted for
up to 2 days before forcing it to vacate.
MAXJOBRETIREMENTTIME = $(HOUR)* 24 * 2

Construction of this expression may be more complicated. For example, it could provide a
different retirement time to different users or different types of jobs. Also be aware that the job
may come with its own definition ofMaxJobRetirementTime , but this may only causeless
retirement time to be used, never more than what the machine offers.

The longer the retirement time that is given, the slower reallocation of resources in the pool can
become if there are long-running jobs. However, by preventing jobs from being killed, you may
decrease the number of cycles that are wasted on non-checkpointable jobs that are killed. That is the
basic trade off.

Note that the use ofMAXJOBRETIREMENTTIMElimits the killing of jobs, but it does not
prevent the preemption of resource claims. Therefore, it istechnically not a way of disabling pre-
emption, but simply a way of forcing preempting claims to wait until an existing job finishes or runs
out of time. In other words, it limits the preemption of jobs but not the preemption of claims.

Limiting the preemption of jobs is often more desirable thanlimiting the preemption of resource
claims. However, if you really do want to limit the preemption of resource claims, the following
policy may be used. Some of these settings apply to the execute node and some apply to the central
manager, so this policy should be configured so that it is readby both.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for thecondorstartd 280

#Disable preemption by machine activity.
PREEMPT = False
#Disable preemption by user priority.
PREEMPTION_REQUIREMENTS = False
#Disable preemption by machine RANK by ranking all jobs equa lly.
RANK = 0
#Since we are disabling claim preemption, we
may as well optimize negotiation for this case:
NEGOTIATOR_CONSIDER_PREEMPTION = False

Be aware of the consequences of this policy. Without any preemption of resource claims, once
thecondornegotiatorgives thecondorschedda match to a machine, thecondorscheddmay hold
onto this claim indefinitely, as long as the user keeps supplying more jobs to run. If this is not desired,
force claims to be retired after some amount of time usingCLAIM WORKLIFE. This enforces a time
limit, beyond which no new jobs may be started on an existing claim; therefore thecondorschedd
daemon is forced to go back to thecondornegotiatorto request a new match, if there is still more
work to do. Example execute machine configuration to includein addition to the example above:

after 20 minutes, schedd must renegotiate to run
additional jobs on the machine
CLAIM_WORKLIFE = 1200

Also be aware that in all versions of Condor prior to 6.8.1, itis not advisable to set
NEGOTIATORCONSIDERPREEMPTIONto False, because of a bug that can lead to some ma-
chines never being matched to jobs.

Job Suspension

As new jobs are submitted that receive a higher priority thancurrently executing jobs, the executing
jobs may be preempted. These jobs lose whatever forward progress they have made, and are sent
back to the job queue to await starting over again as another machine becomes available.

Condor may be configured with a policy that allows these potentially evicted jobs to be sus-
pended instead. The policy utilizes two slots, one (called slot1 in the example) that only runs jobs
identified as high priority jobs. The second slot (called slot2 in the example) is set to run jobs ac-
cording to the usual policy and to suspend them when slot1 is claimed. A policy for a machine
with more than one physical CPU may be adapted from this example. Instead of having 2 slots, you
would have 2 times the number of physical CPUs. Half of the slots would be for high priority jobs
and the other half would be for suspendable jobs.

Lie to Condor, to achieve 2 slots with only a single CPU
NUM_CPUS = 2

slot1 is the high-prio slot, while slot2 is the background s lot...
START = (SlotID == 1) && $(SLOT1_START) || \

(SlotID == 2) && $(SLOT2_START)

Only start jobs on slot1 if the job is marked as a high-priori ty job

Condor Version 7.2.3 Manual

3.6. Security 281

SLOT1_START = (TARGET.IsHighPrioJob =?= TRUE)

Only start jobs on slot2 if there is no job on slot1, and if the
machine is otherwise idle... NOTE: the "Busy" activity is o nly in
the Claimed state, and only when there is an active job, so th at is
good enough for our needs...
SLOT2_START = ((slot1_Activity != "Busy") && \

(KeyboardIdle > $(StartIdleTime)) && \
($(CPUIdle) || (State != "Unclaimed" && State != "Owner")))

Only suspend jobs on slot2. Suspend if there is keyboard act ivity or
if a job starts on slot1...
SUSPEND = (SlotID == 2) && \

((slot1_Activity == "Busy") || ($(KeyboardBusy)))

CONTINUE = (SlotID == 2) && \
(KeyboardIdle > $(ContinueIdleTime)) && \
(slot1_Activity != "Busy")

Note that in this example, the job ClassAd attributeIsHighPrioJob has no special meaning
to Condor. It is an invented name chosen for this example. To take advantage of the policy, a user
must submit high priority jobs with this attribute defined. The following line appears in the job’s
submit description file as

+IsHighPrioJob = True

3.6 Security

Security in Condor is a broad issue, with many aspects to consider. Because Condor’s main purpose
is to allow users to run arbitrary code on large numbers of computers, it is important to try to limit
who can access a Condor pool and what privileges they have when using the pool. This section
covers these topics.

There is a distinction between the kinds of resource attacksCondor can defeat, and the kinds
of attacks Condor cannot defeat. Condor cannot prevent security breaches of users that can elevate
their privilege to the root or administrator account. Condor does not run user jobs in sandboxes
(standard universe jobs are a partial exception to this), soCondor cannot defeat all malicious actions
by user jobs. An example of a malicious job is one that launches a distributed denial of service
attack. Condor assumes that users are trustworthy. Condor can prevent unauthorized access to the
Condor pool, to help ensure that only trusted users have access to the pool. In addition, Condor
provides encryption and integrity checking, to ensure thatdata (both Condor’s data and user jobs’
data) has not been examined or tampered with while in transit.

Broadly speaking, the aspects of security in Condor may be categorized and described:

Users Authorization or capability in an operating system is basedon a process owner. Both those
that submit jobs and Condor daemons become process owners. The Condor system prefers

Condor Version 7.2.3 Manual

3.6. Security 282

that Condor daemons are run as the userroot , while other common operations are owned
by a user of Condor. Operations that do not belong to eitherroot or a Condor user are often
owned by thecondor user. See Section 3.6.11 for more detail.

Authentication Proper identification of a user is accomplished by the process of authentication. It
attempts to distinguish between real users and impostors. By default, Condor’s authentica-
tion uses the user id (UID) to determine identity, but Condorcan choose among a variety of
authentication mechanisms, including the stronger authentication methods Kerberos and GSI.

Authorization Authorization specifies who is allowed to do what. Some usersare allowed to sub-
mit jobs, while other users are allowed administrative privileges over Condor itself. Condor
provides authorization on either a per-user or on a per-machine basis.

Privacy Condor may encrypt data sent across the network, which prevents others from viewing
the data. With persistence and sufficient computing power, decryption is possible. Condor
can encrypt the data sent for internal communication, as well as user data, such as files and
executables. Encryption operates on network transmissions: unencrypted data is stored on
disk.

Integrity Theman-in-the-middleattack tampers with data without the awareness of either side of
the communication. Condor’s integrity check sends additional cryptographic data to verify
that network data transmissions have not been tampered with. Note that the integrity infor-
mation is only for network transmissions: data stored on disk does not have this integrity
information.

3.6.1 Condor’s Security Model

At the heart of Condor’s security model is the notion that communications are subject to various
security checks. A request from one Condor daemon to anothermay require authentication to pre-
vent subversion of the system. A request from a user of Condormay need to be denied due to the
confidential nature of the request. The security model handles these example situations and many
more.

Requests to Condor are categorized into groups ofaccess levels, based on the type of operation
requested. The user of a specific request must be authorized at the required access level. For exam-
ple, executing thecondorstatuscommand requires theREADaccess level. Actions that accomplish
management tasks, such as shutting down or restarting of a daemon require anADMINISTRATOR
access level. See Section 3.6.7 for a full list of Condor’s access levels and their meanings.

There are two sides to any communication or command invocation in Condor. One side is
identified as theclient, and the other side is identified as thedaemon. The client is the party that
initiates the command, and the daemon is the party that processes the command and responds. In
some cases it is easy to distinguish the client from the daemon, while in other cases it is not as easy.
Condor tools such ascondorsubmitandcondorconfigval are clients. They send commands to
daemons and act as clients in all their communications. For example, thecondorsubmitcommand
communicates with thecondorschedd. Behind the scenes, Condor daemons also communicate with
each other; in this case the daemon initiating the command plays the role of the client. For instance,

Condor Version 7.2.3 Manual

3.6. Security 283

thecondornegotiatordaemon acts as a client when contacting thecondorschedddaemon to initiate
matchmaking. Once a match has been found, thecondorschedddaemon acts as a client and contacts
thecondorstartddaemon.

Condor’s security model is implemented using configuration. Commands in Condor are exe-
cuted over TCP/IP network connections. While network communication enables Condor to manage
resources that are distributed across an organization (or beyond), it also brings in security challenges.
Condor must have ways of ensuring that commands are being sent by trustworthy users. Jobs that
are operating on sensitive data must be allowed to use encryption such that the data is not seen by
outsiders. Jobs may need assurance that data has not been tampered with. These issues can be
addressed with Condor’s authentication, encryption, and integrity features.

Access Level Descriptions

Authorization is granted based on specified access levels. This list describes each access level, and
provides examples of their usage. The levels implement a partial hierarchy; a higher level often
implies aREADor both aWRITEand aREADlevel of access as described.

READ This access level can obtain or read information about Condor. Examples that require only
READaccess are viewing the status of the pool withcondorstatus, checking a job queue with
condorq, or viewing user priorities withcondoruserprio. READaccess does not allow any
changes, and it does not allow job submission.

WRITE This access level is required to send (write) information toCondor. Examples that require
WRITEaccess are job submission withcondorsubmitand advertising a machine so it appears
in the pool (this is usually done automatically by thecondorstartd daemon). TheWRITE
level of access impliesREADaccess.

ADMINISTRATOR This access level has additional Condor administrator rights to the pool. It
includes the ability to change user priorities (with the commandcondoruserprio -set), as well
as the ability to turn Condor on and off (as with the commandscondoron andcondoroff).
TheADMINISTRATORlevel of access implies bothREADandWRITEaccess.

SOAP This access level is required for the authorization of any party that will use the Web Services
(SOAP) interface to Condor. It is not a general access level to be used with the variety of
configuration variables for authentication, encryption, and integrity checks.

CONFIG This access level is required to modify a daemon’s configuration using thecon-
dor configvalcommand. By default, this level of access can change any configuration param-
eters of a Condor pool, except those specified in thecondor config.root configuration
file. TheCONFIGlevel of access impliesREADaccess.

OWNER This level of access is required for commands that the owner of a machine (any local user)
should be able to use, in addition to the Condor administrators. An example that requires the
OWNERaccess level is thecondorvacatecommand. The command causes thecondorstartd
daemon to vacate any Condor job currently running on a machine. The owner of that machine
should be able to cause the removal of a job running on the machine.

Condor Version 7.2.3 Manual

3.6. Security 284

DAEMON This access level is used for commands that are internal to the operation of Condor. An
example of this internal operation is when thecondorstartd daemon sends its ClassAd up-
dates to thecondorcollector daemon (which may be more specifically controlled by the
ADVERTISESTARTDaccess level). Authorization at this access level should only be given
to the user account under which the Condor daemons run. TheDAEMONlevel of access im-
plies bothREADandWRITEaccess. Any setting for this access level that is not defined will
default to the corresponding setting in theWRITEaccess level.

NEGOTIATOR This access level is used specifically to verify that commands are sent by thecon-
dor negotiatordaemon. Thecondornegotiatordaemon runs on the central manager of the
pool. Commands requiring this access level are the ones thattell thecondorschedddaemon
to begin negotiating, and those that tell an availablecondorstartd daemon that it has been
matched to acondorscheddwith jobs to run. TheNEGOTIATORlevel of access implies
READaccess.

ADVERTISEMASTER This access level is used specifically for commands used to advertise acon-
dor masterdaemon to the collector. Any setting for this access level that is not defined will
default to the corresponding setting in theDAEMONaccess level.

ADVERTISESTARTD This access level is used specifically for commands used to advertise acon-
dor startd daemon to the collector. Any setting for this access level that is not defined will
default to the corresponding setting in theDAEMONaccess level.

ADVERTISESCHEDD This access level is used specifically for commands used to advertise acon-
dor schedddaemon to the collector. Any setting for this access level that is not defined will
default to the corresponding setting in theDAEMONaccess level.

CLIENT This access level is different from all the others. Whereas all of the other access levels
refer to the security policy for accepting connectionsfrom others, theCLIENT access level
applies when a Condor daemon or tool is connectingto some other Condor daemon. In other
words, it specifies the policy of the client that is initiating the operation, rather than the server
that is being contacted.

3.6.2 Security Negotiation

Because of the wide range of environments and security demands necessary, Condor must be flex-
ible. Configuration provides this flexibility. The process by which Condor determines the security
settings that will be used when a connection is established is calledsecurity negotiation. Security
negotiation’s primary purpose is to determine which of the features of authentication, encryption,
and integrity checking will be enabled for a connection. In addition, since Condor supports multiple
technologies for authentication and encryption, securitynegotiation also determines which technol-
ogy is chosen for the connection.

Security negotiation is a completely separate process frommatchmaking, and should not be con-
fused with any specific function of thecondornegotiatordaemon. Security negotiation occurs when
one Condor daemon or tool initiates communication with another Condor daemon, to determine the
security settings by which the communication will be ruled.Thecondornegotiatordaemon does

Condor Version 7.2.3 Manual

3.6. Security 285

negotiation, whereby queued jobs and available machines within a pool go through the process of
matchmaking (deciding out which machines will run which jobs).

Configuration

The configuration macro names that determine what features will be used during client-daemon
communication follow the pattern:

SEC_<context>_<feature>

The<feature> portion of the macro name determines which security feature’s policy is being
set.<feature> may be any one of

AUTHENTICATION
ENCRYPTION
INTEGRITY
NEGOTIATION

The<context> component of the security policy macros can be used to craft afine-grained
security policy based on the type of communication taking place.<context> may be any one of

CLIENT
READ
WRITE
ADMINISTRATOR
CONFIG
OWNER
DAEMON
NEGOTIATOR
ADVERTISE_MASTER
ADVERTISE_STARTD
ADVERTISE_SCHEDD
DEFAULT

Any of these constructed configuration macros may be set to any of the following values:

REQUIRED
PREFERRED
OPTIONAL
NEVER

Security negotiation resolves various client-daemon combinations of desired security features in
order to set a policy.

Condor Version 7.2.3 Manual

3.6. Security 286

Daemon Setting
NEVER OPTIONAL REQUIRED

Client NEVER No No Fail
Setting REQUIRED Fail Yes Yes

Table 3.1: Resolution of security negotiation.

As an example, consider Frida the scientist. Frida wants to avoid authentication when possible.
She sets

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

The machine running thecondorscheddto which Frida will remotely submit jobs, however, is
operated by a security-conscious system administrator whodutifully sets:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

When Frida submits her jobs, Condor’s security negotiationdetermines that authentication will be
used, and allows the command to continue. This example illustrates the point that the most restrictive
security policy sets the levels of security enforced. Thereis actually more to the understanding of
this scenario. Some Condor commands, such as the use ofcondorsubmitto submit jobsalways
require authentication of the submitter, no matter what thepolicy says. This is because the identity
of the submitter needs to be known in order to carry out the operation. Others commands, such as
condorq, do not always require authentication, so in the above example, the server’s policy would
force Frida’scondorq queries to be authenticated, whereas a different policy could allow condorq
to happen without any authentication.

Whether or not security negotiation occurs depends on the setting at both the
client and daemon side of the configuration variable(s) defined by SEC* NEGOTIATION.
SECDEFAULTNEGOTIATIONis a variable representing the entire set of configuration variables
for NEGOTIATION. For the client side setting, the only definitions that make sense areREQUIRED
andNEVER. For the daemon side setting, thePREFERREDvalue makes no sense. Table 3.1 shows
how security negotiation resolves various client-daemon combinations of security negotiation policy
settings. Within the table, Yes means the security negotiation will take place. No means it will not.
Fail means that the policy settings are incompatible and thecommunication cannot continue.

Enabling authentication, encryption, and integrity checks is dependent on security negotiation
taking place. The enabled security negotiation further sets the policy for these other features. Ta-
ble 3.2 shows how security features are resolved for client-daemon combinations of security feature
policy settings. Like Table 3.1, Yes means the feature will be utilized. No means it will not. Fail
implies incompatibility and the feature cannot be resolved.

The enabling of encryption and/or integrity checks is dependent on authentication taking place.
The authentication provides a key exchange. The key is needed for both encryption and integrity
checks.

Condor Version 7.2.3 Manual

3.6. Security 287

Daemon Setting
NEVER OPTIONAL PREFERRED REQUIRED

NEVER No No No Fail
Client OPTIONAL No No Yes Yes
Setting PREFERRED No Yes Yes Yes

REQUIRED Fail Yes Yes Yes

Table 3.2: Resolution of security features.

SettingSEC_CLIENT_<feature> determines the policy for all outgoing commands. The
policy for incoming commands (the daemon side of the communication) takes a more fine-grained
approach that implements a set of access levels for the received command. For example, it is de-
sirable to have all incoming administrative requests require authentication. Inquiries on pool status
may not be so restrictive. To implement this, the administrator configures the policy:

SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_READ_AUTHENTICATION = OPTIONAL

TheDEFAULTvalue for<context> provides a way to set a policy for all access levels (READ,
WRITE, etc.) that do not have a specific configuration variable defined. In addition, some access lev-
els will default to the settings specified for other access levels. For example,ADVERTISESTARTD
defaults toDAEMON, andDAEMONdefaults toWRITE, which then defaults to the generalDEFAULT
setting.

Configuration for Security Methods

Authentication and encryption can each be accomplished by avariety of methods or technologies.
Which method is utilized is determined during security negotiation.

The configuration macros that determine the methods to use for authentication and/or encryption
are

SEC_<context>_AUTHENTICATION_METHODS
SEC_<context>_CRYPTO_METHODS

These macros are defined by a comma or space delimited list of possible methods to use. Section
3.6.3 lists all implemented authentication methods. Section 3.6.5 lists all implemented encryption
methods.

3.6.3 Authentication

The client side of any communication uses one of two macros tospecify whether authentication is
to occur:

Condor Version 7.2.3 Manual

3.6. Security 288

SEC_DEFAULT_AUTHENTICATION
SEC_CLIENT_AUTHENTICATION

For the daemon side, there are a larger number of macros to specify whether authentication is to
take place, based upon the necessary access level:

SEC_DEFAULT_AUTHENTICATION
SEC_READ_AUTHENTICATION
SEC_WRITE_AUTHENTICATION
SEC_ADMINISTRATOR_AUTHENTICATION
SEC_CONFIG_AUTHENTICATION
SEC_OWNER_AUTHENTICATION
SEC_DAEMON_AUTHENTICATION
SEC_NEGOTIATOR_AUTHENTICATION
SEC_ADVERTISE_MASTER_AUTHENTICATION
SEC_ADVERTISE_STARTD_AUTHENTICATION
SEC_ADVERTISE_SCHEDD_AUTHENTICATION

As an example, the macro defined in the configuration file for a daemon as

SEC_WRITE_AUTHENTICATION = REQUIRED

signifies that the daemon must authenticate the client for any communication that requires the
WRITEaccess level. If the daemon’s configuration contains

SEC_DEFAULT_AUTHENTICATION = REQUIRED

and does not contain any other security configuration forAUTHENTICATION, then this default
defines the daemon’s needs for authentication over all access levels. Where a specific macro is
defined, the more specific value takes precedence over the default definition.

If authentication is to be done, then the communicating parties must negotiate a mutually ac-
ceptable method of authentication to be used. A list of acceptable methods may be provided by the
client, using the macros

SEC_DEFAULT_AUTHENTICATION_METHODS
SEC_CLIENT_AUTHENTICATION_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

SEC_DEFAULT_AUTHENTICATION_METHODS
SEC_READ_AUTHENTICATION_METHODS
SEC_WRITE_AUTHENTICATION_METHODS
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS

Condor Version 7.2.3 Manual

3.6. Security 289

SEC_CONFIG_AUTHENTICATION_METHODS
SEC_OWNER_AUTHENTICATION_METHODS
SEC_DAEMON_AUTHENTICATION_METHODS
SEC_NEGOTIATOR_AUTHENTICATION_METHODS
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS
SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

The methods are given as a comma-separated list of acceptable values. These variables list the
authentication methods that are available to be used. The ordering of the list defines preference; the
first item in the list indicates the highest preference. Defined values are

GSI
SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
NTSSPI
CLAIMTOBE
ANONYMOUS

For example, a client may be configured with:

SEC_CLIENT_AUTHENTICATION_METHODS = FS, GSI

and a daemon the client is trying to contact with:

SEC_DEFAULT_AUTHENTICATION_METHODS = GSI

Security negotiation will determine that GSI authentication is the only compatible choice. If
there are multiple compatible authentication methods, security negotiation will make a list of ac-
ceptable methods and they will be tried in order until one succeeds.

As another example, the macro

SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS, NTSSPI

indicates that either Kerberos or Windows authentication may be used, but Kerberos is preferred
over Windows. Note that if the client and daemon agree that multiple authentication methods may
be used, then they are tried in turn. For instance, if they both agree that Kerberos or NTSSPI may
be used, then Kerberos will be tried first, and if there is a failure for any reason, then NTSSPI will
be tried.

Condor Version 7.2.3 Manual

3.6. Security 290

An additional specialized method of authentication existsfor communication between thecon-
dor scheddand condorstartd. It is especially useful when operating at large scale over high
latency networks or in situations where it is inconvenient to set up one of the other meth-
ods of strong authentication between the submit and executedaemons. See the description of
SECENABLEMATCHPASSWORDAUTHENTICATIONon 231 for details.

If the configuration for a machine does not define any variablefor
SEC<access-level> AUTHENTICATION, then Condor uses a default value ofOPTIONAL.
Authentication will be required for any operation which modifies the job queue, such ascon-
dor qedit and condorrm. If the configuration for a machine does not define any variable for
SEC<access-level> AUTHENTICATIONMETHODS, the default value for a Unix machine
is FS, KERBEROS, GSI. This default value for a Windows machine isNTSSPI, KERBEROS, GSI.

GSI Authentication

The GSI (Grid Security Infrastructure) protocol provides an avenue for Condor to do PKI-based
(Public Key Infrastructure) authentication using X.509 certificates. The basics of GSI are well-
documented elsewhere, such as http://www.globus.org/.

A simple introduction to this type of authentication definesCondor’s use of terminology, and
it illuminates the needed items that Condor must access to dothis authentication. Assume that A
authenticates to B. In this example, A is the client, and B is the daemon within their communica-
tion. This example’s one-way authentication implies that Bis verifying the identity of A, using the
certificate A provides, and utilizing B’s own set of trusted CAs (Certification Authorities). Client A
provides its certificate (or proxy) to daemon B. B does two things: B checks that the certificate is
valid, and B checks to see that the CA that signed A’s certificate is one that B trusts.

For the GSI authentication protocol, an X.509 certificate isrequired. Files with predetermined
names hold a certificate, a key, and optionally, a proxy. A separate directory has one or more files
that become the list of trusted CAs.

Allowing Condor to do this GSI authentication requires knowledge of the locations of the client
A’s certificate and the daemon B’s list of trusted CAs. When one side of the communication (as
either client A or daemon B) is a Condor daemon, these locations are determined by configuration
or by default locations. When one side of the communication (as a client A) is a user of Condor (the
process owner of a Condor tool, for examplecondorsubmit), these locations are determined by the
pre-set values of environment variables or by default locations.

GSI certificate locations for Condor daemonsFor a Condor daemon, the certificate may be a sin-
gle host certificate, and all Condor daemons on the same machine may share the same certifi-
cate. In some cases, the certificate can also be copied to other machines, where local copies
are necessary. This may occur only in cases where a single host certificate can match multi-
ple host names, something that is beyond the scope of this manual. The certificates must be
protected by access rights to files, since the password file isnot encrypted.

The specification of the location of the necessary files through configuration uses the following
precedence.

Condor Version 7.2.3 Manual

http://www.globus.org/

3.6. Security 291

1. Configuration variableGSI DAEMONDIRECTORY gives the complete path name to
the directory that contains the certificate, key, and directory with trusted CAs. Condor
uses this directory as follows in its construction of the following configuration variables:

GSI_DAEMON_CERT = $(GSI_DAEMON_DIRECTORY)/hostcert.pe m
GSI_DAEMON_KEY = $(GSI_DAEMON_DIRECTORY)/hostkey.pem
GSI_DAEMON_TRUSTED_CA_DIR = $(GSI_DAEMON_DIRECTORY)/certificates

Note that no proxy is assumed in this case.

2. If theGSI DAEMONDIRECTORYis not defined, or when defined, the location may be
overridden with specific configuration variables that specify the complete path and file
name of the certificate with

GSI DAEMONCERT

the key with

GSI DAEMONKEY

a proxy with

GSI DAEMONPROXY

the complete path to the directory containing the list of trusted CAs with

GSI DAEMONTRUSTEDCA DIR

3. The default location assumed is/etc/grid-security . Note that this implemented
by setting the value ofGSI DAEMONDIRECTORY.

When a daemon acts as the client within authentication, the daemon needs a listing of those
from which it will accept certificates. This is done withGSI DAEMONNAME. This name is
specified with the following format

GSI_DAEMON_NAME = /X.509/name/of/server/1,/X.509/name /of/server/2,...

A complete example that has the question marks filled in and the daemon’s user name filled
in is given in the example configuration below.

Condor will also need a way to map an X.509 distinguished nameto a Condor user id. There
are two ways to accomplish this mapping. For a first way to specify the mapping, see sec-
tion 3.6.4 to use Condor’s unified map file. The second way to dothe mapping is within an
administrator-maintained GSI-specific file called an X.509map file, mapping from X509 Dis-
tinguished Name (DN) to Condor user id. It is similar to a Globus grid map file, except that it
is only used for mapping to a user id, not for authorization. If the user names in the map file
do not specify a domain for the user (specification would appear asuser@domain), then the
value ofUID DOMAINis used. Information about authorization can be found in Section 3.6.7.
Entries (lines) in the file each contain two items. The first item in an entry is the X.509 cer-
tificate subject name, and it is enclosed in quotes (using thecharacter"). The second item is
the Condor user id. The two items in an entry are separated by tab or space character(s). Here
is an example of an entry in an X.509 map file. Entries must be ona single line; this example
is broken onto two lines for formatting reasons.

"/C=US/O=Globus/O=University of Wisconsin/
OU=Computer Sciences Department/CN=Alice Smith" asmith

Condor Version 7.2.3 Manual

3.6. Security 292

Condor finds the map file in one of three ways. If the configuration variableGRIDMAP is
defined, it gives the full path name to the map file. When not defined, Condor looks for the
map file in

$(GSI_DAEMON_DIRECTORY)/grid-mapfile

If GSI DAEMONDIRECTORYis not defined, then the third place Condor looks for the map
file is given by

/etc/grid-security/grid-mapfile

GSI certificate locations for Users The user specifies the location of a certificate, proxy, etc. in
one of two ways:

1. Environment variables give the location of necessary items.
X509 USERPROXYgives the path and file name of the proxy. This proxy will have
been created using thegrid-proxy-initprogram, which will place the proxy in the/tmp
directory with the file name being determined by the format:

/tmp/x509up_uXXXX

The specific file name is given by substituting theXXXXcharacters with the UID of
the user. Note that when a valid proxy is used, the certificateand key locations are not
needed.
X509 USERCERTgives the path and file name of the certificate. It is also used if a
proxy location has been checked, but the proxy is no longer valid.

X509 USERKEY gives the path and file name of the key. Note that most keys are
password encrypted, such that knowing the location could not lead to using the key.
X509 CERTDIR gives the path to the directory containing the list of trusted CAs.

2. Without environment variables to give locations of necessary certificate information,
Condor uses a default directory for the user. This directoryis given by

$(HOME)/.globus

Example GSI Security Configuration Here is an example portion of the configuration file that
would enable and require GSI authentication, along with a minimal set of other variables to
make it work.

SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = GSI
SEC_DEFAULT_INTEGRITY = REQUIRED
GSI_DAEMON_DIRECTORY = /etc/grid-security
GRIDMAP = /etc/grid-security/grid-mapfile

authorize based on user names produced by the map file
ALLOW_READ =* @cs.wisc.edu/ * .cs.wisc.edu
ALLOW_DAEMON = condor@cs.wisc.edu/ * .cs.wisc.edu
ALLOW_NEGOTIATOR = condor@cs.wisc.edu/condor.cs.wisc. edu, \

condor@cs.wisc.edu/condor2.cs.wisc.edu

Condor Version 7.2.3 Manual

3.6. Security 293

ALLOW_ADMINISTRATOR = condor-admin@cs.wisc.edu/ * .cs.wisc.edu

condor daemon certificate(s) trusted by condor tools and d aemons
when connecting to other condor daemons
GSI_DAEMON_NAME = /C=US/O=Condor/O=UW/OU=CS/CN=condor@cs.wisc.edu

clear out any host-based authorizations
(unnecessary if you leave authentication REQUIRED,
but useful if you make it optional and want to
allow some unauthenticated operations, such as
ALLOW_READ =* / * .cs.wisc.edu)
HOSTALLOW_READ =
HOSTALLOW_WRITE =
HOSTALLOW_NEGOTIATOR =
HOSTALLOW_ADMINISTRATOR =

TheSECDEFAULTAUTHENTICATIONmacro specifies that authentication is required for
all communications. This single macro covers all communications, but could be replaced with
a set of macros that require authentication for only specificcommunications.

The macroGSI DAEMONDIRECTORYis specified to give Condor a single place to find the
daemon’s certificate. This path may be a directory on a sharedfile system such as AFS.
Alternatively, this path name can point to local copies of the certificate stored in a local file
system.

The macroGRIDMAPspecifies the file to use for mapping GSI names to user names within
Condor. For example, it might look like this:

"/C=US/O=Condor/O=UW/OU=CS/CN=condor@cs.wisc.edu" co ndor@cs.wisc.edu

Additional mappings would be needed for the users who submitjobs to the pool or who issue
administrative commands.

SSL Authentication

SSL authentication is similar to GSI authentication, but without GSI’s delegation (proxy) capabili-
ties. SSL utilizes X.509 certificates.

All SSL authentication is mutual authentication in Condor.This means that when SSL authenti-
cation is used and when one process communicates with another, each process must be able to verify
the signature on the certificate presented by the other process. The process that initiates the connec-
tion is the client, and the process that receives the connection is the server. For example, when a
condorstartddaemon authenticates with acondorcollectordaemon to provide a machine ClassAd,
thecondorstartd daemon initiates the connection and acts as the client, and the condorcollector
daemon acts as the server.

The names and locations of keys and certificates for clients,servers, and the files used to specify
trusted certificate authorities (CAs) are defined by settings in the configuration files. The contents
of the files are identical in format and interpretation to those used by other systems which use SSL,
such as Apache httpd.

Condor Version 7.2.3 Manual

3.6. Security 294

The configuration variables AUTHSSL CLIENT CERTFILE and
AUTHSSL SERVERCERTFILE specify the file location for the certificate file for the
initiator and recipient of connections, respectively. Similarly, the configuration variables
AUTHSSL CLIENT KEYFILE and AUTHSSL SERVERKEYFILE specify the locations for
keys.

The configuration variablesAUTHSSL SERVERCAFILE andAUTHSSL CLIENT CAFILE
each specify a path and file name, providing the location of a file containing one or more cer-

tificates issued by trusted certificate authorities. Similarly, AUTHSSL SERVERCADIR and
AUTHSSL CLIENT CADIR each specify a directory with one or more files, each which may
contain a single CA certificate. The directories must be prepared using the OpenSSLc rehash
utility.

Kerberos Authentication

If Kerberos is used for authentication, then a mapping from aKerberos domain (called a realm) to
a Condor UID domain is necessary. There are two ways to accomplish this mapping. For a first
way to specify the mapping, see section 3.6.4 to use Condor’sunified map file. A second way to
specify the mapping defines the configuration variableKERBEROSMAPFILE to define a path to
an administrator-maintained Kerberos-specific map file. The configuration syntax is

KERBEROS_MAP_FILE = /path/to/etc/condor.kmap

Lines within this map file have the syntax

KERB.REALM = UID.domain.name

Here are two lines from a map file to use as an example:

CS.WISC.EDU = cs.wisc.edu
ENGR.WISC.EDU = ee.wisc.edu

If a KERBEROSMAPFILE configuration variable is defined and set, then all permittedrealms
must be explicitly mapped. If no map file is specified, then Condor assumes that the Kerberos realm
is the same as the Condor UID domain.

The configuration variableKERBEROSSERVERPRINCIPAL defines the name of a Kerberos
principal. IfKERBEROSSERVERPRINCIPAL is not defined, then the default value used ishost .
A principal specifies a unique name to which a set of credentials may be assigned.

Condor takes the specified (or default) principal and appends a slash character, the host name,
an ’@’ (at sign character), and the Kerberos realm. As an example, the configuration

KERBEROS_SERVER_PRINCIPAL = condor-daemon

Condor Version 7.2.3 Manual

3.6. Security 295

results in Condor’s use of

condor-daemon/the.host.name@YOUR.KERB.REALM

as the server principal.

Here is an example of configuration settings that use Kerberos for authentication and require
authentication of all communications of the write or administrator access level.

SEC_WRITE_AUTHENTICATION = REQUIRED
SEC_WRITE_AUTHENTICATION_METHODS = KERBEROS
SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS = KERBEROS

Kerberos authentication on Unix platforms requires accessto various files that usually are only
accessible by the root user. At this time, the only supportedway to use KERBEROS authentication
on Unix platforms is to start daemons Condor as userroot .

Password Authentication

The password method provides mutual authentication through the use of a shared secret. This is
often a good choice when strong security is desired, but an existing Kerberos or X.509 infrastructure
is not in place. Password authentication is available on both Unix and Windows. It currently can
only be used for daemon-to-daemon authentication. The shared secret in this context is referred to
as thepool password.

Before a daemon can use password authentication, the pool password must be stored on the
daemon’s local machine. On Unix, the password will be placedin a file defined by the configuration
variableSECPASSWORDFILE . This file will be accessible only by the UID that Condor is started
as. On Windows, the same secure password store that is used for user passwords will be used for the
pool password (see section 6.2.3).

Under Unix, the password file can be generated by using the following command to write directly
to the password file:

condor_store_cred -f /path/to/password/file

Under Windows (or under Unix), storing the pool password is done with the-c option when
using tocondorstore credadd. Running

condor_store_cred -c add

prompts for the pool password and store it on the local machine, making it available for daemons to
use in authentication. Thecondormastermust be running for this command to work.

Condor Version 7.2.3 Manual

3.6. Security 296

In addition, storing the pool password to a given machine requiresCONFIG-level access. For
example, if the pool password should only be set locally, andonly by root, the following would be
placed in the global configuration file.

ALLOW_CONFIG = root@mydomain/$(IP_ADDRESS)

It is also possible to set the pool password remotely, but this is recommended only if it can
be done over an encrypted channel. This is possible on Windows, for example, in an environment
where common accounts exist across all the machines in the pool. In this case,ALLOW_CONFIG
can be set to allow the Condor administrator (who in this example has an accountcondor common
to all machines in the pool) to set the password from the central manager as follows.

ALLOW_CONFIG = condor@mydomain/$(CONDOR_HOST)

The Condor administrator then executes

condor_store_cred -c -n host.mydomain add

from the central manager to store the password to a given machine. Since thecondor account exists
on both the central manager andhost.mydomain , the NTSSPI authentication method can be used
to authenticate and encrypt the connection.condorstore credwill warn and prompt for cancellation,
if the channel is not encrypted for whatever reason (typically because common accounts do not exist
or Condor’s security is misconfigured).

When a daemon is authenticated using a pool password, its security principle is
condor_pool@$(UID_DOMAIN) , where$(UID_DOMAIN) is taken from the daemon’s con-
figuration. TheALLOW_DAEMONandALLOW_NEGOTIATORconfiguration variables for autho-
rization should restrict access using this name. For example,

ALLOW_DAEMON = condor_pool@mydomain/* , condor@mydomain/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@mydomain/$(CONDOR_HOST)

This configuration allows remoteDAEMON-level andNEGOTIATOR-level access, if the pool pass-
word is known. Local daemons authenticated ascondor@mydomain are also allowed access.
This is done so local authentication can be done using another method such asFS.

Example Security Configuration Using Pool PasswordThe following example configuration
uses pool password authentication and network message integrity checking for all commu-
nication between Condor daemons.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_INTEGRITY = REQUIRED

Condor Version 7.2.3 Manual

3.6. Security 297

SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI
ALLOW_DAEMON = condor_pool@$(UID_DOMAIN)/* .cs.wisc.edu, \

condor@$(UID_DOMAIN)/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@$(UID_DOMAIN)/negotiat or.machine.name

Example Using Pool Password forcondor startdAdvertisement One problem with the pool
password method of authentication is that it involves a single, shared secret. This does not
scale well with the addition of remote users who flock to the local pool. However, the pool
password may still be used for authenticating portions of the local pool, while others (such as
the remotecondorschedddaemons involved in flocking) are authenticated by other means.

In this example, only thecondorstartd daemons in the local pool are required to have the
pool password when they advertise themselves to thecondorcollectordaemon.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_ADVERTISE_STARTD_AUTHENTICATION = REQUIRED
SEC_ADVERTISE_STARTD_INTEGRITY = REQUIRED
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI
ALLOW_ADVERTISE_STARTD = condor_pool@$(UID_DOMAIN)/ * .cs.wisc.edu

File System Authentication

This form of authentication utilizes the ownership of a file in the identity verification of a client.
A daemon authenticating a client requires the client to write a file in a specific location (/tmp).
The daemon then checks the ownership of the file. The file’s ownership verifies the identity of the
client. In this way, the file system becomes the trusted authority. This authentication method is only
appropriate for clients and daemons that are on the same computer.

File System Remote Authentication

Like file system authentication, this form of authentication utilizes the ownership of a file in the
identity verification of a client. In this case, a daemon authenticating a client requires the client to
write a file in a specific location, but the location is not restricted to/tmp . The location of the file
is specified by the configuration variableFS REMOTEDIR .

Windows Authentication

This authentication is done only among Windows machines using a proprietary method. The Win-
dows security interface SSPI is used to enforce NTLM (NT LAN Manager). The authentication is

Condor Version 7.2.3 Manual

3.6. Security 298

based on challenge and response, using the user’s password as a key. This is similar to Kerberos. The
main difference is that Kerberos provides an access token that typically grants access to an entire
network, whereas NTLM authentication only verifies an identity to one machine at a time. NTSSPI
is best-used in a way similar to file system authentication inUnix, and probably should not be used
for authentication between two computers.

Claim To Be Authentication

Claim To Be authentication accepts any identity claimed by the client. As such, it does not au-
thenticate. It is included in Condor and in the list of authentication methods for testing purposes
only.

Anonymous Authentication

Anonymous authentication causes authentication to be skipped entirely. As such, it does not au-
thenticate. It is included in Condor and in the list of authentication methods for testing purposes
only.

3.6.4 The Unified Map File for Authentication

Condor’s unified map file allows the mappings from authenticated names to a Condor canonical user
name to be specified as a single list within a single file. The location of the unified map file is defined
by the configuration variableCERTIFICATE MAPFILE ; it specifies the path and file name of the
unified map file. Each mapping is on its own line of the unified map file. Each line contains 3 fields,
separated by white space (space or tab characters):

1. The name of the authentication method to which the mappingapplies.

2. A regular expression representing the authenticated name to be mapped.

3. The canonical Condor user name.

Allowable authentication method names are the same as used to define any of the configuration
variablesSEC* AUTHENTICATIONMETHODS, as repeated here:

GSI
SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
NTSSPI

Condor Version 7.2.3 Manual

3.6. Security 299

CLAIMTOBE
ANONYMOUS

The fields that represent an authenticated name and the canonical Condor user name may utilize
regular expressions as defined by PCRE (Perl-Compatible Regular Expressions). Due to this, more
than one line (mapping) within the unified map file may match. Look ups are therefore defined to
use the first mapping that matches.

A regular expression may need to contain spaces, and in this case the entire expression can be
surrounded by double-quotes. If a double-quote character also needs to appear in such an expression,
it should be preceded by a backslash.

The default behavior of Condor when no mapfile is specified is to do the following mappings,
with some additional logic noted below:

FS (. *) \1
FS_REMOTE (.*) \1
GSI (. *) GSS_ASSIST_GRIDMAP
SSL (. *) ssl@unmappeduser
KERBEROS ([ˆ/] *)/?[ˆ@] * @(. *) \1@\2
NTSSPI (. *) \1
CLAIMTOBE (. *) \1
PASSWORD (.*) \1

For GSI (or SSL), the special nameGSS_ASSIST_GRIDMAPinstructs Condor to use the GSI
grid mapfile (configured withGRIDMAP as shown in section 3.6.3) to do the mapping. If no
mapping can be found for GSI (with or without the use ofGSS_ASSIST_GRIDMAP), the user
is mapped togsi@unmappeduser .

For Kerberos, ifKERBEROSMAPFILE is specified, the domain portion of the name is obtained
by mapping the Kerberos realm to the value specified in the mapfile, rather than just using the realm
verbatim as the domain portion of the condor user name. See section 3.6.3 for details.

3.6.5 Encryption

Encryption provides privacy support between two communicating parties. Through configuration
macros, both the client and the daemon can specify whether encryption is required for further com-
munication.

The client uses one of two macros to enable or disable encryption:

SEC_DEFAULT_ENCRYPTION
SEC_CLIENT_ENCRYPTION

For the daemon, there are seven macros to enable or disable encryption:

Condor Version 7.2.3 Manual

3.6. Security 300

SEC_DEFAULT_ENCRYPTION
SEC_READ_ENCRYPTION
SEC_WRITE_ENCRYPTION
SEC_ADMINISTRATOR_ENCRYPTION
SEC_CONFIG_ENCRYPTION
SEC_OWNER_ENCRYPTION
SEC_DAEMON_ENCRYPTION
SEC_NEGOTIATOR_ENCRYPTION
SEC_ADVERTISE_MASTER_ENCRYPTION
SEC_ADVERTISE_STARTD_ENCRYPTION
SEC_ADVERTISE_SCHEDD_ENCRYPTION

As an example, the macro defined in the configuration file for a daemon as

SEC_CONFIG_ENCRYPTION = REQUIRED

signifies that any communication that changes a daemon’s configuration must be encrypted. If a
daemon’s configuration contains

SEC_DEFAULT_ENCRYPTION = REQUIRED

and does not contain any other security configuration for ENCRYPTION, then this default defines
the daemon’s needs for encryption over all access levels. Where a specific macro is present, its value
takes precedence over any default given.

If encryption is to be done, then the communicating parties must find (negotiate) a mutually
acceptable method of encryption to be used. A list of acceptable methods may be provided by the
client, using the macros

SEC_DEFAULT_CRYPTO_METHODS
SEC_CLIENT_CRYPTO_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

SEC_DEFAULT_CRYPTO_METHODS
SEC_READ_CRYPTO_METHODS
SEC_WRITE_CRYPTO_METHODS
SEC_ADMINISTRATOR_CRYPTO_METHODS
SEC_CONFIG_CRYPTO_METHODS
SEC_OWNER_CRYPTO_METHODS
SEC_DAEMON_CRYPTO_METHODS
SEC_NEGOTIATOR_CRYPTO_METHODS
SEC_ADVERTISE_MASTER_CRYPTO_METHODS
SEC_ADVERTISE_STARTD_CRYPTO_METHODS
SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS

Condor Version 7.2.3 Manual

3.6. Security 301

The methods are given as a comma-separated list of acceptable values. These variables list the
encryption methods that are available to be used. The ordering of the list gives preference; the first
item in the list indicates the highest preference. Possiblevalues are

3DES
BLOWFISH

3.6.6 Integrity

An integrity check assures that the messages between communicating parties have not been tampered
with. Any change, such as addition, modification, or deletion can be detected. Through configura-
tion macros, both the client and the daemon can specify whether an integrity check is required of
further communication.

The client uses one of two macros to enable or disable an integrity check:

SEC_DEFAULT_INTEGRITY
SEC_CLIENT_INTEGRITY

For the daemon, there are seven macros to enable or disable anintegrity check:

SEC_DEFAULT_INTEGRITY
SEC_READ_INTEGRITY
SEC_WRITE_INTEGRITY
SEC_ADMINISTRATOR_INTEGRITY
SEC_CONFIG_INTEGRITY
SEC_OWNER_INTEGRITY
SEC_DAEMON_INTEGRITY
SEC_NEGOTIATOR_INTEGRITY
SEC_ADVERTISE_MASTER_INTEGRITY
SEC_ADVERTISE_STARTD_INTEGRITY
SEC_ADVERTISE_SCHEDD_INTEGRITY

As an example, the macro defined in the configuration file for a daemon as

SEC_CONFIG_INTEGRITY = REQUIRED

signifies that any communication that changes a daemon’s configuration must have its integrity as-
sured. If a daemon’s configuration contains

SEC_DEFAULT_INTEGRITY = REQUIRED

Condor Version 7.2.3 Manual

3.6. Security 302

and does not contain any other security configuration forINTEGRITY, then this default defines the
daemon’s needs for integrity checks over all access levels.Where a specific macro is present, its
value takes precedence over any default given.

A signed MD5 check sum is currently the only available methodfor integrity checking. Its use
is implied whenever integrity checks occur. If more methodsare implemented, then there will be
further macros to allow both the client and the daemon to specify which methods are acceptable.

3.6.7 Authorization

Authorization protects resource usage by granting or denying access requests made to the resources.
It defines who is allowed to do what.

Authorization is defined in terms of users. An initial implementation provided authorization
based on hosts (machines), while the current implementation relies on user-based authorization.
Section 3.6.9 on Setting Up IP/Host-Based Security in Condor describes the previous implementa-
tion. This IP/Host-Based security still exists, and it can be used, but significantly stronger and more
flexible security can be achieved with the newer authorization based on fully qualified user names.
This section discusses user-based authorization.

The authorization portion of the security of a Condor pool isbased on a set of configuration
macros. The macros list which user will be authorized to issue what request given a specific access
level. When a daemon is to be authorized, its user name is the login under which the daemon is
executed.

These configuration macros define a set of users that will be allowed to (or denied from) carrying
out various Condor commands. Each access level may have its own list of authorized users. A
complete list of the authorization macros:

ALLOW_READ
ALLOW_WRITE
ALLOW_ADMINISTRATOR
ALLOW_CONFIG
ALLOW_SOAP
ALLOW_OWNER
ALLOW_NEGOTIATOR
ALLOW_DAEMON
DENY_READ
DENY_WRITE
DENY_ADMINISTRATOR
DENY_SOAP
DENY_CONFIG
DENY_OWNER
DENY_NEGOTIATOR
DENY_DAEMON

Condor Version 7.2.3 Manual

3.6. Security 303

In addition, the following are used to control authorization of specific types of Condor dae-
mons when advertising themselves to the pool. If unspecified, these default to the broader
ALLOWDAEMONandDENYDAEMONsettings.

ALLOW_ADVERTISE_MASTER
ALLOW_ADVERTISE_STARTD
ALLOW_ADVERTISE_SCHEDD
DENY_ADVERTISE_MASTER
DENY_ADVERTISE_STARTD
DENY_ADVERTISE_SCHEDD

Each client side of a connection may also specify its own listof trusted servers. This is done
using the following settings. Note that the FS and CLAIMTOBEauthentication methods are not
symmetric. The client is authenticated by the server, but the server is not authenticated by the client.
When the server is not authenticated to the client, only the network address of the host may be
authorized and not the specific identity of the server.

ALLOW_CLIENT
DENY_CLIENT

All authorization settings are defined by a comma-separatedlist of fully qualified users. Each
fully qualified user is described using the following format:

username@domain/hostname

The information to the left of the slash character describesa user within a domain. The information
to the right of the slash character describes one or more machines from which the user would be
issuing a command. This host name may take the form of either afully qualified host name of the
form

bird.cs.wisc.edu

or an IP address of the form

128.105.128.0

An example is

zmiller@cs.wisc.edu/bird.cs.wisc.edu

Within the format, wild card characters (the asterisk, *) are allowed. The use of wild cards is
limited to one wild card on either side of the slash character. A wild card character used in the host
name is further limited to come at the beginning of a fully qualified host name or at the end of an IP
address. For example,

Condor Version 7.2.3 Manual

3.6. Security 304

* @cs.wisc.edu/bird.cs.wisc.edu

refers to any user that comes fromcs.wisc.edu , where the command is originating from the
machinebird.cs.wisc.edu . Another valid example,

zmiller@cs.wisc.edu/ * .cs.wisc.edu

refers to commands coming from any machine within thecs.wisc.edu domain, and issued by
zmiller . A third valid example,

* @cs.wisc.edu/ *

refers to commands coming from any user within thecs.wisc.edu domain where the command
is issued from any machine. A fourth valid example,

* @cs.wisc.edu/128.105. *

refers to commands coming from any user within thecs.wisc.edu domain where the command
is issued from machines within the network that match the first two octets of the IP address.

If the set of machines is specified by an IP address, then further specification using a net mask
identifies a physical set (subnet) of machines. This physical set of machines is specified using the
form

network/netmask

Thenetwork is an IP address. The net mask takes one of two forms. It may be adecimal number
which refers to the number of leading bits of the IP address that are used in describing a subnet. Or,
the net mask may take the form of

a.b.c.d

wherea, b, c , andd are decimal numbers that each specify an 8-bit mask. An example net mask is

255.255.192.0

which specifies the bit mask

11111111.11111111.11000000.00000000

A single complete example of a configuration variable that uses a net mask is

ALLOW_WRITE = joesmith@cs.wisc.edu/128.105.128.0/17

Condor Version 7.2.3 Manual

3.6. Security 305

Userjoesmith within thecs.wisc.edu domain is given write authorization when originating
from machines that match their leftmost 17 bits of the IP address.

This flexible set of configuration macros could used to define conflicting authorization. There-
fore, the following protocol defines the precedence of the configuration macros.

1. DENY* macros take precedence overALLOW* macros where there is a conflict. This
implies that if a specific user is both denied and granted authorization, the conflict is resolved
by denying access.

2. If macros are omitted, the default behavior is to grant authorization for every user.

Example of Authorization Security Configuration

An example of the configuration variables for the user-side authorization is derived from the neces-
sary access levels as described in Section 3.6.1.

ALLOW_READ =* @cs.wisc.edu/ *
ALLOW_WRITE =* @cs.wisc.edu/ * .cs.wisc.edu
ALLOW_ADMINISTRATOR = condor-admin@cs.wisc.edu/ * .cs.wisc.edu
ALLOW_CONFIG = condor-admin@cs.wisc.edu/ * .cs.wisc.edu
ALLOW_NEGOTIATOR = condor@cs.wisc.edu/condor.cs.wisc. edu, \

condor@cs.wisc.edu/condor2.cs.wisc.edu
ALLOW_DAEMON = condor@cs.wisc.edu/ * .cs.wisc.edu

Clear out any old-style HOSTALLOW settings:
HOSTALLOW_READ =
HOSTALLOW_WRITE =
HOSTALLOW_DAEMON =
HOSTALLOW_NEGOTIATOR =
HOSTALLOW_ADMINISTRATOR =
HOSTALLOW_OWNER =

This example configuration authorizes any authenticated user in thecs.wisc.edu domain
to carry out a request that requires theREADaccess level from any machine. Any user in the
cs.wisc.edu domain may carry out a request that requires theWRITEaccess level from any
machine in thecs.wisc.edu domain. Only the user calledcondor-admin may carry out a
request that requires theADMINISTRATORaccess level from any machine in thecs.wisc.edu
domain. The administrator, logged into any machine within thecs.wisc.edu domain is autho-
rized at theCONFIGaccess level. Only the negotiator daemon, running ascondor on the two
central managers are authorized with theNEGOTIATORaccess level. And, the last line of the ex-
ample presumes that there is a user called condor, and that the daemons have all been started up as
this user. It authorizes only programs (which will be the daemons) running ascondor to carry out
requests that require theDAEMONaccess level, where the commands originate from any machinein
thecs.wisc.edu domain.

In the local configuration file for each host, the host’s ownershould be authorized as the owner
of the machine. An example of the entry in the local configuration file:

Condor Version 7.2.3 Manual

3.6. Security 306

ALLOW_OWNER = username@cs.wisc.edu/hostname.cs.wisc.e du

In this example the owner has a login ofusername , and the machine’s name is represented by
hostname .

Debugging Security Configuration

If the authorization policy denies a network request, an explanation of why the request was denied
is printed in the log file of the daemon that denied the request. The line in the log file contains the
wordsPERMISSION DENIED.

To get Condor to generate a similar explanation of why requests are accepted, addD SECURITY
to the daemon’s debug options (and restart or reconfig the daemon). The line in the log file for these
cases will contain the wordsPERMISSION GRANTED. If you do not want to see a full explanation
but just want to see when requests are made, addD COMMANDto the daemon’s debug options.

If the authorization policy makes use of host or domain names, then be aware that Condor de-
pends on DNS to map IP addresses to names. The security and accuracy of your DNS service is
therefore a requirement. Typos in DNS mappings are an occasional source of unexpected behavior.
If the authorization policy is not behaving as expected, carefully compare the names in the policy
with the host names Condor mentions in the explanations of why requests are granted or denied.

3.6.8 Security Sessions

To set up and configure secure communications in Condor, authentication, encryption, and integrity
checks can be used. However, these come at a cost: performingstrong authentication can take
a significant amount of time, and generating the cryptographic keys for encryption and integrity
checks can take a significant amount of processing power.

The Condor system makes many network connections between different daemons. If each one
of these was to be authenticated, and new keys were generatedfor each connection, Condor would
not be able to scale well. Therefore, Condor uses the conceptof sessionsto cache relevant security
information for future use and greatly speed up the establishment of secure communications between
the various Condor daemons.

A new session is established the first time a connection is made from one daemon to another.
Each session has a fixed lifetime after which it will expire and a new session will need to be created
again. But while a valid session exists, it can be re-used as many times as needed, thereby pre-
venting the need to continuously re-establish secure connections. Each entity of a connection will
have access to asession keythat proves the identity of the other entity on the opposing side of the
connection. This session key is exchanged securely using a strong authentication method, such as
Kerberos or GSI. Other authentication methods, such asNTSSPI, FS REMOTE, CLAIMTOBE, and
ANONYMOUS, do not support secure key exchange. An entity listening on the wire may be able to
impersonate the client or server in a session that does not use a strong authentication method.

Condor Version 7.2.3 Manual

3.6. Security 307

Establishing a secure session requires that either the encryption or the integrity options be en-
abled. If the encryption capability is enabled, then the session will be restarted using the session
key as the encryption key. If integrity capability is enabled, then the check sum includes the session
key even though it is not transmitted. Without either of these two methods enabled, it is possible
for an attacker to use an open session to make a connection to adaemon and use that connection
for nefarious purposes. It is strongly recommended that ifyou have authentication turned on, you
should also turn on integrity and/or encryption.

The configuration parameterSECDEFAULTNEGOTIATIONwill allow a user to set the default
level of secure sessions in Condor. Like other security settings, the possible values for this parameter
can beREQUIRED, PREFERRED, OPTIONAL, or NEVER. If you disable sessions and you have
authentication turned on, then most authentication (otherthan commands likecondorsubmit) will
fail because Condor requires sessions when you have security turned on. On the other hand, if you
are not using strong security in Condor, but you are relying on the default host-based security, turning
off sessions may be useful in certain situations. These might include debugging problems with the
security session management or slightly decreasing the memory consumption of the daemons, which
keep track of the sessions in use.

Session lifetimes for specific daemons are already properlyconfigured in the default installation
of Condor. Condor tools such ascondorq andcondorstatuscreate a session that expires after one
minute. Theoretically they should not create a session at all, because the session cannot be reused
between program invocations, but this is difficult to do in the general case. This allows a very
small window of time for any possible attack, and it helps keep the memory footprint of running
daemons down, because they are not keeping track of all of thesessions. The session durations may
be manually tuned by using macros in the configuration file, but this is not recommended.

3.6.9 Host-Based Security in Condor

This section describes the mechanisms for setting up Condor’s host-based security. This is now
an outdated form of implementing security levels for machine access. It remains available and
documented for purposes of backward compatibility. If usedat the same time as the user-based
authorization, the two specifications are merged together.

The host-based security paradigm allows control over whichmachines can join a Condor pool,
which machines can find out information about your pool, and which machines within a pool can
perform administrative commands. By default, Condor is configured to allow anyone to view or join
a pool. It is recommended that this parameter is changed to only allow access from machines that
you trust.

This section discusses how the host-based security works inside Condor. It lists the different
levels of access and what parts of Condor use which levels. There is a description of how to configure
a pool to grant or deny certain levels of access to various machines. Configuration examples and the
settings of configuration variables using thecondorconfigval command complete this section.

Inside the Condor daemons or tools that use DaemonCore (see section 3.9 for details), most
tasks are accomplished by sending commands to another Condor daemon. These commands are

Condor Version 7.2.3 Manual

3.6. Security 308

represented by an integer value to specify which command is being requested, followed by any
optional information that the protocol requires at that point (such as a ClassAd, capability string,
etc). When the daemons start up, they will register which commands they are willing to accept,
what to do with arriving commands, and the access level required for each command. When a
command request is received by a daemon, Condor identifies the access level required and checks the
IP address of the sender to verify that it satisfies the allow/deny settings from the configuration file.
If permission is granted, the command request is honored; otherwise, the request will be aborted.

Settings for the access levels in the global configuration file will affect all the machines in the
pool. Settings in a local configuration file will only affect the specific machine. The settings for a
given machine determine what other hosts can send commands to that machine. If a machine foo is
to be given administrator access on machine bar, place foo inbar’s configuration file access list (not
the other way around).

The following are the various access levels that commands within Condor can be registered with:

READ Machines withREADaccess can read information from the Condor daemons. For example,
they can view the status of the pool, see the job queue(s), andview user permissions.READ
access does not allow a machine to alter any information, anddoes not allow job submission.
A machine listed withREADpermission will be unable join a Condor pool; the machine can
only view information about the pool.

WRITE Machines withWRITEaccess can write information to the Condor daemons. Most impor-
tant for granting a machine with this access is that the machine will be able to join a pool since
they are allowed to send ClassAd updates to the central manager. The machine can talk to the
other machines in a pool in order to submit or run jobs. In addition, any machine withWRITE
access can request thecondorstartddaemon to perform periodic checkpoints on an executing
job. After the checkpoint is completed, the job will continue to execute and the machine will
still be claimed by the originalcondorschedddaemon. This allows users on the machines
where they submitted their jobs to use thecondorcheckpointcommand to get their jobs to
periodically checkpoint, even if the users do not have an account on the machine where the
jobs execute.

IMPORTANT: For a machine to join a Condor pool, the machine must have bothWRITE
permissionAND READpermission.WRITEpermission is not enough.

ADMINISTRATORMachines withADMINISTRATORaccess are granted additional Condor ad-
ministrator rights to the pool. This includes the ability tochange user priorities (with the
commanduserprio -set), and the ability to turn Condor on and off (with the command
condor off <machine >). It is recommended that few machines be granted adminis-
trator access in a pool; typically these are the machines that are used by Condor and system
administrators as their primary workstations, or the machines running as the pool’s central
manager.

IMPORTANT: Giving ADMINISTRATORprivileges to a machine grants administrator ac-
cess for the pool toANY USER on that machine. This includes any users who can run Condor
jobs on that machine. It is recommended thatADMINISTRATORaccess is granted with due
diligence.

Condor Version 7.2.3 Manual

3.6. Security 309

OWNER This level of access is required for commands that the owner of a machine (any local
user) should be able to use, in addition to the Condor administrators. For example, thecon-
dor vacatecommand causes thecondorstartd daemon to vacate any running Condor job. It
requiresOWNERpermission, so that any user logged into a local machine can issue acon-
dor vacatecommand.

NEGOTIATOR This access level is used specifically to verify that commands are sent by thecon-
dor negotiatordaemon. Thecondornegotiatordaemon runs on the central manager of the
pool. Commands requiring this access level are the ones thattell thecondorschedddaemon
to begin negotiating, and those that tell an availablecondorstartd daemon that it has been
matched to acondorscheddwith jobs to run.

CONFIG This access level is required to modify a daemon’s configuration using thecon-
dor configval command. By default, machines with this level of access are able to change
any configuration parameter, except those specified in thecondor config.root config-
uration file. Therefore, one should exercise extreme caution before granting this level of
host-wide access. Because of the implications caused byCONFIGprivileges, it is disabled by
default for all hosts.

DAEMON This access level is used for commands that are internal to the operation of Condor. An
example of this internal operation is when thecondorstartd daemon sends its ClassAd up-
dates to thecondorcollector daemon (which may be more specifically controlled by the
ADVERTISESTARTDaccess level). Authorization at this access level should only be given
to hosts that actually run Condor in your pool. TheDAEMONlevel of access implies both
READandWRITEaccess. Any setting for this access level that is not defined will default to
the corresponding setting in theWRITEaccess level.

ADVERTISEMASTER This access level is used specifically for commands used to advertise acon-
dor masterdaemon to the collector. Any setting for this access level that is not defined will
default to the corresponding setting in theDAEMONaccess level.

ADVERTISESTARTD This access level is used specifically for commands used to advertise acon-
dor startd daemon to the collector. Any setting for this access level that is not defined will
default to the corresponding setting in theDAEMONaccess level.

ADVERTISESCHEDD This access level is used specifically for commands used to advertise acon-
dor schedddaemon to the collector. Any setting for this access level that is not defined will
default to the corresponding setting in theDAEMONaccess level.

CLIENT This access level is different from all the others. Whereas all of the other access levels
refer to the security policy for accepting connectionsfrom others, theCLIENT access level
applies when a Condor daemon or tool is connectingto some other Condor daemon. In other
words, it specifies the policy of the client that is initiating the operation, rather than the server
that is being contacted.

Condor provides a mechanism for more fine-grained control over the configuration settings that
can be modified remotely withcondorconfigval. Host-based security access permissions are spec-
ified in configuration files.

Condor Version 7.2.3 Manual

3.6. Security 310

ADMINISTRATORandNEGOTIATORaccess default to the central manager machine.OWNER
access defaults to the local machine, as well as any machinesgiven withADMINISTRATORaccess.
CONFIGaccess is not granted to any machine as its default. These defaults are sufficient for most
pools, and should not be changed without a compelling reason. If machines other than the default
are to have to haveOWNERaccess, they probably should also haveADMINISTRATORaccess. By
granting machinesADMINISTRATORaccess, they will automatically haveOWNERaccess, given
howOWNERaccess is set within the configuration.

The default access configuration is

HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST)
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)
HOSTALLOW_READ =*
HOSTALLOW_WRITE =*
HOSTALLOW_NEGOTIATOR = $(COLLECTOR_HOST)
HOSTALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)
HOSTALLOW_WRITE_COLLECTOR = $(HOSTALLOW_WRITE), $(FLOCK_FROM)
HOSTALLOW_WRITE_STARTD = $(HOSTALLOW_WRITE), $(FLOCK_FROM)
HOSTALLOW_READ_COLLECTOR = $(HOSTALLOW_READ), $(FLOCK_FROM)
HOSTALLOW_READ_STARTD = $(HOSTALLOW_READ), $(FLOCK_FROM)
HOSTALLOW_CLIENT =*

This example configuration presumes that thecondorcollectorandcondornegotiatordaemons
are running on the same machine.

For each access level, an ALLOW or a DENY may be added.

• If you have an ALLOW, it means ”only allow these machines”. No ALLOW means allow
anyone.

• If you have a DENY, it means ”deny these machines”. No DENY means to deny nobody.

• If you have both an ALLOW and a DENY, it means allow the machines listed in ALLOW
except for the machines listed in DENY.

• Exclusively for theCONFIGaccess, no ALLOW means allow no one. Note that this is dif-
ferent than the other ALLOW configurations. It is different to enable more stringent security
where older configurations are used, since older configuration files would not have aCONFIG
configuration entry.

Multiple machine entries in the configuration files may be separated by either a space or a
comma. The machines may be listed by

• Individual host names - for example: condor.cs.wisc.edu

• Individual IP address - for example: 128.105.67.29

• IP subnets (use a trailing “*”) - for example: 144.105.*, 128.105.67.*

Condor Version 7.2.3 Manual

3.6. Security 311

• Host names with a wild card “*” character (only one “*” is allowed per name) - for example:
.cs.wisc.edu, sol.cs.wisc.edu

To resolve an entry that falls into both allow and deny: individual machines have a higher order of
precedence than wild card entries, and host names with a wildcard have a higher order of precedence
than IP subnets. Otherwise, DENY has a higher order of precedence than ALLOW. (this is how most
people would intuitively expect it to work).

In addition, the above access levels may be specified on a per-daemon basis, instead of machine-
wide for all daemons. Do this with the subsystem string (described in section 3.3.1 on Subsystem
Names), which is one of: STARTD, SCHEDD, MASTER, NEGOTIATOR, or COLLECTOR. For
example, to grant different read access for thecondorschedd:

HOSTALLOW_READ_SCHEDD = <list of machines>

The following is a list of registered commands that daemons will accept. The list is ordered by
daemon. For each daemon, the commands are grouped by the access level required for a daemon to
accept the command from a given machine.

ALL DAEMONS:

WRITE The command sent as a result ofcondorreconfigto reconfigure a daemon.

ADMINISTRATOR The command sent as a result ofreconfig -full to perform a full recon-
figuration on a daemon.

STARTD:

WRITE All commands that relate to acondorschedddaemon claiming a machine, starting jobs
there, or stopping those jobs.

The command thatcondorcheckpointsends to periodically checkpoint all running jobs.

READ The command thatcondorpreensends to request the current state of thecondorstartddae-
mon.

OWNER The command thatcondorvacatesends to cause any running jobs to stop running.

NEGOTIATOR The command that thecondornegotiatordaemon sends to match a machine’scon-
dor startddaemon with a givencondorschedddaemon.

NEGOTIATOR:

WRITE The command that initiates a new negotiation cycle. It is sent by thecondorscheddwhen
new jobs are submitted or acondorreschedulecommand is issued.

READ The command that can retrieve the current state of user priorities in the pool (sent by the
condoruserpriocommand).

Condor Version 7.2.3 Manual

3.6. Security 312

ADMINISTRATOR The command that can set the current values of user priorities (sent as a result
of theuserprio -set command).

COLLECTOR:

ADVERTISEMASTER Commands that update thecondorcollector daemon with newcon-
dor masterClassAds.

ADVERTISESCHEDD Commands that update thecondorcollector daemon with newcon-
dor scheddClassAds.

ADVERTISESTARTD Commands that update thecondorcollector daemon with newcon-
dor startdClassAds.

DAEMON All other commands that update thecondorcollectordaemon with new ClassAds. Note
that the specific access levels such asADVERTISESTARTDdefault to theDAEMONsettings,
which in turn defaults toWRITE.

READ All commands that query thecondorcollectordaemon for ClassAds.

SCHEDD:

NEGOTIATOR The command that thecondornegotiatorsends to begin negotiating with thiscon-
dor scheddto match its jobs with availablecondorstartds.

WRITE The command whichcondorreschedulesends to thecondorscheddto get it to update the
condorcollectorwith a current ClassAd and begin a negotiation cycle.

The commands that acondorstartd sends to thecondorscheddwhen it must vacate its jobs
and release thecondorschedd’sclaim.

The commands which write information into the job queue (such ascondorsubmitandcon-
dor hold). Note that for most commands which attempt to write to the job queue, Condor will
perform an additional user-level authentication step. This additional user-level authentication
prevents, for example, an ordinary user from removing a different user’s jobs.

READ The command from any tool to view the status of the job queue.

MASTER: All commands are registered withADMINISTRATORaccess:

restart : Master restarts itself (and all its children)

off : Master shuts down all its children

off -master : Master shuts down all its children and exits

on : Master spawns all the daemons it is configured to spawn

Condor Version 7.2.3 Manual

3.6. Security 313

This section provides examples of configuration settings. Notice thatADMINISTRATORaccess
is only granted through a HOSTALLOW setting to explicitly grant access to a small number of
machines. We recommend this.

• Let any machine join your pool. Only the central manager hasadministrative access (this is
the default that ships with Condor)

HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST)
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

• Only allow machines at NCSA to join or view the pool. The central manager is the only
machine withADMINISTRATORaccess.

HOSTALLOW_READ =* .ncsa.uiuc.edu
HOSTALLOW_WRITE =* .ncsa.uiuc.edu
HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST)
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

• Only allow machines at NCSA and the U of I Math department join the pool, EXCEPT donot
allow lab machines to do so. Also, do not allow the 177.55 subnet (perhaps this is the dial-in
subnet). Allow anyone to view pool statistics. The machine named bigcheese administers the
pool (not the central manager).

HOSTALLOW_WRITE =* .ncsa.uiuc.edu, * .math.uiuc.edu
HOSTDENY_WRITE = lab-* .edu, * .lab.uiuc.edu, 177.55. *
HOSTALLOW_ADMINISTRATOR = bigcheese.ncsa.uiuc.edu
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

• Only allow machines at NCSA and UW-Madison’s CS departmentto view the pool. Only
NCSA machines and the machine raven.cs.wisc.edu can join the pool. (Note: the machine
raven has the read access it needs through the wild card setting inHOSTALLOWREAD). This
example also shows how to use “\ ” to continue a long list of machines onto multiple lines,
making it more readable (this works for all configuration fileentries, not just host access
entries)

HOSTALLOW_READ =* .ncsa.uiuc.edu, * .cs.wisc.edu
HOSTALLOW_WRITE =* .ncsa.uiuc.edu, raven.cs.wisc.edu
HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.uiuc.edu, \

biggercheese.uiuc.edu
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

• Allow anyone except the military to view the status of the pool, but only let machines at NCSA
view the job queues. Only NCSA machines can join the pool. Thecentral manager, bigcheese,
and biggercheese can perform most administrative functions. However, only biggercheese can
update user priorities.

HOSTDENY_READ =* .mil
HOSTALLOW_READ_SCHEDD =* .ncsa.uiuc.edu
HOSTALLOW_WRITE =* .ncsa.uiuc.edu
HOSTALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.uiuc.edu, \

biggercheese.uiuc.edu
HOSTALLOW_ADMINISTRATOR_NEGOTIATOR = biggercheese.uiuc.edu
HOSTALLOW_OWNER = $(FULL_HOSTNAME), $(HOSTALLOW_ADMINISTRATOR)

Condor Version 7.2.3 Manual

3.6. Security 314

A new security feature introduced in Condor version 6.3.2 enables more fine-grained control
over the configuration settings that can be modified remotelywith thecondorconfigval command.
The manual page forcondorconfigval on page 700 details how to usecondorconfigval to modify
configuration settings remotely. Since certain configuration attributes can have a large impact on the
functioning of the Condor system and the security of the machines in a Condor pool, it is important
to restrict the ability to change attributes remotely.

For each security access level described, the Condor administrator can define which configura-
tion settings a host at that access level is allowed to change. Optionally, the administrator can define
separate lists of settable attributes for each Condor daemon, or the administrator can define one list
that is used by all daemons.

For each command that requests a change in configuration setting, Condor searches all the differ-
ent possible security access levels to see which, if any, therequest satisfies. (Some hosts can qualify
for multiple access levels. For example, any host withADMINISTRATORpermission probably has
WRITEpermission also). Within the qualified access level, Condorsearches for the list of attributes
that may be modified. If the request is covered by the list, therequest will be granted. If not covered,
the request will be refused.

The default configuration shipped with Condor is exceedingly restrictive. Condor users or ad-
ministrators cannot set configuration values from remote hosts withcondorconfigval. Enabling
this feature requires a change to the settings in the configuration file. Use this security feature care-
fully. Grant access only for attributes which you need to be able to modify in this manner, and grant
access only at the most restrictive security level possible.

The most secure use of this feature allows Condor users to setattributes in the configuration file
which are not used by Condor directly. These are custom attributes published by various Condor
daemons with the<SUBSYS>ATTRSsetting described in section 3.3.5 on page 163. It is secure
to grant access only to modify attributes that are used by Condor to publish information. Granting
access to modify settings used to control the behavior of Condor is not secure. The goal is to ensure
no one can use the power to change configuration attributes tocompromise the security of your
Condor pool.

The control lists are defined by configuration settings that containSETTABLEATTRS in their
name. The name of the control lists have the following form:

<SUBSYS>_SETTABLE_ATTRS_PERMISSION-LEVEL

The two parts of this name that can vary are PERMISSION-LEVELand the<SUBSYS>. The
PERMISSION-LEVEL can be any of the security access levels described earlier in this section.
Examples includeWRITE, OWNER, andCONFIG.

The <SUBSYS> is an optional portion of the name. It can be used to define separate rules
for which configuration attributes can be set for each kind ofCondor daemon (for example,
STARTD, SCHEDD, MASTER). There are many configuration settings that can be defined dif-
ferently for each daemon that use this<SUBSYS> naming convention. See section 3.3.1 on
page 147 for a list. If there is no daemon-specific value for a given daemon, Condor will look
for SETTABLEATTRSPERMISSION-LEVEL .

Condor Version 7.2.3 Manual

3.6. Security 315

Each control list is defined by a comma-separated list of attribute names which should be allowed
to be modified. The lists can contain wild cards characters (‘*’).

Some examples of valid definitions of control lists with explanations:

• SETTABLE_ATTRS_CONFIG =*

Grant unlimited access to modify configuration attributes to any request that came from a
machine in theCONFIGaccess level. This was the default behavior before Condor version
6.3.2.

• SETTABLE_ATTRS_ADMINISTRATOR =* _DEBUG, MAX_* _LOG

Grant access to change any configuration setting that ended with “ DEBUG” (for ex-
ample, STARTDDEBUG) and any attribute that matched “MAX* LOG” (for example,
MAXSCHEDDLOG) to any host withADMINISTRATORaccess.

• STARTD_SETTABLE_ATTRS_OWNER = HasDataSet

Allows any request to modify theHasDataSet attribute that came from a host withOWNER
access. By default,OWNERcovers any request originating from the local host, plus anyma-
chines listed in theADMINISTRATORlevel. Therefore, any Condor job would qualify for
OWNER access to the machine where it is running. So, this setting would allow any process
running on a given host, including a Condor job, to modify theHasDataSet variable for
that host. HasDataSet is not used by Condor, it is an invented attribute included inthe
STARTDATTRS setting in order for this example to make sense.

3.6.10 Using Condor w/ Firewalls, Private Networks, and NATs

This topic is now addressed in more detail in section 3.7, which explains network communication in
Condor.

3.6.11 User Accounts in Condor

On a Unix system, UIDs (User IDentification numbers) form part of an operating system’s tools for
maintaining access control. Each executing program has a UID, a unique identifier of a user execut-
ing the program. This is also called the real UID. A common situation has one user executing the
program owned by another user. Many system commands work this way, with a user (corresponding
to a person) executing a program belonging to (owned by)root . Since the program may require
privileges thatroot has which the user does not have, a special bit in the program’s protection
specification (a setuid bit) allows the program to run with the UID of the program’s owner, instead
of the user that executes the program. This UID of the program’s owner is called an effective UID.

Condor works most smoothly when its daemons run asroot . The daemons then have the ability
to switch their effective UIDs at will. When the daemons run as root , they normally leave their
effective UID and GID (Group IDentification) to be those of user and groupcondor . This allows

Condor Version 7.2.3 Manual

3.6. Security 316

access to the log files without changing the ownership of the log files. It also allows access to these
files when the usercondor ’s home directory resides on an NFS server.root can not normally
access NFS files.

If there is nocondor user and group on the system, an administrator can specify which UID
and GID the Condor daemons should use when they do not need root privileges in two ways: either
with the CONDORIDS environment variable or theCONDORIDS configuration file setting. In
either case, the value should be the UID integer, followed bya period, followed by the GID integer.
For example, if a Condor administrator does not want to create acondor user, and instead wants
their Condor daemons to run as thedaemon user (a common non-root user for system daemons to
execute as), thedaemon user’s UID was 2, and groupdaemon had a GID of 2, the corresponding
setting in the Condor configuration file would beCONDORIDS = 2.2 .

On a machine where a job is submitted, thecondorschedddaemon changes its effective UID
to root such that it has the capability to start up acondorshadowdaemon for the job. Before a
condorshadowdaemon is created, thecondorschedddaemon switches back toroot , so that it can
start up thecondorshadowdaemon with the (real) UID of the user who submitted the job. Since
the condorshadowruns as the owner of the job, all remote system calls are performed under the
owner’s UID and GID. This ensures that as the job executes, itcan access only files that its owner
could access if the job were running locally, without Condor.

On the machine where the job executes, the job runs either as the submitting user or as user
nobody , to help ensure that the job cannot access local resources ordo harm. If theUID DOMAIN
matches, and the user exists as the same UID in password files on both the submitting machine

and on the execute machine, the job will run as the submittinguser. If the user does not exist
in the execute machine’s password file andSOFTUID DOMAIN is True, then the job will run
under the submitting user’s UID anyway (as defined in the submitting machine’s password file).
If SOFTUID DOMAINis False, andUID DOMAINmatches, and the user is not in the execute
machine’s password file, then the job execution attempt willbe aborted.

Running Condor as Non-Root

While we strongly recommend starting up the Condor daemons as root , we understand that it is
not always possible to do so. The main problems appear when one Condor installation is shared
by many users on a single machine, or if machines are set up to only execute Condor jobs. With a
submit-only installation for a single user, there is no needfor (or benefit from) running asroot .

What follows are the effects on the various parts of Condor ofrunning both with and without
root access.

condor startd If you’re setting up a machine to run Condor jobs and don’t start thecondorstartd
asroot , you’re basically relying on the goodwill of your Condor users to agree to the policy
you configure thecondorstartd to enforce as far as starting, suspending, vacating and killing
Condor jobs under certain conditions. If you run asroot , however, you can enforce these
policies regardless of malicious users. By running asroot , the Condor daemons run with
a different UID than the Condor job that gets started (since the user’s job is started as either

Condor Version 7.2.3 Manual

3.6. Security 317

the UID of the user who submitted it, or as usernobody , depending on theUID DOMAIN
settings). Therefore, the Condor job cannot do anything to the Condor daemons. If you

don’t start the daemons asroot , all processes started by Condor, including the end user’s
job, run with the same UID (since you can’t switch UIDs unlessyou’re root). Therefore, a
user’s job could just kill thecondorstartd andcondorstarter as soon as it starts up and by
doing so, avoid getting suspended or vacated when a user comes back to the machine. This
is nice for the user, since they get unlimited access to the machine, but awful for the machine
owner or administrator. If you trust the users submitting jobs to Condor, this might not be a
concern. To ensure, however, that the policy you choose is effectively enforced by Condor,
thecondorstartdshould be started asroot .

In addition, some system information cannot be obtained withoutroot access on some plat-
forms (such as load average on IRIX). As a result, when running without root access, the
condorstartdmust call other programs (for example,uptime) to get this information. This is
much less efficient than getting the information directly from the kernel (which is what we do
if we’re running asroot). On Linux and Solaris, we can get this information directlywithout
root access, so this is not a concern on those platforms.

If you cannot have all of Condor running asroot , at least consider whether you can install
thecondorstartd as setuid root. That would solve both of these problems. If you cannot do
that, you could also install it as a setgid sys or kmem program(depending on whatever group
has read access to/dev/kmem on your system), and that would at least solve the system
information problem.

condor scheddThe biggest problem running thecondorscheddwithout root access is that thecon-
dor shadowprocesses which it spawns are stuck with the same UID thecondorscheddhas.
This means that users submitting their jobs must go out of their way to grant write access to
user or groupcondor (or whoever thecondorscheddis running as) for any files or directo-
ries their jobs write or create. Similarly, read access mustbe granted to their input files.

Consider installingcondorsubmitas a setgid condor program so that at least thestdout ,
stderr andUserLog files get created with the right permissions. Ifcondorsubmit is a
setgid program, it will automatically set it’s umask to 002,and create group-writable files.
This way, the simple case of a job that only writes tostdout andstderr will work. If
users have programs that open their own files, they will need to know and set the proper
permissions on the directories they submit from.

condor master Thecondormasteris what spawns thecondorstartd andcondorschedd. To have
both running asroot , have thecondormasterrun asroot . This happens automatically if
you start the master from your boot scripts.

condor negotiatorand condor collector There is no need to have either of these daemons running
asroot .

condor kbdd On platforms that need thecondorkbdd (Digital Unix and IRIX) thecondorkbdd
must run asroot . If it is started as any other user, it will not work. You mightconsider
installing this program as a setuid root binary if you cannotrun thecondormasterasroot .
Without thecondorkbdd, the startd has no way to monitor mouse activity at all, and the only
keyboard activity it will notice is activity on ttys (such asxterms, remote logins, etc).

Condor Version 7.2.3 Manual

3.6. Security 318

If you do choose to run Condor as non-root, then you may choosealmost any user you like. A
common choice is to use thecondor user; this simplifies the setup because Condor will look for its
configuration files in thecondor user’s directory. If you do not select thecondor user, then you
will need to ensure that the configuration is set properly so that Condor can find its configuration
files.

If users will be submitting jobs as a user different than the user Condor is running as (perhaps
you are running as thecondor user and users are submitting as themselves), then users have to be
careful to only have file permissions properly set up to be accessible by the user Condor is using. In
practice, this means creating world-writable directoriesfor output from Condor jobs. This creates a
potential security risk, in that any user on the machine where the job is submitted can alter the data,
remove it, or do other undesirable things. It is only acceptable in an environment where users can
trust other users.

Normally, users without root access who wish to use Condor ontheir machines create acondor
home directory somewhere within their own accounts and start up the daemons (to run with the UID
of the user). As in the case where the daemons run as usercondor , there is no ability to switch
UIDs or GIDs. The daemons run as the UID and GID of the user who started them. On a machine
where jobs are submitted, thecondorshadowdaemons all run as this same user. But if other users
are using Condor on the machine in this environment, thecondorshadowdaemons for these other
users’ jobs execute with the UID of the user who started the daemons. This is a security risk, since
the Condor job of the other user has access to all the files and directories of the user who started the
daemons. Some installations have this level of trust, but others do not. Where this level of trust does
not exist, it is best to set up acondor account and group, or to have each user start up their own
Personal Condor submit installation.

When a machine is an execution site for a Condor job, the Condor job executes with the UID of
the user who started thecondorstartddaemon. This is also potentially a security risk, which is why
we do not recommend starting up the execution site daemons asa regular user. Use eitherroot or
a user (such as the usercondor) that exists only to run Condor jobs.

Running Jobs as the Nobody User

Under Unix, Condor runs jobs either as the user that submitted the jobs, or as the user called
nobody . Condor uses usernobody if the value of theUID DOMAINconfiguration variable of
the submitting and executing machines are different or ifSTARTERALLOWRUNASOWNERis
false or if the job ClassAd containsRunAsOwner=False. Under Windows, Condor by default runs
jobs under a dynamically created local account that exists for the duration of the job, but it can op-
tionally run the job as the user account that owns the job ifSTARTERALLOWRUNASOWNERis
True and the job containsRunAsOwner=True.

When Condor cleans up after executing a vanilla universe job, it does the best that it can by
deleting all of the processes started by the job. During the life of the job, it also does its best to track
the CPU usage of all processes created by the job. There are a variety of mechanisms used by Condor
to detect all such processes, but, in general, the only foolproof mechanism is for the job to run under
a dedicated execution account (as it does under Windows by default). With all other mechanisms, it

Condor Version 7.2.3 Manual

3.6. Security 319

is possible to fool Condor, and leave processes behind afterCondor has cleaned up. In the case of
a shared account, such as the Unix usernobody , it is possible for the job to leave a lurker process
lying in wait for the next job run asnobody . The lurker process may prey maliciously on the next
nobody user job, wreaking havoc.

Condor could prevent this problem by simply killing all processes run by thenobody user,
but this would annoy many system administrators. Thenobody user is often used for non-Condor
system processes. It may also be used by other Condor jobs running on the same machine, if it is a
multi-processor machine.

Condor provides a two-part solution to this difficulty. First, create user accounts specifically for
Condor to use instead of usernobody . These can be low-privilege accounts, as thenobody user
is. Create one of these accounts for each job execution slot per computer, so that distinct users can
be used for concurrent processes. This prevents malicious behavior between processes running on
distinct slots. Section 3.12.7 details slots. For a sample machine with two compute slots, create
two users that are intended only to be used by Condor. As an example, call themcndrusr1 and
cndrusr2 . Tell Condor about these users with theSLOTx USER configuration variables, where
x is replaced with the slot number. In this example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2

Then tell Condor that these accounts are intended only to be used by Condor, so Condor can
kill all the processes belonging to these users upon job completion. The configuration variable
DEDICATEDEXECUTEACCOUNTREGEXP is introduced and set to a regular expression that
matches the account names we have just created.

DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

Finally, tell Condor not to run jobs as the job owner:

STARTER_ALLOW_RUNAS_OWNER = False

Notes:

1. Currently, none of these configuration settings apply to standard universe jobs. Normally,
standard universe jobs do not create additional processes.

2. On Windows,SLOTx USERwill only work if the credential of the specified user is stored
on the execute machine usingcondorstorecred. See thecondorstorecred manual page
(in section 9) for details of this command. However, the default behavior in Windows is to
run jobs under a dynamically created dedicated execution account, so just using the default
behavior is sufficient to avoid problems with lurker processes.

Condor Version 7.2.3 Manual

3.6. Security 320

3. You can tell if the starter is in fact treating the account as a dedicated account, because it will
print a line such as the following in its log file:

Tracking process family by login "cndrusr1"

Working Directories for Jobs

Every executing process has a notion of its current working directory. This is the directory that acts
as the base for all file system access. There are two current working directories for any Condor
job: one where the job is submitted and a second where the job executes. When a user submits a
job, the submit-side current working directory is the same as for the user when thecondorsubmit
command is issued. Theinitialdir submit command may change this, thereby allowing different
jobs to have different working directories. This is useful when submitting large numbers of jobs.
This submit-side current working directory remains unchanged for the entire life of a job. The
submit-side current working directory is also the working directory of thecondorshadowdaemon.
This is particularly relevant for standard universe jobs, since file system access for the job goes
through thecondorshadowdaemon, and therefore all accesses behave as if they were executing
without Condor.

There is also an execute-side current working directory. For standard universe jobs, it is set to
the execute subdirectory of Condor’s home directory. This directory isworld-writable, since a
Condor job usually runs as usernobody . Normally, standard universe jobs would never access this
directory, since all I/O system calls are passed back to thecondorshadowdaemon on the submit
machine. In the event, however, that a job crashes and creates a core dump file, the execute-side
current working directory needs to be accessible by the job so that it can write the core file. The
core file is moved back to the submit machine, and thecondorshadowdaemon is informed. The
condorshadowdaemon sends e-mail to the job owner announcing the core file,and provides a
pointer to where the core file resides in the submit-side current working directory.

3.6.12 Privilege Separation

Section 3.6.11 discusses why, under most circumstances, itis beneficial to run the Condor daemons
asroot . In situations where multiple users are involved or where Condor is responsible for enforc-
ing a machine owner’s policy, running asroot is theonly way for Condor to do its job correctly
and securely.

Unfortunately, this requirement of running Condor asroot is at odds with a well-established
goal of security-conscious administrators: keeping the amount of software that runs with superuser
privileges to a minimum. Condor’s nature as a large distributed system that routinely communicates
with potentially untrusted components over the network further aggravates this goal.

The privilege separation (PrivSep) effort in Condor aims tominimize the amount of code that
needsroot -level access, while still giving Condor the tools it needs to work properly. Note that
PrivSep is currently only available for execute side functionality, and is not implemented on Win-
dows.

Condor Version 7.2.3 Manual

3.6. Security 321

In the PrivSep model, all logic in Condor that requires superuser privilege is contained in a small
component called the PrivSep Kernel. The Condor daemons execute as an unprivileged account.
They explicitly request action from the PrivSep Kernel wheneverroot -level operations are needed.

The PrivSep model then prevents the following attack scenario. In the attack scenario, an attacker
has found an exploit in thecondorstartdthat allows for execution of arbitrary code on that daemon’s
behalf. This gives the attackerroot access and therefore control over any machine on which the
condorstartd is running asroot and the exploit can be exercised. Under the PrivSep model,
thecondorstartd no longer runs asroot . This prevents the attacker from taking arbitrary action
as root . Further, limits on requested actions from the PrivSep Kernel contain and restrict the
attacker’s sphere of influence.

The following section describes the configuration necessary to enable PrivSep for an execute-
side Condor installation. After this is a detailed description of the services that the PrivSep Kernel
provides to Condor, and how it limits the allowedroot -level actions.

PrivSep Configuration

The PrivSep Kernel is implemented as two programs: thecondor root switchboardand thecon-
dor procd. Both are contained in thesbin directory of the Condor distribution. When Condor is
running in PrivSep mode, these are to be the only two Condor daemons that run withroot privilege.

Each of these binaries must be accessible on the file system via atrusted path. A trusted path
ensures that no user (other thanroot) can alter the binary or path to the binary referred to. To
ensure that the paths to these binaries are trusted, use onlyroot -owned directories, and set the
permissions on these directories to deny write access to allbut root . The binaries themselves
must also be owned byroot and not writable by any other. Thecondorroot switchboardprogram
additionally is installed with the setuid bit set. The following command properly sets the permissions
on thecondorroot switchboardbinary:

chmod 4755 /opt/condor/release/sbin/condor_root_switc hboard

The PrivSep Kernel has its own configuration file. This file must be
/etc/condor/privsep config . The format of this file is different than a Condor con-
figuration file. It consists of lines with “key = value ” pairs. Lines with only white space or
lines with “#” as the first non-white space character are ignored.

In the PrivSep Kernel configuration file, some configuration settings are interpreted as single
values, while others are interpreted as lists. To populate alist with multiple values, use multiple
lines with the same key. For example, the following configures thevalid-dirs setting as a list
with two entries:

valid-dirs = /opt/condor/execute_1
valid-dirs = /opt/condor/execute_2

It is an error to have multiple lines with the same key for a setting that is not interpreted as a list.

Condor Version 7.2.3 Manual

3.6. Security 322

Some PrivSep Kernel configuration file settings require a list of UIDs or GIDs, and these allow
for a more specialized syntax. User and group IDs can be specified either numerically or textually.
Multiple list entries may be given on a single line using the: (colon) character as a delimiter. In
addition, list entries may specify a range of IDs using a- (dash) character to separate the minimum
and maximum IDs included. The* (asterisk) character on the right-hand side of such a range indi-
cates that the range extends to the maximum possible ID. The following example builds a complex
list of IDs:

valid-target-uids = nobody : nfsuser1 : nfsuser2
valid-target-uids = condor_run_1 - condor_run_8
valid-target-uids = 800 - *

If condor run 1 maps to UID 701, andcondor run 8 maps to UID 708, then this range
specifies the 8 UIDs of 701 through 708 (inclusive).

The following settings are required to configure the PrivSepKernel:

• valid-caller-uids andvalid-caller-gids . These lists specify users and groups
that will be allowed to request action from the PrivSep Kernel. The list typically will contain
the UID and primary GID that the Condor daemons will run as.

• valid-target-uids and valid-target-gids . These lists specify the users and
groups that Condor will be allowed to act on behalf of. The list will need to include IDs of all
users and groups that Condor jobs may use on the given executemachine.

• valid-dirs . This list specifies directories that Condor will be allowedto manage for
the use of temporary job files. Normally, this will only need to include the value of Con-
dor’s $(EXECUTE) directory. Any entry in this list must be a trusted path. Thismeans
that all components of the path must be directories that areroot -owned and only writable
by root . For many sites, this may require a change in ownership and permissions to the
$(LOCAL DIR) and$(EXECUTE) directories. Note also that the PrivSep Kernel does not
have access to Condor’s configuration variables, and therefore may not refer to them in this
file.

• procd-executable . A (trusted) full path to thecondorprocdexecutable. Note that the
PrivSep Kernel does not have access to Condor’s configuration variables, and therefore may
not refer to them in this file.

Here is an example of a fullprivsep config file. This file gives thecondor account
access to the PrivSep Kernel. Condor’s use of this execute machine will be restricted to a set of
eight dedicated accounts, along with theusers group. Condor’s$(EXECUTE) directory and the
condorprocdexecutable are also specified, as required.

valid-caller-uids = condor
valid-caller-gids = condor
valid-target-uids = condor_run_1 - condor_run_8

Condor Version 7.2.3 Manual

3.6. Security 323

valid-target-gids = users : condor_run_1 - condor_run_8
valid-dirs = /opt/condor/local/execute
procd-executable = /opt/condor/release/sbin/condor_pr ocd

Once the PrivSep Kernel is properly installed and configured, Condor’s configuration must
be updated to specify that PrivSep should be used. The Condorconfiguration variable
PRIVSEP ENABLED is a boolean flag serving this purpose. In addition, Condor must be told
where thecondorroot switchboardbinary is located using thePRIVSEP SWITCHBOARDsetting.
The following example illustrates:

PRIVSEP_ENABLED = True
PRIVSEP_SWITCHBOARD = $(SBIN)/condor_root_switchboard

Finally, note that while thecondorprocd is in general an optional component of Condor, it
is required when PrivSep is in use. IfPRIVSEP ENABLEDis True , the condorprocd will be
used regardless of theUSEPROCDsetting. Details on these Condor configuration variables are in
section 3.3.27 for PrivSep variables and section 3.3.18 forcondorprocdvariables.

PrivSep Kernel Interface

This section describes theroot -enabled operations that the PrivSep Kernel makes available to
Condor. The PrivSep Kernel’s interface is designed to provide only operations needed by Condor
in order to function properly. Each operation is further restricted based on the PrivSep Kernel’s
configuration settings.

The following list describes each action that can be performed via the PrivSep Kernel, along
with the limitations enforced on how it may be used. The termsvalid target users, valid tar-
get groups, and valid directoriesrefer respectively to the settings forvalid-target-uids ,
valid-target-gids , andvalid-dirs from the PrivSep Kernel’s configuration.

• Make a directory as a user.This operation creates an empty directory, owned by a user. The
user must be a valid target user, and the new directory’s parent must be a valid directory.

• Change ownership of a directory tree.This operation involves recursively changing ownership
of all files and subdirectories contained in a given directory. The directory’s parent must be a
valid directory, and the new owner must either be a valid target user or the user invoking the
PrivSep Kernel.

• Remove a directory tree.This operation deletes a given directory, including everything con-
tained within. The directory’s parent must be a valid directory.

• Execute a program as a user.Condor can invoke the PrivSep kernel to execute a program as
a valid target user. The user’s primary group and any supplemental groups that it is a member
of must all be valid target groups. This operation may also include opening files for standard
input, output, and error before executing the program.

Condor Version 7.2.3 Manual

3.6. Security 324

After launching a program as a valid target user, the PrivSepKernel allows Condor limited
control over its execution. The following operations are supported on a program executed via the
PrivSep Kernel:

• Get resource usage information.This allows Condor to gather usage statistics such as CPU
time and memory image size. This applies to the program’s initial process and any of its
descendants.

• Signal the program.Condor may ask that signals be sent to the program’s initial process as a
notification mechanism.

• Suspend and resume the program.These operations sendSIGSTOPor SIGCONTsignals to
all processes that make up the program.

• Kill the process and all descendants.Condor is allowed to terminate the execution of the
program or any processes left behind when the program completes.

By sufficiently constraining the valid target accounts and valid directories to which the PrivSep
Kernel allows access, the ability of a compromised Condor daemon to do damage can be consider-
ably reduced.

3.6.13 Support forglexec

glexecis a tool that provides a sudo-like capability in a grid environment.glexectakes an X.509
proxy and a command to run as inputs, and maps the proxy to a local identity (that is, a Unix
UID), which it then uses to execute the command. Like thecondorroot switchboardcommand,
which provides similar functionality for Condor’s PrivSepmode (see section 3.6.12),glexecmust
be installed as a root-owned setuid program. See http://www.nikhef.nl/grid/lcaslcmaps/glexec/ for
more information aboutglexec.

Condor can interoperate withglexec, using it in a similar way to how thecon-
dor root switchboardis used when running Condor in PrivSep mode. Thecondorstarter uses
glexecwhen launching a job, in order to give the job a separate UID from that of the Condor dae-
mons. glexecis also used when performing maintenance actions such as cleaning up a job’s files
and processes, which cannot be done well directly under the Condor daemons’ UID due to permis-
sions. A consequence of this type of integration withglexecis that the execution of a single Condor
job results in severalglexecinvocations, and each must map the proxy to the same UID. It isthus
important to ensure thatglexecis configured to provide this guarantee.

Configuration for glexec support is straightforward. The boolean configuration variable
GLEXECJOB must be setTrue on execute machines whereglexecis to be used. Condor also
must be given the full path to theglexecbinary using theGLEXECconfiguration variable. Note that
Condor must be started as a non-root user whenglexecis used. This is because when Condor runs as
root, it can perform actions as other UIDs arbitrarily, andglexec’s services are not needed. Finally,
for a job to execute properly in the mode utilizingglexec, the job must be submitted with a proxy

Condor Version 7.2.3 Manual

http://www.nikhef.nl/grid/lcaslcmaps/glexec/

3.7. Networking (includes sections on Port Usage and GCB) 325

specified via thex509userproxycommand in its submit description file, since a proxy is needed as
input toglexec.

Earlier versions of Condor employed a different form ofglexecsupport, where thecondorstarter
daemon ran under the same UID as the job. This feature was enabled using theGLEXECSTARTER
configuration variable. This configuration variable is no longer used, and it is replaced by the

GLEXECJOBconfiguration variable, to enable usage ofglexec.

3.7 Networking (includes sections on Port Usage and GCB)

This section on network communication in Condor discusses which network ports are used, how
Condor behaves on machines with multiple network interfaces and IP addresses, and how to facilitate
functionality in a pool that spans firewalls and private networks.

The security section of the manual contains some information that is relevant to the discussion
of network communication which will not be duplicated here,so please see section 3.6 as well.

Firewalls, private networks, and network address translation (NAT) pose special problems for
Condor. There are currently two main mechanisms for dealingwith firewalls within Condor:

1. Restrict Condor to use a specific range of port numbers, andallow connections through the
firewall that use any port within the range.

2. UseGeneric Connection Brokering(GCB).

Each method has its own advantages and disadvantages, as described below.

3.7.1 Port Usage in Condor

Default Port Usage

Every Condor daemon listens on a network port for incoming commands. Most daemons listen on a
dynamically assigned port. In order to send a message, Condor daemons and tools locate the correct
port to use by querying thecondorcollector, extracting the port number from the ClassAd. One of
the attributes included in every daemon’s ClassAd is the full IP address and port number upon which
the daemon is listening.

To access thecondorcollector itself, all Condor daemons and tools must know the port number
where thecondorcollector is listening. Thecondorcollector is the only daemon with a well-
known, fixed port. By default, Condor uses port 9618 for thecondorcollectordaemon. However,
this port number can be changed (see below).

As an optimization for daemons and tools communicating withanother daemon that is running
on the same host, each Condor daemon can be configured to writeits IP address and port num-

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 326

ber into a well-known file. The file names are controlled usingthe <SUBSYS>ADDRESSFILE
configuration variables, as described in section 3.3.5 on page 162.

NOTE: In the 6.6 stable series, and Condor versions earlier than 6.7.5, thecondornegotiator
also listened on a fixed, well-known port (the default was 9614). However, beginning with version
6.7.5, thecondornegotiatorbehaves like all other Condor daemons, and publishes its ownClassAd
to thecondorcollectorwhich includes the dynamically assigned port thecondornegotiatoris lis-
tening on. All Condor tools and daemons that need to communicate with thecondornegotiator
will either use theNEGOTIATORADDRESSFILE or will query thecondorcollectorfor thecon-
dor negotiator’s ClassAd.

Sites that configure any checkpoint servers will introduce other fixed ports into their network.
Eachcondorckpt serverwill listen to 4 fixed ports: 5651, 5652, 5653, and 5654. Thereis currently
no way to configure alternative values for any of these ports.

Using a Non Standard, Fixed Port for thecondor collector

By default, Condor uses port 9618 for thecondorcollector daemon. To use a different port num-
ber for this daemon, the configuration variables that tell Condor these communication details are
modified. Instead of

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST)

the configuration might be

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST):9650

If a non standard port is defined, the same value ofCOLLECTORHOST(including the port) must
be used for all machines in the Condor pool. Therefore, this setting should be modified in the global
configuration file (condor config file), or the value must be duplicated across all configuration
files in the pool if a single configuration file is not being shared.

When querying thecondorcollectorfor a remote pool that is running on a non standard port, any
Condor tool that accepts the-pool argument can optionally be given a port number. For example:

% condor_status -pool foo.bar.org:1234

Using a Dynamically Assigned Port for thecondor collector

On single machine pools, it is permitted to configure thecondorcollectordaemon to use a dynam-
ically assigned port, as given out by the operating system. This prevents port conflicts with other
services on the same machine. However, a dynamically assigned port is only to be used on single

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 327

machine Condor pools, and only if theCOLLECTORADDRESSFILE configuration variable has
also been defined. This mechanism allows all of the Condor daemons and tools running on the same
machine to find the port upon which thecondorcollectordaemon is listening, even when this port
is not defined in the configuration file and is not known in advance.

To enable thecondorcollector daemon to use a dynamically assigned port, the port number
is set to 0 in theCOLLECTORHOST variable. TheCOLLECTORADDRESSFILE configuration
variable must also be defined, as it provides a known file wherethe IP address and port information
will be stored. All Condor clients know to look at the information stored in this file. For example:

COLLECTOR_HOST = $(CONDOR_HOST):0
COLLECTOR_ADDRESS_FILE = $(LOG)/.collector_address

NOTE: Using a port of 0 for the condorcollector and specifying a
COLLECTORADDRESSFILE only works in Condor version 6.6.8 or later in the 6.6 stable
series, and in version 6.7.4 or later in the 6.7 development series. Do not attempt to do this with
older versions of Condor.

Configuration definition ofCOLLECTORADDRESSFILE is in section 3.3.5 on page 162, and
COLLECTORHOSTis in section 3.3.3 on page 150.

Restricting Port Usage to Operate with Firewalls

If a Condor pool is completely behind a firewall, then no special consideration or port usage is
needed. However, if there is a firewall between the machines within a Condor pool, then config-
uration variables may be set to force the usage of specific ports, and to utilize a specific range of
ports.

By default, Condor uses port 9618 for thecondorcollector daemon, and dynamic (apparently
random) ports for everything else. See section 3.7.1, if a dynamically assigned port is desired for
thecondorcollectordaemon.

The configuration variablesHIGHPORTandLOWPORTfacilitate setting a restricted range of
ports that Condor will use. This may be useful when some machines are behind a firewall. The
configuration macrosHIGHPORTandLOWPORTwill restrict dynamic ports to the range specified.
The configuration variables are fully defined in section 3.3.6. All of these ports must be greater than
0 and less than 65,536. Note that bothHIGHPORTandLOWPORTmust be at least 1024 for Condor
version 6.6.8. In general, use ports greater than 1024, in order to avoid port conflicts with standard
services on the machine. Another reason for using ports greater than 1024 is that daemons and tools
are often not run asroot , and onlyroot may listen to a port lower than 1024. Also, the range
must include enough ports that are not in use, or Condor cannot work.

The range of ports assigned may be restricted based on incoming (listening) and outgoing (con-
nect) ports with the configuration variablesIN HIGHPORT, IN LOWPORT, OUTHIGHPORT,
andOUTLOWPORT. See section 3.3.6 for complete definitions of these configuration variables. A
range of ports lower than 1024 for daemons running asroot is appropriate for incoming ports, but
not for outgoing ports. The use of ports below 1024 (versus above 1024) has security implications;
therefore, it is inappropriate to assign a range that crosses the 1024 boundary.

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 328

NOTE: SettingHIGHPORTandLOWPORTwill not automatically force thecondorcollector to
bind to a port within the range. The only way to control what port thecondorcollector uses is by
setting theCOLLECTORHOST(as described above).

The total number of ports needed depends on the size of the pool, the usage of the machines
within the pool (which machines run which daemons), and the number of jobs that may execute at
one time. Here we discuss how many ports are used by each participant in the system.

The central manager of the pool needs5 + NEGOTIATORSOCKETCACHESIZE ports for
daemon communication, whereNEGOTIATORSOCKETCACHESIZE is specified in the config-
uration or defaults to the value 16.

Each execute machine (those machines running acondorstartddaemon) requires5 + (5 *
number of slots advertised by that machine) ports. By default, the number of
slots advertised will equal the number of physical CPUs in that machine.

Submit machines (those machines running acondorschedddaemon) require 5 + (5 *
MAXJOBS RUNNING)ports. The configuration variableMAXJOBS RUNNING limits (on a per-
machine basis, if desired) the maximum number of jobs. Without this configuration macro, the
maximum number of jobs that could be simultaneously executing at one time is a function of the
number of reachable execute machines.

Also be aware thatHIGHPORTandLOWPORTonly impact dynamic port selection used by the
Condor system, and they do not impact port selection used by jobs submitted to Condor. Thus,
jobs submitted to Condor that may create network connections may not work in a port restricted
environment. For this reason, specifyingHIGHPORTandLOWPORTis not going to produce the
expected results if a user submits jobs to be executed under the MPI job universe.

Where desired, a local configuration for machinesnot behind a firewall can override the usage
of HIGHPORTandLOWPORT, such that the ports used for these machines are not restricted. This
can be accomplished by adding the following to the local configuration file of those machinesnot
behind a firewall:

HIGHPORT = UNDEFINED
LOWPORT = UNDEFINED

If the maximum number of ports allocated usingHIGHPORTandLOWPORTis too few, socket
binding errors of the form

failed to bind any port within <$LOWPORT> - <$HIGHPORT>

are likely to appear repeatedly in log files.

Multiple Collectors

This section has not yet been written

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 329

Port Conflicts

This section has not yet been written

3.7.2 Configuring Condor for Machines With Multiple Network Interfaces

Condor can run on machines with multiple network interfaces. Starting with Condor version
6.7.13 (and therefore all Condor 6.8 and more recent versions), new functionality is avail-
able that allows even better support for multi-homed machines, using the configuration variable
BIND ALL INTERFACES. A multi-homed machine is one that has more than one NIC (Network
Interface Card). Further improvements to this new functionality will remove the need for any spe-
cial configuration in the common case. For now, care must still be given to machines with multiple
NICs, even when using this new configuration variable.

Using BIND ALL INTERFACES

Machines can be configured such that whenever Condor daemonsor tools callbind() , the dae-
mons or tools use all network interfaces on the machine. Thismeans that outbound connections will
always use the appropriate network interface to connect to aremote host, instead of being forced
to use an interface that might not have a route to the given destination. Furthermore, sockets upon
which a daemon listens for incoming connections will be bound to all network interfaces on the
machine. This means that so long as remote clients know the right port, they can use any IP address
on the machine and still contact a given Condor daemon.

This functionality is on by default. To disenable this functionality, the boolean configuration
variableBIND ALL INTERFACESis defined and set toFalse :

BIND_ALL_INTERFACES = FALSE

This functionality has limitations. Here are descriptionsof the limitations.

Using all network interfaces does not work with Kerberos. Every Kerberos ticket contains a
specific IP address within it. Authentication over a socket (using Kerberos) requires the socket
to also specify that same specific IP address. Use ofBIND ALL INTERFACEScauses out-
bound connections from a multi-homed machine to originate over any of the interfaces. There-
fore, the IP address of the outbound connection and the IP address in the Kerberos ticket will
not necessarily match, causing the authentication to fail.Sites using Kerberos authentication
on multi-homed machines are strongly encouraged not to enable BIND ALL INTERFACES,
at least until Condor’s Kerberos functionality supports using multiple Kerberos tickets to-
gether with finding the right one to match the IP address a given socket is bound to.

There is a potential security risk. Consider the following example of a security risk. A multi-
homed machine is at a network boundary. One interface is on the public Internet, while

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 330

the other connects to a private network. Both the multi-homed machine and the pri-
vate network machines comprise a Condor pool. If the multi-homed machine enables
BIND ALL INTERFACES, then it is at risk from hackers trying to compromise the security
of the pool. Should this multi-homed machine be compromised, the entire pool is vulnerable.
Most sites in this situation would run ansshdon the multi-homed machine so that remote
users who wanted to access the pool could log in securely and use the Condor tools directly.
In this case, remote clients do not need to use Condor tools running on machines in the public
network to access the Condor daemons on the multi-homed machine. Therefore, there is no
reason to have Condor daemons listening on ports on the public Internet, causing a potential
security threat.

Only one IP address will be advertised.At present, even though a given Condor daemon will be
listening to ports on multiple interfaces, each with their own IP address, there is currently
no mechanism for that daemon to advertise all of the possibleIP addresses where it can be
contacted. Therefore, Condor clients (other Condor daemons or tools) will not necessarily
able to locate and communicate with a given daemon running ona multi-homed machine
whereBIND ALL INTERFACEShas been enabled.

Currently, Condor daemons can only advertise a single IP address in the ClassAd they send to
their condorcollector. Condor tools and other daemons only know how to look up a single
IP address, and they attempt to use that single IP address when connecting to the daemon. So,
even if the daemon is listening on 2 or more different interfaces, each with a separate IP, the
daemon must choose what IP address to publicly advertise so that other daemons and tools
can locate it.

By default, Condor advertises the IP address of the network interface used to contact the
collector, since this is the most likely to be accessible to other processes that query the same
collector. TheNETWORKINTERFACE setting can still be used to specify the IP address
Condor should advertise, even ifBIND ALL INTERFACESis set toTrue . Therefore, some
of the considerations described below regarding what interface should be used in various
situations still apply when deciding what interface is to beadvertised.

Sites that make heavy use of private networks and multi-homed machines should consider if
using Generic Connection Brokering, GCB, is right for them.More information about GCB and
Condor can be found in section 3.7.3 on page 332.

Central Manager with Two or More NICs

Often users of Condor wish to set up “compute farms” where there is one machine with two network
interface cards (one for the public Internet, and one for theprivate net). It is convenient to set up the
“head” node as a central manager in most cases and so here are the instructions required to do so.

Setting up the central manager on a machine with more than oneNIC can be a little confusing
because there are a few external variables that could make the process difficult. One of the biggest
mistakes in getting this to work is that either one of the separate interfaces is not active, or the
host/domain names associated with the interfaces are incorrectly configured.

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 331

Given that the interfaces are up and functioning, and they have good host/domain names associ-
ated with them here is how to configure Condor:

In this example,farm-server.farm.org maps to the private interface.

On the central manager’s global (to the cluster) configuration file:
CONDORHOST= farm-server.farm.org

On your central manager’s local configuration file:
NETWORKINTERFACE= ip address offarm-server.farm.org
NEGOTIATOR= $(SBIN) /condornegotiator
COLLECTOR= $(SBIN) /condorcollector
DAEMONLIST = MASTER, COLLECTOR, NEGOTIATOR, SCHEDD, STARTD

If your central manager and farm machines are all NT, then youonly have vanilla universe and it
will work now. However, if you have this setup for UNIX, then at this point, standard universe jobs
should be able to function in the pool, but if you did not configure theUID DOMAIN macro to be
homogeneous across the farm machines, the standard universe jobs will run asnobody on the farm
machines.

In order to get vanilla jobs and file server load balancing forstandard universe jobs working
(under Unix), do some more work both in the cluster you have put together and in Condor to make
everything work. First, you need a file server (which could also be the central manager) to serve
files to all of the farm machines. This could be NFS or AFS, it does not really matter to Condor. The
mount point of the directories you wish your users to use mustbe the same across all of the farm
machines. Now, configureUID DOMAINandFILESYSTEMDOMAIN to be homogeneous across
the farm machines and the central manager. Now, you will haveto inform Condor that an NFS or
AFS filesystem exists and that is done in this manner. In the global (to the farm) configuration file:

If you have NFS
USE_NFS = True
If you have AFS
HAS_AFS = True
USE_AFS = True
if you want both NFS and AFS, then enable both sets above

Now, if you’ve set up your cluster so that it is possible for a machine name to never have a domain
name (for example: there is machine name but no fully qualified domain name in/etc/hosts),
you must configureDEFAULTDOMAINNAME to be the domain that you wish to be added on to
the end of your host name.

A Client Machine with Multiple Interfaces

If you have a client machine with two or more NICs, then there might be a specific network interface
with which you desire a client machine to communicate with the rest of the Condor pool. In this
case, in the local configuration file for that machine, place:

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 332

NETWORKINTERFACE = ip address of interface desired

A Checkpoint Server on a Machine with Multiple NICs

If your Checkpoint Server is on a machine with multiple interfaces, the only way to get things to
work is if your different interfaces have different host names associated with them, and you set
CKPTSERVERHOST to the host name that corresponds with the IP address you wantto use in the
global configuration file for your pool. You will still need tospecifyNETWORKINTERFACE in the
local config file for your Checkpoint Server.

3.7.3 Generic Connection Brokering (GCB)

Generic Connection Brokering, or GCB, is a system for managing network connections across pri-
vate network and firewall boundaries. Condor’s Linux releases are linked with GCB, and can use
GCB functionality to run jobs (either directly or via flocking) on pools that span public and private
networks.

While GCB provides numerous advantages over restricting Condor to use a range of ports which
are then opened on the firewall (see section 3.7.1 on page 327), GCB is also a very complicated
system, with major implications for Condor’s networking and security functionality. Therefore,
sites must carefully weigh the advantages and disadvantages of attempting to configure and use
GCB before making a decision.

Advantages:

• Better connectivity. GCB works with pools that have multiple private networks (even multiple
private networks that use the same IP addresses (for example, 192.168.2.*). GCB also works
with sites that use network address translation (NAT).

• More secure. Administrators never need to allow inbound connections through the firewall.
With GCB, only outbound connections from behind the firewallmust be allowed (which is
a standard firewall configuration). It is possible to trade decreased performance for better
security, and configure the firewall to only allow outbound connections to a single public IP
address.

• Does not requireroot access to any machines. All parts of a GCB system can be run as
an unprivileged user, and in the common case, no changes to the firewall configuration are
required.

Disadvantages:

• The GCB broker (section 3.7.3 describes the broker) node(s) is a potential failure point to
the pool. Any private nodes that want to communicate outsidetheir own network must be

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 333

represented by a GCB broker. This machine must be highly reliable, since if the broker is
ever down, all inbound communication with the private nodesis impossible. Furthermore, no
other Condor services should be run on a GCB broker (for example, the Condor pool’s central
manager). While it is possible to do so, it is not recommended. In general, no other services
should be run on the machine at all, and the host should be dedicated to the task of serving as
a GCB broker.

• All Condor nodes behind a given firewall share a single IP address (the public IP address of
their GCB broker). All Condor daemons using a GCB broker willadvertise themselves with
this single IP address, and in some cases, connections to/from those daemons will actually
originate at the broker. This has implications for Condor’shost/IP based security, and the
general level of confusion for users and administrators of the pool. Debugging problems
will be more difficult, as any log messages which only print the IP address (not the name
and/or port) will become ambiguous. Even log or error messages that include the port will not
necessarily be helpful, as it is difficult to correlate portson the broker with the corresponding
private nodes.

• Can not function with Kerberos authentication. Kerberos tickets include the IP address of the
machine where they were created. However, when Condor daemons are using GCB, they use
a different IP address, and therefore, any attempt to authenticate using Kerberos will fail, as
Kerberos will consider this a (poor) attempt to fool it into using an invalid host principle.

• Scalability and performance degradation:

– Connections are more expensive to establish.

– In some cases, connections must be forwarded through a proxyserver on the GCB bro-
ker.

– Each network port on each private node must correspond to a unique port on the broker
host, so there is a fixed limit to how many private nodes a givenbroker can service (which
is a function of the number of ports each private node requires and the total number of
available ports on the broker).

– Each private node must maintain an open TCP connection to itsGCB broker. GCB will
attempt to recover in the case of the socket being closed, butthis means the broker must
have at least as many sockets open as there are private nodes.

• It is more complex to configure and debug.

Given the increased complexity, use of GCB requires a careful read of this entire manual section,
followed by a thorough installation.

Details of GCB and how it works can be found at the GCB homepage:

http://www.cs.wisc.edu/condor/gcb

This information is useful for understanding the technicaldetails of how GCB works, and the
various parts of the system. While some of the information ispartly out of date (especially the
discussion of how to configure GCB) most of the sections are perfectly accurate and worth reading.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/gcb

3.7. Networking (includes sections on Port Usage and GCB) 334

Ignore the section on “GCBnize”, which describes how to get agiven application to use GCB, as the
Linux port of all Condor daemons and tools have already been converted to use GCB.

The rest of this section gives the details for configuring a Condor pool to use GCB. It is divided
into the following topics:

• Introduction to the GCB broker

• Configuring the GCB broker

• Spawning a GCB broker (with acondormasteror usinginitd)

• How to configure Condor machines to use GCB

• Configuring the GCB routing table

• Implications for Condor’s host/IP security settings

• Implications for other Condor configuration settings

Introduction to the GCB Broker

At the heart of GCB is a logical entity known as abrokeror inagent. In reality, the entity is made
up of daemon processes running on the same machine comprisedof the gcb broker and a set of
gcb relay serverprocesses, each one spawned by thegcb broker.

Every private network using GCB must have at least one brokerto arrange connections. The
broker must be installed on a machine that nodes in both the public and the private (firewalled)
network can directly talk to. The broker need not be able to initiate connections to the private nodes.
It can take advantage of the case where it can initiate connections to the private nodes, and that
will improve performance. The broker is generally installed on a machine with multiple network
interfaces (on the network boundary) or just outside of a network that allows outbound connections.
If the private network contains many hosts, sites can configure multiple GCB brokers, and partition
the private nodes so that different subsets of the nodes use different brokers.

For a more thorough explanation of what a GCB broker is, checkout:
http://www.cs.wisc.edu/˜sschang/firewall/gcb/mechanism.htm

A GCB broker should generally be installed on a dedicated machine. These are machines that are
not running other Condor daemons or services. If running anyother Condor service (for example, the
central manager of the pool) on the same machine as the GCB broker, all other machines attempting
to use this Condor service (for example, to connect to thecondorcollector or condornegotiator)
will incur additional connection costs and latency. It is possible that future versions of GCB and
Condor will be able to overcome these limitations, but for now, we recommend that a broker is run
on a dedicated machine with no other Condor daemons (except perhaps a singlecondormasterused
to spawn thegcb brokerdaemon, as described below).

In principle, a GCB broker is a network element that functions almost like a router. It allows
certain connections through the firewall by redirecting connections or forwarding connections. In

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/~{}sschang/firewall/gcb/mechanism.htm

3.7. Networking (includes sections on Port Usage and GCB) 335

general, it is not a good idea to run a lot of other services on the network elements, especially
not services like Condor which can spawn arbitrary jobs. Furthermore, the GCB broker relies on
listening to many network ports. If other applications are running on the same host as the broker,
problems exist where the broker does not have enough networkports available to forward all the
connections that might be required of it. Also, all nodes inside a private network rely on the GCB
broker for all incoming communication. For performance reasons, avoid forcing the GCB broker
to contend with other processes for system resources, such that it is always available to handle
communication requests. There is nothing in GCB or Condor requiring the broker to run on a
separate machine, but it is the recommended configuration.

The gcb broker daemon listens on two hard-coded, fixed ports (65432 and 65430). A future
version of Condor and GCB will remove this limitation. However, for now, to run agcb brokeron
a given host, ensure that ports 65432 and 65430 are not already in use.

If root access on a machine where a GCB broker is planned, one good option is to
have initd configured to spawn (and re-spawn) thegcb broker binary (which is located in the
<release dir >/libexec directory). This way, thegcb brokerwill be automatically restarted
on reboots, or in the event that the broker itself crashes or is killed. Withoutroot access, use a
condormasterto manage thegcb brokerbinary.

Configuring the GCB broker

Since thegcb broker andgcb relay serverare not Condor daemons, they do not read the Condor
configuration files. Therefore, they must be configured by other means, namely the environment and
through the use of command-line arguments.

There is one required command-line argument for thegcb broker. This argument defines the
public IP address this broker will use to represent itself and any private network nodes that are
configured to use this broker. This information is defined with -i xxx.xxx.xxx.xxxon the command-
line when thegcb broker is executed. If the broker is being setup outside the privatenetwork, it is
likely that the machine will only have one IP address, which is clearly the one to use. However, if the
broker is being run on a machine on the network boundary (a multi-homed machine with interfaces
into both the private and public networks), be sure to use theIP address of the interface on the public
network.

Additionally, specify environment variables to control how the gcb broker (and the
gcb relay serverprocesses it spawns) will behave. Some of these settings canalso be specified
as command-line arguments to thegcb broker. All of them have reasonable defaults if not defined.

• General daemon behavior

The environment variableGCBRELAYSERVER defines the full path to the
gcb relay server binary the broker should use. The command-line over-
ride for this is -r /full/path/to/relayserver . If not set either on the command-line
or in the environment, thegcb broker process will search for a program named

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 336

gcb relay server in the same directory where thegcb broker binary is located,
and attempt to use that one.

The environment variableGCBACTIVE TO CLIENT is a boolean that defines whether the
GCB broker can directly talk to servers running inside the network that it manages The
value must beyes or no , case sensitive.GCBACTIVE TO CLIENT should be set to
yes only if this GCB broker is running on a network boundary and can connect to both
the private and public nodes. If the broker is running in the public network, it should be
left undefined or set tono .

• Log file locations

The environment variableGCBLOGDIR defines a directory to use for all GCB-related log
files. If defined, and the per-daemon log file settings (described below) are not defined,
the broker will write to$GCB_LOG_DIR/BrokerLog and the relay server will write
to $GCB_LOG_DIR/RelayServerLog.<pid>

The environment variableGCBBROKERLOGdefines the full path for the GCB broker’s log
file. The command-line override is-l /full/path/to/log/file . This definition overrides
GCBLOGDIR.

The environment variableGCBRELAYSERVERLOGdefines the full path to the GCB re-
lay server’s log file. Each relay server writes its own log file, so the actual filename
will be: $GCB_RELAY_SERVER_LOG.<pid>where<pid> is replaced with the
process id of the correspondinggcb relay server. When defined, this setting overrides
GCBLOGDIR.

• Verbose logging

The environment variableGCBDEBUGLEVELcontrols how verbose all the GCB daemon’s
log files should be. Can be eitherfulldebug (more verbose) orbasic . This defines
logging behavior for all GCB daemons, unless the following daemon-specific settings
are defined.

The environment variableGCBBROKERDEBUGcontrols verbose logging specifically
for the GCB broker. The command-line override for this is-d level. Overrides
GCBDEBUGLEVEL.

The environment variableGCBRELAYSERVERDEBUGcontrols verbose logging specifi-
cally for the GCB relay server. OverridesGCBDEBUGLEVEL.

• Maximum log file size

The environment variableGCBMAXLOGdefines the maximum size in bytes of all GCB
log files. When the log file reaches this size, the content of the file will be moved to
filename.old , and a new log is started. This defines logging behavior for all GCB
daemons, unless the following daemon-specific settings areused.

The environment variableGCBBROKERMAXLOGdefines the maximum size in bytes of
the GCB broker log file.

The environment variableGCBRELAYSERVERMAXLOGdefines the maximum size in
bytes of the GCB relay server log file.

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 337

Spawning the GCB Broker

There are two ways to spawn the GCB broker:

• Use acondormaster.

To spawn the GCB broker with acondormaster, here are the recommended
condor config settings that will work:

Specify that you only want the master and the broker running
DAEMON_LIST = MASTER, GCB_BROKER

Define the path to the broker binary for the master to spawn
GCB_BROKER = $(RELEASE_DIR)/libexec/gcb_broker

Define the path to the release_server binary for the broker to use
GCB_RELAY = $(RELEASE_DIR)/libexec/gcb_relay_server

Setup the gcb_broker's environment. We use a macro to build up the
environment we want in pieces, and then finally define
GCB_BROKER_ENVIRONMENT, the setting that condor_master uses.

Initialize an empty macro
GCB_BROKER_ENV =

(recommended) Provide the full path to the gcb_relay_serv er
GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_RELAY_SERVER=$(GCB_RELAY)

(recommended) Tell GCB to write all log files into the Condo r log
directory (the directory used by the condor_master itself)
GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_LOG_DIR=$(LOG)
Or, you can specify a log file separately for each GCB daemon :
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_BROKER_LOG=$(LOG)/GCB_Broker_Log
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_RELAY_SERVER_LOG=$(LOG)/GCB_RS_Log

(optional -- only set if true) Tell the GCB broker that it can
directly connect to machines in the private network which i t is
handling communication for. This should only be enabled if the GCB
broker is running directly on a network boundary and can ope n direct
connections to the private nodes.
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_ACTIVE_TO_CLIENT=yes

(optional) turn on verbose logging for all of GCB
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_DEBUG_LEVEL=fulldebug
Or, you can turn this on separately for each GCB daemon:
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_BROKER_DEBUG=fulldebug
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_RELAY_SERVER_DEBUG=fulldebug

(optional) specify the maximum log file size (in bytes)
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_MAX_LOG=640000
Or, you can define this separately for each GCB daemon:
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_BROKER_MAX_LOG=640000
#GCB_BROKER_ENV = $(GCB_BROKER_ENV);GCB_RELAY_SERVER_MAX_LOG=640000

Finally, set the value the condor_master really uses
GCB_BROKER_ENVIRONMENT = $(GCB_BROKER_ENV)

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 338

If your Condor installation on this host already has a publi c
interface as the default (either because it is the first int erface
listed in this machine's host entry, or because you've alre ady
defined NETWORK_INTERFACE), you can just use Condor's spe cial macro
that holds the IP address for this.
GCB_BROKER_IP = $(ip_address)
Otherwise, you could define it yourself with your real publ ic IP:
GCB_BROKER_IP = 123.123.123.123

(required) define the command-line arguments for the brok er
GCB_BROKER_ARGS = -i $(GCB_BROKER_IP)

Once those settings are in place, either spawn or restart thecondormasterand thegcb broker
should be started. Ensure the broker is running by reading the log file specified with
GCBBROKERLOG, or in $(LOG)/BrokerLog if using the default.

• Useinitd.

The system’sinitd may be used to manage thegcb brokerwithout running thecondormaster
on the broker node, but this requiresroot access. Generally, this involves adding a line
to the /etc/inittab file. Some sites use other means to manage and generate the
/etc/inittab , such ascfengineor other system configuration management tools, so check
with the local system administrator to be sure. An example line might be something like:

GB:23:respawn:/path/to/gcb_broker -i 123.123.123.123 - r /path/to/relay_server

It may be easier to wrap thegcb broker binary in a shell script, in order to change
the command-line arguments (and set environment variables) without having to edit
/etc/inittab all the time. This will be similar to:

GB:23:respawn:/opt/condor-6.7.13/libexec/gcb_broker .sh

Then, create the wrapper, as similar to:

#!/bin/sh

libexec=/opt/condor-6.7.13/libexec
ip=123.123.123.123
relay=$libexec/gcb_relay_server

exec $libexec/gcb_broker -i $ip -r $relay

You will probably also want to set some environment variables to tell the GCB daemons where
to write their log files (GCBLOGDIR), and possibly some of the other variables described
above.

Either way, after updating the/etc/inittab , send theinitd process (always PID 1) a
SIGHUPsignal, and it will re-read theinittab and spawn thegcb broker.

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 339

Configuring Condor nodes to be GCB clients

In general, before configuring a node in a Condor pool to use GCB, the GCB broker node(s) for the
pool must be set up and running. Set up, configure, and spawn the broker first.

To enable the use of GCB on a given Condor host, set the following Condor configuration vari-
ables:

Tell Condor to use a network remapping service (currently o nly GCB
is supported, but in the future, there might be other option s)
NET_REMAP_ENABLE = true
NET_REMAP_SERVICE = GCB

Only GCB clients within a private network need to define the following variable, which specifies
the IP addresses of the brokers serving this network. Note that these IP addresses must match the IP
address that was specified on each broker’s command-line with the-i option.

Public IP address (in standard dot notation) of the GCB brok er(s)
serving this private node.
NET_REMAP_INAGENT = xxx.xxx.xxx.xxx, yyy.yyy.yyy.yyy

When more than one IP address is given, thecondormasterpicks one at random for it and all of
its descendents to use. Because theNET REMAPINAGENTsetting is only valid on private nodes,
it should not be defined in a global Condor configuration file (condor config) if the pool also
contains nodes on a public network.

Finally, if setting up the recommended (but optional) GCB routing table, tell Condor daemons
where to find their table. Define the following variable:

The full path to the routing table used by GCB
NET_REMAP_ROUTE = /full/path/to/GCB-routing-table

SettingNET REMAPENABLEcauses theBIND ALL INTERFACES variable to be automati-
cally set. More information about this setting can be found in section 3.7.2 on page 329. It would
not hurt to place the following in the configuration file near the other GCB-related settings, just to
remember it:

Tell Condor to bind to all network interfaces, instead of a s ingle
interface.
BIND_ALL_INTERFACES = true

Once a GCB broker is set up and running to manage connections for each private network, and
the Condor installation for all the nodes in either private and public networks are configured to enable
GCB, restart the Condor daemons, and all of the different machines should be able to communicate
with each other.

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 340

Configuring the GCB routing table

By default, a GCB-enabled application will always attempt to directly connect to a given IP/port
pair. In the case of a private nodes being represented by a GCBbroker, the IP/port will be a proxy
socket on the broker node, not the real address at each private node. When the GCB broker receives
a direct connection to one of its proxy sockets, it notifies the corresponding private node, which
establishes a new connection to the broker. The broker then forwards packets between these two
sockets, establishing a communication pathway into the private node. This allows clients which are
not linked with the GCB libraries to communicate with private nodes using a GCB broker.

This mechanism is expensive in terms of latency (time between messages) and total bandwidth
(how much data can be moved in a given time period), as well as expensive in terms of the broker’s
system resources such as network I/O, processor time, and memory. This expensive mechanism
is unnecessary in the case of GCB-aware clients trying to connect to private nodes that can directly
communicate with the public host. The alternative is to contact the GCB broker’s command interface
(the fixed port where the broker is listening for GCB management commands), and use a GCB-
specific protocol to request a connection to the given IP/port. In this case, the GCB broker will
notify the private node to directly connect to the public client (technically, to a new socket created
by the GCB client library linked in with the client’s application), and a direct socket between the
two is established, removing the need for packet forwardingbetween the proxy sockets at the GCB
broker.

On the other hand, in cases where a direct connection from theclient to a given server is possible
(for example, two GCB-aware clients in the same public network attempting to communicate with
each other), it is expensive and unnecessary to attempt to contact a GCB broker, and the client should
connect directly.

To allow a GCB-enabled client to know if it should make a direct connection (which might
involve packet forwarding through proxy sockets), or if it should use the GCB protocol to commu-
nicate with the broker’s command port and arrange a direct socket, GCB provides arouting table.
Using this table, an administrator can define what IP addresses should be considered private nodes
where the GCB connection protocol will be used, and what nodes are public, where a direct con-
nection (without incurring the latency of contacting the GCB broker, only to find out there is no
information about the given IP/port) should be made immediately.

If the attempt to contact the GCB broker for a given IP/port fails, or if the desired port is not being
managed by the broker, the GCB client library making the connection will fall back and attempt a
direct connection. Therefore, configuring a GCB routing table is not required for communication
to work within a GCB-enabled environment. However, the GCB routing table can significantly
improve performance for communication with private nodes being represented by a GCB broker.

One confusing aspect of GCB is that all of the nodes on a private network believe that their own
IP address is the address of their GCB broker. Due to this, allthe Condor daemons on a private
network advertise themselves with the same IP address (though the broker will map the different
ports to different nodes within the private network). Therefore, a given node in the public network
needs to be told that if it is contacting this IP address, it should know that the IP address is really a
GCB broker representing a node in the private network, so that the public network node can contact

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 341

the broker to arrange a single socket from the private node tothe public one, instead of relying
on forwarding packets between proxy sockets at the broker. Any other addresses, such as other
public IP addresses, can be contacted directly, without going through a GCB broker. Similarly,
other nodes within the same private network will still be advertising their address with their GCB
broker’s public IP address. So, nodes within the same private network also have to know that the
public IP address of the broker is really a GCB broker, yet allother public IP addresses are valid for
direct communication.

In general, all connections can be made directly, except to ahost represented by a GCB broker.
Furthermore, the default behavior of the GCB client libraryis to make a direct connection. The
routing table is a (somewhat complicated) way to tell a givenGCB installation what GCB brokers
it might have to communicate with, and that it should directly communicate with anything else. In
practice, the routing table should have a single entry for each GCB broker in the system. Future
versions of GCB will be able to make use of more complicated routing behavior, which is why the
full routing table infrastructure described below is implemented, even if the current version of GCB
is not taking advantage of all of it.

Format of the GCB routing table

The routing table is a plain ASCII text file. Each line of the file contains one rule. Each rule
consists of atargetand amethod. The target specifies destination IP address(es) to match, and the
method defines what mechanism must be used to connect to the given target. The target must be
a valid IP address string in the standard dotted notation, followed by a slash character (/), as well
as an integermask. The mask specifies how many bits of the destination IP address and target IP
address must match. The method must be one of the strings

GCB
direct

GCB stops searching the table as soon as it finds a matching rule, therefore place more specific rules
(rules with a larger value for the mask and without wildcards) before generic rules (rules with wild-
cards or smaller mask values). The default when no rule is matched is to use direct communication.
Some examples and the corresponding routing tables may helpclarify this syntax.

Simple GCB routing table example (1 private, 1 public)

Consider an example with a private network that has a set of nodes whose IP addresses are
192.168.2. * . Other nodes are in a public network whose IP addresses are123.123.123. * .
A GCB broker for the 192 network is running on IP address123.123.123.123 . In this case, the
routing table for both the public and private nodes should be:

123.123.123.123/32 GCB

This rule states that for IP addresses where all 32 bits exactly match the address
123.123.123.123 , first communicate with the GCB broker.

Since the default is to directly connect when no rule in the routing table matches a given target

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 342

IP, this single rule is all that is required. However, to illustrate how the routing table syntax works,
the following routing table is equivalent:

123.123.123.123/32 GCB

* /0 direct

Any attempt to connect to123.123.123.123 uses GCB, as it is the first rule in the file. All
other IP addresses will connect directly. This table explicitly defines GCB’s default behavior.

More complex GCB routing table example (2 private, 1 public)

As a more complicated case, consider a single Condor pool that spans one public network and
two private networks. The two separate private networks each have machines with private addresses
like 192.168.2. * . Identify one of these private networks asA, and the other one asB. The public
network has nodes with IP addresses like123.123.123. * . Assume that the GCB broker for
nodes in theA network has IP address123.123.123.65 , and the GCB broker for the nodes in
theB network has IP address123.123.123.66 . All of the nodes need to be able to talk to each
other. In this case, nodes in private networkA advertise themselves as123.123.123.65 , so any
node, regardless of being in A, B, or the public network, musttreat that IP address as a GCB broker.
Similarly, nodes in private networkB advertise themselves as123.123.123.66 , so any node,
regardless of being in A, B, or the public network, must treatthat IP address as a GCB broker. All
other connections from any node can be made directly. Therefore, here is the appropriate routing
table for all nodes:

123.123.123.65/32 GCB
123.123.123.66/32 GCB

Implications of GCB on Condor’s Host/IP-based Security Configuration

When a message is received at a Condor daemon’s command socket, Condor authenticates based
on the IP address of the incoming socket. For more information about this host-based security in
Condor, see section 3.6.9 on page 307. Because of the way GCB changes the IP addresses that are
used and advertised by GCB-enabled clients, and since all nodes being represented by a GCB broker
are represented by different ports on the broker node (a process known asaddress leasing), using
GCB has implications for this process.

Depending on the communication pathway used by a GCB-enabled Condor client (either a tool
or another Condor daemon) to connect to a given Condor serverdaemon, and where in the network
each side of the connection resides, the IP address of the resulting socket actually used will be very
different. In the case of a private client (that is, a client behind a firewall, which may or may not be
using NAT and a fully private, non-routable IP address) attempting to connect to a server, there are
three possibilities:

• For a direct connection to another node within the private network, the server will see the
private IP address of the client.

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 343

• For a direct outbound connection to a public node: if NAT is being used, the server will see
the IP address of the NAT server for the private network. If there is no NAT, and the firewall
is blocking connections in only one direction, but not re-writing IP addresses, the server will
see the client’s real IP address.

• For a connection to a host in a different private network that must be relayed through the GCB
broker, the server will see the IP address of the GCB broker representing the server. This is
an instance of the private server case, as described below.

Therefore, any public server that wants to allow a command from a specific client must have any
or all of the various IP addresses mentioned above within theappropriateHOSTALLOWsettings. In
practice, that means opening up theHOSTALLOWsettings to include not just the actual IP addresses
of each node, but also the IP address of the various GCB brokers in use, and potentially, the public
IP address of the NAT host for each private network.

However, given that all private nodes which are representedby a given GCB broker could
potentially make connections to any other host using the GCBbroker’s IP address (whenever
proxy socket forwarding is being used), if a single private node is being granted a certain level
of permission within the Condor pool, all of the private nodes using the same GCB broker will
have the same level of permission. This is particularly important in the consideration of granting
HOSTALLOWADMINISTRATOR or HOSTALLOWCONFIG privileges to a private node repre-
sented by a GCB broker.

In the case of a public client attempting to connect to a private server, there are only two possible
cases:

• the GCB broker can arrange a direct socket from the private server. The private server will see
the real public IP address of the client.

• the GCB broker must forward packets from a proxy socket. This may happen because of a
non-GCB aware public client, a misconfigured or missing GCB routing table, or a client in a
different private network. The private server will see the IP address of its own GCB broker.
In the case where the GCB broker runs on a node on the network boundary, the private server
will see the GCB broker’s private IP address (even if the GCB broker is also listening on the
public interface and the leased addresses it provides use the public IP addresses). If the GCB
broker is running entirely in the public network and cannot directly connect to the private
nodes, the private server will see the remote connection as coming from the broker’s public IP
address.

This second case is particularly troubling. Since there arelegitimate circumstances where a
private server would need to use a forwarded proxy socket from its GCB broker, in general, the
server should allow requests originating from its GCB broker. But, precisely because of the proxy
forwarding, that implies thatanyclient that can connect to the GCB broker would be allowed into
the private server (if IP-based authorization was the only defense).

The final host-based security setting that requires specialmention is
HOSTALLOWNEGOTIATOR. If the condornegotiator for the pool is running on a private

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 344

node being represented by a GCB broker, there must be modifications to the default value.
For the purposes of Condor’s host-based security, thecondornegotiator acts as a client when
communicating with eachcondorscheddin the pool which has idle jobs that need to be matched
with available resources. Therefore, all the possible cases of a private client attempting to connect
to a given server apply to a privatecondornegotiator. In practice, that means adding the public
IP address of the broker, the real private IP address of the negotiator host, and possibly the public
IP address of the NAT host for this private network to theHOSTALLOWNEGOTIATORsetting.
Unfortunately, this implies thatanyhost behind the same NAT host or using the same GCB broker
will be authorized as if it was thecondornegotiator.

Future versions of GCB and Condor will hopefully add some form of authentication and autho-
rization to the GCB broker itself, to help alleviate these problems. Until then, sites using GCB are
encouraged to use GSI strong authentication (since Kerberos also depends on IP addresses and is
therefore incompatible with GCB) to rely on an authorization system that is not affected by address
leasing. This is especially true for sites that (foolishly)choose to run their central manager on a
private node.

Implications of GCB for Other Condor Configuration

Using GCB and address leasing has implications for Condor configuration settings outside of the
Host/IP-based security settings. Each is described.

COLLECTORHOST If the condorcollector for the pool is running on a private node being rep-
resented by a GCB broker,COLLECTORHOSTmust be set to the host name or IP address
of the GCB broker machine,not the real host name/IP address of the private node where the
daemons are actually running. When thecondorcollector on the private node attempts to
bind() to its command port (9618 by default), it will request port 9618 on the GCB broker
node, instead. The port is not a worry, but the host name or IP address is a worry. When public
nodes want to communicate with thecondorcollector, they must go through the GCB broker.
In theory, other nodes inside the same private network couldbe told to directly use the private
IP address of thecondorcollector host, but that is unnecessary, and would probably lead to
other confusion and configuration problems.

However, because thecondorcollector is listening on a fixed port, and that single port is
reserved on the GCB broker node, no two private nodes using the same broker can attempt to
use the same port for theircondorcollector. Therefore, any site that is attempting to set up
multiple pools within the same private network is strongly encouraged to set up separate GCB
brokers for each pool. Otherwise, one or both of the pools must use a non-standard port for
thecondorcollector, which adds yet more complication to an already complicatedsituation.

CKPT SERVER HOST Much like the case forCOLLECTORHOSTdescribed above, a checkpoint
server on a private node will have to lease a port on the GCB broker node. However, the
checkpoint server also uses a fixed port, and unlike thecondorcollector, there is no way to
configure an alternate value. Therefore, only a single checkpoint server can be run behind
a given GCB broker. The same solution works: if multiple checkpoint servers are required,
multiple GCB brokers are deployed and configured. Furthermore, the host name of the GCB

Condor Version 7.2.3 Manual

3.7. Networking (includes sections on Port Usage and GCB) 345

broker should be used as the value forCKPTSERVERHOST, not the real IP address or host
name of the private node where thecondorckpt serveris running.

SEC DEFAULT AUTHENTICATIONMETHODS KERBEROSmay not be used for authentication
on a GCB-enabled pool. The IP addresses used in various circumstances will not be the real
IP addresses of the machines. Since Kerberos stores the IP address of each host as part of the
Kerberos ticket, authentication will fail on a GCB-enabledpool.

Due to the complications and security limitations that arise from running a central man-
ager on a private node represented by GCB (both regarding theCOLLECTORHOST and
HOSTALLOWNEGOTIATOR), we recommend that sites avoid locating a central manager on a pri-
vate host whenever possible.

3.7.4 Using TCP to Send Updates to thecondor collector

TCP sockets are reliable, connection-based sockets that guarantee the delivery of any data sent.
However, TCP sockets are fairly expensive to establish, andthere is more network overhead involved
in sending and receiving messages.

UDP sockets are datagrams, and are not reliable. There is very little overhead in establishing
or using a UDP socket, but there is also no guarantee that the data will be delivered. All previous
Condor versions used UDP sockets to send updates to thecondorcollector, and this did not cause
problems.

Condor can be configured to use TCP sockets to send updates to the condorcollector instead
of UDP datagrams. It isnot intended for most sites. This feature is targeted at sites where UDP
updates are lost because of the underlying network. Most Condor administrators that believe this is
a good idea for their site are wrong. Do not enable this feature just because it sounds like a good
idea. The only cases where an administrator would want this feature are if the ClassAd updates are
consistently not getting to thecondorcollector. An example where this may happen is if the pool
is comprised of machines across a wide area network (WAN) where UDP packets are frequently
dropped.

Configuration variables are set to enable the use of TCP sockets. There are two variables that an
administrator must define to enable this feature:

UPDATE COLLECTORWITH TCP When set toTrue , the Condor daemons to use TCP to update
thecondorcollector, instead of the default UDP. Defaults toFalse .

COLLECTORSOCKET CACHE SIZE Specifies the number of TCP sockets cached at thecon-
dor collector. The default value for this setting is 0, with no cache enabled.

The use of a cache allows Condor to leave established TCP sockets open, facilitating much better
performance. Subsequent updates can reuse an already open socket. The work to establish a TCP
connection may be lengthy, including authentication and setting up encryption. Therefore, Condor

Condor Version 7.2.3 Manual

3.8. The Checkpoint Server 346

requires that a socket cache be defined if TCP updates are to beused. TCP updates will be refused
by thecondorcollectordaemon if a cache is not enabled.

Each Condor daemon will have 1 socket open to thecondorcollector. So, in a pool with
N machines, each of them running acondormaster, condorschedd, andcondorstartd, thecon-
dor collector would need a socket cache that has at least 3*N entries. Machines running Personal
Condor in the pool need an additional two entries (for thecondormasterandcondorschedd) for
each Personal Condor installation.

Every cache entry utilizes a file descriptor within thecondorcollector daemon. Therefore, be
careful not to define a cache that is larger than the number of file descriptors the underlying operating
system allocates for a single process.

NOTE: At this time,UPDATECOLLECTORWITH TCP, only affects the maincondorcollector
for the site, not any sites that acondorscheddmight flock to.

3.8 The Checkpoint Server

A Checkpoint Server maintains a repository for checkpoint files. Using checkpoint servers reduces
the disk requirements of submitting machines in the pool, since the submitting machines no longer
need to store checkpoint files locally. Checkpoint server machines should have a large amount of
disk space available, and they should have a fast connectionto machines in the Condor pool.

If your spool directories are on a network file system, then checkpoint files will make two trips
over the network: one between the submitting machine and theexecution machine, and a second
between the submitting machine and the network file server. If you install a checkpoint server and
configure it to use the server’s local disk, the checkpoint will travel only once over the network,
between the execution machine and the checkpoint server. You may also obtain checkpointing
network performance benefits by using multiple checkpoint servers, as discussed below.

NOTE: It is a good idea to pick very stable machines for your checkpoint servers. If individual
checkpoint servers crash, the Condor system will continue to operate, although poorly. While the
Condor system will recover from a checkpoint server crash asbest it can, there are two problems
that can (and will) occur:

1. A checkpoint cannot be sent to a checkpoint server that is not functioning. Jobs will keep
trying to contact the checkpoint server, backing off exponentially in the time they wait between
attempts. Normally, jobs only have a limited time to checkpoint before they are kicked off the
machine. So, if the server is down for a long period of time, chances are that a lot of work
will be lost by jobs being killed without writing a checkpoint.

2. If a checkpoint is not available from the checkpoint server, a job cannot be retrieved, and it
will either have to be restarted from the beginning, or the job will wait for the server to come
back online. This behavior is controlled with theMAXDISCARDEDRUNTIME parameter
in the config file (see section 3.3.8 on page 172 for details). This parameter represents the

Condor Version 7.2.3 Manual

3.8. The Checkpoint Server 347

maximum amount of CPU time you are willing to discard by starting a job over from scratch
if the checkpoint server is not responding to requests.

3.8.1 Preparing to Install a Checkpoint Server

The location of checkpoints changes upon the installation of a checkpoint server. A configuration
change would cause currently queued jobs with checkpoints to not be able to find their checkpoints.
This results in the jobs with checkpoints remaining indefinitely queued (never running) due to the
lack of finding their checkpoints. It is therefore best to either remove jobs from the queues or let
them complete before installing a checkpoint server. It is advisable to shut your pool down before
doing any maintenance on your checkpoint server. See section ??on page?? for details on shutting
down your pool.

A graduated installation of the checkpoint server may be accomplished by configuring submit
machines as their queues empty.

3.8.2 Installing the Checkpoint Server Module

Files relevant to a checkpoint server are

sbin/condor_ckpt_server
sbin/condor_cleanckpts
etc/examples/condor_config.local.ckpt.server

condor ckpt server is the checkpoint server binary.condor cleanckpts is a script that
can be periodically run to remove stale checkpoint files fromyour server. The checkpoint server
normally cleans all old files itself. However, in certain error situations, stale files can be left that
are no longer needed. You may set up a cron job that callscondorcleanckptsevery week or so to
automate the cleaning up of any stale files. The example configuration file give with the module is
described below.

There are three steps necessary towards running a checkpoint server:

1. Configure the checkpoint server.

2. Start the checkpoint server.

3. Configure your pool to use the checkpoint server.

Configure the Checkpoint Server Place settings in the local configuration file of the checkpoint
server. The fileetc/examples/condor config.local.ckpt.server contains the
needed settings. Insert these into the local configuration file of your checkpoint server ma-
chine.

Condor Version 7.2.3 Manual

3.8. The Checkpoint Server 348

TheCKPTSERVERDIR must be customized. TheCKPTSERVERDIR attribute defines
where your checkpoint files are to be located. It is better if this is on a very fast local file
system (preferably a RAID). The speed of this file system willhave a direct impact on the
speed at which your checkpoint files can be retrieved from theremote machines.

The other optional settings are:

DAEMON LIST (Described in section 3.3.9). To have the checkpoint servermanaged by the
condormaster, theDAEMONLIST entry must haveMASTERandCKPTSERVER. Add
STARTDif you want to allow jobs to run on your checkpoint server. Similarly, add
SCHEDDif you would like to submit jobs from your checkpoint server.

The rest of these settings are the checkpoint server-specific versions of the Condor logging
entries, as described in section 3.3.4 on page 157.

CKPT SERVER LOG TheCKPTSERVERLOGis where the checkpoint server log is placed.

MAX CKPT SERVER LOG Sets the maximum size of the checkpoint server log before it is
saved and the log file restarted.

CKPT SERVER DEBUG Regulates the amount of information printed in the log file. Cur-
rently, the only debug level supported isD ALWAYS.

Start the Checkpoint Server To start the newly configured checkpoint server, restart Condor on
that host to enable thecondormasterto notice the new configuration. Do this by sending
a condorrestart command from any machine with administrator access to your pool. See
section 3.6.9 on page 307 for full details about IP/host-based security in Condor.

Configure the Pool to Use the Checkpoint ServerAfter the checkpoint server is running, you
change a few settings in your configuration files to let your pool know about your new server:

USE CKPT SERVER This parameter should be set to TRUE (the default).

CKPT SERVER HOST This parameter should be set to the full host name of the machine
that is now running your checkpoint server.

It is most convenient to set these parameters in your global configuration file, so they affect all
submission machines. However, you may configure each submission machine separately (us-
ing local configuration files) if you do not want all of your submission machines to start using
the checkpoint server at one time. IfUSECKPTSERVER is set to FALSE, the submission
machine will not use a checkpoint server.

Once these settings are in place, send acondorreconfigto all machines in your pool so the
changes take effect. This is described in section??on page??.

3.8.3 Configuring your Pool to Use Multiple Checkpoint Servers

It is possible to configure a Condor pool to use multiple checkpoint servers. The deployment of
checkpoint servers across the network improves checkpointing performance. In this case, Condor
machines are configured to checkpoint to thenearestcheckpoint server. There are two main perfor-
mance benefits to deploying multiple checkpoint servers:

Condor Version 7.2.3 Manual

3.8. The Checkpoint Server 349

• Checkpoint-related network traffic is localized by intelligent placement of checkpoint servers.

• Faster checkpointing implies that jobs spend less time checkpointing, more time doing useful
work, jobs have a better chance of checkpointing successfully before returning a machine to
its owner, and workstation owners see Condor jobs leave their machines quicker.

Once you have multiple checkpoint servers running in your pool, the following configuration
changes are required to make them active.

First, USECKPTSERVER should be set to TRUE (the default) on all submit-
ting machines where Condor jobs should use a checkpoint server. Additionally,
STARTERCHOOSESCKPTSERVER should be set to TRUE (the default) on these submit-
ting machines. When TRUE, this parameter specifies that the checkpoint server specified by the
machine running the job should be used instead of the checkpoint server specified by the submitting
machine. See section 3.3.8 on page 172 for more details. Thisallows the job to use the checkpoint
server closest to the machine on which it is running, insteadof the server closest to the submitting
machine. For convenience, set these parameters in the global configuration file.

Second, setCKPTSERVERHOST on each machine. As described, this is set to the full host
name of the checkpoint server machine. In the case of multiple checkpoint servers, set this in the
local configuraton file. It is the host name of the nearest server to the machine.

Third, send acondorreconfigto all machines in the pool so the changes take effect. This is
described in section??on page??.

After completing these three steps, the jobs in your pool will send checkpoints to the nearest
checkpoint server. On restart, a job will remember where itscheckpoint was stored and get it from
the appropriate server. After a job successfully writes a checkpoint to a new server, it will remove
any previous checkpoints left on other servers.

NOTE: If the configured checkpoint server is unavailable, the jobwill keep trying to contact that
server as described above. It will not use alternate checkpoint servers. This may change in future
versions of Condor.

3.8.4 Checkpoint Server Domains

The configuration described in the previous section ensuresthat jobs will always write checkpoints
to their nearest checkpoint server. In some circumstances,it is also useful to configure Condor to
localize checkpoint read transfers, which occur when the job restarts from its last checkpoint on a
new machine. To localize these transfers, we want to schedule the job on a machine which is near
the checkpoint server on which the job’s checkpoint is stored.

We can say that all of the machines configured to use checkpoint server “A” are in “checkpoint
server domain A.” To localize checkpoint transfers, we wantjobs which run on machines in a given
checkpoint server domain to continue running on machines inthat domain, transferring checkpoint
files in a single local area of the network. There are two possible configurations which specify what
a job should do when there are no available machines in its checkpoint server domain:

Condor Version 7.2.3 Manual

3.8. The Checkpoint Server 350

• The job can remain idle until a workstation in its checkpoint server domain becomes available.

• The job can try to immediately begin executing on a machine in another checkpoint server
domain. In this case, the job transfers to a new checkpoint server domain.

These two configurations are described below.

The first step in implementing checkpoint server domains is to include the name of the near-
est checkpoint server in the machine ClassAd, so this information can be used in job scheduling
decisions. To do this, add the following configuration to each machine:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_ATTRS = $(STARTD_ATTRS), CkptServer

For convenience, we suggest that you set these parameters inthe global config file. Note that this
example assumes thatSTARTDATTRS is defined previously in your configuration. If not, then you
should use the following configuration instead:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_ATTRS = CkptServer

Now, all machine ClassAds will include aCkptServer attribute, which is the name of the check-
point server closest to this machine. So, theCkptServer attribute defines the checkpoint server
domain of each machine.

To restrict jobs to one checkpoint server domain, we need to modify the jobs’Requirements
expression as follows:

Requirements = ((LastCkptServer == TARGET.CkptServer) || (LastCkptServer =?= UNDEFINED))

This Requirements expression uses theLastCkptServer attribute in the job’s ClassAd,
which specifies where the job last wrote a checkpoint, and theCkptServer attribute in the ma-
chine ClassAd, which specifies the checkpoint server domain. If the job has not written a checkpoint
yet, theLastCkptServer attribute will be UNDEFINED, and the job will be able to execute in
any checkpoint server domain. However, once the job performs a checkpoint,LastCkptServer
will be defined and the job will be restricted to the checkpoint server domain where it started run-
ning.

If instead we want to allow jobs to transfer to other checkpoint server domains when there are
no available machines in the current checkpoint server domain, we need to modify the jobs’Rank
expression as follows:

Rank = ((LastCkptServer == TARGET.CkptServer) || (LastCkp tServer =?= UNDEFINED))

This Rank expression will evaluate to 1 for machines in the job’s checkpoint server domain and 0
for other machines. So, the job will prefer to run on machinesin its checkpoint server domain, but
if no such machines are available, the job will run in a new checkpoint server domain.

Condor Version 7.2.3 Manual

3.9. DaemonCore 351

You can automatically append the checkpoint server domainRequirements or Rank expres-
sions to all STANDARD universe jobs submitted in your pool using APPENDREQSTANDARDor
APPENDRANKSTANDARD. See section 3.3.14 on page 205 for more details.

3.9 DaemonCore

This section is a brief description ofDaemonCore. DaemonCore is a library that is shared among
most of the Condor daemons which provides common functionality. Currently, the following dae-
mons use DaemonCore:

• condormaster

• condorstartd

• condorschedd

• condorcollector

• condornegotiator

• condorkbdd

• condorquill

• condordbmsd

• condorgridmanager

• condorcredd

• condorhad

• condorreplication

• condor job router

• condor leasemanager

Most of DaemonCore’s details are not interesting for administrators. However, DaemonCore
does provide a uniform interface for the daemons to various Unix signals, and provides a common
set of command-line options that can be used to start up each daemon.

Condor Version 7.2.3 Manual

3.9. DaemonCore 352

3.9.1 DaemonCore and Unix signals

One of the most visible features that DaemonCore provides for administrators is that all daemons
which use it behave the same way on certain Unix signals. The signals and the behavior Daemon-
Core provides are listed below:

SIGHUP Causes the daemon to reconfigure itself.

SIGTERM Causes the daemon to gracefully shutdown.

SIGQUIT Causes the daemon to quickly shutdown.

Exactly what gracefully and quickly means varies from daemon to daemon. For daemons with
little or no state (thecondorkbdd, condorcollectorandcondornegotiator) there is no difference,
and bothSIGTERMandSIGQUIT signals result in the daemon shutting itself down quickly. For the
condormaster, a graceful shutdown causes thecondormasterto ask all of its children to perform
their own graceful shutdown methods. The quick shutdown causes thecondormasterto ask all
of its children to perform their own quick shutdown methods.In both cases, thecondormaster
exits after all its children have exited. In thecondorstartd, if the machine is not claimed and
running a job, both theSIGTERMandSIGQUIT signals result in an immediate exit. However, if
thecondorstartd is running a job, a graceful shutdown results in that job writing a checkpoint, while
a fast shutdown does not. In thecondorschedd, if there are no jobs currently running, there will
be nocondorshadowprocesses, and both signals result in an immediate exit. However, with jobs
running, a graceful shutdown causes thecondorscheddto ask eachcondorshadowto gracefully
vacate the job it is serving, while a quick shutdown results in a hard kill of everycondorshadow,
with no chance to write a checkpoint.

For all daemons, a reconfigure results in the daemon re-reading its configuration file(s), causing
any settings that have changed to take effect. See section 3.3 on page 142, Configuring Condor for
full details on what settings are in the configuration files and what they do.

3.9.2 DaemonCore and Command-line Arguments

The second visible feature that DaemonCore provides to administrators is a common set of
command-line arguments that all daemons understand. Thesearguments and what they do are de-
scribed below:

-a string Append a period character ('.') concatenated withstring to the file name of the log for
this daemon, as specified in the configuration file.

-b Causes the daemon to start up in the background. When a DaemonCore process starts up with
this option, it disassociates itself from the terminal and forks itself, so that it runs in the
background. This is the default behavior for Condor daemons.

Condor Version 7.2.3 Manual

3.9. DaemonCore 353

-c filename Causes the daemon to use the specifiedfilename as a full path and file name as its
global configuration file. This overrides theCONDORCONFIGenvironment variable and the
regular locations that Condor checks for its configuration file which are thecondor user’s
home directory and the file/etc/condor/condor config .

-d Use dynamic directories. The$(LOG) , $(SPOOL) , and$(EXECUTE) directories are all cre-
ated by the daemon at run time, and they are named by appendingthe parent’s IP address
and PID to the value in the configuration file. These values arethen inherited by all children
of the daemon invoked with this-d argument. For thecondormaster, all Condor processes
will use the new directories. If acondorscheddis invoked with the-d argument, then only
thecondorschedddaemon and anycondorshadowdaemons it spawns will use the dynamic
directories (named with thecondorschedddaemon’s PID).

Note that by using a dynamically-created spool directory named by the IP address and PID,
upon restarting daemons, jobs submitted to the originalcondorschedddaemon that were
stored in the old spool directory will not be noticed by the new condorschedddaemon, unless
you manually specify the old, dynamically-generatedSPOOLdirectory path in the configura-
tion of the newcondorschedddaemon.

-f Causes the daemon to start up in the foreground. Instead of forking, the daemon runs in the
foreground.

NOTE: When thecondormasterstarts up daemons, it does so with the-f option, as it has
already forked a process for the new daemon. There will be a-f in the argument list for all
Condor daemons that thecondormasterspawns.

-k filename For non-Windows operating systems, causes the daemon to read out a PID from the
specifiedfilename, and send a SIGTERM to that process. The daemon started with this
optional argument waits until the daemon it is attempting tokill has exited.

-l directory Overrides the value ofLOG as specified in the configuration files. Primarily, this
option is used with thecondorkbddwhen it needs to run as the individual user logged into
the machine, instead of running as root. Regular users wouldnot normally have permission
to write files into Condor’s log directory. Using this option, they can override the value of
LOGand have thecondorkbddwrite its log file into a directory that the user has permission
to write to.

-local-name nameSpecify a local name for this instance of the daemon. This local name will be
used to look up configuration parameters. Section 3.3.1 contains details on how this local
name will be used in the configuration.

-p port Causes the daemon to bind to the specified port as its command socket. Thecondormaster
daemon uses this option to ensure that thecondorcollector andcondornegotiatorstart up
using well-known ports that the rest of Condor depends upon them using.

-pidfile filename Causes the daemon to write out its PID (process id number) to the specified
filename. This file can be used to help shutdown the daemon without firstsearching through
the output of the Unixpscommand.

Since daemons run with their current working directory set to the value ofLOG, if you don’t
specify a full path (one that begins with a “/”), the file will be placed in theLOGdirectory.

Condor Version 7.2.3 Manual

3.10. The High Availability of Daemons 354

-q Quiet output; write less verbose error messages tostderr when something goes wrong, and
before regular logging can be initialized.

-r minutes Causes the daemon to set a timer, upon expiration of which, itsends itself a SIGTERM
for graceful shutdown.

-t Causes the daemon to print out its error message tostderr instead of its specified log file. This
option forces the-f option.

-v Causes the daemon to print out version information and exit.

3.10 The High Availability of Daemons

In the case that a key machine no longer functions, Condor canbe configured such that another
machine takes on the key functions. This is calledHigh Availability. While high availability is
generally applicable, there are currently two specializedcases for its use: when the central manager
(running thecondornegotiatorandcondorcollectordaemons) becomes unavailable, and when the
machine running thecondorschedddaemon (maintaining the job queue) becomes unavailable.

3.10.1 High Availability of the Job Queue

For a pool where all jobs are submitted through a single machine in the pool, and there are lots
of jobs, this machine becoming nonfunctional means that jobs stop running. Thecondorschedd
daemon maintains the job queue. No job queue due to having a nonfunctional machine implies
that no jobs can be run. This situation is worsened by using one machine as the single submission
point. For each Condor job (taken from the queue) that is executed, acondorshadowprocess
runs on the machine where submitted to handle input/output functionality. If this machine becomes
nonfunctional, none of the jobs can continue. The entire pool stops running jobs.

The goal ofHigh Availability in this special case is to transfer thecondorschedddaemon to
run on another designated machine. Jobs caused to stop without finishing can be restarted from
the beginning, or can continue execution using the most recent checkpoint. New jobs can enter the
job queue. WithoutHigh Availability, the job queue would remain intact, but further progress on
jobs would wait until the machine running thecondorschedddaemon became available (after fixing
whatever caused it to become unavailable).

Condor uses its flexible configuration mechanisms to allow the transfer of thecondorschedd
daemon from one machine to another. The configuration specifies which machines are chosen to run
thecondorschedddaemon. To prevent multiplecondorschedddaemons from running at the same
time, a lock (semaphore-like) is held over the job queue. This synchronizes the situation in which
control is transferred to a secondary machine, and the primary machine returns to functionality.
Configuration variables also determine time intervals at which the lock expires, and periods of time
that pass between polling to check for expired locks.

Condor Version 7.2.3 Manual

3.10. The High Availability of Daemons 355

To specify a single machine that would take over, if the machine running thecondorschedd
daemon stops working, the following additions are made to the local configuration of any and all
machines that are able to run thecondorschedddaemon (becoming the single pool submission
point):

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = SCHEDD.lock

Configuration macroMASTERHA LIST identifies thecondorschedddaemon as the daemon
that is to be watched to make sure that it is running. Each machine with this configuration must
have access to the lock (the job queue) which synchronizes which single machine does run the
condorschedddaemon. This lock and the job queue must both be located in a shared file space, and
is currently specified only with a file URL. The configuration specifies the shared space (SPOOL),
and the URL of the lock.condorpreenis not currently aware of the lock file and will delete it if it
is placed in theSPOOLdirectory, so be sure to add SCHEDD.lock toVALID SPOOLFILES .

As Condor starts on machines that are configured to run the single condorschedddaemon, the
condormasterdaemon of the first machine that looks at (polls) the lock and notices that no lock is
held. This implies that nocondorschedddaemon is running. Thiscondormasterdaemon acquires
the lock and runs thecondorschedddaemon. Other machines with this same capability to run the
condorschedddaemon look at (poll) the lock, but do not run the daemon, as the lock is held. The
machine running thecondorschedddaemon renews the lock periodically.

If the machine running thecondorschedddaemon fails to renew the lock (because the machine
is not functioning), the lock times out (becomes stale). Thelock is released by thecondormaster
daemon ifcondoroff or condoroff -scheddis executed, or when thecondormasterdaemon knows
that thecondorschedddaemon is no longer running. As other machines capable of running the
condorschedddaemon look at the lock (poll), one machine will be the first tonotice that the lock has
timed out or been released. This machine (correctly) interprets this situation as thecondorschedd
daemon is no longer running. This machine’scondormasterdaemon then acquires the lock and
runs thecondorschedddaemon.

See section 3.3.9, in the section oncondormasterConfiguration File Macros for details relating
to the configuration variables used to set timing and pollingintervals.

Working with Remote Job Submission

Remote job submission requires identification of the job queue, submitting with a command similar
to:

% condor_submit -remote condor@example.com myjob.submit

This implies the identification of a singlecondorschedddaemon, running on a single machine.
With the high availability of the job queue, there are multiple condorschedddaemons, of which

Condor Version 7.2.3 Manual

3.10. The High Availability of Daemons 356

only one at a time is acting as the single submission point. Tomake remote submission of jobs work
properly, set the configuration variableSCHEDDNAMEin the local configuration to have the same
value for each potentially runningcondorschedddaemon. In addition, the value chosen for the
variableSCHEDDNAMEwill need to include the at symbol (@), such that Condor will not modify
the value set for this variable. See the description ofMASTERNAMEin section 3.3.9 on page 177
for defaults and composition of valid values forSCHEDDNAME. As an example, include in each
local configuration a value similar to:

SCHEDD_NAME = had-schedd@

Then, with this sample configuration, the submit command appears as:

% condor_submit -remote had-schedd@ myjob.submit

3.10.2 High Availability of the Central Manager

Interaction with Flocking

The Condor high availability mechanisms discussed in this section currently do not work well in con-
figurations involving flocking. The individual problems listed interact to make the situation worse.
Because of these problems, we advice against the use of flocking to pools with high availability
mechanisms enabled.

• Thecondorscheddhas a hard configured list ofcondorcollectorandcondornegotiatordae-
mons, and does not query redundant collectors to get the currentcondornegotiator, as it does
when communicating with its local pool. As a result, if the default condornegotiatorfails,
thecondorschedddoes not learn of the failure, and thus, talk to the newcondornegotiator.

• When thecondornegotiatoris unable to communicate with acondorcollector, it utilizes the
nextcondorcollectorwithin the list. Unfortunately, it does not start over at thetop of the list.
When combined with the previous problem, a backupcondornegotiatorwill never get jobs
from a flockedcondorschedd.

Introduction

The condornegotiatorand condorcollector daemons are the heart of the Condor matchmaking
system. The availability of these daemons is critical to a Condor pool’s functionality. Both daemons
usually run on the same machine, most often known as the central manager. The failure of a central
manager machine prevents Condor from matching new jobs and allocating new resources. High
availability of thecondornegotiatorandcondorcollectordaemons eliminates this problem.

Configuration allows one of multiple machines within the pool to function as the central man-
ager. While there are may be many activecondorcollector daemons, only a single, activecon-
dor negotiatordaemon will be running. The machine with thecondornegotiatordaemon running

Condor Version 7.2.3 Manual

3.10. The High Availability of Daemons 357

is the active central manager. The other potential central managers each have acondorcollector
daemon running; these are the idle central managers.

All submit and execute machines are configured to report to all potential central manager ma-
chines.

Each potential central manager machine runs the high availability daemon,condorhad. These
daemons communicate with each other, constantly monitoring the pool to ensure that one active
central manager is available. If the active central managermachine crashes or is shut down, these
daemons detect the failure, and they agree on which of the idle central managers is to become the
active one. A protocol determines this.

In the case of a network partition, idlecondorhaddaemons within each partition detect (by the
lack of communication) a partitioning, and then use the protocol to chose an active central manager.
As long as the partition remains, and there exists an idle central manager within the partition, there
will be one active central manager within each partition. When the network is repaired, the protocol
returns to having one central manager.

Through configuration, a specific central manager machine may act as the primary central man-
ager. While this machine is up and running, it functions as the central manager. After a failure of this
primary central manager, another idle central manager becomes the active one. When the primary
recovers, it again becomes the central manager. This is a recommended configuration, if one of the
central managers is a reliable machine, which is expected tohave very short periods of instability.
An alternative configuration allows the promoted active central manager (in the case that the central
manager fails) to stay active after the failed central manager machine returns.

This high availability mechanism operates by monitoring communication between machines.
Note that there is a significant difference in communications between machines when

1. a machine is down

2. a specific daemon (thecondorhad daemon in this case) is not running, yet the machine is
functioning

The high availability mechanism distinguishes between these two, and it operates based only on
first (when a central manager machine is down). A lack of executing daemons doesnot cause the
protocol to choose or use a new active central manager.

The central manager machine contains state information, and this includes information about
user priorities. The information is kept in a single file, andis used by the central manager machine.
Should the primary central manager fail, a pool with high availability enabled would lose this infor-
mation (and continue operation, but with re-initialized priorities). Therefore, thecondorreplication
daemon exists to replicate this file on all potential centralmanager machines. This daemon pro-
mulgates the file in a way that is safe from error, and more secure than dependence on a shared file
system copy.

Thecondorreplicationdaemon runs on each potential central manager machine as well as on the
active central manager machine. There is a unidirectional communication between thecondorhad
daemon and thecondor replicationdaemon on each machine.

Condor Version 7.2.3 Manual

3.10. The High Availability of Daemons 358

Configuration

The high availability of central manager machines is enabled through configuration. It is disabled
by default. All machines in a pool must be configured appropriately in order to make the high
availability mechanism work. See section 3.3.29, for definitions of these configuration variables.

The stabilization period is the time it takes for thecondorhad daemons to detect a change in
the pool state such as an active central manager failure or network partition, and recover from this
change. It may be computed using the following formula:

stabilization period = 12 * (number of central managers) *
$(HAD_CONNECTION_TIMEOUT)

To disable the high availability of central managers mechanism, it is sufficient to removeHAD,
REPLICATION, andNEGOTIATORfrom the DAEMONLIST configuration variable on all ma-
chines, leaving only onecondornegotiatorin the pool.

To shut down a currently operating high availability mechanism, follow the given steps. All com-
mands must be invoked from a host which has administrative permissions on all central managers.
The first three commands kill allcondorhad, condorreplication, and all runningcondornegotiator
daemons. The last command is invoked on the host where the single condornegotiatordaemon is
to run.

1. condor_off -all -neg

2. condor_off -all -subsystem -replication

3. condor_off -all -subsystem -had

4. condor_on -neg

When configuringcondorhad to control thecondornegotiator, if the default backoff constant
value is too small, it can result in a churning of thecondornegotiator, especially in cases in which
the primary negotiator is unable to run due to misconfiguration. In these cases, thecondormaster
will kill the condorhad after thecondornegotiatorexists, wait a short period, then restartcon-
dor had. Thecondorhad will then win the election, so the secondarycondornegotiatorwill be
killed, and the primary will be restarted, only to exit again. If this happens to quickly, neithercon-
dor negotiatorwill run long enough to complete a negotiation cycle, resulting in no jobs getting
started. Increasing this value viaMASTERHADBACKOFFCONSTANTto be larger than a typical
negotiation cycle can help solve this problem.

To run a high availability pool without the replication feature, do the following operations:

1. Set theHADUSEREPLICATION configuration variable tofalse , and thus disable the
replication on configuration level.

2. RemoveREPLICATION from bothDAEMONLIST andDCDAEMONLIST in the configu-
ration file.

Condor Version 7.2.3 Manual

3.10. The High Availability of Daemons 359

Sample Configuration

This section provides sample configurations for high availability. The two parts to this are the
configuration for the potential central manager machines, and the configuration for the machines
within the pool that willnot be central managers.

This is a sample configuration relating to the high availability of central managers. This is for
the potential central manager machines.

#######################
A sample configuration file for central managers, to enabl e the
the high availability mechanism.
#######################

unset these two macros
NEGOTIATOR_HOST=
CONDOR_HOST=

######################
THE FOLLOWING MUST BE IDENTICAL ON ALL POTENTIAL CENTRAL MANAGERS.
######################
For simplicity in writing other expressions, define a var iable
for each potential central manager in the pool.
These are samples.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
A list of all potential central managers in the pool.
COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

Define the port number on which the condor_had daemon will
listen. The port must match the port number used
for when defining HAD_LIST. This port number is
arbitrary; make sure that there is no port number collisio n
with other applications.
HAD_PORT = 51450
HAD_ARGS = -p $(HAD_PORT)

The following macro defines the port number condor_repli cation will listen
on on this machine. This port should match the port number s pecified
for that replication daemon in the REPLICATION_LIST
Port number is arbitrary (make sure no collision with othe r applications)
This is a sample port number
REPLICATION_PORT = 41450
REPLICATION_ARGS = -p $(REPLICATION_PORT)

The following list must contain the same addresses
as HAD_LIST. In addition, for each hostname, it should spe cify
the port number of condor_replication daemon running on t hat host.
This parameter is mandatory and has no default value
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(REPLICATION_PORT), \
$(CENTRAL_MANAGER2):$(REPLICATION_PORT)

The following list must contain the same addresses in the s ame order
as COLLECTOR_HOST. In addition, for each hostname, it sho uld specify
the port number of condor_had daemon running on that host.

Condor Version 7.2.3 Manual

3.10. The High Availability of Daemons 360

The first machine in the list will be the PRIMARY central ma nager
machine, in case HAD_USE_PRIMARY is set to true.
HAD_LIST = \
$(CENTRAL_MANAGER1):$(HAD_PORT), \
$(CENTRAL_MANAGER2):$(HAD_PORT)

HAD connection time.
Recommended value is 2 if the central managers are on the sa me subnet.
Recommended value is 5 if Condor security is enabled.
Recommended value is 10 if the network is very slow, or
to reduce the sensitivity of HA daemons to network failure s.
HAD_CONNECTION_TIMEOUT = 2

##If true, the first central manager in HAD_LIST is a primary .
HAD_USE_PRIMARY = true

##--- -------------------
Host/IP access levels
##--- -------------------

What machines have administrative rights for your pool? T his
defaults to your central manager. You should set it to the
machine(s) where whoever is the condor administrator(s) works
(assuming you trust all the users who log into that/those
machine(s), since this is machine-wide access you're gra nting).
HOSTALLOW_ADMINISTRATOR = $(COLLECTOR_HOST)

Negotiator access. Machines listed here are trusted cent ral
managers. You should normally not have to change this.
HOSTALLOW_NEGOTIATOR = $(COLLECTOR_HOST)

################
THE PARAMETERS BELOW ARE ALLOWED TO BE DIFFERENT ON EACH
CENTRAL MANAGERS
THESE ARE MASTER SPECIFIC PARAMETERS
################

The location of executable files
HAD = $(SBIN)/condor_had
REPLICATION = $(SBIN)/condor_replication
TRANSFERER = $(SBIN)/condor_transferer

the master should start at least these five daemons
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION
DC_Daemon list should contain at least these five
DC_DAEMON_LIST = +HAD, REPLICATION

Enables/disables the replication feature of HAD daemon
Default: no
HAD_USE_REPLICATION = true

Name of the file from the SPOOL directory that will be repli cated
Default: $(SPOOL)/Accountantnew.log
STATE_FILE = $(SPOOL)/Accountantnew.log

Condor Version 7.2.3 Manual

3.10. The High Availability of Daemons 361

Period of time between two successive awakenings of the re plication daemon
Default: 300
REPLICATION_INTERVAL = 300

Period of time, in which transferer daemons have to accompl ish the
downloading/uploading process
Default: 300
MAX_TRANSFERER_LIFETIME = 300

Period of time between two successive sends of ClassAds to the collector by HAD
Default: 300
HAD_UPDATE_INTERVAL = 300

The HAD controls the negotiator, and should have a larger
backoff constant
MASTER_NEGOTIATOR_CONTROLLER = HAD
MASTER_HAD_BACKOFF_CONSTANT = 360

The size of the log file
MAX_HAD_LOG = 640000
debug level
HAD_DEBUG = D_COMMAND
location of the condor_had log file
HAD_LOG = $(LOG)/HADLog

The size of replication log file
MAX_REPLICATION_LOG = 640000
Replication debug level
REPLICATION_DEBUG = D_COMMAND
Replication log file
REPLICATION_LOG = $(LOG)/ReplicationLog

The size of transferer log file
MAX_TRANSFERER_LOG = 640000
Replication debug level
TRANSFERER_DEBUG = D_COMMAND
Replication log file
TRANSFERER_LOG = $(LOG)/TransferLog

Machines that are not potential central managers also require configuration. The following is a
sample configuration relating to high availability for machines that willnot be central managers.

#######################
Sample configuration relating to high availability for ma chines
that DO NOT run the condor_had daemon.
#######################

#unset these variables
NEGOTIATOR_HOST =
CONDOR_HOST =

For simplicity define a variable for each potential centr al manager
in the pool.
CENTRAL_MANAGER1 = cm1.cs.technion.ac.il

Condor Version 7.2.3 Manual

3.11. Quill 362

CENTRAL_MANAGER2 = cm2.cs.technion.ac.il
List of all potential central managers in the pool
COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

##--- -------------------
Host/IP access levels
##--- -------------------

Negotiator access. Machines listed here are trusted cent ral
managers. You should normally not need to change this.
HOSTALLOW_NEGOTIATOR = $(COLLECTOR_HOST)

Now, with flocking (and HA) we need to let the SCHEDD trust t he other
negotiators we are flocking with as well. You should norma lly
not need to change this.
HOSTALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST)

3.11 Quill

Quill is an optional component of Condor that maintains a mirror of Condor operational data in
a relational database. Thecondorquill daemon updates the data in the relation database, and the
condordbmsddaemon maintains the database itself.

3.11.1 Installation and Configuration

Quill uses thePostgreSQLdatabase management system. Quill uses thePostgreSQLserver as its
back end and client library,libpq to talk to the server. Westrongly recommendthe use of version
8.2 or later due to its integrated facilities of certain key database maintenance tasks, and stronger
security features.

ObtainPostgreSQLfrom

http://www.postgresql.org/ftp/source/

Installation instructions are detailed in: http://www.postgresql.org/docs/8.2/static/installation.html

ConfigurePostgreSQLafter installation:

1. Initialize the database with thePostgreSQLcommandinitdb .

2. Configure to accept TCP/IP connections. ForPostgreSQL version 8, use the
listen addresses variable in postgresql.conf file as a guide. For example,
listen addresses = ’ * ’ means listen on any IP interface.

3. Configure automatic vacuuming. Ensure that these variables with these defaults are com-
mented in and/or set properly in thepostgresql.conf configuration file:

Turn on/off automatic vacuuming

Condor Version 7.2.3 Manual

http://www.postgresql.org/ftp/source/
http://www.postgresql.org/docs/8.2/static/installation.html

3.11. Quill 363

autovacuum = on

time between autovacuum runs, in secs
autovacuum_naptime = 60

min # of tuple updates before vacuum
autovacuum_vacuum_threshold = 1000

min # of tuple updates before analyze
autovacuum_analyze_threshold = 500

fraction of rel size before vacuum
autovacuum_vacuum_scale_factor = 0.4

fraction of rel size before analyze
autovacuum_analyze_scale_factor = 0.2

default vacuum cost delay for
autovac, -1 means use
vacuum_cost_delay

autovacuum_vacuum_cost_delay = -1

default vacuum cost limit for
autovac, -1 means use
vacuum_cost_limit

autovacuum_vacuum_cost_limit = -1

4. ConfigurePostgreSQLto accept TCP/IP connections from specific hosts. Modify the
pg hba.conf file (which usually resides in thePostgreSQLserver’s data directory). Ac-
cess is required by thecondorquill daemon, as well as the database users “quillreader ”
and “quillwriter ”. For example, to give database users “quillreader ” and “quillwriter ”
password-enabled access to all databases on current machine from any machine in the
128.105.0.0/16 subnet, add the following:

host all quillreader 128.105.0.0 255.255.0.0 md5
host all quillwriter 128.105.0.0 255.255.0.0 md5

Note that in addition to the database specified by the configuration variableQUILL DB NAME,
thecondorquill daemon also needs access to the database ”template1”. In order to create the
database in the first place, thecondorquill daemon needs to connect to the database.

5. Start thePostgreSQLserver service. See the installation instructions for the appropriate
method to start the service at http://www.postgresql.org/docs/8.2/static/installation.html

6. Thecondorquill andcondordbmsddaemons and client tools connect to the database as users
“quillreader ” and “quillwriter ”. These are database users, not operating system users. The
two types of users are quite different from each other. If these database users do not exist,
add them using thecreateusercommand supplied with the installation. Assign them with

Condor Version 7.2.3 Manual

http://www.postgresql.org/docs/8.2/static/installation.html

3.11. Quill 364

appropriate passwords; these passwords will be used by the Quill tools to connect to the
database in a secure way. User “quillreader ” should not be allowed to create more databases
nor create more users. User “quillwriter ” should not be allowed to create more users, however
it should be allowed to create more databases. The followingcommands create the two users
with the appropriate permissions, and be ready to enter the corresponding passwords when
prompted.

/path/to/postgreSQL/bin/directory/createuser quillre ader \
--no-createdb --no-createrole --pwprompt

/path/to/postgreSQL/bin/directory/createuser quillwr iter \
--createdb --no-createrole --pwprompt

Answer “no” to the question about the ability for role creation.

7. Create a database for Quill to store data in with thecreatedb command. Create this
database with the “quillwriter ” user as the owner. A sample command to do this is

createdb -O quillwriter quill

quill is the database name to use with theQUILL DB NAMEconfiguration variable.

8. Thecondorquill and condordbmsddaemons need read and write access to the database.
They connect as user “quillwriter ”, which has owner privileges to the database. Since this
gives all access to the “quillwriter ” user, its password cannot be stored in a public place
(such as in a ClassAd). For this reason, the “quillwriter ” password is stored in a file named
.pgpass in the Condor spool directory. Appropriate protections on this file guarantee secure
access to the database. This file must be created and protected by the site administrator; if this
file does not exist as and where expected, thecondorquill andcondordbmsddaemons log an
error and exit. The.pgpass file contains exactly one line. The line has fields separated by
colons. The first field may be either the machine name and fullyqualified domain, or it may be
a dotted quad IP address. This is followed by four fields containing: the TCP port number, the
name of the database, the ”quillwriter” user name, and the password. The form used in the first
field must exactly match the value set for the configuration variableQUILL DB IP ADDR.
Condor uses a string comparison between the two, and it does not resolve the host names to
compare IP addresses. Example:

machinename.cs.wisc.edu:5432:quill:quillwriter:pass word

After thePostgreSQLdatabase is initialized and running, the Quill schema must be loaded into
it. First, load the plsql programming language into the server:

createlang plpgsql [databasename]

Then, load the Quill schema from the sql files in thesql subdirectory of the Condor release
directory:

psql [databasename] [username] < common_createddl.sql
psql [databasename] [username] < pgsql_createddl.sql

Condor Version 7.2.3 Manual

3.11. Quill 365

where[username] will be quillwriter .

After PostgreSQLis configured and running, Condor must also be configured to use Quill, since
by default Quill is configured to be off.

Add the file .pgpass to theVALID SPOOLFILES variable, sincecondorpreenmust be told
not to delete this file. This step may not be necessary, depending on which version of Condor
you are upgrading from.

Set up configuration variables that are specific to the installation, and check that theHISTORY
variable is set.

HISTORY = $(SPOOL)/history
QUILL_ENABLED = TRUE
QUILL_USE_SQL_LOG = FALSE
QUILL_NAME = some-unique-quill-name.cs.wisc.edu
QUILL_DB_USER = quillwriter
QUILL_DB_NAME = database-for-some-unique-quill-name
QUILL_DB_IP_ADDR = databaseIPaddress:port
the following parameter's units is in seconds
QUILL_POLLING_PERIOD = 10
QUILL_HISTORY_DURATION = 30
QUILL_MANAGE_VACUUM = FALSE
QUILL_IS_REMOTELY_QUERYABLE = TRUE
QUILL_DB_QUERY_PASSWORD = password-for-database-user- quillreader
QUILL_ADDRESS_FILE = $(LOG)/.quill_address
QUILL_DB_TYPE = PGSQL
The Purge and Reindex intervals are in seconds
DATABASE_PURGE_INTERVAL = 86400
DATABASE_REINDEX_INTERVAL = 86400
The History durations are all in days
QUILL_RESOURCE_HISTORY_DURATION = 7
QUILL_RUN_HISTORY_DURATION = 7
QUILL_JOB_HISTORY_DURATION = 3650
#The DB Size limit is in gigabytes
QUILL_DBSIZE_LIMIT = 20
QUILL_MAINTAIN_DB_CONN = TRUE
SCHEDD_SQLLOG = $(LOG)/schedd_sql.log
SCHEDD_DAEMON_AD_FILE = $(LOG)/.schedd_classad

The default Condor configuration file should already containdefinitions for QUILL and
QUILL LOG. When upgrading from a previous version that did not have Quill to a new one that
does, define these two configuration variables.

One machine should run thecondordbmsd daemon. On this machine, add it to the
DAEMONLIST configuration variable. All Quill-enabled machines shouldalso run thecondorquill
daemon. The machine running thecondordbmsddaemon can also run acondorquill daemon. An
exampleDAEMONLIST for a machine running both daemons, and acting as both a submit machine
and a central manager might look like the following:

DAEMON_LIST = MASTER, SCHEDD, COLLECTOR, NEGOTIATOR, DBMSD, QUILL

Condor Version 7.2.3 Manual

3.11. Quill 366

Thecondordbmsddaemon will need configuration file entries common to all daemons. If not
already in the configuration file, add the following entries:

DBMSD = $(SBIN)/condor_dbmsd
DBMSD_ARGS = -f
DBMSD_LOG = $(LOG)/DbmsdLog
MAX_DBMSD_LOG = 10000000

Descriptions of these and other configuration variables arein section 3.3.30. Here are further
brief details:

QUILL DB NAME and QUILL DB IP ADDR These two variables are used to determine the loca-
tion of the database server that this Quill would talk to, andthe name of the database that it
creates. More than one Quill server can talk to the same database server. This can be accom-
plished by letting all theQUILL DB IP ADDRvalues point to the same database server.

QUILL DB USER This is thePostgreSQLuser that Quill will connect as to the database. We
recommend “quillwriter ” for this setting. There is no default setting forQUILL DB USER,
so it must be specified in the configuration file.

QUILL NAME Eachcondorquill daemon in the pool has to be uniquely named.

QUILL POLLING PERIOD This controls the frequency with which Quill polls the
job queue.log file. By default, it is 10 seconds. Since Quill works by periodically
sniffing the log file for updates and then sending those updates to the database, this variable
controls the trade off between the currency of query resultsand Quill’s load on the system,
which is usually negligible.

QUILL RESOURCE HISTORY DURATION, QUILL RUN HISTORY DURATION , andQUILL JOB HISTORY DURATION
These three variables control the deletion of historical information from the database.
QUILL RESOURCEHISTORYDURATION is the number of days historical infor-
mation about the state of a resource will be kept in the database. The default for
resource history is 7 days. An example of a resource is the ClassAd for a compute slot.
QUILL RUNHISTORYDURATIONis the number of days after completion that auxiliary
information about a given job will stay in the database. Thisincludes user log events, file
transfers performed by the job, the matches that were made for a job, et cetera. The default
for run history is 7 days.QUILL JOB HISTORYDURATIONis the number of days after
completion that a given job will stay in the database. A more precise definition is the number
of days since the history ad got into the history database; those two might be different, if a
job is completed but stays in the queue for a while. The default for job history is 3,650 days
(about 10 years.)

DATABASE PURGE INTERVAL As scanning the entire database for old jobs can be expensive,
the other variableDATABASEPURGEINTERVAL is the number of seconds between two
successive scans.DATABASEPURGEINTERVAL is set to 86400 seconds, or one day.

Condor Version 7.2.3 Manual

3.11. Quill 367

DATABASE REINDEX INTERVAL PostgreSQLdoes not aggressively maintain the index struc-
tures for deleted tuples. This can lead to bloated index structures. Quill can periodically
reindex the database, which is controlled by the variableDATABASEREINDEXINTERVAL.
DATABASEPURGEINTERVAL is set to 86400 seconds, or one day.

QUILL DBSIZE LIMIT Quill can estimate the size of the database, and send email tothe Condor
administrator if the database size exceeds this threshold.The estimate is checked after every
DATABASEPURGEINTERVAL. The limit is given as gigabytes, and the default is 20.

QUILL MAINTAIN DB CONN Quill can maintain an open connection the database server, which
speeds up updates to the database. However, each open connection consumes resources at the
database server. The default is TRUE, but for large pools we recommend setting this FALSE.

QUILL MANAGE VACUUM Set toFalse by default, this variable determines whether Quill is to
perform vacuuming tasks on its tables or not. Vacuuming is a maintenance task that needs to
be performed on tables inPostgreSQL. The frequency with which a table is vacuumed typi-
cally depends on the number of updates (inserts/deletes) performed on the table. Fortunately,
with PostgreSQLversion 8.1, vacuuming tasks can be configured to be performed automati-
cally by the database server. We recommend that users upgrade to 8.1 and use the integrated
vacuuming facilities of the database server, instead of having Quill do them. If the user does
prefer having Quill perform those vacuuming tasks, it can beachieved by setting this variable
to ExprTrue. However, it cannot be overstated that Quill’s vacuuming policy is quite rudi-
mentary as compared to the integrated facilities of the database server, and under high update
workloads, can prove to be a bottleneck on the Quill daemon. As such, setting this variable to
ExprTrue results in some warning messages in the log file regarding this issue.

QUILL IS REMOTELY QUERYABLE Thanks toPostgreSQL, one can now remotely query both
the job queue and the history tables. This variable controlswhether this remote querying
feature should be enabled. By default it isTrue . Note that even if this isFalse , one can
still query the job queue at the remotecondorschedddaemon. This variable only controls
whether the database tables are remotely queryable.

QUILL DB QUERY PASSWORD In order for the query tools to connect to a database, they need
to provide the password that is assigned to the database user“quillreader ”. This variable
is then advertised by thecondorquill daemon to thecondorcollector. This facility enables
remote querying: remotecondorq query tools first ask thecondorcollectorfor the password
associated with a particular Quill database, and then querythat database. Users who do not
have access to thecondorcollectorcannot view the password, and as such cannot query the
database. Again, this password only provides read access tothe database.

QUILL ADDRESS FILE When Quill starts up, it can place its address (IP and port) into a file.
This way, tools running on the local machine do not need to query the central manager to find
Quill. This feature can be turned off by commenting out the variable.

3.11.2 Four Usage Examples

1. Query a remote Quill daemon onregular.cs.wisc.edu for all the jobs in the queue

Condor Version 7.2.3 Manual

3.11. Quill 368

condor_q -name quill@regular.cs.wisc.edu
condor_q -name schedd@regular.cs.wisc.edu

There are two ways to get to a Quill daemon: directly using itsname as specified in the
QUILL NAMEconfiguration variable, or indirectly by querying thecondorschedddaemon
using its name. In the latter case,condorq will detect if thatcondorschedddaemon is being
serviced by a database, and if so, directly query it. In both cases, the IP address and port
of the database server hosting the data of this particular remote Quill daemon can be figured
out by theQUILL DB IP ADDRandQUILL DB NAMEvariables specified in theQUILL AD
sent by the quill daemon to the collector and in theSCHEDDADsent by thecondorschedd
daemon.

2. Query a remote Quill daemon onregular.cs.wisc.edu for all historical jobs belonging
to owner einstein.

condor_history -name quill@regular.cs.wisc.edu einstei n

3. Query the local Quill daemon for the average time spent in the queue for all non-completed
jobs.

condor_q -avgqueuetime

The average queue time is defined as the average of(currenttime -
jobsubmissiontime) over all jobs which are neither completed(JobStatus
== 4) or removed(JobStatus == 3) .

4. Query the local Quill daemon for all historical jobs completed since Apr 1, 2005 at 13h 00m.

condor_history -completedsince '04/01/2005 13:00'

It fetches all jobs which got into the ’Completed’ state on orafter the specified time stamp.
It use thePostgreSQLdate/time syntax rules, as it encompasses most format options. See
http://www.postgresql.org/docs/8.2/static/datatype-datetime.html for the various time stamp
formats.

3.11.3 Quill and Security

There are several layers of security in Quill, some providedby Condor and others provided by the
database. First, all accesses to the database are password-protected.

1. The query tools,condorq andcondorhistoryconnect to the database as user “quillreader ”.
The password for this user can vary from one database to another and as such, each Quill
daemon advertises this password to the collector. The querytools then obtain this password
from the collector and connect successfully to the database. Access to the database by the

Condor Version 7.2.3 Manual

http://www.postgresql.org/docs/8.2/static/datatype-datetime.html

3.11. Quill 369

“quillreader ” user is read-only, as this is sufficient for the query tools.The condorquill
daemon ensures this protected access using the sql GRANT command when it first creates the
tables in the database. Note that access to the “quillreader ” password itself can be blocked
by blocking access to the collector, a feature already supported in Condor.

2. Thecondorquill andcondordbmsddaemons, on the other hand, need read and write access
to the database. As such, they connect as user “quillwriter ”, who has owner privileges to the
database. Since this gives all access to the “quillwriter ” user, this password cannot be stored
in a public place (such as the collector). For this reason, the “quillwriter ” password is stored
in a file called.pgpass in the Condor spool directory. Appropriate protections on this file
guarantee secure access to the database. This file must be created and protected by the site
administrator; if this file does not exist as and where expected, thecondorquill daemon logs
an error and exits.

3. TheIsRemotelyQueryable attribute in the Quill ClassAd advertised by the Quill dae-
mon to the collector can be used by site administrators to disallow the database from being
read by all remote Condor query tools.

3.11.4 Quill and Its RDBMS Schema

Notes:

• The type “timestamp(precision) with timezone” is abbreviated “ts(precision) w tz.”

• The column O. Type is an abbreviation for Oracle Type.

• The column P. Type is an abbreviation for PostgreSQL Type.

Although the current version of Condor does not support Oracle, we anticipate supporting it in the
future, so Oracle support in this schema document is for future reference.

Administrative Tables

Attributes of currencies Table
Name O. Type P. Type Description
datasource varchar(4000) varchar(4000) Identifier of the data source.
lastupdate ts(3) w tz ts(3) w tz Time of the last update sent to the database from the data

source.

Condor Version 7.2.3 Manual

3.11. Quill 370

Attributes of error sqllogs Table
Name O. Type P. Type Description
logname varchar(100) varchar(100) Name of the SQL log file causing a SQL error.
host varchar(50) varchar(50) The host where the SQL log resides.
lastmodified ts(3) w tz ts(3) w tz The last modified time of the SQL log.
errorsql varchar(4000) text The SQL statement causing an error.
logbody clob text The body of the SQL log.
errormessage varchar(4000) varchar(4000) The description of the error.
INDEX: Index named errorsqllog idx on (logname, host, lastmodified)

Attributes of maintenance log Table
Name O. Type P. Type Description
eventts ts(3) w tz ts(3) w tz Time the event occurred.
eventmsg varchar(4000) varchar(4000) Message describing the event.

Attributes of quilldbmonitor Table
Name O. Type P. Type Description
dbsize integer integer Size of the database in megabytes.

Attributes of quill schemaversion Table
Name O. Type P. Type Description
major int int Major version number.
minor int int Minor version number.
back to major int int The major number of the old version this version is compatible

to.
back to minor int int The minor number of the old version this version is compatible

to.

Attributes of throwns Table
Name O. Type P. Type Description
filename varchar(4000) varchar(4000) The name of the log that was truncated.
machineid varchar(4000) varchar(4000) The machine where the truncated log resides.
log size numeric(38) numeric(38) The size of the truncated log.
throwtime ts(3) w tz ts(3) w tz The time when the truncation occurred.

Condor Version 7.2.3 Manual

3.11. Quill 371

Daemon Tables

Attributes of daemons horizontal Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Mas-

ter”
name varchar(500) varchar(500) The name identifier of the daemon

ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to

Quill.
monitorselftime ts(3) w tz ts(3) w tz The time when the daemon last collected

information about itself.
monitorselfcpuusage numeric(38) numeric(38) The amount of CPU this daemon has

used.
monitorselfimagesize numeric(38) numeric(38) The amount of virtual memory this dae-

mon has used.
monitorselfresidentsetsizenumeric(38) numeric(38) The amount of physical memory this dae-

mon has used.
monitorselfage integer integer How long the daemon has been running.
updatesequencenumber integer integer The sequence number associated with the

update.
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
updateshistory varchar(4000) varchar(4000) Bitmask of the last 32 updates.
lastreportedtimeepoch integer integer The equivalent epoch time of last heard

from.
PRIMARY KEY: (mytype, name)
NOT NULL: mytype and name cannot be null

Condor Version 7.2.3 Manual

3.11. Quill 372

Attributes of daemons horizontal history Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Mas-

ter”
name varchar(500) varchar(500) The name identifier of the daemon

ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to

Quill.
monitorselftime ts(3) w tz ts(3) w tz The time when the daemon last collected

information about itself.
monitorselfcpuusage numeric(38) numeric(38) The amount of CPU this daemon has

used.
monitorselfimagesize numeric(38) numeric(38) The amount of virtual memory this dae-

mon has used.
monitorselfresidentsetsizenumeric(38) numeric(38) The amount of physical memory this dae-

mon has used.
monitorselfage integer integer How long the daemon has been running.
updatesequencenumber integer integer The sequence number associated with the

update.
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
updateshistory varchar(4000) varchar(4000) Bitmask of the last 32 updates.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

Attributes of daemons vertical Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Master”
name varchar(500) varchar(500) The name identifier of the daemon ClassAd.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to Quill.
PRIMARY KEY: (mytype, name, attr)
NOT NULL: mytype, name, and attr cannot be null

Condor Version 7.2.3 Manual

3.11. Quill 373

Attributes of daemons vertical history Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Master”
name varchar(500) varchar(500) The name identifier of the daemon ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to Quill.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

Attributes of submitters horizontal table
Name O. Type P. Type Description
name varchar(500) varchar(500) Name of the submitter ClassAd.
scheddname varchar(4000) varchar(4000) Name of the schedd where the submitter ad is from.
lastreportedtime ts(3) w tz ts(3) w tz Last time a submitter ClassAd was sent to Quill.
idlejobs integer integer Number of idle jobs of the submitter.
runningjobs integer integer Number of running jobs of the submitter.
heldjobs integer integer Number of held jobs of the submitter.
flockedjobs integer integer Number of flocked jobs of the submitter.

Attributes of submitters horizontal history table
Name O. Type P. Type Description
name varchar(500) varchar(500) Name of the submitter ClassAd.
scheddname varchar(4000) varchar(4000) Name of the schedd where the submitter ad is from.
lastreportedtime ts(3) w tz ts(3) w tz Last time a submitter ClassAd was sent to Quill.
idlejobs integer integer Number of idle jobs of the submitter.
runningjobs integer integer Number of running jobs of the submitter.
heldjobs integer integer Number of held jobs of the submitter.
flockedjobs integer integer Number of flocked jobs of the submitter.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

Condor Version 7.2.3 Manual

3.11. Quill 374

Files Tables

Attributes of files Table
Name O. Type P. Type Description
file id int int Unique numeric identifier of the file.
name varchar(4000) varchar(4000) File name.
host varchar(4000) varchar(4000) Name of machine where the file is located.
path varchar(4000) varchar(4000) Directory path to the file.
acl id integer integer Not yet used, null.
lastmodified ts(3) w tz ts(3) w tz Timestamp of the file.
filesize numeric(38) numeric(38) Size of the file in bytes.
checksum varchar(32) varchar(32) MD5 checksum of the file.
PRIMARY KEY: file id
NOT NULL: file id cannot be null

Attributes of fileusages Table
Name O. Type P. Type Description
globaljobid varchar(4000) varchar(4000) Global identifier of the job that used the file.
file id int int Numeric identifier of the file.
usagetype varchar(4000) varchar(4000) Type of use of the file by the job, e.g., input, output, com-

mand.
REFERENCE: file id references files(fileid)

Condor Version 7.2.3 Manual

3.11. Quill 375

Attributes of transfers Table
Name O. Type P. Type Description
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
src name varchar(4000) varchar(4000) Name of the file on the source machine.
src host varchar(4000) varchar(4000) Name of the source machine.
src port integer integer Source port number used for the transfer.
src path varchar(4000) varchar(4000) Path to the file on the source machine.
src daemon varchar(30) varchar(30) Condor demon performing the transfer on

the source machine.
src protocol varchar(30) varchar(30) The protocol used on the source machine.
src credentialid integer integer Not yet used, null.
src acl id integer integer Not yet used, null.
dst name varchar(4000) varchar(4000) Name of the file on the destination machine.
dst host varchar(4000) varchar(4000) Name of the destination machine.
dst port integer integer Destination port number used for the trans-

fer.
dst path varchar(4000) varchar(4000) Path to the file on the destination machine.
dst daemon varchar(30) varchar(30) Condor daemon receiving the transfer on

the destination machine.
dst protocol varchar(30) varchar(30) The protocol used on the destination ma-

chine.
dst credentialid integer integer Not yet used, null.
dst acl id integer integer Not yet used, null.
transferintermediaryid integer integer Not yet used, null; will use someday if a

proxy is used.
transfersize bytes numeric(38) numeric (38) Size of the data transfered in bytes.
elapsed numeric(38) numeric(38) Number of seconds that elapsed during the

transfer.
checksum varchar(256) varchar(256) Checksum of the file.
transfertime ts(3) w tz ts(3) w tz Time when the transfer took place.
last modified ts(3) w tz ts(3) w tz Last modified time for the file that was

transfered.
is encrypted varchar(5) varchar(5) (boolean) True if the file is encrypted.
delegationmethodid integer integer Not yet used, null.
completioncode integer integer Indicates whether the transfer failed or suc-

ceeded.

Condor Version 7.2.3 Manual

3.11. Quill 376

Interface Tables

Attributes of cdb users Table
Name O. Type P. Type Description
userid varchar(30) varchar(30) Unique identifier of the user
password character(32) character(32) Encrypted password
admin varchar(5) varchar(5) (boolean) True if the user has administrator privileges

Attributes of l eventtype Table
Name O. Type P. Type Description
eventtype integer integer Numeric type code of the event.
description varchar(4000) varchar(4000) Description of the type of event associated with the event-

type code.

Attributes of l jobstatus Table
Name O. Type P. Type Description
jobstatus integer integer Numeric code for job status.
abbrev char(1) char(1) Single letter code for job status.
description varchar(4000) varchar(4000) Description of job status.
PRIMARY KEY: jobstatus
NOT NULL: jobstatus cannot be null

Condor Version 7.2.3 Manual

3.11. Quill 377

Jobs Tables

Attributes of clusterads horizontal Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd the job is submitted to.
clusterid integer integer Cluster identifier for the job.
owner varchar(30) varchar(30) User who submitted the job.
jobstatus integer integer Current status of the job.
jobprio integer integer Priority for this job.
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
qdate ts(3) w tz ts(3) w tz Time the job was submitted to the job queue.
remoteusercpu numeric(38) numeric(38) Total number of seconds of user CPU time the

job used on remote machines.
remotewallclocktime numeric(38) numeric(38) Committed cumulative number of seconds the

job has been allocated to a machine.
cmd clob text Path to and filename of the job to be executed.
args clob text Arguments passed to the job.
jobuniverse integer integer The Condor universe used by the job.
PRIMARY KEY: (scheddname, clusterid)
NOT NULL: scheddname and clusterid cannot be null

Attributes of clusterads vertical Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that the job is submitted to.
clusterid integer integer Cluster identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
PRIMARY KEY: (scheddname, clusterid, attr)

Condor Version 7.2.3 Manual

3.11. Quill 378

Attributes of jobs horizontal history Table – Part 1 of 3
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
scheddbirthdate integer integer The birth date of the schedd where the job

is submitted.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
qdate ts(3) w tz ts(3) w tz Time the job was submitted to the job

queue.
owner varchar(30) varchar(30) User who submitted the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
numckpts integer integer Number of checkpoints written by the job

during its lifetime.
numrestarts integer integer Number of restarts from a checkpoint at-

tempted by the job in its lifetime.
numsystemholds integer integer Number of times Condor-G placed the job

on hold.
condorversion varchar(4000) varchar(4000) Version of Condor that ran the job.
condorplatform varchar(4000) varchar(4000) Platform of the computer where the schedd

runs.
rootdir varchar(4000) varchar(4000) Root directory on the system where the job

is submitted from.
iwd varchar(4000) varchar(4000) Initial working directory of the job.
jobuniverse integer integer The Condor universe used by the job.
cmd clob text Path to and filename of the job to be exe-

cuted.
minhosts integer integer Minimum number of hosts that must be in

the claimed state for this job, before the job
may enter the running state.

maxhosts integer integer Maximum number of hosts this job would
like to claim.

jobprio integer integer Priority for this job.
negotiationusername varchar(4000) varchar(4000) User name in which the job is negotiated.
env clob text Environment under which the job ran.
userlog varchar(4000) varchar(4000) User log where the job events are written to.
coresize numeric(38) numeric(38) Maximum allowed size of the core file.

Table Continues on Next Page

Condor Version 7.2.3 Manual

3.11. Quill 379

Attributes of jobs horizontal history Table – Part 2 of 3
Name O. Type P. Type Description
killsig varchar(4000) varchar(4000) Signal to be sent if the job is put on hold.
stdin varchar(4000) varchar(4000) The file used as stdin.
transferin varchar(5) varchar(5) (boolean) For globus universe jobs. True if

input should be transferred to the remote ma-
chine.

stdout varchar(4000) varchar(4000) The file used as stdout.
transferout varchar(5) varchar(5) (boolean) For globus universe jobs. True if out-

put should be transferred back to the submit
machine.

stderr varchar(4000) varchar(4000) The file used as stderr.
transfererr varchar(5) varchar(5) (boolean) For globus universe jobs. True if

error output should be transferred back to the
submit machine.

shouldtransferfiles varchar (4000) varchar(4000) Whether Condor should transfer files to and
from the machine where the job runs.

transferfiles varchar(4000) varchar(4000) Depreciated. Similar to shouldtransferfiles.
executablesize numeric(38) numeric(38) Size of the executable in kilobytes.
diskusage integer integer Size of the executable and input files to be

transferred.
filesystemdomain varchar(4000) varchar(4000) Name of the networked file system used by the

job.
args clob text Arguments passed to the job.
lastmatchtime ts(3) w tz ts(3) w tz Time when the job was last successfully

matched with a resource.
numjobmatches integer integer Number of times the negotiator matches the job

with a resource.
jobstartdate ts(3) w tz ts(3) w tz Time when the job first began running.
jobcurrentstartdate ts(3) w tz ts(3) w tz Time when the job’s current run started.
jobruncount integer integer Number of times a shadow has been started for

the job.
filereadcount numeric(38) numeric(38) Number of read(2) calls the job made (only

standard universe).
filereadbytes numeric(38) numeric(38) Number of bytes read by the job (only standard

universe).
filewritecount numeric(38) numeric(38) Number of write calls the job made (only stan-

dard universe).
filewritebytes numeric(38) numeric(38) Number of bytes written by the job (only stan-

dard universe).
Table Continues on Next Page

Condor Version 7.2.3 Manual

3.11. Quill 380

Attributes of jobs horizontal history Table – Part 3 of 3
Name O. Type P. Type Description
fileseekcount numeric(38) numeric(38) Number of seek calls that this job made (only

standard universe).
totalsuspensions integer integer Number of times the job has been suspended

during its lifetime
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
exitstatus integer integer No longer used by Condor.
localusercpu numeric(38) numeric(38) Number of seconds of user CPU time the job

used on the submit machine.
localsyscpu numeric(38) numeric(38) Number of seconds of system CPU time the job

used on the submit machine.
remoteusercpu numeric(38) numeric(38) Number of seconds of user CPU time the job

used on remote machines.
remotesyscpu numeric(38) numeric(38) Number of seconds of system CPU time the job

used on remote machines.
bytessent numeric(38) numeric(38) Number of bytes sent to the job.
bytesrecvd numeric(38) numeric(38) Number of bytes received by the job.
rscbytessent numeric(38) numeric(38) Number of remote system call bytes sent to the

job.
rscbytesrecvd numeric(38) numeric(38) Number of remote system call bytes received

by the job.
exitcode integer integer Exit return code of the user job. Used when a

job exits by means other than a signal.
jobstatus integer integer Current status of the job.
enteredcurrentstatus ts(3) w tz ts(3) w tz Time the job entered into its current status.
remotewallclocktime numeric(38) numeric(38) Cumulative number of seconds the job has been

allocated to a machine.
lastremotehost varchar(4000) varchar(4000) The remote host for the last run of the job.
completiondate ts(3) w tz ts(3) w tz Time when the job completed; 0 if job has not

yet completed.
enteredhistorytable ts(3) w tz ts(3) w tz Time when the job entered the history table.
PRIMARY KEY: (scheddname, scheddbirthdate, clusterid, proc id)
NOT NULL: scheddname, scheddbirthdate, clusterid, and procid cannot be null
INDEX: Index named histh i owner on owner

Condor Version 7.2.3 Manual

3.11. Quill 381

Attributes of jobs vertical history Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
scheddbirthdate integer integer The birth date of the schedd where the job is submit-

ted.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
PRIMARY KEY: (scheddname, scheddbirthdate, clusterid, proc id, attr)
NOT NULL: scheddname, scheddbirthdate, clusterid, proc id, and attr cannot be null

Attributes of procads horizontal Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
jobstatus integer integer Current status of the job.
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
remoteusercpu numeric(38) numeric(38) Total number of seconds of user CPU time the

job used on remote machines.
remotewallclocktime numeric(38) numeric(38) Cumulative number of seconds the job has been

allocated to a machine.
remotehost varchar(4000) varchar(4000) Name of the machine running the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
jobprio integer integer Priority of the job.
args clob text Arguments passed to the job.
shadowbday ts(3) w tz ts(3) w tz The time when the shadow was started.
enteredcurrentstatus ts(3) w tz ts(3) w tz Time the job entered its current status.
numrestarts integer integer Number of times the job has restarted.
PRIMARY KEY: (scheddname, clusterid, proc id)
NOT NULL: scheddname, clusterid, and procid cannot be null

Condor Version 7.2.3 Manual

3.11. Quill 382

Attributes of procads vertical Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.

Condor Version 7.2.3 Manual

3.11. Quill 383

Machines Tables

Attributes of machines horizontal Table – Part 1 of 2
Name O. Type P. Type Description
machineid varchar(4000) varchar(4000) Unique identifier of the machine.
opsys varchar(4000) varchar(4000) Operating system running on the machine.
arch varchar(4000) varchar(4000) Architecture of the machine.
state varchar(4000) varchar(4000) Condor state of the machine.
activity varchar(4000) varchar(4000) Condor job activity on the machine.
keyboardidle integer integer Number of seconds since activity has been

detected on any keyboard or mouse associ-
ated with the machine.

consoleidle integer integer Number of seconds since activity has been
detected on the console keyboard or mouse.

loadavg real real Current load average of the machine.
condorloadavg real real Portion of load average generated by Con-

dor
totalloadavg real real
virtualmemory integer integer Amount of currently available virtual mem-

ory in kilobytes.
memory integer integer Amount of RAM in megabytes.
totalvirtualmemory integer integer
cpubusytime integer integer Time in seconds since cpuisbusy became

true.
cpuisbusy varchar(5) varchar(5) (boolean) True when the CPU is busy.
currentrank real real The machine owner’s affinity for running

the Condor job which it is currently host-
ing.

clockmin integer integer Number of minutes passed since midnight.
clockday integer integer The day of the week.
lastreportedtime ts(3) w tz ts(3) w tz Time when the Condor central manager last

received a status update from this machine.
enteredcurrentactivity ts(3) w tz ts(3) w tz Time when the machine entered the current

activity.
enteredcurrentstate ts(3) w tz ts(3) w tz Time when the machine entered the current

state.
updatesequencenumberinteger integer Each update includes a sequence number.

Table Continues on Next Page

Condor Version 7.2.3 Manual

3.11. Quill 384

Attributes of machines horizontal Table – Part 2 of 2
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
lastreportedtimeepoch integer integer The equivalent epoch time of lastreported-

time.
PRIMARY KEY: machineid

Condor Version 7.2.3 Manual

3.11. Quill 385

Attributes of machines horizontal history Table – Part 1 of 2
Name O. Type P. Type Description
machineid varchar(4000) varchar(4000) Unique identifier of the machine.
opsys varchar(4000) varchar(4000) Operating system running on the machine.
arch varchar(4000) varchar(4000) Architecture of the machine.
state varchar(4000) varchar(4000) Condor state of the machine.
activity varchar(4000) varchar(4000) Condor job activity on the machine.
keyboardidle integer integer Number of seconds since activity has been

detected on any keyboard or mouse associ-
ated with the machine.

consoleidle integer integer Number of seconds since activity has been
detected on the console keyboard or mouse.

loadavg real real Current load average of the machine.
condorloadavg real real Portion of load average generated by Con-

dor
totalloadavg real real
virtualmemory integer integer Amount of currently available virtual mem-

ory in kilobytes.
memory integer integer Amount of RAM in megabytes.
totalvirtualmemory integer integer
cpubusytime integer integer Time in seconds since cpuisbusy became

true.
cpuisbusy varchar(5) varchar(5) (boolean) True when the CPU is busy.
currentrank real real The machine owner’s affinity for running

the Condor job which it is currently host-
ing.

clockmin integer integer Number of minutes passed since midnight.
clockday integer integer The day of the week.
lastreportedtime ts(3) w tz ts(3) w tz Time when the Condor central manager last

received a status update from this machine.
enteredcurrentactivity ts(3) w tz ts(3) w tz Time when the machine entered the current

activity.
enteredcurrentstate ts(3) w tz ts(3) w tz Time when the machine entered the current

state.
updatesequencenumberinteger integer Each update includes a sequence number.

Table Continues on Next Page

Condor Version 7.2.3 Manual

3.11. Quill 386

Attributes of machines horizontal history Table – Part 2 of 2
Name O. Type P. Type Description
updatestotal integer integer The number of updates received from the dae-

mon.
updatessequencedinteger integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
end time ts(3) w tz ts(3) w tz The end of when the ClassAd is valid.

Attributes of machines vertical Table
Name O. Type P. Type Description
machineid varchar(4000) varchar(4000) Unique identifier of the machine.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
start time ts(3) w tz ts(3) w tz Time when this attribute–value pair became valid.
PRIMARY KEY: (machineid, attr)
NOT NULL: machineid and attr cannot be null

Attributes of machines vertical history Table
Name O. Type P. Type Description
machineid varchar(4000) varchar(4000) Unique identifier of the machine.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
start time ts(3) w tz ts(3) w tz Time when this attribute–value pair became valid.
end time ts(3) w tz ts(3) w tz Time when this attribute–value pair became invalid.

Condor Version 7.2.3 Manual

3.11. Quill 387

Matchmaking Tables

Attributes of matches Table
Name O. Type P. Type Description
matchtime ts(3) w tz ts(3) w tz Time the match was made.
username varchar(4000) varchar(4000) User who submitted the job.
scheddname varchar(4000) varchar(4000) Name of the schedd that the job is submitted to.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
machineid varchar(4000) varchar(4000) Identifier of the machine the job matched with.
remoteuser varchar(4000) varchar(4000) User that was preempted.
remotepriority real real The preempted user’s priority.

Attributes of rejects Table
Name O. Type P. Type Description
reject time ts(3) w tz ts(3) w tz Time when the job was rejected.
username varchar(4000) varchar(4000) User who submitted the job.
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.

Runtime Tables

Attributes of events Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Global identifier of the job that generated the event.
run id numeric(12,0) numeric(12,0) Identifier of the run that the event is associated with.
eventtype integer integer Numeric type code of the event.
eventtime ts(3) w tz ts(3) w tz Time the event occurred.
description varchar(4000) varchar(4000) Description of the event.

Condor Version 7.2.3 Manual

3.11. Quill 388

Attributes of generic messages Table
Name O. Type P. Type Description
eventtype varchar(4000) varchar(4000) The type of event.
eventkey varchar(4000) varchar(4000) The key of the event.
eventtime ts(3) w tz ts(3) w tz The time of the event.
eventloc varchar(4000) varchar(4000) The location of the event.
attname varchar(4000) varchar(4000) The attribute name.
attval clob text The attribute value.
attrtype varchar(4000) varchar(4000) The attribute type.

Attributes of runs Table
Name O. Type P. Type Description
run id numeric(12) numeric(12) Unique identifier of the run.
machineid varchar(4000) varchar(4000) Identifier of the machine where the job ran.
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
spid integer integer Subprocess identifier for the job.
globaljobid varchar(4000) varchar(4000) Identifier of the job that was run.
startts ts(3) w tz ts(3) w tz Time when the job started.
endts ts(3) w tz ts(3) w tz Time when the job ended.
endtype smallint smallint The type of ending event.
endmessage varchar(4000) varchar(4000) The ending message.
wascheckpointed varchar(7) varchar(7) Whether the run was checkpointed.
imagesize numeric(38) numeric(38) The image size of the executable.
runlocalusageuser integer integer The time the job spent in usermode on exe-

cute machines (only standard universe).
runlocalusagesystem integer integer The time the job was in system calls.
runremoteusageuser integer integer The time the shadow spent working for the

job.
runremoteusagesysteminteger integer The time the shadow spent in system calls for

the job.
runbytessent numeric(38) numeric(38) Number of bytes sent to the run.
runbytesreceived numeric(38) numeric(38) Number of bytes received from the run.
PRIMARY KEY: run id
NOT NULL: run id cannot be null

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 389

System Tables

Attributes of dummy single row table Table
Name O. Type P. Type Description
a varchar(1) varchar(1) A dummy column.

Attributes of history jobs to purge Table
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
clusterid integer integer Cluster identifier for the job.
proc id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.

Attributes of jobqueuepollinginfo Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
last file mtime integer integer The last modification time of the file.
last file size numeric(38) numeric(38) The last size of the file in bytes.
last next cmd offset integer integer The last offset for the next command.
last cmd offset integer integer The last offset of the current command.
last cmd type smallint smallint The last type of command.
last cmd key varchar(4000) varchar(4000) The last key of the command.
last cmd mytype varchar(4000) varchar(4000) The last my ClassAd type of the command.
last cmd targettype varchar(4000) varchar(4000) The last target ClassAd type.
last cmd name varchar(4000) varchar(4000) The attribute name of the command.
last cmd value varchar(4000) varchar(4000) The attribute value of the command.

3.12 Setting Up for Special Environments

The following sections describe how to set up Condor for use in special environments or configu-
rations. See section?? on page?? for installation instructions on the various Contrib modules that
can be optionally downloaded and installed.

3.12.1 Using Condor with AFS

If you are using AFS at your site, be sure to read section 3.3.7on “Shared Filesystem Config Files
Entries” for details on configuring your machines to interact with and use shared filesystems, AFS
in particular.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 390

Condor does not currently have a way to authenticate itself to AFS. This is true of the Condor
daemons that would like to authenticate as AFS user Condor, and thecondorshadow, which would
like to authenticate as the user who submitted the job it is serving. Since neither of these things can
happen yet, there are a number of special things people who use AFS with Condor must do. Some of
this must be done by the administrator(s) installing Condor. Some of this must be done by Condor
users who submit jobs.

AFS and Condor for Administrators

The most important thing is that since the Condor daemons can’t authenticate to AFS, the
LOCALDIR (and it’s subdirectories like “log” and “spool”) for each machine must be either writable
to unauthenticated users, or must not be on AFS. The first option is aVERY bad security hole so you
shouldNOT have your local directory on AFS. If you’ve got NFS installedas well and want to have
your LOCALDIR for each machine on a shared file system, use NFS. Otherwise, you should put
theLOCALDIR on a local partition on each machine in your pool. This means that you should run
condorconfigureto install your release directory and configure your pool, setting theLOCALDIR
parameter to some local partition. When that’s complete, log into each machine in your pool and
runcondor init to set up the local Condor directory.

TheRELEASEDIR, which holds all the Condor binaries, libraries and scriptscan and probably
should be on AFS. None of the Condor daemons need to write to these files, they just need to read
them. So, you just have to make yourRELEASEDIR world readable and Condor will work just
fine. This makes it easier to upgrade your binaries at a later date, which means that your users can
find the Condor tools in a consistent location on all the machines in your pool, and that you can
have the Condor config files in a centralized location. This iswhat we do at UW-Madison’s CS
department Condor pool and it works quite well.

Finally, you might want to setup some special AFS groups to help your users deal with Condor
and AFS better (you’ll want to read the section below anyway,since you’re probably going to have
to explain this stuff to your users). Basically, if you can, create an AFS group that contains all
unauthenticated users but that is restricted to a given hostor subnet. You’re supposed to be able to
make these host-based ACLs with AFS, but we’ve had some trouble getting that working here at
UW-Madison. What we have instead is a special group for all machines in our department. So, the
users here just have to make their output directories on AFS writable to any process running on any
of our machines, instead of any process on any machine with AFS on the Internet.

AFS and Condor for Users

Thecondorshadowprocess runs on the machine where you submitted your Condor jobs and per-
forms all file system access for your jobs. Because this process isn’t authenticated to AFS as the
user who submitted the job, it will not normally be able to write any output. So, when you submit
jobs, any directories where your job will be creating outputfiles will need to be world writable (to
non-authenticated AFS users). In addition, if your programwrites tostdout or stderr , or you’re
using a user log for your jobs, those files will need to be in a directory that’s world-writable.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 391

Any input for your job, either the file you specify as input in your submit file, or any files your
program opens explicitly, needs to be world-readable.

Some sites may have special AFS groups set up that can make this unauthenticated access to
your files less scary. For example, there’s supposed to be a way with AFS to grant access to any
unauthenticated process on a given host. That way, you only have to grant write access to unauthen-
ticated processes on your submit machine, instead of any unauthenticated process on the Internet.
Similarly, unauthenticated read access could be granted only to processes running on your submit
machine. Ask your AFS administrators about the existence ofsuch AFS groups and details of how
to use them.

The other solution to this problem is to just not use AFS at all. If you have disk space on your
submit machine in a partition that is not on AFS, you can submit your jobs from there. While the
condorshadowis not authenticated to AFS, it does run with the effective UID of the user who sub-
mitted the jobs. So, on a local (or NFS) file system, thecondorshadowwill be able to access your
files normally, and you won’t have to grant any special permissions to anyone other than yourself.
If the Condor daemons are not started as root however, the shadow will not be able to run with your
effective UID, and you’ll have a similar problem as you wouldwith files on AFS. See the section on
“Running Condor as Non-Root” for details.

3.12.2 Configuring Condor for Multiple Platforms

A single, global configuration file may be used for all platforms in a Condor pool, with only
platform-specific settings placed in separate files. This greatly simplifies administration of a het-
erogeneous pool by allowing changes of platform-independent, global settings in one place, instead
of separately for each platform. This is made possible by treating theLOCALCONFIGFILE con-
figuration variable as a list of files, instead of a single file.Of course, this only helps when using a
shared file system for the machines in the pool, so that multiple machines can actually share a single
set of configuration files.

With multiple platforms, put all platform-independentsettings (the vast majority) into the regular
condor config file, which would be shared by all platforms. This global file would be the one
that is found with theCONDORCONFIGenvironment variable, the usercondor ’s home directory,
or /etc/condor/condor config .

Then set theLOCALCONFIGFILE configuration variable from that global configuration file to
specify both a platform-specific configuration file and optionally, a local, machine-specific configu-
ration file (this parameter is described in section 3.3.3 on “Condor-wide Configuration File Entries”).

The order of file specification in theLOCALCONFIGFILE configuration variable is important,
because settings in files at the beginning of the list are overridden if the same settings occur in files
later within the list. So, if specifying the platform-specific file and then the machine-specific file,
settings in the machine-specific file would override those inthe platform-specific file (as is likely
desired).

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 392

Utilizing a Platform-Specific Configuration File

The name of platform-specific configuration files may be specified by using theARCHandOPSYS
parameters, as are defined automatically by Condor. For example, for Intel Linux machines, and

Sparc Solaris 2.6 machines, the files ought to be named:

condor_config.INTEL.LINUX
condor_config.SUN4x.SOLARIS26

Then, assuming these three files are in the directory defined by the ETCconfiguration macro,
and machine-specific configuration files are in the same directory, named by each machine’s host
name, theLOCALCONFIGFILE configuration macro should be:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.$(ARCH).$(OP SYS), \
$(ETC)/$(HOSTNAME).local

Alternatively, when using AFS, an “@sys link” may be used to specify the platform-specific
configuration file, and let AFS resolve this link differentlyon different systems. For example, con-
sider a soft link namedcondor config.platform that points tocondor config.@sys . In
this case, the files might be named:

condor_config.i386_linux2
condor_config.sun4x_56
condor_config.sgi_64
condor_config.platform -> condor_config.@sys

and theLOCALCONFIGFILE configuration variable would be set to:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.platform, \
$(ETC)/$(HOSTNAME).local

Platform-Specific Configuration File Settings

The configuration variables that are truly platform-specific are:

RELEASE DIR Full path to to the installed Condor binaries. While the configuration files may
be shared among different platforms, the binaries certainly cannot. Therefore, maintain sep-
arate release directories for each platform in the pool. Seesection 3.3.3 on “Condor-wide
Configuration File Entries” for details.

MAIL The full path to the mail program. See section 3.3.3 on “Condor-wide Configuration File
Entries” for details.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 393

CONSOLE DEVICES Which devices in/dev should be treated as console devices. See sec-
tion 3.3.10 on “condorstartd Configuration File Entries” for details.

DAEMON LIST Which daemons thecondormastershould start up. The reason this setting is
platform-specific is to distinguish thecondorkbdd. On Alphas running Digital Unix, it was
needed, and it is not needed on other platforms. See section 3.3.9 on for details.

Reasonable defaults for all of these configuration variables will be found in the default con-
figuration files inside a given platform’s binary distribution (except theRELEASEDIR, since
the location of the Condor binaries and libraries is installation specific). With multiple plat-
forms, use one of thecondor config files from either runningcondorconfigureor from
the<release dir >/etc/examples/condor config.generic file, take these settings
out, save them into a platform-specific file, and install the resulting platform-independent file as
the global configuration file. Then, find the same settings from the configuration files for any
other platforms to be set up, and put them in their own platform-specific files. Finally, set the
LOCALCONFIGFILE configuration variable to point to the appropriate platform-specific file, as
described above.

Not even all of these configuration variables are necessarily going to be different. For example, if
an installed mail program understands the-soption in/usr/local/bin/mail on all platforms,
theMAIL macro may be set to that in the global configuration file, and not define it anywhere else.
For a pool with only Digital Unix, theDAEMONLIST will be the same for each, so there is no
reason not to put that in the global configuration file.

Other Uses for Platform-Specific Configuration Files

It is certainly possible that an installation may want otherconfiguration variables to be platform-
specific as well. Perhaps a different policy is desired for one of the platforms. Perhaps different
people should get the e-mail about problems with the different platforms. There is nothing hard-
coded about any of this. What is shared and what should not shared is entirely configurable.

Since theLOCALCONFIGFILE macro can be an arbitrary list of files, an installation can even
break up the global, platform-independent settings into separate files. In fact, the global configu-
ration file might only contain a definition forLOCALCONFIGFILE , and all other configuration
variables would be placed in separate files.

Different people may be given different permissions to change different Condor settings. For
example, if a user is to be able to change certain settings, but nothing else, those settings may be
placed in a file which was early in theLOCALCONFIGFILE list, to give that user write permission
on that file, then include all the other files after that one. Inthis way, if the user was trying to change
settings she/he should not, they would simply be overridden.

This mechanism is quite flexible and powerful. For very specific configuration needs, they can
probably be met by using file permissions, theLOCALCONFIGFILE configuration variable, and
imagination.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 394

3.12.3 Full Installation of condor compile

In order to take advantage of two major Condor features: checkpointing and remote system calls,
users of the Condor system need to relink their binaries. Programs that are not relinked for Condor
can run in Condor’s “vanilla” universe just fine, however, they cannot checkpoint and migrate, or
run on machines without a shared filesystem.

To relink your programs with Condor, we provide a special tool, condorcompile. As installed
by default,condorcompileworks with the following commands:gcc, g++ , g77, cc, acc, c89, CC,
f77, fort77, ld. On Solaris and Digital Unix,f90 is also supported. See thecondorcompile(1) man
page for details on usingcondorcompile.

However, you can makecondorcompilework transparently with all commands on your system
whatsoever, includingmake.

The basic idea here is to replace the system linker (ld) with the Condor linker. Then, when a
program is to be linked, the condor linker figures out whetherthis binary will be for Condor, or for
a normal binary. If it is to be a normal compile, the oldld is called. If this binary is to be linked
for condor, the script performs the necessary operations inorder to prepare a binary that can be
used with condor. In order to differentiate between normal builds and condor builds, the user simply
placescondorcompilebefore their build command, which sets the appropriate environment variable
that lets the condor linker script know it needs to do its magic.

In order to perform this full installation ofcondorcompile, the following steps need to be taken:

1. Rename the system linker from ld to ld.real.

2. Copy the condor linker to the location of the previous ld.

3. Set the owner of the linker to root.

4. Set the permissions on the new linker to 755.

The actual commands that you must execute depend upon the system that you are on. The
location of the system linker (ld), is as follows:

Operating System Location of ld (ld-path)
Linux /usr/bin
Solaris 2.X /usr/ccs/bin
OSF/1 (Digital Unix) /usr/lib/cmplrs/cc

On these platforms, issue the following commands (as root),whereld-path is replaced by the
path to your system’sld.

mv /[ld-path]/ld /[ld-path]/ld.real
cp /usr/local/condor/lib/ld /[ld-path]/ld
chown root /[ld-path]/ld
chmod 755 /[ld-path]/ld

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 395

If you remove Condor from your system latter on, linking willcontinue to work, since the condor
linker will always default to compiling normal binaries andsimply call the real ld. In the interest of
simplicity, it is recommended that you reverse the above changes by moving your ld.real linker back
to it’s former position as ld, overwriting the condor linker.

NOTE: If you ever upgrade your operating system after performinga full installation ofcon-
dor compile, you will probably have to re-do all the steps outlined above. Generally speaking, new
versions or patches of an operating system might replace thesystem ld binary, which would undo
the full installation ofcondorcompile.

3.12.4 Thecondor kbdd

The Condor keyboard daemon (condorkbdd) monitors X events on machines where the operating
system does not provide a way of monitoring the idle time of the keyboard or mouse. It is not needed
for most platforms, as Condor has other ways of detecting keyboard and mouse activity.

Although great measures have been taken to make this daemon as robust as possible, the X
window system was not designed to facilitate such a need, andthus is less then optimal on machines
where many users log in and out on the console frequently.

In order to work with X authority, the system by which X authorizes processes to connect to X
servers, thecondorkbddneeds to run with super user privileges. Currently, the daemon assumes
that X uses theHOMEenvironment variable in order to locate a file named.Xauthority , which
contains keys necessary to connect to an X server. The keyboard daemon attempts to set this envi-
ronment variable to various users home directories in orderto gain a connection to the X server and
monitor events. This may fail to work on your system, if you are using a non-standard approach.
If the keyboard daemon is not allowed to attach to the X server, the state of a machine may be
incorrectly set to idle when a user is, in fact, using the machine.

In some environments, thecondorkbdd will not be able to connect to the X server because
the user currently logged into the system keeps their authentication token for using the X server
in a place that no local user on the current machine can get to.This may be the case for AFS
where the user’s.Xauthority file is in an AFS home directory. There may also be cases where
the condorkbdd may not be run with super user privileges because of political reasons, but it is
still desired to be able to monitor X activity. In these cases, change the XDM configuration in
order to start up thecondorkbddwith the permissions of the currently logging in user. Although
your situation may differ, if you are running X11R6.3, you will probably want to edit the files in
/usr/X11R6/lib/X11/xdm . The.xsession file should have the keyboard daemon start up
at the end, and the.Xreset file should have the keyboard daemon shut down. The-l option can
be used to write the daemon’s log file to a place where the user running the daemon has permission
to write a file. We recommend something akin to$HOME/.kbdd.log , since this is a place where
every user can write, and it will not get in the way. The-pidfile and-k options allow for easy shut
down of the daemon by storing the process id in a file. It will benecessary to add lines to the XDM
configuration that look something like:

condor_kbdd -l $HOME/.kbdd.log -pidfile $HOME/.kbdd.pid

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 396

This will start thecondorkbddas the user who is currently logging in and write the log to a
file in the directory$HOME/.kbdd.log/ . Also, this will save the process id of the daemon to
˜/.kbdd.pid , so that when the user logs out, XDM can do:

condor_kbdd -k $HOME/.kbdd.pid

This will shut down the process recorded in˜/.kbdd.pid and exit.

To see how well the keyboard daemon is working, review the logfor the daemon and look for
successful connections to the X server. If there are none, the condorkbdd is unable to connect to
the machine’s X server.

3.12.5 Configuring The CondorView Server

The CondorView server is an alternate use of thecondorcollector that logs information on disk,
providing a persistent, historical database of pool state.This includes machine state, as well as the
state of jobs submitted by users.

An existingcondorcollectormay act as the CondorView collector through configuration. This
is the simplest situation, because the only change needed isto turn on the logging of historical infor-
mation. The alternative of configuring a newcondorcollector to act as the CondorView collector
is slightly more complicated, while it offers the advantagethat the same CondorView collector may
be used for several pools as desired, to aggregate information into one place.

The following sections describe how to configure a machine torun a CondorView server and to
configure a pool to send updates to it.

Configuring a Machine to be a CondorView Server

To configure the CondorView collector, a few configuration variables are added or modified for
thecondorcollectorchosen to act as the CondorView collector. These configuration variables are
described in section 3.3.16 on page 208. Here are brief explanations of the entries that must be
customized:

POOL HISTORY DIR The directory where historical data will be stored. This directory must be
writable by whatever user the CondorView collector is running as (usually the usercondor).
There is a configurable limit to the maximum space required for all the files created by the
CondorView server called (POOLHISTORYMAXSTORAGE).

NOTE: This directory should be separate and different from thespool or log directories
already set up for Condor. There are a few problems putting these files into either of those
directories.

KEEP POOL HISTORY A boolean value that determines if the CondorView collectorshould store
the historical information. It isFalse by default, and must be specified asTrue in the local
configuration file to enable data collection.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 397

Once these settings are in place in the configuration file for the CondorView server host, create
the directory specified inPOOLHISTORYDIR and make it writable by the user the CondorView
collector is running as. This is the same user that owns theCollectorLog file in the log direc-
tory. The user is usuallycondor .

If using the existingcondorcollector as the CondorView collector, no further configuration is
needed. To run a differentcondorcollectorto act as the CondorView collector, configure Condor to
automatically start it.

If using a separate host for the CondorView collector, to start it, add the valueCOLLECTORto
DAEMONLIST , and restart Condor on that host. To run the CondorView collector on the same host
as anothercondorcollector, ensure that the twocondorcollector daemons use different network
ports. Here is an example configuration in which the maincondorcollector and the CondorView
collector are started up by the samecondormasterdaemon on the same machine. In this example,
the CondorView collector uses port 12345.

VIEW_SERVER = $(COLLECTOR)
VIEW_SERVER_ARGS = -f -p 12345
VIEW_SERVER_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog"
DAEMON_LIST = MASTER, NEGOTIATOR, COLLECTOR, VIEW_SERVER

For this change to take effect, restart thecondormasteron this host. This may be accomplished
with thecondorrestartcommand, if the command is run with administrator access to the pool.

Configuring a Pool to Report to the CondorView Server

For the CondorView server to function, configure the existing collector to forward ClassAd updates
to it. This configuration is only necessary if the CondorViewcollector is a different collector from
the existingcondorcollector for the pool. All the Condor daemons in the pool send their ClassAd
updates to the regularcondorcollector, which in turn will forward them on to the CondorView
server.

Define the following configuration variable:

CONDOR_VIEW_HOST = full.hostname[:portnumber]

wherefull.hostname is the full host name of the machine running the CondorView collector.
The full host name is optionally followed by a colon and port number. This is only necessary if the
CondorView collector is configured to use a port number otherthan the default.

Place this setting in the configuration file used by the existingcondorcollector. It is acceptable
to place it in the global configuration file. The CondorView collector will ignore this setting (as it
should) as it notices that it is being asked to forward ClassAds to itself.

Once the CondorView server is running with this change, senda condorreconfigcommand to
the maincondorcollectorfor the change to take effect, so it will begin forwarding updates. A query
to the CondorView collector will verify that it is working. Aquery example:

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 398

condor_status -pool condor.view.host[:portnumber]

3.12.6 Running Condor Jobs within a VMware or Xen Virtual Machine En-
vironment

Condor jobs are formed from executables that are compiled toexecute on specific platforms. This
in turn restricts the machines within a Condor pool where a job may be executed. A Condor job
may now be executed on a virtual machine system running VMware or Xen. This allows Windows
executables to run on a Linux machine, and Linux executablesto run on a Windows machine. These
virtual machine systems exist for the Intel x86 architecture.

In older versions of Condor, other parts of the system were also refered to asvirtual machines,
but in all cases, those are now known asslots. A virtual machine here describes the environment in
which the outside operating system (called the host) emulates an inner operating system (called the
inner virtual machine), such that an executable appears to run directly on the inner virtual machine.
In other parts of Condor, aslot (formerly known asvirtual machine) refers to the multiple CPUs of
an SMP machine. Also, be careful not to confuse the virtual machines discussed here with the Java
Virtual Machine (JVM) referenced in other parts of this manual.

Under Xen or VMware, Condor has the flexibility to run a job on either the host or the inner
virtual machine, hence two platforms appear to exist on a single machine. Since two platforms are
an illusion, Condor understands the illusion, allowing a Condor job to be execute on only one at a
time.

Installation and Configuration

Condor must be separately installed, separately configured, and separately running on both the host
and the inner virtual machine.

The configuration for the host specifiesVMPVMLIST . This specifies host names or IP ad-
dresses of all inner virtual machines running on this host. An example configuration on the host
machine:

VMP_VM_LIST = vmware1.domain.com, vmware2.domain.com

The configuration for each separate inner virtual machine specifiesVMPHOSTMACHINE. This
specifies the host for the inner virtual machine. An example configuration on an inner virtual ma-
chine:

VMP_HOST_MACHINE = host.domain.com

Given this configuration, as well as communication between Condor daemons running on the
host and on the inner virtual machine, the policy for when jobs may execute is set by Condor. While

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 399

the host is executing a Condor job, theSTARTpolicy on the inner virtual machine is overridden
with False , so no Condor jobs will be started on the inner virtual machine. Conversely, while the
inner virtual machine is executing a Condor job, theSTARTpolicy on the host is overridden with
False , so no Condor jobs will be started on the host.

The inner virtual machine is further provided with a new syntax for referring to the machine
ClassAd attributes of its host. Any machine ClassAd attribute with a prefix of the stringHOST
explicitly refers to the host’s ClassAd attributes. TheSTARTpolicy on the inner virtual machine
ought to use this syntax to avoid starting jobs when its host is too busy processing other items. An
example configuration forSTARTon an inner virtual machine:

START = ((KeyboardIdle > 150) && (HOST_KeyboardIdle > 150) \
&& (LoadAvg <= 0.3) && (HOST_TotalLoadAvg <= 0.3))

3.12.7 Configuring The Startd for SMP Machines

This section describes how to configure thecondorstartd for SMP (Symmetric Multi-Processor)
machines. Machines with more than one CPU may be configured torun more than one job at a time.
As always, owners of the resources have great flexibility in defining the policy under which multiple
jobs may run, suspend, vacate, etc.

How Shared Resources are Represented to Condor

The way SMP machines are represented to the Condor system is that the shared resources are broken
up into individualslots. Each slot can be matched and claimed by users. Each slot is represented
by an individual ClassAd (see the ClassAd reference, section 4.1, for details). In this way, each
SMP machine will appear to the Condor system as a collection of separate slots. As an example, an
SMP machine named vulture.cs.wisc.edu would appear to Condor as the multiple machines, named
slot1@vulture.cs.wisc.edu, slot2@vulture.cs.wisc.edu, slot3@vulture.cs.wisc.edu, and so on.

The way that thecondorstartd breaks up the shared system resources into the different slots
is configurable. All shared system resources (like RAM, diskspace, swap space, etc.) can either
be divided evenly among all the slots, with each CPU getting its own slot, or you can define your
ownslot types, so that resources can be unevenly partitioned. Regardlessof the partitioning scheme
used, it is important to remember the goal is to create a representative slot ClassAd, to be used for
matchmaking with jobs. Condor does not directly enforce slot shared resource allocations, and jobs
are free to oversubscribe to shared resources.

Consider an example where two slots are each defined with 50%of available RAM. The resultant
ClassAd for each slot will advertise one half the available RAM. Users may submit jobs with RAM
requirements that match these slots. However, jobs run on either slot are free to consume more than
50%of available RAM. Condor will not directly enforce a RAM utilization limit on either slot. If
a shared resource enforcement capability is needed, it is possible to write a Startd policy that will
evict a job that oversubscribes to shared resources, see section 3.12.7.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 400

The following section gives details on how to configure Condor to divide the resources on an
SMP machine into separate slots.

Dividing System Resources in SMP Machines

This section describes the settings that allow you to define your own slot types and to control how
many slots of each type are reported to Condor.

There are two main ways to go about partitioning an SMP machine:

Define your own slot types.By defining your own types, you can specify what fraction of shared
system resources (CPU, RAM, swap space and disk space) go to each slot. Once you define
your own types, you can control how many of each type are reported at any given time.

Evenly divide all resources. If you do not define your own types, thecondorstartdwill automati-
cally partition your machine into slots for you. It will do soby placing a single CPU in each
slot, and evenly dividing all shared resources among the slots. With this default partitioning,
you only specify how many slots are reported at a time. By default, all slots are reported to
Condor.

The number of each type being reported can be changed at run-time, by issuing a reconfiguration
command to thecondorstartd daemon (sending a SIGHUP or usingcondorreconfig). However,
the definitions for the types themselves cannot be changed with reconfiguration. If you change any
slot type definitions, you must usecondor restart

condor_restart -startd

for that change to take effect.

Defining Slot Types

To define your own slot types, add configuration file parameters that list how much of each system
resource you want in the given slot type. Do this by defining configuration variables of the form
SLOT TYPE <N> . The<N> represents an integer (for example,SLOT TYPE 1), which specifies
the slot type defined. Note that there may be multiple slots ofeach type. The number created is
configured withNUMSLOTSTYPE <N> as described later in this section.

A type describes what share of the total system resources a given slot has available to it.

The type can be defined by:

• A simple fraction, such as 1/4

• A simple percentage, such as 25%

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 401

• A comma-separated list of attributes, with a percentage, fraction, numerical value, orauto
for each one.

• A comma-separated list including a blanket value that serves as a default for any resources
not explicitly specified in the list.

A simple fraction or percentage causes an allocation of the total system resources. This includes the
number of CPUs. A comma-separated list allows a fine-tuning of the amounts for specific attributes.

The attributes that specify the number of CPUs and the total amount of RAM in the SMP ma-
chine do not change. For these attributes, specify either absolute values or percentages of the total
available amount (orauto). For example, in a machine with 128 Mbytes of RAM, all the following
definitions result in the same allocation amount.

mem=64
mem=1/2
mem=50%
mem=auto

Other attributes are dynamic, such as disk space and swap space. For these, specify a percentage
or fraction of the total value that is allocated to each slot,instead of specifying absolute values. As
the total values of these resources change on your machine, each slot will take its fraction of the
total and report that as its available amount.

The disk space allocated to each slot is taken from the disk partition containing the slots execute
directory (configured withEXECUTEor SLOTx EXECUTE). If every slot is in a different partition,
then each one may be defined with up to 100%for its disk share. If some slots are in the same
partition, then their total is not allowed to exceed 100%.

The four attribute names are case insensitive when defining slot types. The first letter of the
attribute name distinguishes between the attributes. The four attributes, with several examples of
acceptable names for each are

• Cpus, C, c, cpu

• ram, RAM, MEMORY, memory, Mem, R, r, M, m

• disk, Disk, D, d

• swap, SWAP, S, s, VirtualMemory, V, v

As an example, consider a host of 4 CPUs and 256 megs of RAM. Here are valid example slot
type definitions. Types 1-3 are all equivalent to each other,as are types 4-6. Note that in a real
configuration, you would not use all of these slot types together because they add up to more than
100%of the various system resources. Also note that in a realconfiguration, you would need to also
defineNUMSLOTSTYPE <N> for each slot type.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 402

SLOT_TYPE_1 = cpus=2, ram=128, swap=25%, disk=1/2

SLOT_TYPE_2 = cpus=1/2, memory=128, virt=25%, disk=50%

SLOT_TYPE_3 = c=1/2, m=50%, v=1/4, disk=1/2

SLOT_TYPE_4 = c=25%, m=64, v=1/4, d=25%

SLOT_TYPE_5 = 25%

SLOT_TYPE_6 = 1/4

The default value for each resource share isauto . The share may also be explicitly set toauto .
All slots with the valueauto for a given type of resource will evenly divide whatever remains after
subtracting out whatever was explicitly allocated in otherslot definitions. For example, if one slot
is defined to use 10%of the memory and the rest define it asauto (or leave it undefined), then the
rest of the slots will evenly divide 90%of the memory betweenthemselves.

In both of the following examples, the disk share is set toauto , cpus is 1, and everything else
is 50%:

SLOT_TYPE_1 = cpus=1, ram=1/2, swap=50%

SLOT_TYPE_1 = cpus=1, disk=auto, 50%

The number of slots of each type is set with the configuration variableNUMSLOTSTYPE <N>
, where N is the type as given in theSLOT TYPE <N>variable.

Note that it is possible to set the configuration variables such that they specify an impossible
configuration. If this occurs, thecondorstartd daemon fails after writing a message to its log
attempting to indicate the configuration requirements thatit could not implement.

Evenly Divided Resources

If you are not defining your own slot types, then all resourcesare divided equally among the slots.
The number of slots within the SMP machine is the only attribute that needs to be defined. Its
definition is accomplished by setting the configuration variableNUMSLOTS to the integer number
of slots desired. If variableNUMSLOTSis not defined, it defaults to the number of CPUs within
the SMP machine. You cannot useNUMSLOTSto make Condor advertise more slots than there are
CPUs on the machine. To do that, useNUMCPUS.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 403

Configuring Startd Policy for SMP Machines

Section 3.5 details the Startd Policy Configuration. This section continues the discussion with re-
spect to SMP machines.

Each slot within an SMP machine is treated as an independent machine, each with its own view
of its machine state. There is a single set of policy expressions for the SMP machine as a whole.
This policy may consider the slot state(s) in its expressions. This makes some policies easy to set,
but it makes other policies difficult or impossible to set.

An easy policy to set configures how many of the slots notice console or tty activity on the
SMP as a whole. Slots that are not configured to notice any activity will report ConsoleIdle and
KeyboardIdle times from when thecondorstartddaemon was started, (plus a configurable number
of seconds). With this, you can set up a multiple CPU machine with the default policy settings plus
add that the keyboard and console noticed by only one slot. Assuming a reasonable load average
(see section 3.12.7 below on “Load Average for SMP Machines”), only the one slot will suspend
or vacate its job when the owner starts typing at their machine again. The rest of the slots could be
matched with jobs and leave them running, even while the userwas interactively using the machine.
If the default policy is used, all slots notice tty and console activity and currently running jobs would
suspend or preempt.

This example policy is controlled with the following configuration variables.

• SLOTSCONNECTEDTO CONSOLE

• SLOTSCONNECTEDTO KEYBOARD

• DISCONNECTEDKEYBOARDIDLE BOOST

These configuration variables are fully described in section 3.3.10 on page 179 which lists all
the configuration file settings for thecondorstartd.

The configuration of slots allows each slot to advertise its own machine ClassAd. Yet, there is
only one set of policy expressions for the SMP machine as a whole. This makes the implementation
of certain types of policies impossible. While evaluating the state of one slot (within the SMP
machine), the state of other slots (again within the SMP machine) are not available. Decisions for
one slot cannot be based on what other machines within the SMPare doing.

Specifically, the evaluation of a slot policy expression works in the following way.

1. The configuration file specifies policy expressions that are shared among all of the slots on the
SMP machine.

2. Each slot reads the configuration file and sets up its own machine ClassAd.

3. Each slot is now separate from the others. It has a different state, a different machine ClassAd,
and if there is a job running, a separate job ad. Each slot periodically evaluates the policy
expressions, changing its own state as necessary. This occurs independently of the other slots

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 404

on the machine. So, if thecondorstartddaemon is evaluating a policy expression on a specific
slot, and the policy expression refers toProcID , Owner, or any attribute from a job ad, it
alwaysrefers to the ClassAd of the job running on the specific slot.

To set a different policy for the slots within an SMP machine,a (SUSPEND) policy will be of
the form

SUSPEND = ((SlotID == 1) && (PolicyForSlot1)) || \
((SlotID == 2) && (PolicyForSlot2))

where(PolicyForSlot1) and(PolicyForSlot2) are the desired expressions for each slot.

Load Average for SMP Machines

Most operating systems define the load average for an SMP machine as the total load on all CPUs.
For example, if you have a 4-CPU machine with 3 CPU-bound processes running at the same time,
the load would be 3.0 In Condor, we maintain this view of the total load average and publish it in all
resource ClassAds asTotalLoadAvg .

Condor also provides a per-CPU load average for SMP machines. This nicely represents the
model that each node on an SMP is a slot, separate from the other nodes. All of the default, single-
CPU policy expressions can be used directly on SMP machines,without modification, since the
LoadAvg andCondorLoadAvg attributes are the per-slot versions, not the total, SMP-wide ver-
sions.

The per-CPU load average on SMP machines is a Condor invention. No system call exists to
ask the operating system for this value. Condor already computes the load average generated by
Condor on each slot. It does this by close monitoring of all processes spawned by any of the Condor
daemons, even ones that are orphaned and then inherited byinit. This Condor load average per
slot is reported as the attributeCondorLoadAvg in all resource ClassAds, and the total Condor
load average for the entire machine is reported asTotalCondorLoadAvg . The total, system-
wide load average for the entire machine is reported asTotalLoadAvg . Basically, Condor walks
through all the slots and assigns out portions of the total load average to each one. First, Condor
assigns the known Condor load average to each node that is generating load. If there’s any load
average left in the total system load, it is considered an owner load. Any slots Condor believes are in
the Owner state (like ones that have keyboard activity), arethe first to get assigned this owner load.
Condor hands out owner load in increments of at most 1.0, so generally speaking, no slot has a load
average above 1.0. If Condor runs out of total load average before it runs out of virtual machines,
all the remaining machines believe that they have no load average at all. If, instead, Condor runs out
of slots and it still has owner load remaining, Condor startsassigning that load to Condor nodes as
well, giving individual nodes with a load average higher than 1.0.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 405

Debug logging in the SMP Startd

This section describes how thecondorstartd daemon handles its debugging messages for SMP
machines. In general, a given log message will either be something that is machine-wide (like
reporting the total system load average), or it will be specific to a given slot. Any log entrees
specific to a slot have an extra header printed out in the entry: slot#: . So, for example, here’s the
output about system resources that are being gathered (withD FULLDEBUGandD LOADturned on)
on a 2-CPU machine with no Condor activity, and the keyboard connected to both slots:

11/25 18:15 Swap space: 131064
11/25 18:15 number of Kbytes available for (/home/condor/e xecute): 1345063
11/25 18:15 Looking up RESERVED_DISK parameter
11/25 18:15 Reserving 5120 Kbytes for file system
11/25 18:15 Disk space: 1339943
11/25 18:15 Load avg: 0.340000 0.800000 1.170000
11/25 18:15 Idle Time: user= 0 , console= 4 seconds
11/25 18:15 SystemLoad: 0.340 TotalCondorLoad: 0.000 Tota lOwnerLoad: 0.340
11/25 18:15 slot1: Idle time: Keyboard: 0 Console: 4
11/25 18:15 slot1: SystemLoad: 0.340 CondorLoad: 0.000 Own erLoad: 0.340
11/25 18:15 slot2: Idle time: Keyboard: 0 Console: 4
11/25 18:15 slot2: SystemLoad: 0.000 CondorLoad: 0.000 Own erLoad: 0.000
11/25 18:15 slot1: State: Owner Activity: Idle
11/25 18:15 slot2: State: Owner Activity: Idle

If, on the other hand, this machine only had one slot connected to the keyboard and console, and
the other slot was running a job, it might look something likethis:

11/25 18:19 Load avg: 1.250000 0.910000 1.090000
11/25 18:19 Idle Time: user= 0 , console= 0 seconds
11/25 18:19 SystemLoad: 1.250 TotalCondorLoad: 0.996 Tota lOwnerLoad: 0.254
11/25 18:19 slot1: Idle time: Keyboard: 0 Console: 0
11/25 18:19 slot1: SystemLoad: 0.254 CondorLoad: 0.000 Own erLoad: 0.254
11/25 18:19 slot2: Idle time: Keyboard: 1496 Console: 1496
11/25 18:19 slot2: SystemLoad: 0.996 CondorLoad: 0.996 Own erLoad: 0.000
11/25 18:19 slot1: State: Owner Activity: Idle
11/25 18:19 slot2: State: Claimed Activity: Busy

As you can see, shared system resources are printed without the header (like total swap space),
and slot-specific messages (like the load average or state ofeach slot) get the special header ap-
pended.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 406

Configuring STARTD ATTRS on a per-slot basis

TheSTARTDATTRS (and legacySTARTDEXPRS) settings can be configured on a per-slot basis.
Thecondorstartddaemon builds the list of items to advertise by combining thelists in this order:

1. STARTDATTRS

2. STARTDEXPRS

3. SLOTx STARTDATTRS

4. SLOTx STARTDEXPRS

For example, consider the following configuration:

STARTD_ATTRS = favorite_color, favorite_season
SLOT1_STARTD_ATTRS = favorite_movie
SLOT2_STARTD_ATTRS = favorite_song

This will result in thecondorstartdClassAd for slot1 defining values forfavorite color ,
favorite season , and favorite movie . slot2 will have values forfavorite color ,
favorite season , andfavorite song .

Attributes themselves in theSTARTDATTRSlist can also be defined on a per-slot basis. Here
is another example:

favorite_color = "blue"
favorite_season = "spring"
STARTD_ATTRS = favorite_color, favorite_season
SLOT2_favorite_color = "green"
SLOT3_favorite_season = "summer"

For this example, thecondorstartdClassAds are

slot1:

favorite_color = "blue"
favorite_season = "spring"

slot2:

favorite_color = "green"
favorite_season = "spring"

slot3:

favorite_color = "blue"
favorite_season = "summer"

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 407

Dynamic condor startdProvisioning: Dynamic Slots

Dynamic provisioning, also referred to as a partitionablecondorstartd or as dynamic slots, allows
users to mark slots as partitionable. This means that more than one job can occupy a single slot at
any one time. Typically, slots have a fixed set of resources, including the CPUs, memory and disk
space. By partitioning the slot, these resources become more flexible and able to be better utilized.

Dynamic provisioning provides powerful configuration possibilities, and so should be used with
care. Specifically, while preemption occurs for each individual dynamic slot, it cannot occur directly
for the partitionable slot, or for groups of dynamic slots. For example, for a large number of jobs
requiring 1GB of memory, a pool might be split up into 1GB dynamic slots. In this instance a job
requiring 2GB of memory will be starved and unable to run.

Here is an example that demonstrates how more than one job canbe matched to a single slot
using dynamic provisioning. In this example, slot1 has the following resources:

cpu=10

memory=10240

disk=BIG

Assume that JobA is allocated to this slot. JobA includes thefollowing requirements:

cpu=3

memory=1024

disk=10240

The portion of the slot that is utilized is referred to as Slot1.1, and after allocation, the slot advertises
that it has the following resources still available:

cpu=7

memory=9216

disk=BIG-10240

As each new job is allocated to Slot1, it breaks into Slot1.1,Slot1.2, etc., until the entire set of
available resources have been consumed by jobs.

To enable dynamic provisioning, set theSLOT TYPE <N> PARTITIONABLE configuration
variable toTrue . The stringNwithin the configuration variable name is the slot number.

In a pool using dynamic provisioning, jobs can have extra, and desired, resources specified in
the submit description file:

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 408

requestcpus

requestmemory

requestdisk (in kilobytes)

This example shows a portion of the job submit description file for use when submitting a job to
a pool with dynamic provisioning.

universe = vanilla
executable =

request_cpus = 3
request_memory = 1024
request_disk = 10240

queue

For each type of slot, the original, partitionable slot and the new smaller, dynamic slots, an
attribute is added to identify it. The original slot will have an attribute stating

PartitionableSlot = True

and the dynamic slots will have an attribute

DynamicSlot = True

These attributes may be used in aSTARTexpression for the purposes of creating detailed policies.

A partitionable slot will always appear as though it is not running a job. It will eventually show as
having no available resources, which will prevent further matching to new jobs. Because it has been
effectively broken up into smaller slots, these will show asrunning jobs directly. These dynamic
slots can also be preempted in the same way as nonpartitionedslots.

3.12.8 Condor’s Dedicated Scheduling

Applications that require multiple resources, yet must notbe preempted, are handled gracefully
by Condor. Condor combinesopportunistic schedulinganddedicated schedulingwithin a single
system. Opportunistic schedulinginvolves placing a job on a non-dedicated resource under the
assumption that the resource may not be available for the entire duration of the job. Dedicated
schedulingassumes the constant availability of resources; it is assumed that the job will run to
completion, without interruption.

To support applications needing dedicated resources, an administrator configures resources to
be dedicated. These resources are controlled by a dedicatedscheduler, a single machine within the

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 409

pool that runs acondorschedddaemon. There is no limit on the number of dedicated schedulers
within a Condor pool. However, each dedicated resource may only be managed by a single dedicated
scheduler. Running multiple dedicated schedulers within asingle pool results in a fragmentation of
dedicated resources. This can create a situation where jobscannot run, because there are too few
resource that may be allocated.

After a condorschedddaemon has been selected as the dedicated scheduler for the pool and
resources are configured to be dedicated, users submit parallel universe jobs (including MPI appli-
cations) through thatcondorschedddaemon. When an idle parallel universe job is found in the
queue, this dedicated scheduler performs its own scheduling algorithm to find and claim appropri-
ate resources for the job. When a resource can no longer be used to serve a job that must not be
preempted, the resource is allowed to run opportunistic jobs.

Selecting and Setting Up a Dedicated Scheduler

We recommend that you select a single machine within a Condorpool to act as the dedicated sched-
uler. This becomes the machine from upon which all users submit their parallel universe jobs. The
perfect choice for the dedicated scheduler is the single, front-end machine for a dedicated cluster of
compute nodes. For the pool without an obvious choice for a submit machine, choose a machine that
all users can log into, as well as one that is likely to be up andrunning all the time. All of Condor’s
other resource requirements for a submit machine apply to this machine, such as having enough disk
space in the spool directory to hold jobs. See section 3.2.2 on page 118 for details on these issues.

Configuration Examples for Dedicated Resources

Each machine may have its own policy for the execution of jobs. This policy is set by configuration.
Each machine with aspects of its configuration that are dedicated identifies the dedicated scheduler.
And, the ClassAd representing a job to be executed on one or more of these dedicated machines
includes an identifying attribute. An example configuration file with the following various policy
settings is/etc/condor config.local.dedicated.resource .

Each dedicated machine defines the configuration variableDedicatedScheduler , which
identifies the dedicated scheduler it is managed by. The local configuration file for any dedicated
resource contains a modified form of

DedicatedScheduler = "DedicatedScheduler@full.host.na me"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

Substitute the host name of the dedicated scheduler machinefor the string
” full.host.name ”.

If running personal Condor, the name of the scheduler includes the user name it was started as,
so the configuration appears as:

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 410

DedicatedScheduler = "DedicatedScheduler@username@ful l.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

All dedicated resources must have policy expressions whichallow for jobs to always run, but not
be preempted. The resource must also be configured to prefer jobs from the dedicated scheduler over
all other jobs. Therefore, configuration gives the dedicated scheduler of choice the highest rank. It is
worth noting that Condor puts no other requirements on a resource for it to be considered dedicated.

Job ClassAds from the dedicated scheduler contain the attributeScheduler . The attribute is
defined by a string of the form

Scheduler = "DedicatedScheduler@full.host.name"

The host name of the dedicated scheduler substitutes for thestringfull.host.name .

Different resources in the pool may have different dedicated policies by varying the local con-
figuration.

Policy Scenario: Machine Runs Only Jobs That Require Dedicated ResourcesOne possible
scenario for the use of a dedicated resource is to only run jobs that require the dedicated
resource. To enact this policy, the configure with the following expressions:

START = Scheduler =?= $(DedicatedScheduler)
SUSPEND = False
CONTINUE = True
PREEMPT = False
KILL = False
WANT_SUSPEND = False
WANT_VACATE = False
RANK = Scheduler =?= $(DedicatedScheduler)

TheSTART expression specifies that a job with theScheduler attribute must match the
string correspondingDedicatedScheduler attribute in the machine ClassAd. TheRANK
expression specifies that this same job (with theScheduler attribute) has the highest rank.
This prevents other jobs from preempting it based on user priorities. The rest of the ex-
pressions disable all of thecondorstartd daemon’s regular policies for evicting jobs when
keyboard and CPU activity is discovered on the machine.

Policy Scenario: Run Both Jobs That Do and Do Not Require Dedicated ResourcesWhile the
first example works nicely for jobs requiring dedicated resources, it can lead to poor utilization
of the dedicated machines. A more sophisticated strategy allows the machines to run other
jobs, when no jobs that require dedicated resources exist. The machine is configured to prefer
jobs that require dedicated resources, but not prevent others from running.

To implement this, configure the machine as a dedicated resource (as above) modifying only
theSTARTexpression:

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 411

START = True

Policy Scenario: Adding Desk-Top Resources To The MixA third policy example allows all
jobs. These desk-top machines use a preexistingSTARTexpression that takes the machine
owner’s usage into account for some jobs. The machine does not preempt jobs that must
run on dedicated resources, while it will preempt other jobsbased on a previously set policy.
So, the default pool policy is used for starting and stoppingjobs, while jobs that require a
dedicated resource always start and are not preempted.

The START, SUSPEND, PREEMPT, andRANKpolicies are set in the global configuration.
Locally, the configuration is modified to this hybrid policy by adding a second case.

SUSPEND = Scheduler =!= $(DedicatedScheduler) && ($(SUSPE ND))
PREEMPT = Scheduler =!= $(DedicatedScheduler) && ($(PREEM PT))
RANK_FACTOR = 1000000
RANK = (Scheduler =?= $(DedicatedScheduler) * $(RANK_FACTOR)) \

+ $(RANK)
START = (Scheduler =?= $(DedicatedScheduler)) || ($(START))

DefineRANKFACTORto be a larger value than the maximum value possible for the existing
rank expression.RANK is just a floating point value, so there is no harm in having a value
that is very large.

Policy Scenario: Parallel Scheduling GroupsIn some parallel environments, machines are di-
vided into groups, and jobs should not cross groups of machines – that is, all the nodes of
a parallel job should be allocated to machines within the same group. The most common
example is a pool of machines using infiniband switches. Eachswitch might connect 16 ma-
chines, and a pool might have 160 machines on 10 switches. If the infiniband switches are not
routed to each other, each job must run on machines connectedto the same switch.

The dedicated scheduler’s parallel scheduling groups features supports jobs that must not cross
group boundaries. Define a group by having each machine within a group set the configuration
variableParallelSchedulingGroup with a string that is a unique name for the group.
The submit description file for a parallel universe job whichmust not cross group boundaries
contains

+WantParallelSchedulingGroups = True

The dedicated scheduler enforces the allocation to within agroup.

Preemption with Dedicated Jobs

The dedicated scheduler can optionally preempt running MPIjobs in favor of higher priority MPI
jobs in its queue. Note that this is different from preemption in non-parallel universes, and MPI jobs
cannot be preempted either by a machine’s user pressing a keyor by other means.

By default, the dedicated scheduler will never preempt running MPI jobs. Two configu-
ration file items control dedicated preemption:SCHEDDPREEMPTIONREQUIREMENTSand

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 412

SCHEDDPREEMPTIONRANK. These have no default value, so if either are not defined, pre-
emption will never occur. SCHEDDPREEMPTIONREQUIREMENTSmust evaluate toTrue
for a machine to be a candidate for this kind of preemption. Ifmore machines are candi-
dates for preemption than needed to satisfy a higher priority job, the machines are sorted by
SCHEDDPREEMPTIONRANK, and only the highest ranked machines are taken.

Note that preempting one node of a running MPI job requires killing the entire job on all of its
nodes. So, when preemption happens, it may end up freeing more machines than strictly speaking
are needed. Also, as Condor cannot produce checkpoints for MPI jobs, preempted jobs will be re-
run, starting again from the beginning. Thus, the administrator should be careful when enabling
dedicated preemption. The following example shows how to enable dedicated preemption.

STARTD_JOB_EXPRS = JobPrio
SCHEDD_PREEMPTION_REQUIREMENTS = (My.JobPrio < Target.J obPrio)
SCHEDD_PREEMPTION_RANK = 0.0

In this case, preemption is enabled by the user job priority.If a set of machines is running a job at
user priority 5, and the user submits a new job at user priority 10, the running job will be preempted
for the new job. The old job is put back in the queue, and will begin again from the beginning when
assigned to a new set of machines.

Grouping dedicated nodes into parallel scheduling groups

In some parallel environments, machines are divided into groups, and jobs should not cross groups
of machines – that is, all the nodes of a parallel job should beallocated to machines in the same
group. The most common example is a pool of machine using infiniband switches. Each switch
might connect 16 machines, and a pool might have 160 machineson 10 switches. If the infiniband
switches are not routed to each other, each job must run on machines connected to the same switch.
The dedicated scheduler’s parallel scheduling groups features supports this operation.

Each startd must define which group it belongs to by setting the
ParallelSchedulingGroup property in the config file, and advertising it into the ma-
chine ClassAd. The value of this property is simply a string,which should be the same for all
startds in a given group. The property must be advertised in the startd job ad by appending
ParallelSchedulingGroup into the STARTDATTRS configuration variable. Then,
parallel jobs which want to be scheduled by group, declare this in their submit file by setting
+WantParallelSchedulingGroups=True.

3.12.9 Configuring Condor for Running Backfill Jobs

Condor can be configured to run backfill jobs whenever thecondorstartd has no other work to
perform. These jobs are considered the lowest possible priority, but when machines would otherwise
be idle, the resources can be put to good use.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 413

Currently, Condor only supports using the Berkeley Open Infrastructure for Network Com-
puting (BOINC) to provide the backfill jobs. More information about BOINC is available at
http://boinc.berkeley.edu.

The rest of this section provides an overview of how backfill jobs work in Condor, details for
configuring the policy for when backfill jobs are started or killed, and details on how to configure
Condor to spawn the BOINC client to perform the work.

Overview of Backfill jobs in Condor

Whenever a resource controlled by Condor is in the Unclaimed/Idle state, it is totally idle; neither the
interactive user nor a Condor job is performing any work. Machines in this state can be configured
to enter theBackfill state, which allows the resource to attempt a background computation to keep
itself busy until other work arrives (either a user returning to use the machine interactively, or a
normal Condor job). Once a resource enters the Backfill state, the condorstartd will attempt to
spawn another program, called abackfill client, to launch and manage the backfill computation.
When other work arrives, thecondorstartd will kill the backfill client and clean up any processes
it has spawned, freeing the machine resources for the new, higher priority task. More details about
the different states a Condor resource can enter and all of the possible transitions between them are
described in section 3.5 beginning on page 252, especially sections 3.5.5, 3.5.6, and 3.5.7.

At this point, the only backfill system supported by Condor isBOINC. Thecondorstartdhas the
ability to start and stop the BOINC client program at the appropriate times, but otherwise provides
no additional services to configure the BOINC computations themselves. Future versions of Condor
might provide additional functionality to make it easier tomanage BOINC computations from within
Condor. For now, the BOINC client must be manually installedand configured outside of Condor
on each backfill-enabled machine.

Defining the Backfill Policy

There are a small set of policy expressions that determine ifa condorstartd will attempt to spawn
a backfill client at all, and if so, to control the transitionsin to and out of the Backfill state. This
section briefly lists these expressions. More detail can be found in section 3.3.10 on page 179.

ENABLE BACKFILL A boolean value to determine if any backfill functionality should be used.
The default value isFalse .

BACKFILL SYSTEM A string that defines what backfill system to use for spawning and managing
backfill computations. Currently, the only supported string is "BOINC" .

START BACKFILL A boolean expression to control if a Condor resource should start a backfill
client. This expression is only evaluated when the machine is in the Unclaimed/Idle state and
theENABLEBACKFILL expression isTrue .

Condor Version 7.2.3 Manual

http://boinc.berkeley.edu

3.12. Setting Up for Special Environments 414

EVICT BACKFILL A boolean expression that is evaluated whenever a Condor resource is in the
Backfill state. A value ofTrue indicates the machine should immediately kill the currently
running backfill client and any other spawned processes, andreturn to the Owner state.

The following example shows a possible configuration to enable backfill:

Turn on backfill functionality, and use BOINC
ENABLE_BACKFILL = TRUE
BACKFILL_SYSTEM = BOINC

Spawn a backfill job if we've been Unclaimed for more than 5
minutes
START_BACKFILL = $(StateTimer) > (5 * $(MINUTE))

Evict a backfill job if the machine is busy (based on keyboar d
activity or cpu load)
EVICT_BACKFILL = $(MachineBusy)

Overview of the BOINC system

The BOINC system is a distributed computing environment forsolving large scale scientific prob-
lems. A detailed explanation of this system is beyond the scope of this manual. Thorough docu-
mentation about BOINC is available at their website: http://boinc.berkeley.edu. However, a brief
overview is provided here for sites interested in using BOINC with Condor to manage backfill jobs.

BOINC grew out of the relatively famous SETI@home computation, where volunteers installed
special client software, in the form of a screen saver, that contacted a centralized server to download
work units. Each work unit contained a set of radio telescopedata and the computation tried to find
patterns in the data, a sign of intelligent life elsewhere inthe universe (hence the name: “Search
for Extra Terrestrial Intelligence at home”). BOINC is developed by the Space Sciences Lab at
the University of California, Berkeley, by the same people who created SETI@home. However,
instead of being tied to the specific radio telescope application, BOINC is a generic infrastructure
by which many different kinds of scientific computations canbe solved. The current generation
of SETI@home now runs on top of BOINC, along with various physics, biology, climatology, and
other applications.

The basic computational model for BOINC and the original SETI@home is the same: volunteers
install BOINC client software which runs whenever the machine would otherwise be idle. However,
the BOINC installation on any given machine must be configured so that it knows what computations
to work for (each computation is referred to as aproject using BOINC’s terminology), instead of
always working on a hard coded computation. A given BOINC client can be configured to donate
all of its cycles to a single project, or to split the cycles between projects so that, on average, the
desired percentage of the computational power is allocatedto each project. Once the client software
(a program called theboinc client) starts running, it attempts to contact a centralized server for
each project it has been configured to work for. The BOINC software downloads the appropriate
platform-specific application binary and some work units from the central server for each project.
Whenever the client software completes a given work unit, itonce again attempts to connect to that
project’s central server to upload the results and downloadmore work.

Condor Version 7.2.3 Manual

http://boinc.berkeley.edu

3.12. Setting Up for Special Environments 415

BOINC participants must register at the centralized serverfor each project they wish to donate
cycles to. The process produces a unique identifier so that the work performed by a given client can
be credited to a specific user. BOINC keeps track of the work units completed by each user, so that
users providing the most cycles get the highest rankings (and therefore, bragging rights).

Because BOINC already handles the problems of distributingthe application binaries for each
scientific computation, the work units, and compiling the results, it is a perfect system for managing
backfill computations in Condor. Many of the applications that run on top of BOINC produce
their own application-specific checkpoints, so even if theboinc client is killed (for example, when
a Condor job arrives at a machine, or if the interactive user returns) an entire work unit will not
necessarily be lost.

Installing the BOINC client software

If a working installation of BOINC currently exists on machines where backfill is desired, skip the
remainder of this section. Continue reading with the section titled “Configuring the BOINC client
under Condor”.

In Condor Version 7.2.3, the BOINC client software that actually spawns and manages the back-
fill computations (theboinc client) must be manually downloaded, installed and configured outside
of Condor. Hopefully in future versions, the Condor packagewill include theboinc client, and there
will be a way to automatically install and configure the BOINCsoftware together with Condor.

Theboinc client executables can be obtained at one of the following locations:

http://boinc.berkeley.edu/download.php This is the official BOINC download site, which pro-
vides binaries for MacOS 10.3 or higher, Linux/x86, Solaris/SPARC and Windows/x86.
From the download table, use the “Recommended version”, anduse the “Core client only
(command-line)” package when available.

http://boinc.berkeley.edu/downloadother.php This page contains links to sites that distribute
boinc client binaries for other platforms beyond the officially supported ones.

Once the BOINC client software has been downloaded, theboinc clientbinary should be placed
in a location where the Condor daemons can use it. The path will be specified via a Condor config-
uration setting,BOINC Executable , described below.

Additionally, a local directory on each machine should be created where the BOINC system can
write files it needs. This directory must not be shared by multiple instances of the BOINC software,
just like thespool or execute directories used by Condor. This location of this directoryis
defined using theBOINC InitialDir macro, described below. The directory must be writable
by whatever user theboinc client will run as. This user is either the same as the user the Condor
daemons are running as (if Condor is not running as root), or auser defined via theBOINC Owner
setting described below.

Finally, Condor administrators wishing to use BOINC for backfill jobs must create accounts
at the various BOINC projects they want to donate cycles to. The details of this process vary

Condor Version 7.2.3 Manual

http://boinc.berkeley.edu/download.php
http://boinc.berkeley.edu/download_other.php

3.12. Setting Up for Special Environments 416

from project to project. Beware that this step must be done manually, as the BOINC software
spawned by Condor (theboinc client) can not automatically register a user at a given project
(unlike the more fancy GUI version of the BOINC client software which many users run as a
screen saver). For example, to configure machines to performwork for the Einstein@home project
(a physics experiment run by the University of Wisconsin at Milwaukee) Condor administrators
should go to http://einstein.phys.uwm.edu/createaccountform.php, fill in the web form, and gen-
erate a new Einstein@home identity. This identity takes theform of a project URL (such as
http://einstein.phys.uwm.edu) followed by anaccount key, which is a long string of letters and num-
bers that is used as a unique identifier. This URL and account key will be needed when configuring
Condor to use BOINC for backfill computations (described in the next section).

Configuring the BOINC client under Condor

This section assumes that the BOINC client software has already been installed on a given machine,
that the BOINC projects to join have been selected, and that aunique project account key has been
created for each project. If any of these steps has not been completed, please read the previous
section titled “Installing the BOINC client software”

Whenever thecondorstartd decides to spawn theboinc client to perform backfill computa-
tions (whenENABLEBACKFILL is True , when the resource is in Unclaimed/Idle, and when
theSTARTBACKFILL expression evaluates toTrue), it will spawn acondorstarter to directly
launch and monitor theboinc client program. Thiscondorstarter is just like the one used to spawn
normal Condor jobs. In fact, the argv[0] of theboinc client will be renamed to “condorexec”, as
described in section 2.16.1 on page 111.

Thecondorstarter for spawning theboinc client reads values out of the Condor configuration
files to define the job it should run, as opposed to getting these values from a job classified ad in the
case of a normal Condor job. All of the configuration settingsto control things like the path to the
boinc clientbinary to use, the command-line arguments, the initial working directory, and so on, are
prefixed with the string"BOINC " . Each possible setting is described below:

Required settings:

BOINC Executable The full path to theboinc client binary to use.

BOINC InitialDir The full path to the local directory where BOINC should run.

BOINC Universe The Condor universe used for running theboinc client program. Thismust
be set to"vanilla" for BOINC to work under Condor.

BOINC Owner What user theboinc client program should be run as. This macro is only used
if the Condor daemons are running as root. In this case, thecondorstarter must be told
what user identity to switch to before spawning theboinc client. This can be any valid user
on the local system, but it must have write permission in whatever directory is specified in
BOINC InitialDir).

Optional settings:

Condor Version 7.2.3 Manual

http://einstein.phys.uwm.edu/create_account_form.php
http://einstein.phys.uwm.edu

3.12. Setting Up for Special Environments 417

BOINC Arguments Command-line arguments that should be passed to theboinc clientprogram.
For example, one way to specify the BOINC project to join is touse the–attach project
argument to specify a project URL and account key. For example:

BOINC_Arguments = --attach_project http://einstein.phy s.uwm.edu [account_key]

BOINC Environment Environment variables that should be set for theboinc client.

BOINC Output Full path to the file where STDOUT from theboinc client should be written. If
this macro is not defined, STDOUT will be discarded.

BOINC Error Full path to the file where STDERR from theboinc client should be written. If
this macro is not defined, STDERR will be discarded.

The following example shows one possible usage of these settings:

Define a shared macro that can be used to define other settin gs.
This directory must be manually created before attempting to run
any backfill jobs.
BOINC_HOME = $(LOCAL_DIR)/boinc

Path to the boinc_client to use, and required universe sett ing
BOINC_Executable = /usr/local/bin/boinc_client
BOINC_Universe = vanilla

What initial working directory should BOINC use?
BOINC_InitialDir = $(BOINC_HOME)

Save STDOUT and STDERR
BOINC_Output = $(BOINC_HOME)/boinc.out
BOINC_Error = $(BOINC_HOME)/boinc.err

If the Condor daemons reading this configuration are runningas root, an additional macro must
be defined:

Specify the user that the boinc_client should run as:
BOINC_Owner = nobody

In this case, Condor would spawn theboinc client as “nobody”, so the directory specified in
$(BOINC HOME)would have to be writable by the “nobody” user.

A better choice would probably be to create a separate user account just for running BOINC
jobs, so that the local BOINC installation is not writable byother processes running as “nobody”.
Alternatively, theBOINC Owner could be set to “daemon”.

Attaching to a specific BOINC project

There are a few ways to attach a Condor/BOINC installation toa given BOINC project:

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 418

• The –attach project argument to the boinc client program, defined via the
BOINC Arguments setting (described above). Theboinc client will only accept a
single–attach project argument, so this method can only be used to attach to one project.

• Theboinc cmdcommand-line tool can perform various BOINC administrative tasks, includ-
ing attaching to a BOINC project. Usingboinc cmd, the appropriate argument to use is called
–project attach. Unfortunately, theboinc client must be running forboinc cmdto work, so
this method can only be used once the Condor resource has entered the Backfill state and has
spawned theboinc client.

• Manually create account files in the local BOINC directory. Upon startup,
the boinc client will scan its local directory (the directory specified with
BOINC InitialDir) for files of the form account [URL].xml , for example,
account einstein.phys.uwm.edu.xml . Any files with a name that matches this
convention will be read and processed. The contents of the file define the project URL and
the authentication key. The format is:

<account>
<master_url>[URL]</master_url>
<authenticator>[key]</authenticator>

</account>

For example:

<account>
<master_url>http://einstein.phys.uwm.edu</master_ur l>
<authenticator>aaaa1111bbbb2222cccc3333</authentica tor>

</account>

(Of course, the<authenticator> tag would use the real authentication key returned when
the account was created at a given project).

These account files can be copied to the local BOINC directoryon all machines in a Condor
pool, so administrators can either distribute them manually, or use symbolic links to point to
a shared file system.

In the first two cases (using command-line arguments forboinc client or running theboinc cmd
tool), BOINC will write out the resulting account file to the local BOINC directory on the ma-
chine, and then future invocations of theboinc client will already be attached to the appropri-
ate project(s). More information about participating in multiple BOINC projects can be found at
http://boinc.berkeley.edu/multipleprojects.php.

BOINC on Windows

The Windows version of BOINC has multiple installation methods. The preferred method of instal-
lation for use with Condor is the “Shared Installation” method. Using this method gives all users
access to the executables. During the installation process

Condor Version 7.2.3 Manual

http://boinc.berkeley.edu/multiple_projects.php

3.12. Setting Up for Special Environments 419

1. Deselect the option which makes BOINC the default screen saver

2. Deselect the option which runs BOINC on start-up.

3. Do not launch BOINC at the conclusion of the installation.

There are three major differences from the Unix version to keep in mind when dealing with the
Windows installation:

1. The Windows executables have different names from the Unix versions. The Windows client
is calledboinc.exe. Therefore, the configuration variableBOINC Executable is written:

BOINC_Executable = C:\PROGRA˜1\BOINC\boinc.exe

The Unix administrative toolboinc cmdis calledboinccmd.exeon Windows.

2. When using BOINC on Windows, the configuration variableBOINC InitialDir will not
be respected fully. To work around this difficulty, pass the BOINC home directory directly to
the BOINC application via theBOINC Arguments configuration variable. For Windows,
rewrite the argument line as:

BOINC_Arguments = --dir $(BOINC_HOME) \
--attach_project http://einstein.phys.uwm.edu [accoun t_key]

As a consequence of setting the BOINC home directory, some projects may fail with the
authentication error:

Scheduler request failed: Peer
certificate cannot be authenticated
with known CA certificates.

To resolve this issue, copy theca-bundle.crt file from the BOINC installation directory
to $(BOINC HOME). This file appears to be project and machine independent, andit can
therefore be distributed as part of an automated Condor installation.

3. TheBOINC Owner configuration variable behaves differently on Windows thanit does on
Unix. Its value may take one of two forms:

• domain\user

• user

This form assumes that the user exists in the local domain (that is, on the computer
itself).

Setting this option causes the addition of the job attribute

RunAsUser = True

to the backfill client. This further implies that the configuration variable
STARTERALLOWRUNASOWNERbe set toTrue to insure that the localcondorstarter
be able to run jobs in this manner. For more information on theRunAsUser attribute,
see section 6.2.4. For more information on the theSTARTERALLOWRUNASOWNER
configuration variable, see section 3.3.7.

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 420

3.12.10 Group ID-Based Process Tracking

One function that Condor often must perform is keeping trackof all processes created by a job. This
is done so that Condor can provide resource usage statisticsabout jobs, and also so that Condor can
properly clean up any processes that jobs leave behind when they exit.

In general, tracking process families is difficult to do reliably. By default Condor uses a combi-
nation of process parent-child relationships, process groups, and information that Condor places in
a job’s environment to track process families on a best-effort basis. This usually works well, but it
can falter for certain applications or for jobs that try to evade detection.

Jobs that run with a user account dedicated for Condor’s use can be reliably tracked, since
all Condor needs to do is look for all processes running usingthe given account. Administra-
tors must specify in Condor’s configuration what accounts can be considered dedicated via the
DEDICATEDEXECUTEACCOUNTREGEXPsetting. See Section 3.6.11 for further details.

Ideally, jobs can be reliably tracked regardless of the useraccount they execute under. This can
be accomplished with group ID-based tracking. This method of tracking requires that a range of
dedicatedgroup IDs (GID) be set aside for Condor’s use. The number of GIDs that must be set
aside for an execute machine is equal to its number of execution slots. GID-based tracking is only
available on Linux, and it requires that Condor either runs as root or uses privilege separation (see
Section 3.6.12).

GID-based tracking works by placing a dedicated GID in the supplementary group list of a job’s
initial process. Since modifying the supplementary group ID list requiresroot privilege, the job
will not be able to create processes that go unnoticed by Condor.

Once a suitable GID range has been set aside for process tracking, GID-based tracking can be
enabled via theUSEGID PROCESSTRACKING parameter. The minimum and maximum GIDs
included in the range are specified with theMIN TRACKINGGID and MAXTRACKINGGID
settings. For example, the following would enable GID-based tracking for an execute machine with
8 slots.

USE_GID_PROCESS_TRACKING = True
MIN_TRACKING_GID = 750
MAX_TRACKING_GID = 757

GID-based process tracking requires use of thecondorprocd. If
USEGID PROCESSTRACKING is true, the condorprocd will be used regardless of the
USEPROCDsetting.

3.12.11 Concurrency Limits

Condor’s implementation of the mechanism calledconcurrency limitsallows an administrator to
define and set integer limits on consumable resources. Theselimits are utilized during matchmaking,
preventing matches when the resources are allocated. Typical uses of this mechanism will include

Condor Version 7.2.3 Manual

3.12. Setting Up for Special Environments 421

the management of software licenses, database connections, and any other consumable resource
external to Condor.

Use of the concurrency limits mechanism requires configuration variables to set distinct limits,
while jobs must identify the need for a specific resource.

In the configuration, a string must be chosen as a name for the particular resource. This name is
used in the configuration of acondornegotiatordaemon variable that defines the concurrency limit,
or integer quantity available of this resource. For example, assume that there are 3 licenses for the
X software. The configuration variable concurrency limit may be:

XSW_LIMIT = 3

where"XSW" is the invented name of this resource, which is appended withthe string LIMIT . With
this limit, a maximum of 3 jobs declaring that they need this resource may be executed concurrently.

In addition to named limits, such as in the example named limit XSW, configuration may specify
a concurrency limit for all resources that are not covered byspecifically-named limits. The configu-
ration variableCONCURRENCYLIMIT DEFAULT sets this value. For example,

CONCURRENCY_LIMIT_DEFAULT = 1

sets a limit of 1 job in execution for any job that declares itsrequirement for a resource that is not
named in the configuration. IfCONCURRENCYLIMIT DEFAULTis omitted from the configura-
tion, then no limits are placed on the number of concurrentlyexecuting jobs of resources for which
there is no specifically named concurrency limit.

The job must declare its need for a resource by placing a command in its submit description file
or adding an attribute to the job ClassAd. In the submit description file, an example job that requires
the X software adds:

concurrency_limits = XSW

This results in the job ClassAd attribute

ConcurrencyLimits = "XSW"

The implementation of the job ClassAd attributeConcurrencyLimits has a more general
implementation. It is either a string or a string list. A listcontains items delimited by space charac-
ters and comma characters. Therefore, a job that requires the 3 separate resources named as"XSW",
"y" , and"Z" , will contain in its submit description file:

concurrency_limits = y,XSW,Z

Additionally, a numerical value identifying the number of resources required may be specified
in the definition of a resource, following the resource name by a colon character and the integer

Condor Version 7.2.3 Manual

3.13. Java Support Installation 422

number of resources. Modifying the given example to specifythat 3 of the"XSW" resource are
needed results in:

concurrency_limits = y,XSW:3,Z

Note that the maximum for any given limit, as specified with the configuration variable
<* > LIMIT , is as strictly enforcedas possible. In the presence of preemption and dropped up-
dates from thecondorstartd daemon to thecondorcollector daemon, it is possible for the limit
to be exceeded. Condor will never kill a job to free up a limit,including the case where a limit
maximum is exceeded.

3.13 Java Support Installation

Compiled Java programs may be executed (under Condor) on anyexecution site with a Java Virtual
Machine (JVM). To do this, Condor must be informed of some details of the JVM installation.

Begin by installing a Java distribution according to the vendor’s instructions. We have suc-
cessfully used the Sun Java Developer’s Kit, but any distribution should suffice. Your machine
may have been delivered with a JVM already installed – installed code is frequently found in
/usr/bin/java .

Condor’s configuration includes the location of the installed JVM. Edit the configuration file.
Modify the JAVA entry to point to the JVM binary, typically/usr/bin/java . Restart the
condorstartddaemon on that host. For example,

% condor_restart -startd bluejay

The condorstartd daemon takes a few moments to exercise the Java capabilites of the con-
dor starter, query its properties, and then advertise the machine to thepool as Java-capable. If the
set up succeeded, thencondorstatuswill tell you the host is now Java-capable by printing the Java
vendor and the version number:

% condor_status -java bluejay

After a suitable amount of time, if this command does not giveany output, then thecon-
dor starter is having difficulty executing the JVM. The exact cause of theproblem depends on the
details of the JVM, the local installation, and a variety of other factors. We can offer only limited
advice on these matters, but here is an approach to solving the problem.

To reproduce the test that thecondorstarter is attempting, try running the Javacondorstarter
directly. To find where thecondorstarter is installed, run this command:

% condor_config_val STARTER

Condor Version 7.2.3 Manual

3.13. Java Support Installation 423

This command prints out the path to thecondorstarter, perhaps something like this:

/usr/condor/sbin/condor_starter

Use this path to execute thecondorstarter directly with the-classadargument. This tells the
starter to run its tests and display its properties.

/usr/condor/sbin/condor_starter -classad

This command will display a short list of cryptic properties, such as:

IsDaemonCore = True
HasFileTransfer = True
HasMPI = True
CondorVersion = "$CondorVersion: 7.1.0 Mar 26 2008 BuildID : 80210 $"

If the Java configuration is correct, there will also be a short list of Java properties, such as:

JavaVendor = "Sun Microsystems Inc."
JavaVersion = "1.2.2"
JavaMFlops = 9.279696
HasJava = True

If the Java installation is incorrect, then any error messages from the shell or Java will be printed
on the error stream instead.

One identified difficulty occurs when the machine has a large quantity of physical RAM, and
this quantity exceeds the Java limitations. This is a known problem for the Sun JVM. Condor
appends the maximum amount of system RAM to the Java Maxheap Argument, and sometimes
this value is larger than the JVM allows. The end result is that Condor believes that the JVM
on the machine is faulty, resulting in nothing showing up as aresult of executing the command
condor status -java .

The way to work around this particular problem is to modify the configuration file for those ma-
chines that may execute Java universe jobs. TheJAVA MAXHEAPARGUMENTmacro is explicitly
set to null in the configuration, to prevent Condor from appending the machine-specific, but too-big
value. Then the Java Maxheap Argument is set (again, in the configuration) to the maximum value
allowed for the JVM on that platform, using theJAVA EXTRAARGUMENTSconfiguration vari-
able. Note that the name of the switch that regulates the JavaMaxheap Argument is different for
different vendors’ JVM.

The following is an example of the configuration fix for the SunJVM:

First set JAVA_MAXHEAP_ARGUMENT to null, to disable the de fault of max RAM
JAVA_MAXHEAP_ARGUMENT =
Now set the argument with the Sun-specific maximum allowab le value
JAVA_EXTRA_ARGUMENTS = -Xmx1906m

Condor Version 7.2.3 Manual

3.14. Virtual Machines 424

3.14 Virtual Machines

Virtual Machines can be executed on any execution site with VMware or Xen (vialibvirt). To do
this, Condor must be informed of some details of the VM installation.

What follows is not a comprehensive list of the VM Universe options; rather, it is intended to
serve as a starting point for those users interested in getting VM Universe up and running quickly.
For further, more comprehensive coverage of the configuration options please refer to section 3.3.28.

Begin by installing the virtualization package according to the vendor’s instructions. We have
successfully used both VMware Server and Xen. If you are considering running on a Windows
system, you will also need to install a Perl distribution; for this we have used ActivePerl successfully.

If you are considering Xen, then there are four things that must exist on a system to fully support
it. First, a Xen kernel must be running on the execute machine. This running Xen kernel acts
as Dom0, in Xen terminology, under which all VMs are started,called DomUs Xen terminology.
Second, thevirsh utility must be available, and its companionlibvirtd andXendservices must be
running. Third, a reasonably recent version of themkisofsutility must be available, for creation of
CD-ROM disk images. Fourth, thepygrubprogram must be available, for execution of VMs whose
disks contain the kernel they will run.

3.14.1 Configuration Parameters

There are a number of configuration parameters related to virtual machines. Some options are
required, while others are optional. Here we only discuss those that are required.

First, you are required to specify the type of VM that is installed. For instance, the following
tells Condor we are using VMware:

VM_TYPE = vmware

You are also required to specify the location ofcondorvm-gahpand its log file. On a Windows
installation, these options would look like this:

VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp.exe
VM_GAHP_LOG = $(LOG)/VMGahpLog

You must also provide a version string for the Virtual Machine software you are using:

VM_VERSION = server1.0.4

While required, this option does not alter the behavior of Condor. Instead, it is added to the
ClassAd for the machine, so it can be matched against. This way, if future releases of VMware/Xen
support new features that are desirable for your job, you canmatch on this string.

Condor Version 7.2.3 Manual

3.14. Virtual Machines 425

VMware-Specific Configuration

If you are using VMware you also need to set the location of thePerl executable. In most cases,
however, the default value should suffice:

VMWARE_PERL = perl

This, of course, assumes the Perl executable is in the path. If this is not the case, then a full path
to the Perl executable will be required.

The final required option is the location of the VMware control script. It’s located in Condor’s
sbin directory:

VMWARE_PERL = $(SBIN)/condor_vm_vmware.pl

Finally, note that an execute machine’sEXECUTEsetting should not contain any symlinks in its
path if the machine is configured to run VMware jobs. See the FAQ entry in section 7.3 for details.

Xen-Specific Configuration

Xen configurations must set the location of the control script Condor uses to interact with Xen:

XEN_SCRIPT = $(SBIN)/condor_vm_xen.sh

The other required option not included in the default Xen configuration is
XENDEFAULTKERNEL: this is the kernel image that will be used in cases where the user
does not specify one explicitly in their job submission. In most cases, this is can be the default
kernel from which the system was booted. For instance, the following was used on a Fedora Core
installation:

XEN_DEFAULT_KERNEL = /boot/vmlinuz-2.6.18-1.2798.fc6x en

There is one final option worth mentioning:XENDEFAULTINITRD . It’s not a required option,
but if you do decide to use it, there are a few things that you should be careful with. Unlike the kernel
image above, this image cannot be the stock one used to boot the system. The reason for this is that
Xen requires several device drivers in DomUs:xennetand xenblk. This can be easily fixed by
creating a newinitrd usingmkinitrd and loading the drivers into it.

Once the configuration options have been set, restart thecondorstartddaemon on that host. For
example:

> condor_restart -startd leovinus

Condor Version 7.2.3 Manual

3.15. Power Management 426

The condorstartd daemon takes a few moments to exercise the VM capabilities ofthe con-
dor vm-gahp, query its properties, and then advertise the machine to thepool as VM-capable. If the
set up succeeded, thencondorstatuswill tell you the host is now VM-capable by printing the VM
type and the version number:

> condor_status -vm leovinus

After a suitable amount of time, if this command does not giveany output, then thecondorvm-
gahp is having difficulty executing the VM software. The exact cause of the problem depends on
the details of the VM, the local installation, and a variety of other factors. We can offer only limited
advice on these matters:

For Xen, the VM Universe is only available when root starts Condor. This is a restriction cur-
rently imposed because root privileges are required to create a VM on top of a Xen kernel. Specifi-
cally, root is needed to properly use thevirsh utility that controls creation and management of Xen
guest virtual machines. This restriction may be lifted in future versions depending on features pro-
vided by the underlying tools,virsh, or upon Condor’s direct support of Qemu VMs that do not
require network access.

3.15 Power Management

Condor supports placing machines in low power states. Powersetting decisions are based upon
Condor configuration.

Power conservation is relevant when machines are not in heavy use, or when there are known
periods of low activity within the pool.

3.15.1 Entering a Low Power State

By default, Condor does not do power management. When desired, the ability to place a machine
into a low power state is accomplished through configuration. This occurs when all slots on a
machine agree that a low power state is desired.

A slot’s readiness to hibernate is determined by the evaluating theHIBERNATE configuration
variable within the context of the slot. Readiness is evaluated at fixed intervals, as determined by
the HIBERNATECHECKINTERVAL configuration variable. A non-zero value of this variables
enables the power management facility. It is an integer value representing seconds, an it need not
be a small value. There is a trade off between the accuracy of measurement and the unnecessary
computation of readiness.

To put the machine in a low power state rapidly after it has become idle, consider checking each
slot’s state frequently, as in the example configuration:

HIBERNATE_CHECK_INTERVAL = 20

Condor Version 7.2.3 Manual

3.15. Power Management 427

This checks each slot’s readiness every 20 seconds. A more common value for frequency of
checks is 300 (5 minutes). A value of 300 loses some degree of granularity, but it is more reasonable
as machines are likely to be put in to a low power state after a few hours, rather than minutes.

A slot’s readiness or willingness to enter a low power state is determined by theHIBERNATE
expression. Because this expression is evaluated in the context of each slot, and not on the machine
as a whole, any one slot can veto a change of power state. TheHIBERNATEexpression may
include a wide array of variables. Possibilities include the change in power state if none of the
slots are claimed, or if the slots are not in the Owner state. See the description ofHIBERNATEin
section 3.3.10 on page 193 for definitions of the values representing the different power states.

Here is a concrete example. Assume that theSTARTexpression is not set to always beTrue .
This permits an easy determination whether or not the machine is in an Unclaimed state through the
use of an auxiliary macro calledShouldHibernate .

ShouldHibernate = ((KeyboardIdle > $(StartIdleTime)) \
&& $(CPUIdle) \
&& ($(StateTimer) > (2 * $(HOUR)))

This macro evaluates toTrue if

• The keyboard has been idle long enough.

• The CPU is idle

• The slot has been Unclaimed for more than 2 hours.

TheHIBERNATEexpression that enters the power state called"RAM" if ShouldHibernate
evaluates toTrue , and remains in its current state otherwise is

HIBERNATE = ifThenElse($(ShouldHibernate), "RAM", "NONE ")

If any slot returns"NONE", it vetoes the decision to enter a low power state. Only when values
returned by all slots are all non-zero is there a decision to enter a low power state. If all agree to enter
the low power state, but differ in which state to enter, then the largest magnitude value is chosen.

3.15.2 Returning From a Low Power State

The Condor command line toolcondorpower may wake a machine from a low power state by
sending a UDP Wake On LAN (WOL) packet.

See thecondorpowermanual page on page 744.

Condor Version 7.2.3 Manual

3.15. Power Management 428

3.15.3 Keeping a ClassAd for a Hibernating Machine

A pool’s condorcollector daemon can be configured to keep a persistent ClassAd entry for each
machine, once it has entered hibernation.

To do this, define a log file using theOFFLINE LOG configuration variable. An optional an
expiration time for each ClassAd can be specified withOFFLINE EXPIRE ADSAFTER . The
timing begins from the time the hibernating machine’s ClassAd enters thecondorcollector dae-
mon. A description ofOFFLINE LOG is at section 3.3.10 on page 194, and a description of
OFFLINE EXPIRE ADSAFTERis at section 3.3.10 on page 194.

3.15.4 Linux Platform Details

Depending on the Linux distribution and version, there are three methods for controlling a machine’s
power state. The methods:

1. pm-utilsis a set of command line tools which can be used to detect and switch power states.
In Condor, this is defined by the string"pm-utils" .

2. The directory in the virtual file system/sys/power contains virtual files that can be used
to detect and set the power states. In Condor, this is defined by the string"/sys" .

3. The directory in the virtual file system/proc/acpi contains virtual files that can be used
to detect and set the power states. In Condor, this is defined by the string"/proc" .

By default, the Condor attempts to detect the method to use inthe order shown. The first method
detected as usable on the system is chosen.

This ordered detection may be bypassed, to use a specified method instead by setting the config-
uration variableLINUX HIBERNATIONMETHODwith one of the defined strings. This variable is
defined in section 3.3.10 on page 194. If no usable methods aredetected or the method specified by
LINUX HIBERNATIONMETHODis either not detected or invalid, hibernation is disabled.

The details of this selection process, and the final method selected can be logged via enabling
D FULLDEBUGin the relevant subsystem’s log configuration.

3.15.5 Windows Platform Details

If after a suitable amount of time, a Windows machine has not entered the expected power state,
then Condor is having difficulty exercising the operating system’s low power capabilities. While
the cause will be specific to the machine’s hardware, it may also be due to improperly configured
software. For hardware difficulties, the likely culprit is the configuration within the machine’s BIOS,
for which Condor can offer little guidance. For operating system difficulties, the Vista thepowercfg
tool can be used to discover the available power states on themachine. The following command
demonstrates how to list all of the supported power states ofthe machine:

Condor Version 7.2.3 Manual

3.15. Power Management 429

> powercfg -A
The following sleep states are available on this system:
Standby (S3) Hibernate Hybrid Sleep
The following sleep states are not available on this system:
Standby (S1)

The system firmware does not support this standby state.
Standby (S2)

The system firmware does not support this standby state.

Note that theHIBERNATEexpression is written in terms of the Sn state, wheren is the value
evaluated from the expression.

This tool can also be used to enable and disable other sleep states. This example turns hibernation
on.

> powercfg -h on

If this tool is insufficient for configuring the machine in themanner required, thePower Op-
tionscontrol panel application offers the full extent of the machine’s power management abilities.
Windows 2000 and XP lack thepowercfgprogram, so all configuration must be done via thePower
Optionscontrol panel application.

Condor Version 7.2.3 Manual

CHAPTER

FOUR

Miscellaneous Concepts

This chapter contains sections describing a variety of key Condor concepts that do not belong in
other chapters.

ClassAds and the ClassAd language are presented.

Details of checkpoints are presented.

Description and useage of COD (Computing on Demand) extensions to Condor are presented.

The various APIs that Condor implements are described.

4.1 Condor’s ClassAd Mechanism

ClassAds are a flexible mechanism for representing the characteristics and constraints of machines
and jobs in the Condor system. ClassAds are used extensivelyin the Condor system to represent
jobs, resources, submitters and other Condor daemons. An understanding of this mechanism is
required to harness the full flexibility of the Condor system.

A ClassAd is is a set of uniquely named expressions. Each named expression is called anat-
tribute. Figure 4.1 shows an example of a ClassAd with ten attributes.

ClassAd expressions look very much like expressions in C, and are composed of literals and
attribute references composed with operators and functions. The difference between ClassAd ex-
pressions and C expressions arise from the fact that ClassAdexpressions operate in a much more
dynamic environment. For example, an expression from a machine’s ClassAd may refer to an at-
tribute in a job’s ClassAd, such asTARGET.Owner in the above example. The value and type of
the attribute is not known until the expression is evaluatedin an environment which pairs a specific

430

4.1. Condor’s ClassAd Mechanism 431

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "INTEL"
OpSys = "SOLARIS251"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && K eyboardIdle>15 * 60

Figure 4.1: An example ClassAd

job ClassAd with the machine ClassAd.

ClassAd expressions handle these uncertainties by definingall operators to betotal operators,
which means that they have well defined behavior regardless of supplied operands. This func-
tionality is provided through two distinguished values,UNDEFINEDandERROR, and defining all
operators so that they can operate on all possible values in the ClassAd system. For example, the
multiplication operator which usually only operates on numbers, has a well defined behavior if sup-
plied with values which are not meaningful to multiply. Thus, the expression10 * "A string"
evaluates to the valueERROR. Most operators arestrict with respect toERROR, which means that
they evaluate toERRORif any of their operands areERROR. Similarly, most operators are strict with
respect toUNDEFINED.

4.1.1 Syntax

ClassAd expressions are formed by composing literals, attribute references and other sub-
expressions with operators and functions.

Literals

Literals in the ClassAd language may be of integer, real, string, undefined or error types. The syntax
of these literals is as follows:

Integer A sequence of continuous digits (i.e.,[0-9]). Additionally, the keywordsTRUEand
FALSE(case insensitive) are syntactic representations of the integers 1 and 0 respectively.

Real Two sequences of continuous digits separated by a period (i.e.,[0-9]+.[0-9]+).

String A double quote character, followed by an list of characters terminated by a double quote
character. A backslash character inside the string causes the following character to be consid-
ered as part of the string, irrespective of what that character is.

Undefined The keywordUNDEFINED(case insensitive) represents theUNDEFINEDvalue.

Error The keywordERROR(case insensitive) represents theERRORvalue.

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 432

Attributes

Every expression in a ClassAd is named by anattribute name. Together, the (name,expression) pair
is called anattribute. An attributes may be referred to in other expressions through its attribute
name.

Attribute names are sequences of alphabetic characters, digits and underscores, and may not
begin with a digit. All characters in the name are significant, but case isnot significant. Thus,
Memory, memory andMeMoRyall refer to the same attribute.

An attribute referenceconsists of the name of the attribute being referenced, and an optional
scope resolution prefix. The prefixes that may be used areMY. andTARGET.. The case used for
these prefixes isnot significant. The semantics of supplying a prefix are discussed in Section 4.1.2.

Operators

The operators that may be used in ClassAd expressions are similar to those available in C. The
available operators and their relative precedence is shownin figure 4.2. The operator with the highest

- (unary negation) (high precedence)

* /
+ - (addition, subtraction)
< <= >= >
== != =?= =!=
&&
|| (low precedence)

Figure 4.2: Relative precedence of ClassAd expression operators

precedence is the unary minus operator. The only operators which are unfamiliar are the=?= and
=!= operators, which are discussed in Section 4.1.2.

Predefined Functions

Any ClassAd expression may utilize predefined functions. Function names are case insensitive.
Parameters to functions and a return value from a function may be typed (as given) or not. Nested
or recursive function calls are allowed.

Here are descriptions of each of these predefined functions.The possible types are the same
as itemized in in Section 4.1.1. Where the type may be any of these literal types, it is called out
asAnyType . Where the type isInteger , but only returns the value 1 or 0 (implyingTrue or
False), it is called out asBoolean . The format of each function is given as

ReturnType FunctionName(ParameterType parameter1, Para meterType parameter2, ...)

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 433

Optional parameters are given within square brackets.

AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr)
A conditional expression is described byIfExpr . The following defines return values, when
IfExpr evaluates to

• True . Evaluate and return the value as given byThenExpr .

• False . Evaluate and return the value as given byElseExpr .

• UNDEFINED. Return the valueUNDEFINED.

• ERROR. Return the valueERROR.

• 0.0 . Evaluate, and return the value as given byElseExpr .

• non-0.0 Real values. Evaluate, and return the value as given byThenExpr .

WhereIfExpr evaluates to give a value of typeString , the function returns the value
ERROR. The implementation uses lazy evaluation, so expressions are only evaluated as de-
fined.

This function returnsERRORif other than exactly 3 arguments are given.

Boolean isUndefined(AnyType Expr)Returns True , if Expr evaluates to
UNDEFINED. ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isError(AnyType Expr)ReturnsTrue , if Expr evaluates toERROR. Returns
False in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isString(AnyType Expr)ReturnsTrue , if the evaluation ofExpr gives a
value of typeString . ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isInteger(AnyType Expr)ReturnsTrue , if the evaluation ofExpr gives a
value of typeInteger . ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isReal(AnyType Expr)ReturnsTrue , if the evaluation ofExpr gives a value
of typeReal . ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isBoolean(AnyType Expr)ReturnsTrue , if the evaluation ofExpr gives the
integer value 0 or 1. ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 434

Integer int(AnyType Expr)Returns the integer value as defined byExpr . Where the
type of the evaluatedExpr is Real , the value is truncated (round towards zero) to an integer.
Where the type of the evaluatedExpr is String , the string is converted to an integer using
a C-likeatoi() function. When this result is not an integer,ERRORis returned. Where the
evaluatedExpr is ERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Real real(AnyType Expr)Returns the real value as defined byExpr . Where the type of
the evaluatedExpr is Integer , the return value is the converted integer. Where the type of
the evaluatedExpr is String , the string is converted to a real value using a C-likeatof()
function. When this result is not a real,ERRORis returned. Where the evaluatedExpr is
ERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

String string(AnyType Expr)Returns the string that results from the evaluation of
Expr . Converts a non-string value to a string. Where the evaluated Expr is ERRORor
UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer floor(AnyType Expr)Returns the integer that results from the evaluation of
Expr , where the type of the evaluatedExpr is Integer . Where the type of the eval-
uatedExpr is not Integer , function real(Expr) is called. Its return value is then
used to return the largest magnitude integer that is not larger than the returned value. Where
real(Expr) returnsERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer ceiling(AnyType Expr)Returns the integer that results from the evaluation of
Expr , where the type of the evaluatedExpr is Integer . Where the type of the eval-
uatedExpr is not Integer , function real(Expr) is called. Its return value is then
used to return the smallest magnitude integer that is not less than the returned value. Where
real(Expr) returnsERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer round(AnyType Expr)Returns the integer that results from the evaluation of
Expr , where the type of the evaluatedExpr is Integer . Where the type of the evalu-
atedExpr is not Integer , functionreal(Expr) is called. Its return value is then used
to return the integer that results from a round-to-nearest rounding method. The nearest in-
teger value to the return value is returned, except in the case of the value at the exact mid-
point between two integer values. In this case, the even valued integer is returned. Where
real(Expr) returnsERRORor UNDEFINED, or the integer value does not fit into 32 bits,
ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer random([AnyType Expr])Where the optional argumentExpr evaluates to
typeInteger or typeReal (and calledx), the return value is the integer or realr randomly

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 435

chosen from the interval0 <= r < x . With no argument, the return value is chosen with
random(1.0) . ReturnsERRORin all other cases.

This function returnsERRORif greater than 1 argument is given.

String strcat(AnyType Expr1 [, AnyType Expr2. . .]) Returns the string
which is the concatenation of all arguments, where all arguments are converted to type
String by function string(Expr) . ReturnsERRORif any argument evaluates to
UNDEFINEDor ERROR.

String substr(String s, Integer offset [, Integer length])Returns
the substring ofs , from the position indicated byoffset , with (optional) length
characters. The first character withins is at offset 0. If the optionallength argument is
not present, the substring extends to the end of the string. If offset is negative, the value
(length - offset) is used for the offset. Iflength is negative, an initial substring
is computed, from the offset to the end of the string. Then, the absolute value oflength
characters are deleted from the right end of the initial substring. Further, where characters
of this resulting substring lie outside the original string, the part that lies within the original
string is returned. If the substring lies completely outside of the original string, the null string
is returned.

This function returnsERRORif greater than 3 or less than 2 arguments are given.

Integer strcmp(AnyType Expr1, AnyType Expr2)Both arguments are converted to
typeString by functionstring(Expr) . The return value is an integer that will be

• less than 0, ifExpr1 is lexicographically less thanExpr2

• equal to 0, ifExpr1 is lexicographically equal toExpr2

• greater than 0, ifExpr1 is lexicographically greater thanExpr2

Case is significant in the comparison. Where either argumentevaluates toERRORor
UNDEFINED, ERRORis returned.

This function returnsERRORif other than 2 arguments are given.

Integer stricmp(AnyType Expr1, AnyType Expr2)This function is the same as
strcmp , except that letter case isnot significant.

String toUpper(AnyType Expr)The single argument is converted to typeString by
functionstring(Expr) . The return value is this string, with all lower case lettersconverted
to upper case. If the argument evaluates toERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif greater than 1 argument is given.

String toLower(AnyType Expr)The single argument is converted to typeString by
functionstring(Expr) . The return value is this string, with all upper case lettersconverted
to lower case. If the argument evaluates toERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 436

Integer size(AnyType Expr)Returns the number of characters in the string, after calling
functionstring(Expr) . If the argument evaluates toERRORor UNDEFINED, ERRORis
returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer time() Returns the current coordinated universal time, which is the same as the
ClassAd attributeCurrentTime . This is the time, in seconds, since midnight of January
1, 1970.

String formatTime([Integer time] [, String format])Returns a for-
matted string that is a representation oftime . The argumenttime is interpreted as coor-
dinated universe time in seconds, since midnight of January1, 1970. If not specified,time
will default to the value of attributeCurrentTime .

The argumentformat is interpreted similarly to the format argument of the ANSI Cstrftime
function. It consists of arbitrary text plus placeholders for elements of the time. These place-
holders are percent signs (%) followed by a single letter. Tohave a percent sign in the output,
use a double percent sign (%%). Ifformat is not specified, it defaults to%c.

Because the implementation usesstrftime() to implement this, and some versions imple-
ment extra, non-ANSI C options, the exact options availableto an implementation may vary.
An implementation is only required to implement the ANSI C options, which are:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of the month (01-31)

%H hour in the 24-hour clock (0-23)

%I hour in the 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM

%S second (00-59)

%U week number of the year (Sunday as first day of week) (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year (Monday as first day of week) (00-53)

%x local date representation

%X local time representation

%y year without century (00-99)

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 437

%Y year with century

%Z time zone name, if any

String interval(Integer seconds)Uses seconds to return a string of the form
days+hh:mm:ss . This represents an interval of time. Leading values that are zero are
omitted from the string. For example,seconds of 67 becomes ”1:07”. A second ex-
ample,seconds of 1472523 = 17*24*60*60 + 1*60*60 + 2*60 + 3, results in the string
”17+1:02:03”.

For the following functions, a delimiter is represented by astring. Each character within the
delimiter string delimits individual strings within a listof strings that is given by a single string.
The default delimiter contains the comma and space characters. A string within the list is ended
(delimited) by one or more characters within the delimiter string.

Integer stringListSize(String list [, String delimiter])Returns
the number of elements in the stringlist , as delimited by the optionaldelimiter string.
ReturnsERRORif either argument is not a string.

This function returnsERRORif other than 1 or 2 arguments are given.

Integer stringListSum(String list [, String delimiter])

OR Real stringListSum(String list [, String delimiter])Sums and
returns the sum of all items in the stringlist , as delimited by the optionaldelimiter
string. If all items in the list are integers, the return value is also an integer. If any item in the
list is a real value (noninteger), the return value is a real.If any item does not represent an
integer or real value, the return value isERROR.

Real stringListAve(String list [, String delimiter])Sums and returns
the real-valued average of all items in the stringlist , as delimited by the optional
delimiter string. If any item does not represent an integer or real value, the return value is
ERROR. A list with 0 items (the empty list) returns the value 0.0.

Integer stringListMin(String list [, String delimiter])

OR Real stringListMin(String list [, String delimiter])Finds and
returns the minimum value from all items in the stringlist , as delimited by the optional
delimiter string. If all items in the list are integers, the return value is also an integer. If
any item in the list is a real value (noninteger), the return value is a real. If any item does not
represent an integer or real value, the return value isERROR. A list with 0 items (the empty
list) returns the valueUNDEFINED.

Integer stringListMax(String list [, String delimiter])

OR Real stringListMax(String list [, String delimiter])Finds and
returns the maximum value from all items in the stringlist , as delimited by the optional
delimiter string. If all items in the list are integers, the return value is also an integer. If
any item in the list is a real value (noninteger), the return value is a real. If any item does not

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 438

represent an integer or real value, the return value isERROR. A list with 0 items (the empty
list) returns the valueUNDEFINED.

Boolean stringListMember(String x, String list [, String delimiter])
ReturnsTRUEif item x is in the stringlist , as delimited by the optionaldelimiter
string. ReturnsFALSE if item x is not in the stringlist . Comparison is done with
strcmp() . The return value isERROR, if any of the arguments are not strings.

Boolean stringListIMember(String x, String list [, Stringdelimiter])
Same asstringListMember() , but comparison is done withstricmp() , so letter case
is not relevant.

The following three functions utilize regular expressionsas defined and supported by the PCRE
library. See http://www.pcre.org for complete documentation of regular expressions.

Theoptions argument to these functions is a string of special characters that modify the use
of the regular expressions. Inclusion of characters other than these as options are ignored.

I or i Ignore letter case.

M or m Modifies the interpretation of the carat (ˆ) and dollar sign ($) characters. The carat character
matches the start of a string, as well as after each newline character. The dollar sign character
matches before a newline character.

S or s The period matches any character, including the newline character.

X or x Ignore both white space and comments within the pattern. A comment is defined by starting
with the pound sign (#) character, and continuing until the newline character.

Boolean regexp(String pattern, String target [, String options])
ReturnsTRUE if the string target is a regular expression as described bypattern .
ReturnsFALSEotherwise. If any argument is not a string, or ifpattern does not describe
a valid regular expression, returnsERROR.

String regexps(String pattern, String target, String substitute,

[String options]) The regular expressionpattern is applied totarget . If the
string target is a regular expression as described bypattern , the stringsubstitute
is returned, with backslash expansion performed. The return value isERROR, if any of the
arguments are not strings.

Boolean stringListRegexpMember(String pattern, String list [, String delimiter]

[, String options])ReturnsTRUEif any of the strings within thelist is a regular
expression as described bypattern . ReturnsFALSEotherwise. If any argument is not a
string, or ifpattern does not describe a valid regular expression, returnsERROR. To include
the fourth (optional) argumentoptions , a third argument ofdelimiter is required. A
default value for a delimiter is ” ,”.

Condor Version 7.2.3 Manual

http://www.pcre.org

4.1. Condor’s ClassAd Mechanism 439

4.1.2 Evaluation Semantics

The ClassAd mechanism’s primary purpose is for matching entities that supply constraints on can-
didate matches. The mechanism is therefore defined to carry out expression evaluations in the
context of two ClassAds that are testing each other for a potential match. For example, thecon-
dor negotiatorevaluates theRequirements expressions of machine and job ClassAds to test if
they can be matched. The semantics of evaluating such constraints is defined below.

Literals

Literals are self-evaluating, Thus, integer, string, real, undefined and error values evaluate to them-
selves.

Attribute References

Since the expression evaluation is being carried out in the context of two ClassAds, there is a po-
tential for name space ambiguities. The following rules define the semantics of attribute references
made by adA that is being evaluated in a context with another adB:

1. If the reference is prefixed by a scope resolution prefix,

• If the prefix isMY., the attribute is looked up in ClassAdA. If the named attribute does
not exist inA, the value of the reference isUNDEFINED. Otherwise, the value of the
reference is the value of the expression bound to the attribute name.

• Similarly, if the prefix isTARGET., the attribute is looked up in ClassAdB. If the named
attribute does not exist inB, the value of the reference isUNDEFINED. Otherwise, the
value of the reference is the value of the expression bound tothe attribute name.

2. If the reference is not prefixed by a scope resolution prefix,

• If the attribute is defined inA, the value of the reference is the value of the expression
bound to the attribute name inA.

• Otherwise, if the attribute is defined inB, the value of the reference is the value of the
expression bound to the attribute name inB.

• Otherwise, if the attribute is defined in the ClassAd environment, the value from the
environment is returned. This is a special environment, to be distinguished from the
Unix environment. Currently, the only attribute of the environment isCurrentTime ,
which evaluates to the integer value returned by the system call time(2) .

• Otherwise, the value of the reference isUNDEFINED.

3. Finally, if the reference refers to an expression that is itself in the process of being evaluated,
there is a circular dependency in the evaluation. The value of the reference isERROR.

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 440

Operators

All operators in the ClassAd language aretotal, and thus have well defined behavior regardless of the
supplied operands. Furthermore, most operators arestrict with respect toERRORandUNDEFINED,
and thus evaluate toERROR(or UNDEFINED) if either of their operands have these exceptional
values.

• Arithmetic operators:

1. The operators* , / , + and- operate arithmetically only on integers and reals.

2. Arithmetic is carried out in the same type as both operands, and type promotions from
integers to reals are performed if one operand is an integer and the other real.

3. The operators are strict with respect to bothUNDEFINEDandERROR.

4. If either operand is not a numerical type, the value of the operation isERROR.

• Comparison operators:

1. The comparison operators==, != , <=, <, >= and> operate on integers, reals and strings.

2. String comparisons are case insensitive for most operators. The only exceptions are the
operators=?= and=!= , which do case sensitive comparisons assuming both sides are
strings.

3. Comparisons are carried out in the same type as both operands, and type promotions
from integers to reals are performed if one operand is a real,and the other an integer.
Strings may not be converted to any other type, so comparing astring and an integer or
a string and a real results inERROR.

4. The operators==, != , <=, < and>= > are strict with respect to bothUNDEFINEDand
ERROR.

5. In addition, the operators=?= and =!= behave similar to== and != , but are
not strict. Semantically, the=?= tests if its operands are “identical,” i.e.,
have the same type and the same value. For example,10 == UNDEFINED
and UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but
10 =?= UNDEFINED and UNDEFINED =?= UNDEFINEDevaluate toFALSE
andTRUErespectively. The=!= operator test for the “is not identical to” condition.

• Logical operators:

1. The logical operators&&and|| operate on integers and reals. The zero value of these
types are consideredFALSEand non-zero valuesTRUE.

2. The operators arenot strict, and exploit the “don’t care” properties of the op-
erators to squashUNDEFINEDand ERRORvalues when possible. For example,
UNDEFINED && FALSEevaluates toFALSE, but UNDEFINED || FALSE evalu-
ates toUNDEFINED.

3. Any string operand is equivalent to anERRORoperand for a logical operator. In other
words,TRUE && "foobar" evaluates toERROR.

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 441

4.1.3 ClassAds in the Condor System

The simplicity and flexibility of ClassAds is heavily exploited in the Condor system. ClassAds are
not only used to represent machines and jobs in the Condor pool, but also other entities that ex-
ist in the pool such as checkpoint servers, submitters of jobs and master daemons. Since arbitrary
expressions may be supplied and evaluated over these ads, users have a uniform and powerful mech-
anism to specify constraints over these ads. These constraints can take the form ofRequirements
expressions in resource and job ads, or queries over other ads.

Constraints and Preferences

Therequirements andrank expressions within the submit description file are the mechanism
by which users specify the constraints and preferences of jobs. For machines, the configuration
determines both constraints and preferences of the machines.

For both machine and job, therank expression specifies the desirability of the match (where
higher numbers mean better matches). For example, a job ad may contain the following expressions:

Requirements = Arch=="SUN4u" && OpSys == "SOLARIS251"
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires an UltraSparc computer running the Solaris 2.5.1 operating system.
Among all such computers, the customer prefers those with large physical memories and high MIPS
ratings. Since theRank is a user-specified metric,any expression may be used to specify the
perceived desirability of the match. Thecondornegotiatordaemon runs algorithms to deliver the
best resource (as defined by therank expression) while satisfying other required criteria.

Similarly, the machine may place constraints and preferences on the jobs that it will run by
setting the machine’s configuration. For example,

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 &&

KeyboardIdle > 15 * 60)
RANK = Friend + ResearchGroup * 10

The above policy states that the computer will never run jobsowned by users rival and riffraff,
while the computer will always run a job submitted by membersof the research group. Furthermore,
jobs submitted by friends are preferred to other foreign jobs, and jobs submitted by the research
group are preferred to jobs submitted by friends.

Note: Because of the dynamic nature of ClassAd expressions, thereis no a priori notion of
an integer-valued expression, a real-valued expression, etc. However, it is intuitive to think of
theRequirements andRank expressions as integer-valued and real-valued expressions, respec-
tively. If the actual type of the expression is not of the expected type, the value is assumed to be
zero.

Condor Version 7.2.3 Manual

4.1. Condor’s ClassAd Mechanism 442

Querying with ClassAd Expressions

The flexibility of this system may also be used when querying ClassAds through thecondorstatus
andcondorq tools which allow users to supply ClassAd constraint expressions from the command
line.

For example, to find all computers which have had their keyboards idle for more than 20 minutes
and have more than 100 MB of memory:

% condor_status -const 'KeyboardIdle > 20 * 60 && Memory > 100'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

amul.cs.wi SUN4u SOLARIS251 Claimed Busy 1.000 128 0+03:45 :01
aura.cs.wi SUN4u SOLARIS251 Claimed Busy 1.000 128 0+00:15 :01
balder.cs. INTEL SOLARIS251 Claimed Busy 1.000 1024 0+01:0 5:00
beatrice.c INTEL SOLARIS251 Claimed Busy 1.000 128 0+01:30 :02
...
...

Machines Owner Claimed Unclaimed Matched Preempting

SUN4u/SOLARIS251 3 0 3 0 0 0
INTEL/SOLARIS251 21 0 21 0 0 0
SUN4x/SOLARIS251 3 0 3 0 0 0

INTEL/WINNT51 1 0 0 1 0 0
INTEL/LINUX 1 0 1 0 0 0

Total 29 0 28 1 0 0

Here is an example that utilizes a regular expression ClassAd function to list specific informa-
tion. A file contains ClassAd information.condoradvertiseis used to inject this information, and
condorstatusconstrains the search with an expression that contains a ClassAd function.

% cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"
MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

% condor_advertise UPDATE_AD_GENERIC ad

% condor_status -any -constraint 'FauxType=="DBMS" && reg exp("random. * ", Name, "i")'

MyType TargetType Name

Generic None random-test

Similar flexibility exists in querying job queues in the Condor system.

Condor Version 7.2.3 Manual

4.2. Condor’s Checkpoint Mechanism 443

4.2 Condor’s Checkpoint Mechanism

Checkpointing is taking a snapshot of the current state of a program in such a way that the program
can be restarted from that state at a later time. Checkpointing gives the Condor scheduler the freedom
to reconsider scheduling decisions through preemptive-resume scheduling. If the scheduler decides
to no longer allocate a machine to a job (for example, when theowner of that machine returns), it
can checkpoint the job and preempt it without losing the workthe job has already accomplished.
The job can be resumed later when the scheduler allocates it anew machine. Additionally, periodic
checkpointing provides fault tolerance in Condor. Snapshots are taken periodically, and after an
interruption in service the program can continue from the most recent snapshot.

Condor provides checkpointing services to single process jobs on a number of Unix platforms.
To enable checkpointing, the user must link the program withthe Condor system call library
(libcondorsyscall.a), using thecondorcompilecommand. This means that the user must
have the object files or source code of the program to use Condor checkpointing. However, the
checkpointing services provided by Condor are strictly optional. So, while there are some classes
of jobs for which Condor does not provide checkpointing services, these jobs may still be submitted
to Condor to take advantage of Condor’s resource managementfunctionality. (See section 2.4.1 on
page 16 for a description of the classes of jobs for which Condor does not provide checkpointing
services.)

Process checkpointing is implemented in the Condor system call library as a signal handler.
When Condor sends a checkpoint signal to a process linked with this library, the provided signal
handler writes the state of the process out to a file or a network socket. This state includes the
contents of the process stack and data segments, all shared library code and data mapped into the
process’s address space, the state of all open files, and any signal handlers and pending signals. On
restart, the process reads this state from the file, restoring the stack, shared library and data segments,
file state, signal handlers, and pending signals. The checkpoint signal handler then returns to user
code, which continues from where it left off when the checkpoint signal arrived.

Condor processes for which checkpointing is enabled perform a checkpoint when preempted
from a machine. When a suitable replacement execution machine is found (of the same architec-
ture and operating system), the process is restored on this new machine from the checkpoint, and
computation is resumed from where it left off. Jobs that can not be checkpointed are preempted and
restarted from the beginning.

Condor’s periodic checkpointing provides fault tolerance. Condor pools are each configured
with the PERIODIC CHECKPOINTexpression which controls when and how often jobs which
can be checkpointed do periodic checkpoints (examples: never, every three hours, etc.). When the
time for a periodic checkpoint occurs, the job suspends processing, performs the checkpoint, and
immediately continues from where it left off. There is also acondorckpt command which allows
the user to request that a Condor job immediately perform a periodic checkpoint.

In all cases, Condor jobs continue execution from the most recent complete checkpoint. If
service is interrupted while a checkpoint is being performed, causing that checkpoint to fail, the
process will restart from the previous checkpoint. Condor uses a commit style algorithm for writing
checkpoints: a previous checkpoint is deleted only after a new complete checkpoint has been written

Condor Version 7.2.3 Manual

4.2. Condor’s Checkpoint Mechanism 444

successfully.

In certain cases, checkpointing may be delayed until a more appropriate time. For example, a
Condor job will defer a checkpoint request if it is communicating with another process over the
network. When the network connection is closed, the checkpoint will occur.

The Condor checkpointing facility can also be used for any Unix process outside of the Condor
batch environment. Standalone checkpointing is describedin section 4.2.1.

Condor can produce and use compressed checkpoints. Configuration variables (detailed in sec-
tion 3.3.12 control whether compression is used. The default is to not compress.

By default, a checkpoint is written to a file on the local disk of the machine where the job was
submitted. A Condor pool can also be configured with a checkpoint server or servers that serve as
a repository for checkpoints. (See section 3.8 on page 346.)When a host is configured to use a
checkpoint server, jobs submitted on that machine write andread checkpoints to and from the server
rather than the local disk of the submitting machine, takingthe burden of storing checkpoint files off
of the submitting machines and placing it instead on server machines (with disk space dedicated to
the purpose of storing checkpoints).

4.2.1 Standalone Checkpointing

Using the Condor checkpoint library without the remote system call functionality and outside of the
Condor system is known as standalone mode checkpointing.

To prepare a program for standalone checkpointing, simply use thecondorcompileutility as for
a standard Condor job, but do not usecondorsubmit– run the program normally from the command
line. The checkpointing library will print a message to let you know that checkpointing is enabled
and to inform you of the default name for the checkpoint image. The message is of the form:

Condor: Notice: Will checkpoint to program_name.ckpt
Condor: Notice: Remote system calls disabled.

To force the program to write a checkpoint image and stop, send it the SIGTSTP signal or press
control-Z. To force the program to write a checkpoint image and continue executing, send it the
SIGUSR2 signal.

To restart a program using a checkpoint, run the program withthe argument- condorrestart
followed by the name of the checkpoint image file. As an example, if the program is calledP1and
the checkpoint is calledP1.ckpt , use

P1 -_condor_restart P1.ckpt

Condor Version 7.2.3 Manual

4.2. Condor’s Checkpoint Mechanism 445

4.2.2 Checkpoint Safety

Some programs have fundamental limitations that make them unsafe for checkpointing. For exam-
ple, a program that both reads and writes a single file may enter an unexpected state. Here is an
example of how this might happen.

1. Record a checkpoint image.

2. Read data from a file.

3. Write data to the same file.

4. Execution failure, so roll back to step 2.

In this example, the program would re-read data from the file,but instead of finding the original
data, would see data created in the future, and yield unexpected results.

To prevent this sort of accident, Condor displays a warning if a file is used for both reading
and writing. You can ignore or disable these warnings if you choose (see section 4.2.3,) but please
understand that your program may compute incorrect results.

4.2.3 Checkpoint Warnings

Condor has warning messages in the case unexpected behaviors in your program. For example, if
file x is opened for reading and writing, you will see:

Condor: Warning: READWRITE: File '/tmp/x' used for both rea ding and writing.

You may control how these messages are displayed with the-_condor_warning command-
line argument. This argument accepts a warning category anda mode. The category describes a
certain class of messages, such as READWRITE or ALL. The modedescribes what to do with the
category. It may be ON, OFF, or ONCE. If a category is ON, it is always displayed. If a category is
OFF, it is never displayed. If a category is ONCE, it is displayed only once. To show all the available
categories and modes, just use-_condor_warning with no arguments.

For example, to limit read/write warnings to one instance:

-_condor_warning READWRITE ONCE

To turn all ordinary notices off:

-_condor_warning NOTICE OFF

The same effect can be accomplished within a program by usingthe function
_condor_warning_config , described in section 4.2.4.

Condor Version 7.2.3 Manual

4.2. Condor’s Checkpoint Mechanism 446

4.2.4 Checkpoint Library Interface

A program need not be rewritten to take advantage of checkpointing. However, the checkpointing
library provides several C entry points that allow for a program to control its own checkpointing
behavior if needed.

• void init image with file name(char * ckpt file name)
This function explicitly sets a file name to use when producing or using a checkpoint.ckpt()
or ckpt and exit() must be called to produce the checkpoint, andrestart() must be
called to perform the actual restart.

• void init image with file descriptor(int fd)
This function explicitly sets a file descriptor to use when producing or using a checkpoint.
ckpt() or ckpt and exit() must be called to produce the checkpoint, andrestart()
must be called to perform the actual restart.

• void ckpt()
This function causes a checkpoint image to be written to disk. The program will continue to
execute. This is identical to sending the program a SIGUSR2 signal.

• void ckpt and exit()
This function causes a checkpoint image to be writtent to disk. The program will then exit.
This is identical to sending the program a SIGTSTP signal.

• void restart()
This function causes the program to read the checkpoint image and to resume execution of the
program from the point where the checkpoint was taken. This function does not return.

• void condor ckpt disable()
This function temporarily disables checkpointing. This can be handy if your program does
something that is not checkpoint-safe. For example, if a program must not be interrupted
while accessing a special file, callcondor ckpt disable() , access the file, and then
call condor ckpt enable() . Some program actions, such as opening a socket or a pipe,
implicitly cause checkpointing to be disabled.

• void condor ckpt enable()
This function re-enables checkpointing after a call tocondor ckpt disable() . If
a checkpointing signal arrived while checkpointing was disabled, the checkpoint will oc-
cur when this function is called. Disabling and enabling of checkpointing must occur
in matched pairs. condor ckpt enable() must be called once for every time that
condor ckpt disable() is called.

• int condor warning config(const char * kind, const char * mode
)
This function controls what warnings are displayed by Condor. The kind and mode
arguments are the same as for the- condor warning option described in section 4.2.3.
This function returns true if the arguments are understood and accepted. Otherwise, it returns
false.

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 447

• extern int condor compress ckpt
Setting this variable to one causes checkpoint images to be compressed. Setting it to zero
disables compression.

4.3 Computing On Demand (COD)

Computing On Demand (COD) extends Condor’s high throughputcomputing abilities to include a
method for running short-term jobs on instantly-availableresources.

The motivation for COD extends Condor’s job management to include interactive, compute-
intensive jobs, giving these jobs immediate access to the compute power they need over a relatively
short period of time. COD provides computing poweron demand, switching predefined resources
from working on Condor jobs to working on the COD jobs. These COD jobs (applications) cannot
use the batch scheduling functionality of Condor, since theCOD jobs require interactive response-
time. Many of the applications that are well-suited to Condor’s COD capabilities involve a cycle:
application blocked on user input, computation burst to compute results, block again on user input,
computation burst, etc. When the resources are not being used for the bursts of computation to
service the application, they should continue to execute long-running batch jobs.

Here are examples of applications that may benefit from COD capability:

• A giant spreadsheet with a large number of highly complex formulas which take a lot of
compute power to recalculate. The spreadsheet application(as a COD application) predefines
a claim on resources within the Condor pool. When the user presses arecalculate button,
the predefined Condor resources (nodes) work on the computation and send the results back
to the master application providing the user interface and displaying the data. Ideally, while
the user is entering new data or modifying formulas, these nodes work on non-COD jobs.

• A graphics rendering application that waits for user inputto select an image to render. The
rendering requires a huge burst of computation to produce the image. Examples are various
Computer-Aided Design (CAD) tools, fractal rendering programs, and ray-tracing tools.

• Visualization tools for data mining.

The way Condor helps these kinds of applications is to provide an infrastructure to use Condor
batch resources for the types of compute nodes described above. Condor doesNOT provide tools
to parallelize existing GUI applications. The COD functionality is an interface to allow these com-
pute nodes to interact with long-running Condor batch jobs.The user provides both the compute
node applications and the interactive master application that controls them. Condor only provides
a mechanism to allow these interactive (and often parallelized) applications to seamlessly interact
with the Condor batch system.

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 448

4.3.1 Overview of How COD Works

The resources of a Condor pool (nodes) run jobs. When a high-priority COD job appears at a node,
the lower-priority (currently running) batch job is suspended. The COD job runs immediately, while
the batch job remains suspended. When the COD job completes,the batch job instantly resumes
execution.

Administratively, an interactive COD application puts claims on nodes. While the COD appli-
cation does not need the nodes (to run the COD jobs), the claims are suspended, allowing batch jobs
to run.

4.3.2 Authorizing Users to Create and Manage COD Claims

Claims on nodes are assigned to users. A user with a claim on a resource can then suspend and
resume a COD job at will. This gives the user a great deal of power on the claimed resource,
even if it is owned by another user. Because of this, it is essential that users allowed to claim
COD resources can be trusted not to abuse this power. Users are authorized to have access to the
privilege of creating and using a COD claim on a machine. Thisprivilege is granted when the Condor
administrator places a given user name in theVALID CODUSERSlist in the Condor configuration
for the machine (usually in a local configuration file).

In addition, the tools to request and manage COD claims require that the user issuing the com-
mands be authenticated. Use one of the strong authentication methods described in section 3.6.1
“Security Configuration” on page 282. If one of these methodscannot be used, then file system
authentication may be used when directly logging in to that machine (to be claimed) and issuing the
command locally.

4.3.3 Defining a COD Application

To run an application on a claimed COD resource, an authorized user defines characteristics of the
application. Examples of characteristics are the executable or script to use, the directory to run the
application in, command-line arguments, and files to use forstandard input and output. COD users
specify a ClassAd that describes these characteristics fortheir application. There are two ways for a
user to define a COD application’s ClassAd:

1. in the Condor configuration files of the COD resources

2. when they use thecondorcodcommand-line tool to launch the application itself

These two methods for defining the ClassAd can be used together. For example, the user can
define some attributes in the configuration file, and only provide a few dynamically defined attributes
with thecondorcod tool.

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 449

Regardless of how the COD application’s ClassAd is defined, the application’s executable and
input data must be pre-staged at the node. This is a current limitation of Condor’s support for COD
that will eventually go away. For now, there is no mechanism to transfer files for a COD application,
and all I/O must be performed locally or onto a network file system that is accessible by a node.

The following three sections detail defining the attributes. The first lists the attributes that can be
used to define a COD application. The second describes how to define these attributes in a Condor
configuration file. The third explains how to define these attributes using thecondorcod tool.

COD Application Attributes

Attributes for a COD application are either required or optional. The following attributes arere-
quired:

Cmd This attribute defines the full path to the executable program to be run as a COD application.
Since Condor does not currently provide any mechanism to transfer files on behalf of COD
applications, this path should be a valid path on the machinewhere the application will be
run. It is a string attribute, and must therefore be enclosedin quotation marks ("). There is no
default.

Owner If the condorstartddaemon is executing as root on the resource where a COD application
will run, the user must also defineOwner to specify what user name the application will
run as. (On Windows, thecondorstartd daemon always runs as an Administrator service,
which is equivalent to running as root on UNIX platforms). Ifthe user specifies any COD
application attributes with thecondorcod activatecommand-line tool, theOwner attribute
will be defined as the user name that rancondorcod activate. However, if the user defines
all attributes of their COD application in the Condor configuration files, and does not define
any attributes with thecondorcod activatecommand-line tool (both methods are described
below in more detail), there is no default andOwner must be specified in the configuration
file. Owner must contain a valid user name on the given COD resource. It isa string attribute,
and must therefore be enclosed in quotation marks (").

The following list of attributes areoptional:

IWD IWD is an acronym for Initial Working Directory. It defines the full path to the directory where
a given COD application are to be run. Unless the applicationchanges its current working
directory, any relative path names used by the application will be relative to the IWD. If any
other attributes that define file names (for example,In , Out , and so on) do not contain a full
path, theIWDwill automatically be pre-pended to those filenames. It is a string attribute, and
must therefore be enclosed in quotation marks ("). If the IWD is not specified, the temporary
execution sandbox created by thecondorstarterwill be used as the initial working directory.

In This string defines the path to the file on the COD resource thatshould be used as standard input
(stdin) for the COD application. This file (and all parent directories) must be readable by
whatever user the COD application will run as. If not specified, the default is/dev/null .

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 450

Out This string defines the path to the file on the COD resource thatshould be used as standard
output (stdout) for the COD application. This file must be writable (and all parent directo-
ries readable) by whatever user the COD application will runas. If not specified, the default is
/dev/null . It is a string attribute, and must therefore be enclosed in quotation marks (").

Err This string defines the path to the file on the COD resource thatshould be used as standard
error (stderr) for the COD application. This file must be writable (and all parent directories
readable) by whatever user the COD application will run as. If not specified, the default is
/dev/null . It is a string attribute, and must therefore be enclosed in quotation marks (").

Env This string defines environment variables to set for a given COD application. Each environ-
ment variable has the formNAME=value . Multiple variables are delimited with a semi-
colon. An example:Env = "PATH=/usr/local/bin:/usr/bin;TERM=vt100" It
is a string attribute, and must therefore be enclosed in quotation marks (").

Args This string attribute defines the list of arguments to be supplied to the program on the
command-line. The arguments are delimited (separated) by space characters. There is no
default. If theJobUniverse corresponds to the Java universe, the first argument must be
the name of the class containingmain . It is a string attribute, and must therefore be enclosed
in quotation marks (").

JobUniverse This attribute defines what Condor job universe to use for thegiven COD appli-
cation. At this point, the only supported universes are vanilla and Java. This attribute must
be an integer, with vanilla using the value 5, and Java the value 10. IfJobUniverse is not
specified, the vanilla universe is used by default. For more information about the Condor job
universes, see section 2.4.1 on page 15.

JarFiles This string attribute is only used ifJobUniverse is 10 (the Java universe). If a
given COD application is a Java program, specify the JAR filesthat the program requires with
this attribute. There is no default. It is a string attribute, and must therefore be enclosed in
quotation marks ("). Multiple file names may be delimited with either commas or whitespace
characters, and therefore, file names can not contain spaces.

KillSig This attribute specifies what signal should be sent wheneverthe Condor system needs to
gracefully shutdown the COD application. It can either be specified as a string containing the
signal name (for exampleKillSig = "SIGQUIT"), or as an integer (KillSig = 3)
The default is to use SIGTERM.

StarterUserLog This string specifies a file name for a log file that thecondorstarterdaemon
can write with entries for relevant events in the life of a given COD application. It is similar to
the UserLog file specified for regular Condor jobs with theLog setting in a submit description
file. However, certain attributes that are placed in the regular UserLog file do not make sense
in the COD environment, and are therefore omitted. The default is not to write this log file. It
is a string attribute, and must therefore be enclosed in quotation marks (").

StarterUserLogUseXMLIf the StarterUserLog attribute is defined, the default format is
a human-readable format. However, Condor can write out thislog in an XML representa-
tion, instead. To enable the XML format for this UserLog, theStarterUserLogUseXML
boolean is set toTRUE. The default if not specified isFALSE.

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 451

NOTE: If any path attribute (Cmd, In , Out ,Err , StarterUserLog) is not a full path name,
Condor automatically prepends the value ofIWD.

The final set of attributes define an identification for a COD application. The job ID is made up of
both theClusterId andProcId attributes (as described below). This job ID is similar to the job
ID that is created whenever a regular Condor batch job is submitted. For regular Condor batch jobs,
the job ID is assigned automatically by thecondorscheddwhenever a new job is submitted into the
persistent job queue. However, since there is no persistentjob queue for COD, the usual mechanism
to identify the jobs does not exist. Moreover, commands thatrequire the job ID for batch jobs such
ascondorq andcondor rm do not exist for COD. Instead, the claim ID is the unique identifier for
COD jobs and COD-related commands.

When using COD, the job ID is only used to identify the job in various log messages and in the
COD-specific output ofcondorstatus. The COD job ID is part of the information included in all
events written to theStarterUserLog regarding a given job. The COD job ID is also used in the
Condor debugging logs described in section 3.3.4 on page 157For example, in thecondorstarter
daemon’s log file for COD jobs (calledStarterLog.cod by default) or in thecondorstartd
daemon’s log file (calledStartLog by default).

These COD IDs are optional. The job ID is useful to define whereit helps a user with ac-
counting or debugging of their own application. In this case, it is the user’s responsibility to ensure
uniqueness, if so desired.

ClusterId This integer defines the cluster identifier for a COD job. The default value is 1. The
ClusterId can also be defined with thecondorcod activatecommand-line tool using the
-cluster option.

ProcId This integer defines the process identifier (within a cluster) for a COD job. The default
value is 0. TheProcId can also be defined with thecondorcod activatecommand-line tool
using the-cluster option.

NOTE: The cluster and proc identifiers can also be specified as command-line arguments to
thecondorcod activatetool when spawning a given COD application. See section 4.3.4 below for
details on usingcondorcod activate.

Defining Attributes in the Condor Configuration Files

To define COD attributes in the Condor configuration file for a given application, the user selects a
keyword to uniquely name ClassAd attributes of the application. This case-insensitive keyword is
used as a prefix for the various configuration file attribute names. When a user wishes to spawn a
given application, the keyword is given as an argument to thecondorcod tool and the keyword is
used at the remote COD resource to find attributes which definethe application.

Any of the ClassAd attributes described in the previous section can be specified in the configu-
ration file with the keyword prefix followed by an underscore character ("_").

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 452

For example, if the user’s keyword for a given fractal generation application is “FractGen”, the
resulting entries in the Condor configuration file may appearas:

FractGen_Cmd = "/usr/local/bin/fractgen"
FractGen_Iwd = "/tmp/cod-fractgen"
FractGen_Out = "/tmp/cod-fractgen/output"
FractGen_Err = "/tmp/cod-fractgen/error"
FractGen_Args = "mandelbrot -0.65865,-0.56254 -0.45865, -0.71254"

In this example, the executable may create other files. TheOut andErr attributes specified in
the configuration file are only for standard output and standard error redirection.

When the user wishes to spawn an instance of this application, they use the-keyword option of
FractGen in the command-line of thecondorcod activatecommand.

NOTE: If a user is defining all attributes of their COD applicationin the Condor configuration
files, and thecondorstartddaemon on the COD resource they are using is running as root, the user
must also defineOwner to be the user that the COD application should run as (see section 4.3.3
above).

Defining Attributes with the condor codTool

COD users may define attributes dynamically (at the time theyspawn a COD application). In this
case, the user writes the ClassAd attributes into a file, and the file name is passed to thecon-
dor cod activatetool using the-jobad command-line option. These attributes are read by thecon-
dor codtool and passed through the system onto thecondorstarterdaemon which spawns the COD
application. If the file name given is- , thecondorcod tool will read from standard input (stdin).

Users should not add a keyword prefix when defining attributeswith the condorcod activate
tool. The attribute names can be used in the file directly.

WARNING: The current syntax for this file is not the same as the syntax in the file used with
condorsubmit.

NOTE: Users should not define theOwner attribute when usingcondorcod activateon the
command line, since Condor will automatically insert the correct value based on what user runs
thecondorcod activatecommand and how that user authenticates to the COD resource.If a user
defines an attribute that does not match the authenticated identity, Condor treats this case as an error,
and it will fail to launch the application.

4.3.4 Managing COD Resource Claims

Separate commands are provided by Condor to manage COD claims on batch resources. Once
created, each COD claim has a unique identifying string, called the claim ID. Most commands

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 453

require a claim ID to specify which claim you wish to act on. These commands are the means by
which COD applications interact with the rest of the Condor system. They should be issued by the
controller application to manage its compute nodes. Here isa list of the commands:

Request Create a new COD claim on a given resource.

Activate Spawn a specific application on a specific COD claim.

Suspend Suspend a running application within a specific COD claim.

Renew Renew the lease to a COD claim.

Resume Resume a suspended application on a specific COD claim.

Deactivate Shut down an application, but hold onto the COD claim for future use.

ReleaseDestroy a specific COD claim, and shut down any job that is currently running on it.

Delegate proxy Send an x509 proxy credential to the specific COD claim (optional, only required
in rare cases like using glexec to spawn thecondorstarterat the execute machine where the
COD job is running).

To issue these commands, a user or application invokes thecondorcod tool. A command may
be specified as the first argument to this tool, as

condor_cod request -name c02.cs.wisc.edu

or thecondorcodtool can be installed in such a way that the same binary is usedfor a set of names,
as

condor_cod_request -name c02.cs.wisc.edu

Other than the command name itself (which must be included infull) additional options sup-
ported by each tool can be abbreviated to the shortest unambiguous value. For example,-name
can also be specified as-n. However, for a command likecondorcod activatethat supports both
-classadand -cluster, the user must use at least-cla or -clu. If the user specifies an ambiguous
option, thecondorcod tool will exit with an error message.

In addition, there is now a-codoption tocondorstatus.

The following sections describe each option in greater detail.

Request

A user must be granted authorization to create COD claims on aspecific machine. In addition, when
the user uses these COD claims, the application binary or script they wish to run (and any input

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 454

data) must be pre-staged on the machine. Therefore, a user cannot simply request a COD claim at
random.

The user specifies the resource on which to make a COD claim. This is accomplished by specify-
ing the name of thecondorstartddaemon desired by invokingcondorcod requestwith the-name
option and the resource name (usually the host name). For example:

condor_cod_request -name c02.cs.wisc.edu

If the condorstartd daemon desired belongs to a different Condor pool than the one where
executing the COD commands, use the-pool option to provide the name of the central manager
machine of the other pool. For example:

condor_cod_request -name c02.cs.wisc.edu -pool condor.c s.wisc.edu

An alternative is to provide the IP address and port number where thecondorstartd daemon
is listening with the-addr option. This information can be found in thecondorstartd ClassAd as
the attributeStartdIpAddr or by reading the log file when thecondorstartd first starts up. For
example:

condor_cod_request -addr "<128.105.146.102:40967>"

If neither -name or -addr are specified,condorcod requestattempts to connect to thecon-
dor startddaemon running on the local machine (where the request command was issued).

If the condorstartddaemon to be used for the COD claim is an SMP machine and has multiple
slots, specify which resource on the machine to use for COD byproviding the full name of the
resource, not just the host name. For example:

condor_cod_request -name slot2@c02.cs.wisc.edu

A constraint on what slot is desired may be provided, insteadof specifying it by name. For
example, to run on machine c02.cs.wisc.edu, not caring which slot is used, so long as it the machine
is not currently running a job, use something like:

condor_cod_request -name c02.cs.wisc.edu -requirements 'State!="Claimed"'

In general, be careful with shell quoting issues, so that your shell is not confused by the ClassAd
expression syntax (in particular if the expression includes a string). The safest method is to enclose
any requirement expression within single quote marks (as shown above).

Once a givencondorstartd daemon has been contacted to request a new COD claim, thecon-
dor startddaemon checks for proper authorization of the user issuing the command. If the user has
the authority, and thecondorstartd daemon finds a resource that matches any given requirements,

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 455

thecondorstartd daemon creates a new COD claim and gives it a unique identifier, the claim ID.
This ID is used to identify COD claims when using other commands. If condorcod requestsuc-
ceeds, the claim ID for the new claim is printed out to the screen. All other commands to manage
this claim require the claim ID to be provided as a command-line option.

When thecondorstartd daemon assigns a COD claim, the ClassAd describing the resource
is returned to the user that requested the claim. This ClassAd is a snap-shot of the output of
condor_status -long for the given machine. Ifcondorcod requestis invoked with the
-classadoption (which takes a file name as an argument), this ClassAd will be written out to the
given file. Otherwise, the ClassAd is printed to the screen. The only essential piece of information
in this ClassAd is the Claim ID, so that is printed to the screen, even if the whole ClassAd is also
being written to a file.

The claim ID as given after listing the machine ClassAd appears as this example:

ID of new claim is: "<128.105.121.21:49973>#1073352104#4 "

When using this claim ID in further commands, include the quote marks as well as all the characters
in between the quote marks.

NOTE: Once a COD claim is created, there is no persistent record ofit kept by thecondorstartd
daemon. So, if thecondorstartd daemon is restarted for any reason, all existing COD claims will
be destroyed and the newcondorstartddaemon will not recognize any attempts to use the previous
claims.

Also note that it is your responsibility to ensure that the claim is eventually removed (see sec-
tion 4.3.4). Failure to remove the COD claim will result in the condorstartd continuing to hold a
record of the claim for as long ascondorstartd continues running. If a very large number of such
claims are accumulated by thecondorstartd, this can impact its performance. Even worse: if a
COD claim is unintentionally left in an activated state, this results in the suspension of any batch
job running on the same resource for as long as the claim remains activated. For this reason, an
optional-leaseargument is supported bycondorcod request. This tells thecondorstartd to auto-
matically release the COD claim after the specified number ofseconds unless the lease is renewed
with condorcod renew. The default lease is infinitely long.

Activate

Once a user has created a valid COD claim and has the claim ID, the next step is to spawn a COD
job using the claim. The way to do this is to activate the claim, using thecondorcod activate
command. Once a COD application is active on a COD claim, the COD claim will move into the
Running state, and any batch Condor job on the same resource will be suspended. Whenever the
COD application is inactive (either suspended, removed from the machine, or if it exits on its own),
the state of the COD claim changes. The new state depends on why the application became inactive.
The batch Condor job then resumes.

To activate a COD claim, first define attributes about the job to be run in either the local con-
figuration of the COD resource, or in a separate file as described in this manual section. Invoke

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 456

the condorcod activatecommand to launch a specific instance of the job on a given COD claim
ID. The options given tocondorcod activatevary depending on if the job attributes are defined in
the configuration file or are passed via a file to thecondorcod activatetool itself. However, the
-id option is always required bycondorcod activate, and this option should be followed by a COD
claim ID that the user acquired viacondorcod request.

If the application is defined in the configuration files for theCOD resource, the user provides
the keyword (described in section 4.3.3) that uniquely identifies the application’s configuration at-
tributes. To continue the example from that section, the user would spawn their job by specifying
-keyword FractGen , for example:

condor_cod_activate -id "<claim_id>" -keyword FractGen

Substitute the<claim_id> with the valid Cod Claim Id. Using the same example as given above,
this example would be:

condor_cod_activate -id "<128.105.121.21:49973>#10733 52104#4" -keyword FractGen

If the job attributes are placed into a file to be passed to thecondorcod activatetool, the user
must provide the name of the file using the-jobad option. For example, if the job attributes were
defined in a file namedcod-fractgen.txt , the user spawns the job using the command:

condor_cod_activate -id "<claim_id>" -jobad cod-fractge n.txt

Alternatively, if the filename specified with-jobad is - , thecondorcod activatetool reads the job
ClassAd from standard input (stdin).

Regardless of how the job attributes are defined, there are other options thatcondorcod activate
accepts. These options specify the job ID for the application to be run. The job ID can either be
specified in the job’s ClassAd, or it can be specified on the command line tocondorcod activate.
These options are-cluster and -proc. For example, to launch a COD job with keywordfoo as
cluster 23, proc 5, or 23.5, the user invokes:

condor_cod_activate -id "<claim_id>" -key foo -cluster 23 -proc 5

The -cluster and -proc arguments are optional, since the job ID is not required for COD. If not
specified, the job ID defaults to1.0 .

Suspend

Once a COD application has been activated withcondorcod activateand is running on a COD re-
source, it may be temporarily suspended usingcondorcod suspend. In this case, the claim state
becomesSuspended . Once a given COD job is suspended, if there are no other running COD jobs
on the resource, a Condor batch job can use the resource. By suspending the COD application, the

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 457

batch job is allowed to run. If a resource is idle when a COD application is first spawned, suspen-
sion of the COD job makes the batch resource available for usein the Condor system. Therefore,
whenever a COD application has no work to perform, it should be suspended to prevent the resource
from being wasted.

The interface ofcondorcod suspendsupports the single option-id, to specify the COD claim
ID to be suspended. For example:

condor_cod_suspend -id "<claim_id>"

If the user attempts to suspend a COD job that is not running,condorcod suspendexits with an
error message. The COD job may not be running because it is already suspended or because the job
was never spawned on the given COD claim in the first place.

Renew

This command tells thecondorstartd to renew the lease on the COD claim for the amount of lease
time specified when the claim was created. See section 4.3.4 for more information on using leases.

Thecondorcod renewtool supports only the-id option to specify the COD claim ID the user
wishes to renew. For example:

condor_cod_renew -id "<claim_id>"

If the user attempts to renew a COD job that no longer exists,condorcod renewexits with an
error message.

Resume

Once a COD application has been suspended withcondorcod suspend, it can be resumed using
condorcod resume. In this case, the claim state returns toRunning . If there is a regular batch job
running on the same resource, it will automatically be suspended if a COD application is resumed.

Thecondorcod resumetool supports only the-id option to specify the COD claim ID the user
wishes to resume. For example:

condor_cod_resume -id "<claim_id>"

If the user attempts to resume a COD job that is not suspended,condorcod resumeexits with
an error message.

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 458

Deactivate

If a given COD application does not exit on its own and needs tobe removed manually, invoke the
condorcod deactivatecommand to kill the job, but leave the COD claim ID valid for future COD
jobs. The user must specify the claim ID they wish to deactivate using the-id option. For example:

condor_cod_deactivate -id "<claim_id>"

By default,condorcod deactivateattempts to gracefully cleanup the COD application and give
it time to exit. In this case the COD claim goes into theVacating state and thecondorstarter
process controlling the job will send it theKillSig defined for the job (SIGTERM by default).
This allows the COD job to catch the signal and do whatever final work is required to exit cleanly.

However, if the program is stuck or if the user does not want togive the application time to
clean itself up, the user may use the-fast option to tell thecondorstarter to quickly kill the job and
all its descendants using SIGKILL. In this case the COD claimgoes into theKilling state. For
example:

condor_cod_deactivate -id "<claim_id>" -fast

In either case, once the COD job has finally exited, the COD claim will go into the Idle state
and will be available for future COD applications. If there are no other active COD jobs on the same
resource, the resource would become available for batch Condor jobs. Whenever the user wishes to
spawn another COD application, they can reuse this idle COD claim by using the same claim ID,
without having to go through the process of runningcondorcod request.

If the user attempts acondorcod deactivaterequest on a COD claim that is neitherRunning
norSuspended , thecondorcod tool exits with an error message.

Release

If users no longer wish to use a given COD claim, they can release the claim with thecon-
dor cod releasecommand. If there is a COD job running on the claim, the job will first be shut
down (as ifcondorcod deactivatewas used), and then the claim itself is removed from the resource
and the claim ID is destroyed. Further attempts to use the claim ID for any COD commands will
fail.

Thecondorcod releasecommand always prints out the state the COD claim was in when the
request was received. This way, users can know what state a given COD application was in when
the claim was destroyed.

Like most COD commands,condorcod releaserequires the claim ID to be specified using
-id. In addition,condorcod releasesupports the-fast option (described above in the section about
condorcod deactivate). If there is a job running or suspended on the claim when it isreleased with
condor_cod_release -fast , the job will be immediately killed. If-fast is not specified, the

Condor Version 7.2.3 Manual

4.3. Computing On Demand (COD) 459

default behavior is to use a graceful shutdown, sending whatever signal is specified in theKillSig
attribute for the job (SIGTERM by default).

Delegate proxy

In some cases, a user will want to delegate a copy of their usercredentials (in the form of an x509
proxy) to the machine where one of their COD jobs will run. Forexample, sites wishing to spawn
the condorstarter using glexec will need a copy of this credential before the claim can be acti-
vated. Therefore, beginning with Condor version 6.9.2, CODusers have access to a the command
delegate_proxy . If users do not specifically require this proxy delegation,this command should
not be used and the rest of this section can be skipped.

Thedelegate_proxy command optionally takes a-x509proxyargument to specify the path
to the proxy file to use. Otherwise, it uses the same discoverylogic thatcondorsubmituses to find
the user’s currently active proxy.

Just like every other COD command (exceptrequest), this command requires a valid COD
claim id (specified with-id) to indicate what COD claim you wish to delegate the credentials to.

This command can only be sent to idle COD claims, so it should be done beforeactivate
is run for the first time. However, once a proxy has been delegated, it can be reused by successive
claim activations, so normally this step only has to happen once, not before every activate. If a proxy
is going to expire, and a new one should be sent, this should only happen after the existing COD
claim has been deactivated.

4.3.5 Limitations of COD Support in Condor

Condor’s support for COD has a few limitations.

The following items are all limitations we plan to remove in future releases of Condor:

• Applications and data must be pre-staged at a given machine.

• There is no way to define limits for how long a given COD claim can be active, how often it
is run, and so on.

• There is no accounting done for applications run under COD claims. Therefore, use of a lot
of COD resources in a given Condor pool does not adversely affect user priority.

None of the above items are fundamentally difficult to add andwe hope to address them relatively
quickly. If you run into one of these limitations, and it is a barrier to using COD, please contact
condor-admin@cs.wisc.edu with the subject “COD limitation” to gain quick help.

The following list are more fundamental limitations that wedo not plan to address:

Condor Version 7.2.3 Manual

mailto:condor-admin@cs.wisc.edu

4.4. Job Hooks 460

• COD claims are not persistent on a givencondorstartddaemon.

• Condor does not provide a mechanism to parallelize a graphic application to take advantage
of COD. The Condor Team is not in the business of developing applications, we only provide
mechanisms to execute them.

4.4 Job Hooks

A hookis an external program or script invoked by Condor at variouspoints during the life cycle of
a job. Instead of putting all the code and logic directly intothe Condor daemons to handle the variety
of external systems from which it might fetch work, sites canwrite their own programs or scripts
and allow Condor to invoke these hooks at the right moments toaccomplish the desired outcome.
This eliminates the expense of the matchmaking and scheduling provided by the thecondorschedd
and thecondornegotiator, although at the price of the flexibility they offer. Therefore, the hooks
allow Condor to more easily and directly interface with external scheduling systems.

The following sections describe the system of hooks, both for work that is fetched from an
external system, and for hooks that behave as a Job Router.

4.4.1 Hooks that Fetch Work

In the past, Condor has always sent work to the execute machines by pushing jobs to thecon-
dor startd daemon, either from thecondorschedddaemon or viacondorcod. Beginning with the
Condor 7.1.0, thecondorstartd daemon now has the ability to pull work by fetching jobs via a
system of plug-ins or hooks. Any site can configure a set of hooks to fetch work completely outside
of the usual Condor matchmaking system.

A projected use of the hook mechanism implements what might be termed aglide-in factory,
especially where the factory is behind a firewall. Without using the hook mechanism to fetch work,
a glide-incondorstartd daemon behind a firewall depends on GCB to help it listen and eventually
receive work pushed from elsewhere. With the hook mechanism, a glide-incondorstartd daemon
behind a firewall uses the hook to pull work. The hook needs only an outbound network connection
to complete its task, thereby being able to operate from behind the firewall, without the intervention
of GCB.

Periodically, each execution slot managed by acondorstartd will invoke a hook to see if there
is any work that can be fetched. Whenever this hook returns a valid job, thecondorstartd will
evaluate the current state of the slot and decide if it shouldstart executing the fetched work. If the
slot is unclaimed and theStart expression evaluates to TRUE, a new claim will be created forthe
fetched job. If the slot is claimed, thecondorstartd will evaluate theRank expression relative to
the fetched job and compare it to the value of theRank for the currently running job and decide
if the existing job should be preempted due to the fetched jobhaving a higher rank. If the slot is
unavailable for whatever reason, thecondorstartd will refuse the fetched job and ignore it. Either

Condor Version 7.2.3 Manual

4.4. Job Hooks 461

way, once thecondorstartd decides what it should do with the fetched job, it will invokeanother
hook to reply to the attempt to fetch work, so that the external system knows what happened to that
work unit.

If the job is accepted, a claim is created for it and the slot moves into the Claimed state. As
soon as this happens, thecondorstartdwill spawn acondorstarter to manage the execution of the
job. At this point, from the perspective of thecondorstartd, this claim is just like any other. The
usual policy expressions are evaluated, and if the job needsto be suspended or evicted, it will be.
If a higher-ranked job being managed by acondorscheddis matched with the slot, that job will
preempt the fetched work.

Thecondorstarter itself can optionally invoke additional hooks to help manage the execution
of the specific job. There are hooks to prepare the execution environment for the job, periodically
update information about the job as it runs, notify when the job exits, and to take special actions
when the job is being evicted.

Assuming there are no interruptions, the job completes, andthe condorstarter exits, thecon-
dor startd will invoke the hook to fetch work again. If another job is available, the existing claim
will be reused and a newcondorstarter is spawned. If the hook returns that there is no more work
to perform, the claim will be evicted, and the slot will return to the Owner state.

Work Fetching Hooks Invoked by Condor

There are a handful of hooks invoked by Condor related to fetching work, some of which are called
by thecondorstartdand others by thecondorstarter. Each hook will be described below, including
when it is invoked, what task it is supposed to accomplish, what data is passed to the hook, and what
output (and, when relevant) exit status is expected.

Hook: Fetch Work The hook defined by the configuration variable HOOKFETCHWORKis invoked whenever
thecondorstartd wants to see if there is any work to fetch. There is a related configuration
expression calledFetchWorkDelay which determines how long thecondorstartd will
wait between attempts to fetch work, which is described in detail in within section 4.4.1 on
page 465.HOOKFETCHWORKis the most important hook in the whole system, and is the
only hook that must be defined for any of the othercondorstartdhooks to operate.

The job ClassAd returned by the hook needs to contain enough information for thecon-
dor starterto eventually spawn the work. The required and optional attributes in this ClassAd
are identical to the ones described for Computing on Demand (COD) jobs in section 4.3.3
called COD Application Attributes on page 449.

Command-line arguments passed to the hookNone.

Standard input given to the hook ClassAd of the slot that is looking for work.

Expected standard output from the hook ClassAd of a job that can be run. If there is no
work, the hook should return no output.

Exit status of the hook Ignored.

Condor Version 7.2.3 Manual

4.4. Job Hooks 462

Hook: Reply Fetch The hook defined by the configuration variable HOOKREPLYFETCH is invoked whenever
HOOKFETCHWORKreturns data and the thecondorstartd decides if it is going to accept
the fetched job or not.

The condorstartd will not wait for this hook to return before taking other actions, and ig-
nores all output. The hook is simply advisory, and has no impact on the behavior of the
condorstartd.

Command-line arguments passed to the hookEither the stringaccept or reject .

Standard input given to the hook A copy of the job ClassAd and the slot ClassAd (sepa-
rated by the string----- and a new line).

Expected standard output from the hook None.

Exit status of the hook Ignored.

Hook: Evict Claim The hook defined by the configuration variable HOOKEVICT CLAIM is invoked whenever
thecondorstartdneeds to evict a claim representing fetched work.

The condorstartd will not wait for this hook to return before taking other actions, and ig-
nores all output. The hook is simply advisory, and has no impact on the behavior of the
condorstartd.

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd and the slot ClassAd (sepa-
rated by the string----- and a new line).

Expected standard output from the hook None.

Exit status of the hook Ignored.

Hook: Prepare Job The hook defined by the configuration variable HOOKPREPAREJOB is invoked by thecon-
dor starterbefore a job is going to be run. This hook provides a chance to execute commands
to setup the job environment, for example to transfer input files.

Thecondorstarter waits until this hook returns before attempting to execute the job. If the
hook returns a non-zero exit status, thecondorstarterwill assume an error was reached while
attempting to set up the job environment and abort the job.

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd.

Expected standard output from the hook A set of attributes to insert or update into the job
ad. For example, changing the Cmd attribute to a quoted string changes the executable
to be run.

Exit status of the hook 0 for success preparing the job, any non-zero value on failure.

Hook: Update Job Info The hook defined by the configuration variable HOOKUPDATEJOB INFO is invoked
periodically during the life of the job to update information about the status of the
job. When the job is first spawned, thecondorstarter will invoke this hook after

Condor Version 7.2.3 Manual

4.4. Job Hooks 463

STARTERINITIAL UPDATEINTERVAL seconds (defaults to 8). Thereafter, thecon-
dor starterwill invoke the hook everySTARTERUPDATEINTERVAL seconds (defaults to
300, in other words, every 5 minutes).

Thecondorstarter will not wait for this hook to return before taking other actions, and ig-
nores all output. The hook is simply advisory, and has no impact on the behavior of the
condorstarter.

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd that has been augmented with
additional attributes describing the current status and execution behavior of the job.

Expected standard output from the hook None.

Exit status of the hook Ignored.

The additional attributes included inside the job ClassAd are:

JobState The current state of the job. Can be either"Running" or "Suspended" .

JobPid The process identifier for the initial job directly spawned by thecondorstarter.

NumPids The number of processes that the job has currently spawned.

JobStartDate The epoch time when the job was first spawned by thecondorstarter.

RemoteSysCpu The total number of seconds of system CPU time (the time spentat system
calls) the job has used.

RemoteUserCpu The total number of seconds of user CPU time the job has used.

ImageSize The memory image size of the job in Kbytes.

Hook: Job Exit The hook defined by the configuration variableHOOKJOB EXIT is invoked whenever a job
exits, either on its own or when being evicted from an execution slot.

The condorstarter will wait for this hook to return before taking any other actions. In the
case of jobs that are being managed by acondorshadow, this hook is invoked before the
condorstarter does its own optional file transfer back to the submission machine, writes to
the local user log file, or notifies thecondorshadowthat the job has exited.

Command-line arguments passed to the hookA string describing how the job exited:

– exit The job exited or died with a signal on its own.

– remove The job was removed withcondorrm or the user job policy expressions
(for example,PeriodicRemove).

– hold The job was held withcondorhold or the user job policy expressions (for
example,PeriodicHold).

– evict The job was evicted from the execution slot for any other reason (PREEMPT
evaluated to TRUE in thecondorstartd, condorvacate, condoroff, etc).

Standard input given to the hook A copy of the job ClassAd that has been augmented with
additional attributes describing the execution behavior of the job and its final results.

Expected standard output from the hook None.

Condor Version 7.2.3 Manual

4.4. Job Hooks 464

Exit status of the hook Ignored.

The job ClassAd passed to this hook contains all of the extra attributes described above for
HOOKUPDATEJOB INFO , and the following additional attributes that are only present once
a job exits:

ExitReason A human-readable string describing why the job exited.

ExitBySignal A boolean indicating if the job exited due to being killed by asignal, or if
it exited with an exit status.

ExitSignal If ExitBySignal is true, the signal number that killed the job.

ExitCode If ExitBySignal is false, the integer exit code of the job.

JobDuration The number of seconds that the job ran during this invocation.

Keywords to Define Job Fetch Hooks in the Condor Configurationfiles

Hooks are defined in the Condor configuration files by prefixingthe name of the hook with a key-
word. This way, a given machine can have multiple sets of hooks, each set identified by a specific
keyword.

Each slot on the machine can define a separate keyword for the set of hooks that should be used
(SLOTNJOB HOOKKEYWORD). Note that theN in SLOTNshould be replaced with the slot identi-
fication number. For example, on slot1, the setting would be calledSLOT1 JOB HOOKKEYWORD.
If the slot-specific keyword is not defined, thecondorstartd will use a global keyword
(STARTDJOB HOOKKEYWORD).

Once a job is fetched viaHOOKFETCHWORK, thecondorstartdwill insert the keyword used to
fetch that job into the job ClassAd asHookKeyword . This way, the same keyword will be used to
select the hooks invoked by thecondorstarterduring the actual execution of the job. However, the
STARTERJOB HOOKKEYWORDcan be defined to force thecondorstarter to always use a given
keyword for its own hooks, instead of looking the job ClassAdfor a HookKeyword attribute.

For example, the following configuration defines two sets of hooks, and on a machine with 4
slots, 3 of the slots use the global keyword for running work from a database-driven system, and one
of the slots uses a custom keyword to handle work fetched froma web service.

Most slots fetch and run work from the database system.
STARTD_JOB_HOOK_KEYWORD = DATABASE

Slot4 fetches and runs work from a web service.
SLOT4_JOB_HOOK_KEYWORD = WEB

The database system needs to both provide work and know the r eply
for each attempted claim.
DATABASE_HOOK_DIR = /usr/local/condor/fetch/database
DATABASE_HOOK_FETCH_WORK = $(DATABASE_HOOK_DIR)/fetch_work.php

Condor Version 7.2.3 Manual

4.4. Job Hooks 465

DATABASE_HOOK_REPLY_FETCH = $(DATABASE_HOOK_DIR)/reply_fetch.php

The web system only needs to fetch work.
WEB_HOOK_DIR = /usr/local/condor/fetch/web
WEB_HOOK_FETCH_WORK = $(WEB_HOOK_DIR)/fetch_work.php

The keywords"DATABASE" and"WEB" are completely arbitrary, so each site is encouraged to
use different (more specific) names as appropriate for theirown needs.

Defining the FetchWorkDelay Expression

There are two events that trigger thecondorstartd to attempt to fetch new work:

• Whenever thecondorstartdevaluates its own state.

• Whenever thecondorstarterexits after completing some fetched work.

Even if a given compute slot is already busy running other work, it is possible that if it fetched
new work, thecondorstartdwould prefer this newly fetched work (via theRank expression) over
the work it is currently running. However, thecondorstartd frequently evaluates its own state,
especially when a slot is claimed. Therefore, administrators can define a configuration variable
which controls how long thecondorstartd will wait between attempts to fetch new work. This
variable is calledFetchWorkDelay .

TheFetchWorkDelay expression must evaluate to an integer, which defines the number of
seconds since the last fetch attempt completed before thecondorstartd will attempt to fetch more
work. However, as a ClassAd expression (evaluated in the context of the ClassAd of the slot consid-
ering if it should fetch more work, and the ClassAd of the currently running job, if any), the length
of the delay can be based on the current state the slot and eventhe currently running job.

For example, a very common configuration would be to always wait 5 minutes (300 seconds)
between attempts to fetch work, unless the slot is Claimed/Idle, in which case thecondorstartd
should fetch immediately:

FetchWorkDelay = ifThenElse(State == "Claimed" && Activit y == "Idle", 0, 300)

If the condorstartd wants to fetch work, but the time since the last attempted fetch is shorter
than the current value of the delay expression, thecondorstartdwill set a timer to fetch as soon as
the delay expires.

If this expression is not defined, thecondorstartd will default to a five minute (300 second)
delay between all attempts to fetch work.

Condor Version 7.2.3 Manual

4.4. Job Hooks 466

Example Job Hook: Making multiple java run times available

A common problem the Java Universe does not solve is when there are multiple Java virtual ma-
chines available to run user jobs. If the user knows which jvmtheir job needs, the administrator can
use the Job hooks feature to enable the user to select one javavm. The main idea is to use the prepare
job hook to overwrite the Cmd attribute of the job ad. This attribute is the name of the executable
the starter will use to run the job. When the job hook overwrites Cmd, it effectively picks which
executable will run. So, it is easy to put the execute machinein charge of selecting the specific java
install. To do this, define a job hook on the execute machine byadding the following line to the
config file.

JAVA5_HOOK_PREPARE_JOB=$(LIBEXEC)/java5_prepare_hoo k

With this line, if a user job asks for the JAVA5 job hook, by setting

+HookKeyword="JAVA"

in the condorsubmit file, the starter will run the program java5preparehook before running
this job. Note that the double quote characters are required. Any output from this program will be
considered updates to the job ad. So, a simple java5preparehook script might look like this:

#!/bin/sh

Read and discard the job classad
cat > /dev/null
echo 'Cmd = "/usr/java/java5/bin/java"'

A complete job submit file in this case might look like the following:

universe = vanilla
executable = /usr/bin/java
arguments = Hello

should_transfer_files = always
when_to_transfer_output = on_exit
transfer_input_files = Hello.class

output = o
error = e
log = log

+HookKeyword="JAVA5"
queue

Condor Version 7.2.3 Manual

4.4. Job Hooks 467

4.4.2 Hooks for a Job Router

Job Router Hooks allow for an alternate transformation and/or monitoring engine for the Job Router.
Routing is still controlled by the Job Router, but if the Job Router Hooks are configured, then these
hooks will be used to transform and monitor the job instead ofCondor’s internal engine.

Job Router Hooks are similar in concept to Job Fetch Hooks, but they are limited in their scope
to just the Job Router. As with Job Fetch Hooks, a hook is an external program or script invoked by
Condor’s Job Router at various points during the life cycle of a routed job.

The following sections describe how these hooks are used by the Job Router, what hooks are
invoked by Condor at various stages of the job’s life, and howto configure Condor to use Job Router
Hooks.

Hooks Invoked for Job Routing

The Job Router Hooks allow for replacement of the transformation engine used by Condor for rout-
ing a job. Since the external transformation engine is not controlled by Condor, additional hooks
provide a means to update the job’s status in Condor and cleanup upon exit or failure cases. This
allows a job to be transformed to just about any other type of job that Condor supports, as well as to
use execution nodes not normally available to Condor.

It is important to note that if the Job Router Hooks are configured, then Condor will not ignore a
failure in any hook execution. If a hook is configured, then Condor assumes it is required to execute
and will not continue by falling back to a part of its internalengine. For example, if there is a problem
transforming the job using the hooks, Condor will not fall back on its internal transformation engine
to process the job.

There are 4 hooks that the Job Router can be configured to use. Each hook will be described
below along with data passed to the hook and expected output.Again, all hooks must exit success-
fully.

Hook: Translate The hook defined by the configuration variableHOOKTRANSLATEis invoked when the Job
Router has determined that a job meets the definition for a route. This hook is responsible for
doing the transformation of the job and configuring any resources that are external to Condor
if applicable.

Command-line arguments passed to the hookNone.

Standard input given to the hook The first line will be the route that the job matched as
defined in Condor’s configuration files followed by the job ClassAd, separated by the
string"------" and a new line.

Expected standard output from the hook The transformed job.

Exit status of the hook 0 for success, any non-zero value on failure.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 468

Hook: Update Job Info The hook defined by the configuration variable HOOKUPDATEJOB INFO is invoked to
provide status on the specified routed job when the Job Routerpolls the status of routed jobs
at intervals set byJOB ROUTERPOLLING PERIOD.

Command-line arguments passed to the hookNone.

Standard input given to the hook The routed job ClassAd that is to be updated.

Expected standard output from the hook The job attributes to be updated in the routed job,
or nothing, if there was no update. To prevent clashing with Condor’s management of
job attributes, only attributes that are not managed by Condor should be output from this
hook.

Exit status of the hook 0 for success, any non-zero value on failure.

Hook: Job Finalize The hook defined by the configuration variableHOOKJOB FINALIZE is invoked when the
Job Router has found that the job has completed. Any output from the hook is treated as an
update to the source job.

Command-line arguments passed to the hookNone.

Standard input given to the hook The source job ClassAd, followed by the routed copy
Classad that completed, separated by the string"------" and a new line.

Expected standard output from the hook An updated source job ClassAd, or nothing if
there was no update.

Exit status of the hook 0 for success, any non-zero value on failure.

Hook: Job Cleanup The hook defined by the configuration variable HOOKJOB CLEANUP is invoked when the
Job Router finishes managing the job. This hook will be invoked regardless of whether the job
completes successfully or not, and must exit successfully.

Command-line arguments passed to the hookNone.

Standard input given to the hook The job ClassAd that the Job Router is done managing.

Expected standard output from the hook None.

Exit status of the hook 0 for success, any non-zero value on failure.

4.5 Application Program Interfaces

4.5.1 Web Service

Condor’s Web Service (WS) API provides a way for applicationdevelopers to interact with Condor,
without needing to utilize Condor’s command-line tools. Inkeeping with the Condor philosophy
of reliability and fault-tolerance, this API is designed toprovide a simple and powerful way to
interact with Condor. Condor daemons understand and implement the SOAP (Simple Object Access
Protocol) XML API to provide a web service interface for Condor job submission and management.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 469

To deal with the issues of reliability and fault-tolerance,a two-phase commit mechanism to pro-
vides a transaction-based protocol. The following API description describes interaction between a
client using the API and both thecondorscheddandcondorcollectordaemons to illustrate trans-
actions for use in job submission, queue management and ClassAd management functions.

Transactions

All applications using the API to interact with thecondorscheddwill need to use transactions. A
transaction is an ACID unit of work (atomic, consistent, isolated, and durable). The API limits the
lifetime of a transaction, and both the client (application) and the server (thecondorschedddaemon)
may place a limit on the lifetime. The server reserves the right to specify a maximum duration for a
transaction.

The client initiates a transaction using thebeginTransaction() method. It ends
the transaction with either a commit (usingcommitTransaction()) or an abort (using
abortTransaction()).

Not all operations in the API need to be performed within a transaction. Some accept a null
transaction. A null transaction is a SOAP message with

<transaction xsi:type="ns1:Transaction" xsi:nil="true "/>

Often this is achieved by passing the programming language’s equivalent ofnull in place of a
transaction identifier. It is possible that some operationswill have access to more information when
they are used inside a transaction. For instance, agetJobAds() . query would have access to the
jobs that are pending in a transaction, which are not committed and therefore not visible outside
of the transaction. Transactions are as ACID compliant as possible. Therefore, do not query for
information outside of a transaction on which to make a decision inside a transaction based on the
query’s results.

Job Submission

A ClassAd is required to describe a job. The job ClassAd will be submitted to thecondorschedd
within a transaction using thesubmit() method. The complexity of job ClassAd creation may be
simplified by thecreateJobTemplate() method. It returns an instance of a ClassAd structure
that may be further modified. A necessary part of the job ClassAd are the job attributesClusterId
andProcId , which uniquely identify the cluster and the job within a cluster. Allocation and as-
signment of (monotonically increasing)ClusterId values utilize thenewCluster() method.
Jobs may be submitted within the assigned cluster only untilthe newCluster() method is in-
voked a subsequent time. Each job is allocated and assigned a(monotonically increasing)ProcId
within the current cluster using thenewJob() method. Therefore, the sequence of method calls to
submit a set of jobs initially callsnewCluster() . This is followed by calls tonewJob() and
thensubmit() for each job within the cluster.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 470

As an example, here are sample cluster and job numbers that result from the ordered calls to
submission methods:

1. A call tonewCluster() , assigns aClusterId of 6.

2. A call tonewJob() , assigns aProcId of 0, as this is the first job within the cluster.

3. A call tosubmit() results in a job submission numbered 6.0.

4. A call tonewJob() , assigns aProcId of 1.

5. A call tosubmit() results in a job submission numbered 6.1.

6. A call tonewJob() , assigns aProcId of 2.

7. A call tosubmit() results in a job submission numbered 6.2.

8. A call tonewCluster() , assigns aClusterId of 7.

9. A call tonewJob() , assigns aProcId of 0, as this is the first job within the cluster.

10. A call tosubmit() results in a job submission numbered 7.0.

11. A call tonewJob() , assigns aProcId of 1.

12. A call tosubmit() results in a job submission numbered 7.1.

There is the potential that a call tosubmit() will fail. Failure means that the job is in the
queue, and it typically indicates that something needed by the job has not been sent. As a re-
sult the job has no hope in successfully running. It is possible to recover from such a failure
by trying to resend information that the job will need. It is also completely acceptable to abort
and make another attempt. To simplify the client’s effort infiguring out what the job requires, a
discoverJobRequirements() method accepting a job ClassAd and returning a list of things
that should be sent along with the job is provided.

File Transfer

A common job submission case requires the job’s executable and input files to be transferred from
the machine where the application is running to the machine where thecondorschedddaemon is
running. This is the analogous situation to runningcondorsubmitusing the-spool or -remote
option. The executable and input files must be sent directly to thecondorschedddaemon, which
places all files in a spool location.

The two methodsdeclareFile() and sendFile() work in tandem to transfer files to
thecondorschedddaemon. ThedeclareFile() method causes thecondorschedddaemon to
create the file in its spool location, or indicate in its return value that the file already exists. This
increases efficiency, as resending an existing file is a wasteof resources. ThesendFile() method
sends base64 encoded data.sendFile() may be used to send an entire file, or chunks of files as
desired.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 471

ThedeclareFile() method has both required and optional arguments.declareFile()
requires the name of the file and its size in bytes. The optional arguments relate hash information. A
hash type ofNOHASHdisables file verification; thecondorschedddaemon will not have a reliable
way to determine the existence of the file being declared.

Methods for retrieving files are most useful when a job is completed. Consider the categorization
of the typical life-cycle for a job:

Birth: The birth of a job begins withsubmit() .

Childhood: The job executes.

Middle Age: A completed job waits to be removed. As the job enters Middle Age, itsJobStatus
ClassAd attribute becomes Completed (the value 4).

Old Age: The job’s information goes into the history log.

Once the job enters Middle Age, thegetFile() method retrieves a file. ThelistSpool()
method assists by providing a list of all the job’s files in thespool location.

The job enters Old Age by the application’s use of thecloseSpool() method. It
causes thecondorschedddaemon to remove the job from the queue, and the job’s spool
files are no longer available. As there is no requirement for the application to invoke the
closeSpool() method, jobs can potentially remain in the queue forever. The configuration vari-
ableSOAPLEAVEIN QUEUEmay mitigate this problem. When this boolean variable evaluates
to False , a job enters Old Age. A reasonable example for this configuration variable is

SOAP_LEAVE_IN_QUEUE = ((JobStatus==4) && ((ServerTime - C ompletionDate) < (60 * 60 * 24)))

This expression results in Old age for a job (removed from thequeue), once the job has been Middle
Aged (been completed) for 24 hours.

Implementation Details

Condor daemons understand and communicate using the SOAP XML protocol. An application seek-
ing to use this protocol will require code that handles the communication. The XML WSDL (Web
Services Description Language) that Condor implements is included with the Condor distribution.
It is in $(RELEASE DIR)/lib/webservice . The WSDL must be run through a toolkit to
produce language-specific routines that do communication.The application is compiled with these
routines.

Condor must be configured to enable responses to SOAP calls. Please see section 3.3.32 for
definitions of the configuration variables related to the webservices API. The WS interface is lis-
tening on thecondorschedddaemon’s command port. To obtain a list of all the thecondorschedd
daemons in the pool with a WS interface, issue the command:

% condor_status -schedd -constraint "HasSOAPInterface=? =TRUE"

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 472

With this information, a further command locates the port number to use:

% condor_status -schedd -constraint "HasSOAPInterface=? =TRUE" -l | grep MyAddress

Condor’s security configuration must be set up such that access is authorized for the SOAP client.
See Section 3.6.7 for information on how to set theALLOWSOAPandDENYSOAPconfiguration
variables.

The API’s routines can be roughly categorized into ones thatdeal with

• Transactions

• Job Submission

• File Transfer

• Job Management

• ClassAd Management

• Version Information

The routines for each of these categories is detailed. Note that the signature provided will accurately
reflect a routine’s name, but that return values and parameter specification will vary according to the
target programming language.

Get These Items Correct

• For jobs that are to be executed on Windows platforms, explicitly set the job ClassAd attribute
NTDomain. This attribute defines the NT domain within which the job’s owner authenticates.
The attribute is necessary, and it is not set for the job by thecreateJobTemplate()
function.

Methods for Transaction Management

beginTransactionBegin a transaction. A prototype is

StatusAndTransaction beginTransaction(int duration);

Parameters • duration The expected duration of the transaction.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the new transaction.

commitTransactionCommits a transaction. A prototype is

Status commitTransaction(Transaction transaction);

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 473

Parameters • transaction The transaction to be committed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

abortTransactionAbort a transaction. A prototype is

Status abortTransaction(Transaction transaction);

Parameters • transaction The transaction to be aborted.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

extendTransactionRequest an extension in duration for a specific transaction.A prototype
is

StatusAndTransaction extendTransaction(Transaction
transaction, int duration);

Parameters • transaction The transaction to be extended.
• duration The duration of the extension.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the transaction with the extended duration.

Methods for Job Submission

submit Submit a job. A prototype is

StatusAndRequirements submit(Transaction transaction, int
clusterId, int jobId, ClassAd jobAd);

Parameters • transaction The transaction in which the submission takes place.
• clusterId The cluster identifier.
• jobId The job identifier.
• jobAd The ClassAd describing the job. Creation of this ClassAd canbe simplified

with createJobTemplate(); .

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, the return value contains the job’s
requirements.

createJobTemplateRequest a job Class Ad, given some of the job requirements. This job
Class Ad will be suitable for use when submitting the job. Note that the job attribute
NTDomain is not set by this function, but must be set for jobs that will execute on Windows
platforms. A prototype is

StatusAndClassAd createJobTemplate(int clusterId, int j obId,
String owner, UniverseType type, String command, String
arguments, String requirements);

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 474

Parameters • clusterId The cluster identifier.

• jobId The job identifier.

• owner The name to be associated with the job.

• type The universe under which the job will run, wheretype can be one of the
following:
enum UniverseType { STANDARD = 1, VANILLA = 5,
SCHEDULER = 7, MPI = 8, GRID = 9, JAVA = 10, PARALLEL =
11, LOCALUNIVERSE = 12, VM = 13 };

• commandThe command to execute once the job has started.

• arguments The command-line arguments forcommand.

• requirements The requirements expression for the job. For further details and
examples of the expression syntax, please refer to section 4.1.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

discoverJobRequirementsDiscover the requirements of a job, given a Class Ad. May be
helpful in determining what should be sent along with the job. A prototype is

StatusAndRequirements discoverJobRequirements(ClassA d jobAd);

Parameters • jobAd The ClassAd of the job.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the job’s requirements.

Methods for File Transfer

declareFile Declare a file that may be used by a job. A prototype is

Status declareFile(Transaction transaction, int cluster Id, int
jobId, String name, int size, HashType hashType, String has h);

Parameters • transaction The transaction in which this file is declared.

• clusterId The cluster identifier.

• jobId An identifier of the job that will use the file.

• name The name of the file.

• size The size of the file.

• hashType The type of hash mechanism used to verify file integrity, where
hashType can be one of the following:
enum HashType { NOHASH, MD5HASH};

• hash An optionally zero-length string encoding of the file hash.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 475

sendFile Send a file that a job may use. A prototype is

Status sendFile(Transaction transaction, int clusterId, int
jobId, String name, int offset, Base64 data);

Parameters • transaction The transaction in which this file is send.
• clusterId The cluster identifier.
• jobId An identifier of the job that will use the file.
• name The name of the file being sent.
• offset The starting offset within the file being sent.
• length The length from the offset to send.
• data The data block being sent. This could be the entire file or a sub-section of

the file as defined byoffset andlength .

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

getFile Get a file from a job’s spool. A prototype is

StatusAndBase64 getFile(Transaction transaction, int
clusterId, int jobId, String name, int offset, int length);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.
• jobId The job identifier the file is associated with.
• name The name of the file to retrieve.
• offset The starting offset withing the file being retrieved.
• length The length from the offset to retrieve.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the file or a sub-section of the file as defined byoffset andlength .

closeSpool Close a job’s spool. All the files in the job’s spool can be deleted. A prototype is

Status closeSpool(Transaction transaction, int clusterI d, int
jobId);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster identifier which the job is associated with.
• jobId The job identifier for which the spool is to be removed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

listSpool List the files in a job’s spool. A prototype is

StatusAndFileInfoArray listSpool(Transaction transact ion, int
clusterId, int jobId);

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 476

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.
• jobId The job identifier to search for.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains a list of files and their respective sizes.

Methods for Job Management

newCluster Create a new job cluster. A prototype is

StatusAndInt newCluster(Transaction transaction);

Parameters • transaction The transaction in which this cluster is created.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the cluster id.

removeClusterRemove a job cluster, and all the jobs within it. A prototype is

Status removeCluster(Transaction transaction, int clust erId,
String reason);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster to remove.
• reason The reason for the removal.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

newJob Creates a new job within the most recently created job cluster. A prototype is

StatusAndInt newJob(Transaction transaction, int cluste rId);

Parameters • transaction The transaction in which this job is created.
• clusterId The cluster identifier of the most recently created cluster.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the job id.

removeJob Remove a job, regardless of the job’s state. A prototype is

Status removeJob(Transaction transaction, int clusterId , int
jobId, String reason, boolean forceRemoval);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 477

• clusterId The cluster identifier to search in.

• jobId The job identifier to search for.

• reason The reason for the release.

• forceRemoval Set if the job should be forcibly removed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

holdJob Put a job into the Hold state, regardless of the job’s currentstate. A prototype is

Status holdJob(Transaction transaction, int clusterId, i nt
jobId, string reason, boolean emailUser, boolean emailAdm in,
boolean systemHold);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

• reason The reason for the release.

• emailUser Set if the submitting user should be notified.

• emailAdmin Set if the administrator should be notified.

• systemHold Set if the job should be put on hold.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

releaseJob Release a job that has been in the Hold state. A prototype is

Status releaseJob(Transaction transaction, int clusterI d, int
jobId, String reason, boolean emailUser, boolean emailAdm in);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

• reason The reason for the release.

• emailUser Set if the submitting user should be notified.

• emailAdmin Set if the administrator should be notified.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

getJobAds A prototype is

StatusAndClassAdArray getJobAds(Transaction transacti on,
String constraint);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 478

• constraint A string constraining the number ClassAds to return. For further
details and examples of the constraint syntax, please referto section 4.1.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains all job ClassAds matching the given constraint.

getJobAd Finds a specific job ClassAd.

This method does much the same as the first element from the array returned by

getJobAds(transaction, "(ClusterId==clusterId && JobId ==jobId)")

A prototype is

StatusAndClassAd getJobAd(Transaction transaction, int
clusterId, int jobId);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the requested ClassAd.

requestRescheduleRequest acondorreschedulefrom thecondorschedddaemon. A proto-
type is

Status requestReschedule();

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

Methods for ClassAd Management

insertAd A prototype is

Status insertAd(ClassAdType type, ClassAdStruct ad);

Parameters • type The type of ClassAd to insert, wheretype can be one of the fol-
lowing:
enum ClassAdType { STARTDAD TYPE, QUILL AD TYPE,
SCHEDDAD TYPE, SUBMITTORAD TYPE, LICENSE AD TYPE,
MASTERAD TYPE, CKPTSRVRAD TYPE, COLLECTORAD TYPE,
STORAGEAD TYPE, NEGOTIATORAD TYPE, HAD AD TYPE,
GENERICAD TYPE };

• ad The ClassAd to insert.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 479

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

queryStartdAdsA prototype is

ClassAdArray queryStartdAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondorstartdClassAds matching the given constraint.

queryScheddAdsA prototype is

ClassAdArray queryScheddAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondorscheddClassAds matching the given constraint.

queryMasterAdsA prototype is

ClassAdArray queryMasterAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondormasterClassAds matching the given constraint.

querySubmittorAdsA prototype is

ClassAdArray querySubmittorAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the submitters ClassAds matching the given constraint.

queryLicenseAdsA prototype is

ClassAdArray queryLicenseAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return.For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the license ClassAds matching the given constraint.

queryStorageAdsA prototype is

ClassAdArray queryStorageAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the storage ClassAds matching the given constraint.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 480

queryAnyAds A prototype is

ClassAdArray queryAnyAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the ClassAds matching the given constraint. to return.

Methods for Version Information

getVersionStringA prototype is

StatusAndString getVersionString();

Return Value Returns the Condor version as a string.

getPlatformStringA prototype is

StatusAndString getPlatformString();

Return Value Returns the platform information Condor is running on as string.

Common Data Structures

Many methods return a status. Table 4.1 lists and defines theStatusCode return values.

Value Identifier Definition

0 SUCCESS All OK
1 FAIL An error occurred that is not specific to another error code
2 INVALIDTRANSACTION No such transaction exists
3 UNKNOWNCLUSTER The specified cluster is not the currently active one
4 UNKNOWNJOB The specified job does not exist within the specified cluster
5 UNKNOWNFILE
6 INCOMPLETE
7 INVALIDOFFSET
8 ALREADYEXISTS For this job, the specified file already exists

Table 4.1:StatusCode definitions

4.5.2 The DRMAA API

The following quote from the DRMAA Specification 1.0 abstract nicely describes the purpose of
the API:

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 481

The Distributed Resource Management Application API (DRMAA), developed by a working
group of the Global Grid Forum (GGF),

provides a generalized API to distributed resource management systems (DRMSs) in
order to facilitate integration of application programs. The scope of DRMAA is lim-
ited to job submission, job monitoring and control, and the retrieval of the finished
job status. DRMAA provides application developers and distributed resource manage-
ment builders with a programming model that enables the development of distributed
applications tightly coupled to an underlying DRMS. For deployers of such distributed
applications, DRMAA preserves flexibility and choice in system design.

The API allows users who write programs using DRMAA functions and link to a DRMAA
library to submit, control, and retrieve information aboutjobs to a Grid system. The Condor im-
plementation of a portion of the API allows programs (applications) to use the library functions
provided to submit, monitor and control Condor jobs.

See the DRMAA site (http://www.drmaa.org) to find the API specification for DRMA 1.0 for
further details on the API.

Implementation Details

The library was developed from the DRMA API Specification 1.0of January 2004 and the DRMAA
C Bindings v0.9 of September 2003. It is a static C library that expects a POSIX thread model on
Unix systems and a Windows thread model on Windows systems. Unix systems that do not support
POSIX threads are not guaranteed thread safety when callingthe library’s functions.

The object library file is called libcondordrmaa.a , and it is located within
the <release>/lib directory in the Condor download. Its header file is called
lib condor drmaa.h , and it is located within the <release>/include di-
rectory in the Condor download. Also within<release>/include is the file
lib condor drmaa.README, which gives further details on the implementation.

Use of the library requires that a localcondorschedddaemon must be running, and the program
linked to the library must have sufficient spool space. This space should be in/tmp or specified by
the environment variablesTEMP, TMP, or SPOOL. The program linked to the library and the local
condorschedddaemon must have read, write, and traverse rights to the spool space.

The library currently supports the following specification-defined job attributes:

DRMAA REMOTE COMMAND

DRMAA JS STATE

DRMAA NATIVE SPECIFICATION

DRMAA BLOCK EMAIL

Condor Version 7.2.3 Manual

http://www.drmaa.org

4.5. Application Program Interfaces 482

DRMAA INPUT PATH

DRMAA OUTPUT PATH

DRMAA ERRORPATH

DRMAA V ARGV

DRMAA V ENV

DRMAA V EMAIL

The attributeDRMAANATIVE SPECIFICATION can be used to direct all commands sup-
ported within submit description files. See thecondorsubmitmanual page at section 9 for a com-
plete list. Multiple commands can be specified if separated by newlines.

As in the normal submit file, arbitrary attributes can be added to the job’s ClassAd by prefixing
the attribute with +. In this case, you will need to put stringvalues in quotation marks, the same as
in a submit file.

Thus to tell Condor that the job will likely use 64 megabytes of memory (65536 kilobytes), to
more highly rank machines with more memory, and to add the arbitrary attribute of department set
to chemistry, you would set AttrDRMAANATIVE SPECIFICATION to the C string:

drmaa_set_attribute(jobtemplate, DRMAA_NATIVE_SPECIF ICATION,
"image_size=65536\nrank=Memory\n+department=\"chemi stry\"",
err_buf, sizeof(err_buf)-1);

4.5.3 The Command Line Interface

This section has not yet been written

4.5.4 The Condor GAHP

This section has not yet been written

4.5.5 The Condor Perl Module

The Condor Perl module facilitates automatic submitting and monitoring of Condor jobs, along
with automated administration of Condor. The most common use of this module is the monitoring
of Condor jobs. The Condor Perl module can be used as a meta scheduler for the submission of
Condor jobs.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 483

The Condor Perl module provides several subroutines. Some of the subroutines are used as
callbacks; an event triggers the execution of a specific subroutine. Other of the subroutines denote
actions to be taken by Perl. Some of these subroutines take other subroutines as arguments.

Subroutines

Submit(submitdescriptionfile) This subroutine takes the action of submitting a job
to Condor. The argument is the name of a submit description file. Thecondorsubmitprogram
should be in the path of the user. If the user wishes to monitorthe job with condor they must
specify a log file in the command file. The cluster submitted isreturned. For more information
see thecondorsubmitman page.

Vacate(machine)This subroutine takes the action of sending acondorvacatecommand to the
machine specified as an argument. The machine may be specifiedeither by host name, or by
sinful string. For more information see thecondorvacateman page.

Reschedule(machine)This subroutine takes the action of sending acondor reschedulecom-
mand to the machine specified as an argument. The machine may be specified either by host
name, or bysinful string. For more information see thecondorrescheduleman page.

Monitor(cluster)Takes the action of monitoring this cluster. It returns whenall jobs in
cluster terminate.

Wait() Takes the action of waiting until all monitor subroutines finish, and then exits the Perl
script.

DebugOn() Takes the action of turning debug messages on. This may be useful when attempting
to debug the Perl script.

DebugOff() Takes the action of turning debug messages off.

RegisterEvicted(sub)Register a subroutine (calledsub) to be used as a callback when a
job from a specified cluster is evicted. The subroutine will be called with two arguments:
cluster and job. The cluster and job are the cluster number and process number of the job that
was evicted.

RegisterEvictedWithCheckpoint(sub)Same as RegisterEvicted except that the han-
dler is called when the evicted job was checkpointed.

RegisterEvictedWithoutCheckpoint(sub)Same as RegisterEvicted except that the
handler is called when the evicted job was not checkpointed.

RegisterExit(sub)Register a termination handler that is called when a job exits. The termi-
nation handler will be called with two arguments: cluster and job. The cluster and job are the
cluster and process numbers of the existing job.

RegisterExitSuccess(sub)Register a termination handler that is called when a job exits
without errors. The termination handler will be called withtwo arguments: cluster and job
The cluster and job are the cluster and process numbers of theexisting job.

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 484

RegisterExitFailure(sub)Register a termination handler that is called when a job exits
with errors. The termination handler will be called with three arguments: cluster, job and
retval. The cluster and job are the cluster and process numbers of the existing job and the
retval is the exit code of the job.

RegisterExitAbnormal(sub)Register an termination handler that is called when a job ab-
normally exits (segmentation fault, bus error, ...). The termination handler will be called with
four arguments: cluster, job signal and core. The cluster and job are the cluster and process
numbers of the existing job. The signal indicates the signalthat the job died with and core
indicates whether a core file was created and if so, what the full path to the core file is.

RegisterAbort(sub)Register a handler that is called when a job is aborted by a user.

RegisterJobErr(sub)Register a handler that is called when a job is not executable.

RegisterExecute(sub)Register an execution handler that is called whenever a job starts
running on a given host. The handler is called with four arguments: cluster, job host, and
sinful. Cluster and job are the cluster and process numbers for the job, host is the Internet
address of the machine running the job, and sinful is the Internet address and command port
of thecondorstartersupervising the job.

RegisterSubmit(sub)Register a submit handler that is called whenever a job is submitted
with the given cluster. The handler is called with cluster, job host, and sinful. Cluster and job
are the cluster and process numbers for the job, host is the Internet address of the machine
running the job, and sinful is the Internet address and command port of thecondorschedd
responsible for the job.

Monitor(cluster)Begin monitoring this cluster. Returns when all jobs in cluster terminate.

Wait() Wait until all monitors finish and exit.

DebugOn() Turn debug messages on. This may be useful if you don’t understand what your script
is doing.

DebugOff() Turn debug messages off.

TestSubmit(commandfile) This subroutine submits a job to Condor for testing, and places
all variables from the command file into the Perl hash%submit info . Does not reset the
state of variables, so that testing preserves callbacks.

SubmitDagman(DAGfile, DAGManargs) Takes the action of submitting a DAG using
condordagman. The first argument is the name of the DAG input file, and the second ar-
gument is the command line arguments forcondordagman. Information from the submit
description file generated bycondordagmanis placed into the Perl hash%submit info
for access during callbacks.

TestSubmitDagman(DAGfile, DAGManargs) This subroutine submits a con-
dor dagmanto Condor for testing, and places information from the submit description
file generated bycondordagmaninto the Perl hash%submit info for access during

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 485

callbacks. The first argument is the name of the DAG input file,and the second argument is
the command line arguments forcondordagman. Does not reset the state of variables, so
that testing preserves callbacks.

RegisterEvictedWithRequeue(sub)Register a subroutine (calledsub) to be used as a
callback when a job from a specified cluster is requeued. The subroutine will be called with
two arguments: cluster and job. The cluster and job are the cluster number and process number
of the job that was requeued.

RegisterShadow(sub)Register a subroutine (calledsub) to be used as a callback when a
shadow exception occurs.

RegisterHold(sub)Register a subroutine (calledsub) to be used as a callback when a job
enters the hold state.

RegisterRelease(sub)Register a subroutine (calledsub) to be used as a callback when a
job is released.

RegisterWantError(sub)Register a subroutine (calledsub) to be used as a callback when
a system call invoked usingrunCommand experiences an error.

runCommand(string)string identifies a syscall that is invoked. If the syscall exits abnor-
mally or exits with an error, the callback registered withRegisterWantError() is called,
and an error message is issued.

RegisterTimed(sub, seconds)Register a subroutine (calledsub) to be called back at a
delay ofseconds time from this registration time. Only one callback may be registered, as
subsequent calls modify the timer only.

RemoveTimed()Remove the single, timed callback registered withRegisterTimed() .

Examples

The following is an example that uses the Condor Perl module.The example uses the submit de-
scription filemycmdfile.cmd to specify the submission of a job. As the job is matched with
a machine and begins to execute, a callback subroutine (calledexecute) sends acondorvacate
signal to the job, and it increments a counter which keeps track of the number of times this callback
executes. A second callback keeps a count of the number of times that the job was evicted before
the job completes. After the job completes, the terminationcallback (callednormal) prints out a
summary of what happened.

#!/usr/bin/perl
use Condor;

$CMD_FILE = 'mycmdfile.cmd';
$evicts = 0;
$vacates = 0;

A subroutine that will be used as the normal execution callb ack

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 486

$normal = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "Job $cluster.$job exited normally without errors.\ n";
print "Job was vacated $vacates times and evicted $evicts ti mes\n";
exit(0);

};

$evicted = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "Job $cluster, $job was evicted.\n";
$evicts++;
&Condor::Reschedule();

};

$execute = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};
$host = $parameters{'host'};
$sinful = $parameters{'sinful'};

print "Job running on $sinful, vacating...\n";
&Condor::Vacate($sinful);
$vacates++;

};

$cluster = Condor::Submit($CMD_FILE);
printf("Could not open. Access Denied\n");
break;
&Condor::RegisterExitSuccess($normal);
&Condor::RegisterEvicted($evicted);
&Condor::RegisterExecute($execute);
&Condor::Monitor($cluster);
&Condor::Wait();

This example program will submit the command file ’mycmdfile.cmd’ and attempt to vacate
any machine that the job runs on. The termination handler then prints out a summary of what has
happened.

A second example Perl script facilitates the meta-scheduling of two of Condor jobs. It submits
a second job if the first job successfully completes.

#!/s/std/bin/perl

tell Perl where to find the Condor library
use lib '/unsup/condor/lib';
tell Perl to use what it finds in the Condor library

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 487

use Condor;

$SUBMIT_FILE1 = 'Asubmit.cmd';
$SUBMIT_FILE2 = 'Bsubmit.cmd';

Callback used when first job exits without errors.
$firstOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

$cluster = Condor::Submit($SUBMIT_FILE2);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE2.\n");
}

&Condor::RegisterExitSuccess($secondOK);
&Condor::RegisterExitFailure($secondfails);
&Condor::Monitor($cluster);

};

$firstfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The first job, $cluster.$job failed, exiting with an error. \n";
exit(0);

};

Callback used when second job exits without errors.
$secondOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job, $cluster.$job successfully complet ed. \n";
exit(0);

};

Callback used when second job exits WITH an error.
$secondfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job ($cluster.$job) failed. \n";
exit(0);

};

$cluster = Condor::Submit($SUBMIT_FILE1);
if (($cluster) == 0)

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 488

{
printf("Could not open $SUBMIT_FILE1. \n");

}
&Condor::RegisterExitSuccess($firstOK);
&Condor::RegisterExitFailure($firstfails);

&Condor::Monitor($cluster);
&Condor::Wait();

Some notes are in order about this example. The same task could be accomplished using the
Condor DAGMan metascheduler. The first job is the parent, andthe second job is the child. The
input file to DAGMan is significantly simpler than this Perl script.

A third example using the Condor Perl module expands upon thesecond example. Whereas
the second example could have been more easily implemented using DAGMan, this third example
shows the versatility of using Perl as a metascheduler.

In this example, the result generated from the successful completion of the first job are used to
decide which subsequent job should be submitted. This is a very simple example of a branch and
bound technique, to focus the search for a problem solution.

#!/s/std/bin/perl

tell Perl where to find the Condor library
use lib '/unsup/condor/lib';
tell Perl to use what it finds in the Condor library
use Condor;

$SUBMIT_FILE1 = 'Asubmit.cmd';
$SUBMIT_FILE2 = 'Bsubmit.cmd';
$SUBMIT_FILE3 = 'Csubmit.cmd';

Callback used when first job exits without errors.
$firstOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

open output file from first job, and read the result
if (-f "A.output")
{

open(RESULTFILE, "A.output") or die "Could not open result file.";
$result = <RESULTFILE>;
close(RESULTFILE);
next job to submit is based on output from first job
if ($result < 100)
{

$cluster = Condor::Submit($SUBMIT_FILE2);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE2.\n");
}

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 489

&Condor::RegisterExitSuccess($secondOK);
&Condor::RegisterExitFailure($secondfails);
&Condor::Monitor($cluster);

}
else
{

$cluster = Condor::Submit($SUBMIT_FILE3);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE3.\n");
}

&Condor::RegisterExitSuccess($thirdOK);
&Condor::RegisterExitFailure($thirdfails);
&Condor::Monitor($cluster);

}
}
else
{

printf("Results file does not exist.\n");
}

};

$firstfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The first job, $cluster.$job failed, exiting with an error. \n";
exit(0);

};

Callback used when second job exits without errors.
$secondOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job, $cluster.$job successfully complet ed. \n";
exit(0);

};

Callback used when third job exits without errors.
$thirdOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The third job, $cluster.$job successfully complete d. \n";
exit(0);

};

Condor Version 7.2.3 Manual

4.5. Application Program Interfaces 490

Callback used when second job exits WITH an error.
$secondfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job ($cluster.$job) failed. \n";
exit(0);

};

Callback used when third job exits WITH an error.
$thirdfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The third job ($cluster.$job) failed. \n";
exit(0);

};

$cluster = Condor::Submit($SUBMIT_FILE1);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE1. \n");
}
&Condor::RegisterExitSuccess($firstOK);
&Condor::RegisterExitFailure($firstfails);

&Condor::Monitor($cluster);
&Condor::Wait();

Condor Version 7.2.3 Manual

CHAPTER

FIVE

Grid Computing

5.1 Introduction

A goal of grid computing is to allow the utilization of resources that span many administrative
domains. A Condor pool often includes resources owned and controlled by many different people.
Yet collaborating researchers from different organizations may not find it feasible to combine all of
their computers into a single, large Condor pool. Condor shines in grid computing, continuing to
evolve with the field.

Due to the field’s rapid evolution, Condor has its own native mechanisms for grid computing as
well as developing interactions with other grid systems.

Flocking is a native mechanism that allows Condor jobs submitted fromwithin one pool to
execute on another, separate Condor pool. Flocking is enabled by configuration within each of
the pools. An advantage to flocking is that jobs migrate from one pool to another based on the
availability of machines to execute jobs. When the local Condor pool is not able to run the job (due
to a lack of currently available machines), the job flocks to another pool. A second advantage to
using flocking is that the user (who submits the job) does not need to be concerned with any aspects
of the job. The user’s submit description file (and the job’suniverse) are independent of the flocking
mechanism.

Other forms of grid computing are enabled by using thegrid universe and further specified with
thegrid type. For any Condor job, the job is submitted on a machine in the local Condor pool. The
location where it is executed is identified as the remote machine or remote resource. These various
grid computing mechanisms offered by Condor are distinguished by the software running on the
remote resource.

When Condor is running on the remote resource, and the desired grid computing mechanism is

491

5.2. Connecting Condor Pools with Flocking 492

to move the job from the local pool’s job queue to the remote pool’s job queue, it is called Condor-C.
The job is submitted using thegrid universe, and thegrid type is condor. Condor-C jobs have the
advantage that once the job has moved to the remote pool’s jobqueue, a network partition does not
affect the execution of the job. A further advantage of Condor-C jobs is that theuniverseof the job
at the remote resource is not restricted.

When other middleware is running on the remote resource, such as Globus, Condor can still
submit and manage jobs to be executed on remote resources. Agrid universe job, with agrid type
of gt2 or gt4 calls on Globus software to execute the job on a remote resource. Like Condor-C jobs,
a network partition does not affect the execution of the job.The remote resource must have Globus
software running.

Condor also facilitates the temporary addition of a Globus-controlled resource to a local pool.
This is calledglidein. Globus software is utilized to execute Condor daemons on the remote re-
source. The remote resource appears to have joined the localCondor pool. A user submitting a job
may then explicitly specify the remote resource as the execution site of a job.

Starting with Condor Version 6.7.0, thegrid universe replaces theglobusuniverse. Further spec-
ification of agrid universe job is done within thegrid resourcecommand in a submit description
file.

5.2 Connecting Condor Pools with Flocking

Flocking is Condor’s way of allowing jobs that cannot immediately run (within the pool of machines
where the job was submitted) to instead run on a different Condor pool. If a machine within Condor
pool A can send jobs to be run on Condor pool B, then we say that jobs from machine A flock to
pool B. Flocking can occur in a one way manner, such as jobs from machine A flocking to pool B, or
it can be set up to flock in both directions. Configuration variables allow thecondorschedddaemon
(which runs on each machine that may submit jobs) to implement flocking.

NOTE: Flocking to pools which use Condor’s high availability mechanims is not adviced in
current verions of Condor. See section 3.10.2 “High Availability of the Central Manager” of the
Condor manual for a discussion of these problems.

5.2.1 Flocking Configuration

The simplest flocking configuration sets a few configuration variables. If jobs from machine A are
to flock to pool B, then in machine A’s configuration, set the following configuration variables:

FLOCK TO is a comma separated list of the central manager machines of the pools that jobs from
machine A may flock to.

FLOCK COLLECTORHOSTS is the list ofcondorcollector daemons within the pools that jobs
from machine A may flock to. In most cases, it is the same asFLOCKTO, and it would be

Condor Version 7.2.3 Manual

5.2. Connecting Condor Pools with Flocking 493

defined with

FLOCK_COLLECTOR_HOSTS = $(FLOCK_TO)

FLOCK NEGOTIATORHOSTS is the list ofcondornegotiatordaemons within the pools that jobs
from machine A may flock to. In most cases, it is the same asFLOCKTO, and it would be
defined with

FLOCK_NEGOTIATOR_HOSTS = $(FLOCK_TO)

HOSTALLOWNEGOTIATORSCHEDD provides a host-based access level and authorization list
for thecondorschedddaemon to allow negotiation (for security reasons) with themachines
within the pools that jobs from machine A may flock to. This configuration variable will not
likely need to change from its default value as given in the sample configuration:

Now, with flocking we need to let the SCHEDD trust the other
negotiators we are flocking with as well. You should norma lly
not have to change this either.
HOSTALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)

This example configuration presumes that thecondorcollector andcondornegotiatordae-
mons are running on the same machine. See section 3.6.7 on page 302 for a discussion of
security macros and their use.

The configuration macros that must be set in pool B are ones that authorize jobs from machine
A to flock to pool B.

The host-based configuration macros are more easily set by introducing a list of machines where
the jobs may flock from.FLOCKFROMis a comma separated list of machines, and it is used in the
default configuration setting of the security macros that dohost-based authorization:

HOSTALLOW_WRITE_COLLECTOR = $(HOSTALLOW_WRITE), $(FLOCK_FROM)
HOSTALLOW_WRITE_STARTD = $(HOSTALLOW_WRITE), $(FLOCK_FROM)
HOSTALLOW_READ_COLLECTOR = $(HOSTALLOW_READ), $(FLOCK_FROM)
HOSTALLOW_READ_STARTD = $(HOSTALLOW_READ), $(FLOCK_FROM)

Wild cards may be used when setting theFLOCKFROMconfiguration variable. For example,
* .cs.wisc.edu specifies all hosts from thecs.wisc.edu domain.

If the user-based configuration macros for security are used, then the default will be:

ALLOW_NEGOTIATOR = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)

Further, if using Kerberos or GSI authentication, then the setting becomes:

ALLOW_NEGOTIATOR = condor@$(UID_DOMAIN)/$(COLLECTOR_HOST)

To enable flocking in both directions, consider each direction separately, following the guidelines
given.

Condor Version 7.2.3 Manual

5.3. The Grid Universe 494

5.2.2 Job Considerations

A particular job will only flock to another pool when it cannotcurrently run in the current pool.

At one point, all jobs that utilized flocking were standard universe jobs. This is no longer the
case. The submission of jobs under other universes must consider the location of input, output and
error files. The common case will be that machines within separate pools do not have a shared file
system. Therefore, when submitting jobs, the user will needto consider file transfer mechanisms.
These mechanisms are discussed in section 2.5.4 on page 26.

5.3 The Grid Universe

5.3.1 Condor-C, The condor Grid Type

Condor-C allows jobs in one machine’s job queue to be moved toanother machine’s job queue.
These machines may be far removed from each other, providingpowerful grid computation mecha-
nisms, while requiring only Condor software and its configuration.

Condor-C is highly resistant to network disconnections andmachine failures on both the sub-
mission and remote sides. An expected usage sets up PersonalCondor on a laptop, submits some
jobs that are sent to a Condor pool, waits until the jobs are staged on the pool, then turns off the
laptop. When the laptop reconnects at a later time, any results can be pulled back.

Condor-C scales gracefully when compared with Condor’s flocking mechanism. The machine
upon which jobs are submitted maintains a single process andnetwork connection to a remote ma-
chine, without regard to the number of jobs queued or running.

Condor-C Configuration

There are two aspects to configuration to enable the submission and execution of Condor-C jobs.
These two aspects correspond to the endpoints of the communication: there is the machine from
which jobs are submitted, and there is the remote machine upon which the jobs are placed in the
queue (executed).

Configuration of a machine from which jobs are submitted requires a few extra configuration
variables:

CONDOR_GAHP=$(SBIN)/condor_c-gahp
C_GAHP_LOG=/tmp/CGAHPLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOG=/tmp/CGAHPWorkerLog.$(USERNAME)

The acronym GAHP stands for Grid ASCII Helper Protocol. A GAHP server provides grid-
related services for a variety of underlying middle-ware systems. The configuration variable

Condor Version 7.2.3 Manual

5.3. The Grid Universe 495

CONDORGAHP gives a full path to the GAHP server utilized by Condor-C. Theconfiguration
variableC GAHPLOG defines the location of the log that the Condor GAHP server writes. The log
for the Condor GAHP is written as the user on whose behalf it isrunning; thus theC GAHPLOG
configuration variable must point to a location the end user can write to.

A submit machine must also have acondorcollectordaemon to which thecondorschedddae-
mon can submit a query. The query is for the location (IP address and port) of the intended remote
machine’scondorschedddaemon. This facilitates communication between the two machines. This
condorcollectordoes not need to be the same collector that the localcondorschedddaemon reports
to.

The machine upon which jobs are executed must also be configured correctly. This machine must
be running acondorschedddaemon. Unless specified explicitly in a submit file,CONDORHOST
must point to acondorcollectordaemon that it can write to, and the machine upon which jobs are
submitted can read from. This facilitates communication between the two machines.

An important aspect of configuration is the security configuration relating to authentication.
Condor-C on the remote machine relies on an authentication protocol to know the identity of the
user under which to run a job. The following is a working example of the security configuration for
authentication. This authentication method, CLAIMTOBE, trusts the identity claimed by a host or
IP address.

SEC_DEFAULT_NEGOTIATION = OPTIONAL
SEC_DEFAULT_AUTHENTICATION_METHODS = CLAIMTOBE

Condor-C Job Submission

Job submission of Condor-C jobs is the same as for any Condor job. Theuniverse is grid .
grid resourcespecifies the remotecondorschedddaemon to which the job should be submitted,
and its value consists of three fields. The first field is the grid type, which iscondor. The second
field is the name of the remotecondorschedddaemon. Its value is the same as thecondorschedd
ClassAd attributeNameon the remote machine. The third field is the name of the remotepool’s
condorcollector.

The following represents a minimal submit description file for a job.

minimal submit description file for a Condor-C job
universe = grid
executable = myjob
output = myoutput
error = myerror
log = mylog

grid_resource = condor joe@remotemachine.example.com re motecentralmanager.example.com
+remote_jobuniverse = 5
+remote_requirements = True
+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"
queue

Condor Version 7.2.3 Manual

5.3. The Grid Universe 496

The remote machine needs to understand the attributes of thejob. These are specified in the
submit description file using the ’+’ syntax, followed by thestring remote . At a minimum, this
will be the job’suniverse and the job’srequirements. It is likely that other attributes specific to
the job’suniverse (on the remote pool) will also be necessary. Note that attributes set with ’+’ are
inserted directly into the job’s ClassAd. Specify attributes as they must appear in the job’s ClassAd,
not the submit description file. For example, theuniverse is specified using an integer assigned for
a job ClassAdJobUniverse . Similarly, place quotation marks around string expressions. As an
example, a submit description file would ordinarily contain

when_to_transfer_output = ON_EXIT

This must appear in the Condor-C job submit description file as

+remote_WhenToTransferOutput = "ON_EXIT"

For convenience, the specific entries ofuniverse, remote grid resource, globus rsl, and
globus xml may be specified asremote commands without the leading ’+’. Instead of

+remote_universe = 5

the submit description file command may appear as

remote_universe = vanilla

Similarly, the command

+remote_gridresource = "condor schedd.example.com cm.ex ample.com"

may be given as

remote_grid_resource = condor schedd.example.com cm.exa mple.com

For the given example, the job is to be run as avanilla universe job at the remote pool. The
(remote pool’s)condorschedddaemon is likely to place its job queue data on a local disk and
execute the job on another machine within the pool of machines. This implies that the file systems
for the resulting submit machine (the machine specified byremote schedd) and the execute machine
(the machine that runs the job) willnot be shared. Thus, the two inserted ClassAds

+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"

are used to invoke Condor’s file transfer mechanism.

As Condor-C is a recent addition to Condor, the universes, associated integer assignments, and
notes about the existence of functionality are given in Table 5.1. The note ”untested” implies that
submissions under the given universe have not yet been throughly tested. They may already work.

Condor Version 7.2.3 Manual

5.3. The Grid Universe 497

Universe Name Value Notes

standard 1 untested
vanilla 5 works well
scheduler 7 works well
MPI 8 untested
grid 9

grid resource is condor works well
grid resource is gt2 works well
grid resource is gt4 untested
grid resource is nordugrid untested
grid resource is unicore untested
grid resource is lsf works well
grid resource is pbs works well

java 10 untested
parallel 11 untested
local 12 works well

Table 5.1: Functionality of remote job universes with Condor-C

For communication betweencondorschedddaemons on the submit and remote machines, the
location of the remotecondorschedddaemon is needed. This information resides in thecon-
dor collector of the remote machine’s pool. The third field of thegrid resourcecommand in the
submit description file says whichcondorcollectorshould be queried for the remotecondorschedd
daemon’s location. An example of this submit command is

grid_resource = condor schedd.example.com machine1.exam ple.com

If the remotecondorcollectoris not listening on the standard port (9618), then the port itis listening
on needs to be specified:

grid_resource = condor schedd.example.comd machine1.exa mple.com:12345

File transfer of a job’s executable,stdin , stdout , andstderr are automatic. When other
files need to be transferred using Condor’s file transfer mechanism (see section 2.5.4 on page 26),
the mechanism is applied based on the resulting job universeon the remote machine.

Condor-C Jobs Between Differing Platforms

Condor-C jobs given to a remote machine running Windows mustspecify the Windows domain of
the remote machine. This is accomplished by defining a ClassAd attribute for the job. Where the
Windows domain is different at the submit machine from the remote machine, the submit description
file defines the Windows domain of the remote machine with

+remote_NTDomain = "DomainAtRemoteMachine"

Condor Version 7.2.3 Manual

5.3. The Grid Universe 498

A Windows machine not part of a domain defines the Windows domain as the machine name.

Current Limitations in Condor-C

Submitting jobs to run under the grid universe has not yet been perfected. The following is a list of
known limitations with Condor-C:

1. Authentication methods other thanCLAIMTOBE, such asGSI andKERBEROS, are untested,
and may not yet work.

5.3.2 Condor-G, the gt2 and gt4 Grid Types

Condor-G is the name given to Condor whengrid universe jobs are sent to grid resources utilizing
Globus software for job execution. The Globus Toolkit provides a framework for building grid sys-
tems and applications. See the Globus Alliance web page at http://www.globus.org for descriptions
and details of the Globus software.

Condor provides the same job management capabilities for Condor-G jobs as for other jobs.
From Condor, a user may effectively submit jobs, manage jobs, and have jobs execute on widely
distributed machines.

It may appear that Condor-G is a simple replacement for the Globus Toolkit’sglobusruncom-
mand. However, Condor-G does much more. It allows the submission of many jobs at once, along
with the monitoring of those jobs with a convenient interface. There is notification when jobs com-
plete or fail and maintenance of Globus credentials that mayexpire while a job is running. On top
of this, Condor-G is a fault-tolerant system; if a machine crashes, all of these functions are again
available as the machine returns.

Globus Protocols and Terminology

The Globus software provides a well-defined set of protocolsthat allow authentication, data transfer,
and remote job execution. Authentication is a mechanism by which an identity is verified. Given
proper authentication, authorization to use a resource is required. Authorization is a policy that
determines who is allowed to do what.

Condor (and Globus) utilize the following protocols and terminology. The protocols allow Con-
dor to interact with grid machines toward the end result of executing jobs.

GSI The Globus Toolkit’s Grid Security Infrastructure (GSI) provides essential building blocks for
other grid protocols and Condor-G. This authentication andauthorization system makes it
possible to authenticate a user just once, using public key infrastructure (PKI) mechanisms to
verify a user-supplied grid credential. GSI then handles the mapping of the grid credential to

Condor Version 7.2.3 Manual

http://www.globus.org

5.3. The Grid Universe 499

the diverse local credentials and authentication/authorization mechanisms that apply at each
site.

GRAM The Grid Resource Allocation and Management (GRAM) protocol supports remote sub-
mission of a computational request (for example, to run a program) to a remote computational
resource, and it supports subsequent monitoring and control of the computation. GRAM is
the Globus protocol that Condor-G uses to talk to remote Globus jobmanagers.

GASS The Globus Toolkit’s Global Access to Secondary Storage (GASS) service provides mech-
anisms for transferring data to and from a remote HTTP, FTP, or GASS server. GASS is used
by Condor for thegt2 grid type to transfer a job’s files to and from the machine where the job
is submitted and the remote resource.

GridFTP GridFTP is an extension of FTP that provides strong securityand high-performance op-
tions for large data transfers. It is used with thegt4 grid type to transfer the job’s files between
the machine where the job is submitted and the remote resource.

RSL RSL (Resource Specification Language) is the language GRAM accepts to specify job infor-
mation.

gatekeeper A gatekeeper is a software daemon executing on a remote machine on the grid. It is
relevant only to thegt2 grid type, and this daemon handles the initial communication between
Condor and a remote resource.

jobmanager A jobmanager is the Globus service that is initiated at a remote resource to submit,
keep track of, and manage grid I/O for jobs running on an underlying batch system. There
is a specific jobmanager for each type of batch system supported by Globus (examples are
Condor, LSF, and PBS).

Figure 5.1 shows how Condor interacts with Globus software towards running jobs. The diagram
is specific to thegt2 type of grid. Condor contains a GASS server, used to transferthe executable,
stdin , stdout , andstderr to and from the remote job execution site. Condor uses the GRAM
protocol to contact the remote gatekeeper and request that anew jobmanager be started. The GRAM
protocol is also used to when monitoring the job’s progress.Condor detects and intelligently handles
cases such as if the remote resource crashes.

There are now three different versions of the GRAM protocol.Condor supports both thegt2 and
gt4 protocols. It does not supportgt3.

gt2 This initial GRAM protocol is used in Globus Toolkit versions 1 and 2. It is still used by many
production systems. Where available in the other, more recent versions of the protocol,gt2 is
referred to as the pre-web services GRAM (or pre-WS GRAM).

gt3 gt3 corresponds to Globus Toolkit version 3 as part of Globus’ shift to web services-based
protocols. It is replaced by the Globus Toolkit version 4. Aninstallation of the Globus Toolkit
version 3 (or OSGA GRAM) may also include the the pre-web services GRAM.

gt4 This GRAM protocol was introduced in Globus Toolkit version4.0 as a more standards-
compliant version of the GT3 web services-based GRAM. It is also called WS GRAM. A

Condor Version 7.2.3 Manual

5.3. The Grid Universe 500

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Job Submission Machine Job Execution Site

Globus
GateKeeper

Condor-G
Scheduler

Globus
JobManager

Site Job Scheduler

(PBS, Condor, LSF, LoadLeveler, NQE, etc.)

Job X

Globus
JobManager

Job Y

S
ubm

it

Condor-G
GridManager

GASS
Server

S
ubm

it

Fork

Fo
rk

 Fork

Persistant
Job Queue

End User
Requests

Figure 5.1: Condor-G interaction with Globus-managed resources

slightly different version of this GRAM protocol was introduced in Globus Toolkit 4.2 due
to a change in the underlying Web Services standards. An installation of the Globus Toolkit
version 4 may also include the the pre-web services GRAM.

The gt2 Grid Type

Condor-G supports submitting jobs to remote resources running the Globus Toolkit versions 1 and
2, also called the pre-web services GRAM (or pre-WS GRAM). These Condor-G jobs are submitted
the same as any other Condor job. Theuniverse is grid , and the pre-web services GRAM protocol
is specified by setting the type of grid asgt2 in thegrid resourcecommand.

Under Condor, successful job submission to thegrid universe with gt2 requires credentials. An
X.509 certificate is used to create a proxy, and an account, authorization, or allocation to use a grid
resource is required. For general information on proxies and certificates, please consult the Globus
page at

http://www-unix.globus.org/toolkit/docs/4.0/security/key-index.html

Condor Version 7.2.3 Manual

http://www-unix.globus.org/toolkit/docs/4.0/security/key-index.html

5.3. The Grid Universe 501

Before submitting a job to Condor under thegrid universe, usegrid-proxy-init to create a proxy.

Here is a simple submit description file. The example specifies agt2 job to be run on an NCSA
machine.

executable = test
universe = grid
grid_resource = gt2 modi4.ncsa.uiuc.edu/jobmanager
output = test.out
log = test.log
queue

Theexecutablefor this example is transferred from the local machine to theremote machine.
By default, Condor transfers the executable, as well as any files specified by aninput command.
Note that the executable must be compiled for its intended platform.

The commandgrid resource is a required command for grid universe jobs. The second field
specifies the scheduling software to be used on the remote resource. There is a specific jobmanager
for each type of batch system supported by Globus. The full syntax for this command line appears
as

grid_resource = gt2 machinename[:port]/jobmanagername[:X.509 distinguished name]

The portions of this syntax specification enclosed within square brackets ([and]) are optional. On
a machine where the jobmanager is listening on a nonstandardport, include the port number. The
jobmanagername is a site-specific string. The most common one isjobmanager-fork , but
others are

jobmanager
jobmanager-condor
jobmanager-pbs
jobmanager-lsf
jobmanager-sge

The Globus software running on the remote resource uses thisstring to identify and select the cor-
rect service to perform. Otherjobmanagername strings are used, where additional services are
defined and implemented.

No input file is specified for this example job. Any output (filespecified by anoutput command)
or error (file specified by anerror command) is transferred from the remote machine to the local
machine as it is generated. This implies that these files may be incomplete in the case where the
executable does not finish running on the remote resource. The ability to transfer standard output
and standard error as they are produced may be disabled by adding to the submit description file:

stream_output = False
stream_error = False

Condor Version 7.2.3 Manual

5.3. The Grid Universe 502

As a result, standard output and standard error will be transferred only after the job completes.

The job log file is maintained on the submit machine.

Example output fromcondorq for this submission looks like:

% condor_q

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
7.0 smith 3/26 14:08 0+00:00:00 I 0 0.0 test

1 jobs; 1 idle, 0 running, 0 held

After a short time, the Globus resource accepts the job. Again runningcondorq will now result
in

% condor_q

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
7.0 smith 3/26 14:08 0+00:01:15 R 0 0.0 test

1 jobs; 0 idle, 1 running, 0 held

Then, very shortly after that, the queue will be empty again,because the job has finished:

% condor_q

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 idle, 0 running, 0 held

A second example of a submit description file runs the Unixls program on a different Globus
resource.

executable = /bin/ls
transfer_executable = false
universe = grid
grid_resource = gt2 vulture.cs.wisc.edu/jobmanager
output = ls-test.out
log = ls-test.log
queue

Condor Version 7.2.3 Manual

5.3. The Grid Universe 503

In this example, the executable (the binary) has been pre-staged. The executable is on the remote
machine, and it is not to be transferred before execution. Note that the requiredgrid resourceand
universecommands are present. The command

transfer_executable = false

within the submit description file identifies the executableas being pre-staged. In this case, the
executablecommand gives the path to the executable on the remote machine.

A third example submits a Perl script to be run as a submitted Condor job. The Perl script
both lists and sets environment variables for a job. Save thefollowing Perl script with the name
env-test.pl , to be used as a Condor job executable.

#!/usr/bin/env perl

foreach $key (sort keys(%ENV))
{

print "$key = $ENV{$key}\n"
}

exit 0;

Run the Unix command

chmod 755 env-test.pl

to make the Perl script executable.

Now create the following submit description file. Replace
example.cs.wisc.edu/jobmanager with a resource you are authorized to use.

executable = env-test.pl
universe = grid
grid_resource = gt2 example.cs.wisc.edu/jobmanager
environment = foo=bar; zot=qux
output = env-test.out
log = env-test.log
queue

When the job has completed, the output file,env-test.out , should contain something like
this:

GLOBUS_GRAM_JOB_CONTACT = https://example.cs.wisc.edu :36213/30905/1020633947/
GLOBUS_GRAM_MYJOB_CONTACT = URLx-nexus://example.cs.w isc.edu:36214
GLOBUS_LOCATION = /usr/local/globus

Condor Version 7.2.3 Manual

5.3. The Grid Universe 504

GLOBUS_REMOTE_IO_URL = /home/smith/.globus/.gass_cach e/globus_gass_cache_1020633948
HOME = /home/smith
LANG = en_US
LOGNAME = smith
X509_USER_PROXY = /home/smith/.globus/.gass_cache/glo bus_gass_cache_1020633951
foo = bar
zot = qux

Of particular interest is theGLOBUSREMOTEIO URLenvironment variable. Condor-G auto-
matically starts up a GASS remote I/O server on the submit machine. Because of the potential for
either side of the connection to fail, the URL for the server cannot be passed directly to the job. In-
stead, it is placed into a file, and theGLOBUSREMOTEIO URLenvironment variable points to this
file. Remote jobs can read this file and use the URL it contains to access the remote GASS server
running inside Condor-G. If the location of the GASS server changes (for example, if Condor-G
restarts), Condor-G will contact the Globus gatekeeper andupdate this file on the machine where
the job is running. It is therefore important that all accesses to the remote GASS server check this
file for the latest location.

The following example is a Perl script that uses the GASS server in Condor-G to copy input files
to the execute machine. In this example, the remote job counts the number of lines in a file.

#!/usr/bin/env perl
use FileHandle;
use Cwd;

STDOUT->autoflush();
$gassUrl = `cat $ENV{GLOBUS_REMOTE_IO_URL}`;
chomp $gassUrl;

$ENV{LD_LIBRARY_PATH} = $ENV{GLOBUS_LOCATION}. "/lib";
$urlCopy = $ENV{GLOBUS_LOCATION}."/bin/globus-url-cop y";

globus-url-copy needs a full path name
$pwd = getcwd();
print "$urlCopy $gassUrl/etc/hosts file://$pwd/tempora ry.hosts\n\n";
`$urlCopy $gassUrl/etc/hosts file://$pwd/temporary.ho sts`;

open(file, "temporary.hosts");
while(<file>) {
print $_;
}

exit 0;

The submit description file used to submit the Perl script as aCondor job appears as:

executable = gass-example.pl
universe = grid
grid_resource = gt2 example.cs.wisc.edu/jobmanager
output = gass.out
log = gass.log
queue

Condor Version 7.2.3 Manual

5.3. The Grid Universe 505

There are two optional submit description file commands of note: x509userproxy and
globus rsl. The x509userproxycommand specifies the path to an X.509 proxy. The command
is of the form:

x509userproxy = /path/to/proxy

If this optional command is not present in the submit description file, then Condor-G checks the
value of the environment variableX509 USERPROXYfor the location of the proxy. If this environ-
ment variable is not present, then Condor-G looks for the proxy in the file/tmp/x509up uXXXX,
where the charactersXXXXin this file name are replaced with the Unix user id.

Theglobus rsl command is used to add additional attribute settings to a job’s RSL string. The
format of theglobus rsl command is

globus_rsl = (name=value)(name=value)

Here is an example of this command from a submit description file:

globus_rsl = (project=Test_Project)

This example’s attribute name for the additional RSL isproject , and the value assigned is
Test Project .

The gt4 Grid Type

Condor-G supports submitting jobs to remote resources running the Globus Toolkit version 4, which
speak a protocol called WS GRAM. Please note that this GlobusToolkit version isnot compatible
with the Globus Toolkit version 3.0 or 3.2. Glbous Toolkit versions 4.0 and 4.2 use slightly dif-
ferent (and incompatible) versions of WS GRAM, due to a change in the underlying Web Services
standards. Condor is able to detect the difference and use the appropriate version for each remote
resource automatically. See http://www-unix.globus.org/toolkit/docs/4.2/index.html for more infor-
mation about the Globus Toolkit version 4.2.

For grid jobs destined forgt4, the submit description file is much the same as forgt2 jobs. The
grid resourcecommand is still required, and is given in the form of a URL. The syntax follows the
form:

grid_resource = gt4 [https://]hostname[:port][/wsrf/se rvices/ManagedJobFactoryService] scheduler-string

or

grid_resource = gt4 [https://]IPaddress[:port][/wsrf/s ervices/ManagedJobFactoryService] scheduler-string

The portions of this syntax specification enclosed within square brackets ([and]) are optional.

Condor Version 7.2.3 Manual

http://www-unix.globus.org/toolkit/docs/4.2/index.html

5.3. The Grid Universe 506

Thescheduler-stringfield of grid resourceindicates which job execution system should to be
used on the remote system, to execute the job. One of these values is substituted forscheduler-
string:

Fork
Condor
PBS
LSF
SGE

Theglobus xml command can be used to add additional attributes to the XML-based RSL string
that Condor writes to submit the job to GRAM. Here is an example of this command from a submit
description file:

globus_xml = <project>Test_Project</project>

This example’s attribute name for the additional RSL isproject , and the value assigned is
Test Project .

File transfer occurs as expected for a Condor job (for the executable,input , andoutput),
except that all output files other thanstdout andstderr must be explicitly listed usingtrans-
fer output files. The underlying transfer mechanism requires aGridFTP server to be running on
the machine where the job is submitted. Condor will start oneautomatically. It will appear in the
job queue as an additional job. It will leave the queue when there are no moregt4 jobs in the queue.
If the submit machine has a permanentGridFTPserver running, instruct Condor to use it by setting
theGRIDFTP URL BASE configuration variable. Here is an example setting:

GRIDFTP_URL_BASE = gsiftp://mycomp.foo.edu

On the submit machine, there is no requirement for any GlobusToolkit 4.0 components. Condor
itself installs all necessary framework within the directory $(LIB)/lib/gt4 . The machine where
the job is submitted is required to have Java 1.5.0 or a higherversion installed. You should not use
the GNU Java interpreter (GCJ). The configuration variableJAVA must identify the location of
the installation. See page 192 within section 3.3 for the complete description of the configuration
variableJAVA.

Credential Management withMyProxy

Condor-G can useMyProxysoftware to automatically renew GSI proxies forgrid universe jobs with
grid typegt2. MyProxyis a software component developed at NCSA and used widely throughout
the grid community. For more information see: http://myproxy.ncsa.uiuc.edu/

Difficulties with proxy expiration occur in two cases. The first case are long running jobs,
which do not complete before the proxy expires. The second case occurs when great numbers

Condor Version 7.2.3 Manual

http://myproxy.ncsa.uiuc.edu/

5.3. The Grid Universe 507

of jobs are submitted. Some of the jobs may not yet be started or not yet completed before the
proxy expires. One proposed solution to these difficulties is to generate longer-lived proxies. This,
however, presents a greater security problem. Remember that a GSI proxy is sent to the remote
Globus resource. If a proxy falls into the hands of a malicious user at the remote site, the malicious
user can impersonate the proxy owner for the duration of the proxy’s lifetime. The longer the
proxy’s lifetime, the more time a malicious user has to misuse the owner’s credentials. To minimize
the window of opportunity of a malicious user, it is recommended that proxies have a short lifetime
(on the order of several hours).

The MyProxy software generates proxies using credentials (a user certificate or a long-lived
proxy) located on a secureMyProxyserver. Condor-G talks to the MyProxy server, renewing a
proxy as it is about to expire. Another advantage that this presents is it relieves the user from having
to store a GSI user certificate and private key on the machine where jobs are submitted. This may
be particularly important if a shared Condor-G submit machine is used by several users.

In the a typical case, the following steps occur:

1. The user creates a long-lived credential on a secureMyProxyserver, using themyproxy-init
command. Each organization generally has their ownMyProxyserver.

2. The user creates a short-lived proxy on a local submit machine, usinggrid-proxy-init or
myproxy-get-delegation.

3. The user submits a Condor-G job, specifying:

MyProxyserver name (host:port)

MyProxycredential name (optional)

MyProxypassword

4. At the short-lived proxy expiration Condor-G talks to theMyProxyserver to refresh the proxy.

Condor-G keeps track of the password to theMyProxyserver for credential renewal. Although
Condor-G tries to keep the password encrypted and secure, itis still possible (although highly un-
likely) for the password to be intercepted from the Condor-Gmachine (more precisely, from the
machine that thecondorschedddaemon that manages the grid universe jobs runs on, which may
be distinct from the machine from where jobs are submitted).The following safeguard practices are
recommended.

1. Provide time limits for credentials on theMyProxyserver. The default is one week, but you
may want to make it shorter.

2. Create several differentMyProxy credentials, maybe as many as one for each sub-
mitted job. Each credential has a unique name, which is identified with the
MyProxyCredentialName command in the submit description file.

3. Use the following options when initializing the credential on theMyProxyserver:

Condor Version 7.2.3 Manual

5.3. The Grid Universe 508

myproxy-init -s <host> -x -r <cert subject> -k <cred name>

The option-x -r ¡cert subject¿essentially tells theMyProxyserver to require two forms of
authentication:

(a) a password (initially set withmyproxy-init)

(b) an existing proxy (the proxy to be renewed)

4. A submit description file may include the password. An example contains commands of the
form:

executable = /usr/bin/my-executable
universe = grid
grid_resource = gt4 condor-unsup-7
MyProxyHost = example.cs.wisc.edu:7512
MyProxyServerDN = /O=doesciencegrid.org/OU=People/CN= Jane Doe 25900
MyProxyPassword = password
MyProxyCredentialName = my_executable_run
queue

Note that placing the password within the submit file is not really secure, as it relies upon
whatever file system security there is. This may still be better than option 5.

5. Use the-p option tocondorsubmit. The submit command appears as

condor_submit -p mypassword /home/user/myjob.submit

The argument list forcondorsubmitdefaults to being publicly available. An attacker with a
log in to the local machine could generate a simple shell script to watch for the password.

Currently, Condor-G calls themyproxy-get-delegationcommand-line tool, passing it the nec-
essary arguments. The location of themyproxy-get-delegationexecutable is determined by the
configuration variableMYPROXYGETDELEGATION in the configuration file on the Condor-
G machine. This variable is read by thecondorgridmanager. If myproxy-get-delegationis
a dynamically-linked executable (verify this withldd myproxy-get-delegation), point
MYPROXYGETDELEGATIONto a wrapper shell script that setsLD LIBRARY PATHto the cor-
rectMyProxylibrary or Globus library directory and then callsmyproxy-get-delegation. Here is an
example of such a wrapper script:

#!/bin/sh
export LD_LIBRARY_PATH=/opt/myglobus/lib
exec /opt/myglobus/bin/myproxy-get-delegation $@

The Grid Monitor

Condor’s Grid Monitor is designed to improve the scalability of machines running Globus Toolkit
2 gatekeepers. Normally, this gatekeeper runs a jobmanagerprocess for every job submitted to
the gatekeeper. This includes both currently running jobs and jobs waiting in the queue. Each

Condor Version 7.2.3 Manual

5.3. The Grid Universe 509

jobmanager runs a Perl script at frequent intervals (every 10 seconds) to poll the state of its job in
the local batch system. For example, with 400 jobs submittedto a gatekeeper, there will be 400
jobmanagers running, each regularly starting a Perl script. When a large number of jobs have been
submitted to a single gatekeeper, this frequent polling canheavily load the gatekeeper. When the
gatekeeper is under heavy load, the system can become non-responsive, and a variety of problems
can occur.

Condor’s Grid Monitor temporarily replaces these jobmanagers. It is named the Grid Monitor,
because it replaces the monitoring (polling) duties previously done by jobmanagers. When the Grid
Monitor runs, Condor attempts to start a single process to poll all of a user’s jobs at a given gate-
keeper. While a job is waiting in the queue, but not yet running, Condor shuts down the associated
jobmanager, and instead relies on the Grid Monitor to reportchanges in status. The jobmanager
started to add the job to the remote batch system queue is shutdown. The jobmanager restarts when
the job begins running.

By default, standard output and standard error are streamedback to the submitting machine
while the job is running. Streamed I/O requires the jobmanager. As a result, the Grid Monitor
cannot replace the jobmanager for jobs that use streaming. If possible, disable streaming for all
jobs; this is accomplished by placing the following lines ineach job’s submit description file:

stream_output = False
stream_error = False

The Grid Monitor requires that the gatekeeper support the fork jobmanager with the name
jobmanager-fork. If the gatekeeper does not support the fork jobmanager, theGrid Monitor will
not be used for that site. Thecondorgridmanagerlog file reports any problems using the Grid
Monitor.

To enable the Grid Monitor, two variables are added to the Condor configuration file. The
configuration macroGRID MONITOR is already present in current distributions of Condor,
but it may be missing from earlier versions of Condor. Also set the configuration macro
ENABLEGRID MONITORto True .

GRID_MONITOR = $(SBIN)/grid_monitor.sh
ENABLE_GRID_MONITOR = TRUE

Limitations of Condor-G

Submitting jobs to run under the grid universe has not yet been perfected. The following is a list of
known limitations:

1. No checkpoints.

2. No job exit codes. Job exit codes are not available when usinggt2.

3. Limited platform availability. Windows support is not yet available.

Condor Version 7.2.3 Manual

5.3. The Grid Universe 510

5.3.3 The nordugrid Grid Type

NorduGrid is a project to develop free grid middleware namedthe Advanced Resource Connec-
tor (ARC). See the NorduGrid web page (http://www.nordugrid.org) for more information about
NorduGrid software.

Condor jobs may be submitted to NorduGrid resources using the grid universe. The
grid resourcecommand specifies the name of the NorduGrid resource as follows:

grid_resource = nordugrid ng.example.com

NorduGrid uses X.509 credentials for authentication, usually in the form a proxy certificate.
For more information about proxies and certificates, pleaseconsult the Alliance PKI pages at
http://archive.ncsa.uiuc.edu/SCD/Alliance/GridSecurity/. condorsubmitlooks in default locations
for the proxy. The submit description file commandx509userproxy is used to give the full path
name to the directory containing the proxy, when the proxy isnot in a default location. If this
optional command is not present in the submit description file, then the value of the environment
variableX509 USERPROXYis checked for the location of the proxy. If this environmentvariable
is not present, then the proxy in the file/tmp/x509up uXXXXis used, where the charactersXXXX
in this file name are replaced with the Unix user id.

NorduGrid uses RSL syntax to describe jobs. The submit description file commandnor-
dugrid rsl adds additional attributes to the job RSL that Condor constructs. The format this submit
description file command is

nordugrid_rsl = (name=value)(name=value)

5.3.4 The unicore Grid Type

Unicore is a Java-based grid scheduling system. See http://unicore.sourceforge.net for more infor-
mation about Unicore.

Condor jobs may be submitted to Unicore resources using thegrid universe. Thegrid resource
command specifies the name of the Unicore resource as follows:

grid_resource = unicore usite.example.com vsite

usite.example.comis the host name of the Unicore gateway machine to which the Condor job is
to be submitted.vsite is the name of the Unicore virtual resource to which the Condor job is to be
submitted.

Unicore uses certificates stored in a Java keystore file for authentication. The following submit
description file commands are required to properly use the keystore file.

keystore file Specifies the complete path and file name of the Java keystore file to use.

Condor Version 7.2.3 Manual

http://www.nordugrid.org
http://archive.ncsa.uiuc.edu/SCD/Alliance/GridSecurity/
http://unicore.sourceforge.net

5.3. The Grid Universe 511

keystore alias A string that specifies which certificate in the Java keystorefile to use.

keystore passphrasefile Specifies the complete path and file name of the file containingthe
passphrase protecting the certificate in the Java keystore file.

5.3.5 The pbs Grid Type

The popular PBS (Portable Batch System) comes in several varieties: OpenPBS
(http://www.openpbs.org), PBS Pro (http://www.altair.com/software/pbspro.htm), and Torque
(http://www.clusterresources.com/pages/products/torque-resource-manager.php).

Condor jobs are submitted to a local PBS system using thegrid universe and thegrid resource
command by placing the following into the submit description file.

grid_resource = pbs

The pbs grid type requires two variables to be set in the Condor configuration file.PBS GAHPis
the path to the PBS GAHP server binary that is to be used to submit PBS jobs.GLITE LOCATION
is the path to the directory containing the GAHP’s configuration file and auxillary binaries. In the
Condor distribution, these files are located in$(LIB)/glite . The PBS GAHP’s configuration file
is in $(GLITE LOCATION)/etc/batch gahp.config . The PBS GAHP’s auxillary binaries
are to be in the directory$(GLITE LOCATION)/bin . The Condor configuration file appears

GLITE_LOCATION = $(LIB)/glite
PBS_GAHP = $(GLITE_LOCATION)/bin/batch_gahp

The PBS GAHP’s configuration file contains two variables thatmust be modified to tell it where
to find PBS on the local system.pbs binpath is the directory that contains the PBS binaries.
pbs spoolpath is the PBS spool directory.

5.3.6 The lsf Grid Type

Condor jobs may be submitted to the Platform LSF batch system. See the Products page of the
Platform web page at http://www.platform.com/Products/ for more information about Platform LSF.

Condor jobs are submitted to a local Platform LSF system using the grid universe and the
grid resourcecommand by placing the following into the submit description file.

grid_resource = lsf

The lsf grid type requires two variables to be set in the Condor configuration file.LSF GAHP
is the path to the LSF GAHP server binary that is to be used to submit Platform LSF jobs.

Condor Version 7.2.3 Manual

http://www.openpbs.org
http://www.altair.com/software/pbspro.htm
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.platform.com/Products/

5.3. The Grid Universe 512

GLITE LOCATION is the path to the directory containing the GAHP’s configuration file and aux-
illary binaries. In the Condor distribution, these files arelocated in$(LIB)/glite . The LSF
GAHP’s configuration file is in$(GLITE LOCATION)/etc/batch gahp.config . The LSF
GAHP’s auxillary binaries are to be in the directory$(GLITE LOCATION)/bin . The Condor
configuration file appears

GLITE_LOCATION = $(LIB)/glite
LSF_GAHP = $(GLITE_LOCATION)/bin/batch_gahp

The LSF GAHP’s configuration file contains two variables thatmust be modified to tell it where
to find LSF on the local system.lsf binpath is the directory that contains the LSF binaries.
lsf confpath is the location of the LSF configuration file.

5.3.7 The amazon Grid Type

Condor jobs may be submitted to Amazon’s Elastic Compute Cloud (EC2) service. EC2 is an on-line
commercial service that allows you to rent computers by the hour to run computational applications.
EC2 runs virtual machine images that have been uploaded to Amazon’s online storage service (S3).
See the Amazon EC2 webpage at http://aws.amazon.com/ec2 for more information about EC2.

Amazon EC2 Job Submision

Condor jobs are submitted to EC2 using thegrid universe and thegrid resource command by
placing the following into the submit description file.

grid_resource = amazon

Since the job is a virtual machine image, most of the submit file attributes specifying input or
output files aren’t applicable. Theexecutableattribute is still required, but its value is ignored. You
can use it to identify different jobs in the output ofcondorq.

The VM image for the job must already reside in Amazon’s storage service (S3) and be registered
with EC2. In the submit file, you must provide the identifier for the image using theamazonami id
attribute.

You must also provide the files containing the X509 certificate and private key used to authenti-
cate you with the EC2 service:

amazon_public_key = /path/to/x509/cert
amazon_private_key = /path/to/private/key

Condor and EC2 can create an ssh keypair to allow you to securely log into the virtual machine
once it’s running. If you setamazonkeypair file in the submit file, Condor will write an ssh private

Condor Version 7.2.3 Manual

http://aws.amazon.com/ec2

5.3. The Grid Universe 513

key into the indicated file. The key can be used to log into the virtual machine. Note that you’ll also
need to modify the firewall rules for the job to all incoming ssh connections.

EC2 uses a firewall to restrict network access to the virtual machine instances it runs. By default,
no incoming connections are allowed. You can define sets of firewall rules and give them names.
EC2 calls these security groups. You can then tell Condor what set of security groups should be
applied to each VM using theamazonsecurity groupsattribute. If you don’t provide this attribute,
Condor uses the security groupdefault.

EC2 offers several hardware configurations for instances torun on, with varying prices. You
can select which configuration to use with theamazoninstance type attribute. The default value is
m1.small.

Each virtual machine instance can be given up 16kB of unique data, accessible by the instance
by connecting to a well-known address. This makes it easy formany instances to share the same VM
image but perform different work. This data can be specified to Condor in one of two ways. First,
the data can be provided directly in the submit file using theamazonuser data attribute. Second,
the data can be stored in a file, and the filename specified with theamazonuser data file attribute.
The second option allows you to use binary data. Condor performs the base64 encoding that EC2
expects on the data.

Amazon EC2 Configuration Parameters

The amazon grid type requires several parameters to be set inthe Condor configuration file:

AMAZON_GAHP=$(SBIN)/amazon-gahp
AMAZON_GAHP_LOG=/tmp/AmazonGahpLog.$(USERNAME)

You can alter the URL used by Condor to contact the EC2 serviceusing theAMAZONEC2 URL
parameter. The default value ishttps://ec2.amazonaws.com/ .

If you need to use an HTTP proxy to reach EC2, you tell Condor touse it via the
AMAZONHTTP PROXYparamater.

5.3.8 Matchmaking in the Grid Universe

In a simple usage, the grid universe allows users to specify asingle grid site as a destination for
jobs. This is sufficient when a user knows exactly which grid site they wish to use, or a higher-level
resource broker (such as the European Data Grid’s resource broker) has decided which grid site
should be used.

When a user has a variety of grid sites to choose from, Condor allows matchmaking of grid
universe jobs to decide which grid resource a job should run on. Please note that this form of
matchmaking is relatively new. There are some rough edges ascontinual improvement occurs.

Condor Version 7.2.3 Manual

5.3. The Grid Universe 514

To facilitate Condor’s matching of jobs with grid resources, both the jobs and the grid resources
are involved. The job’s submit description file provides allcommands needed to make the job work
on a matched grid resource. The grid resource identifies itself to Condor by advertising a ClassAd.
This ClassAd specifies all necessary attributes, such that Condor can properly make matches. The
grid resource identification is accomplished by usingcondoradvertiseto send a ClassAd represent-
ing the grid resource, which is then used by Condor to make matches.

Job Submission

To submit a grid universe job intended for a single, specificgt2 resource, the submit description file
for the job explicitly specifies the resource:

grid_resource = gt2 grid.example.com/jobmanager-pbs

If there were multiplegt2 resources that might be matched to the job, the submit description file
changes:

grid_resource = $$(resource_name)
requirements = TARGET.resource_name =!= UNDEFINED

The grid resource command uses a substitution macro. The substitution macro defines the
value ofresource nameusing attributes as specified by the matched grid resource. Therequire-
mentscommand further restricts that the job may only run on a machine (grid resource) that defines
grid resource . Note that this attribute name is invented for this example.To make matchmak-
ing work in this way, both the job (as used here within the submit description file) and the grid
resource (in its created and advertised ClassAd) must agreeupon the name of the attribute.

As a more complex example, consider a job that wants to run notonly on agt2 resource, but on
one that has the Bamboozle software installed. The completesubmit description file might appear:

universe = grid
executable = analyze_bamboozle_data
output = aaa.$(Cluster).out
error = aaa.$(Cluster).err
log = aaa.log
grid_resource = $$(resource_name)
requirements = (TARGET.HaveBamboozle == True) && (TARGET. resource_name =!= UNDEFINED)
queue

Any grid resource which has theHaveBamboozle attribute defined as well as set toTrue is
further checked to have theresource nameattribute defined. Where this occurs, a match may be
made (from the job’s point of view). A grid resource that has one of these attributes defined, but not
the other results in no match being made.

Note that the entire value ofgrid resourcecomes from the grid resource’s ad. This means that
the job can be matched with a resource of any type, not justgt2.

Condor Version 7.2.3 Manual

5.3. The Grid Universe 515

Advertising Grid Resources to Condor

Any grid resource that wishes to be matched by Condor with a job must advertise itself to Condor
using a ClassAd. To properly advertise, a ClassAd is sent periodically to thecondorcollector
daemon. A ClassAd is a list of pairs, where each pair consistsof an attribute name and value that
describes an entity. There are two entities relevant to Condor: a job, and a machine. A grid resource
is a machine. The ClassAd describes the grid resource, as well as identifying the capabilities of the
grid resource. It may also state both requirements and preferences (calledrank) for the jobs it will
run. See Section 2.3 for an overview of the interaction between matchmaking and ClassAds. A list
of common machine ClassAd attributes is given in the Appendix on page 886.

To advertise a grid site, place the attributes in a file. Here is a sample ClassAd that describes a
grid resource that is capable of running agt2 job.

example grid resource ClassAd for a gt2 job
MyType = "Machine"
TargetType = "Job"
Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"
resource_name = "gt2 grid.example.com/jobmanager-pbs"
UpdateSequenceNumber = 4
Requirements = (TARGET.JobUniverse == 9)
Rank = 0.000000
CurrentRank = 0.000000

Some attributes are defined as expressions, while others areintegers, floating point values, or
strings. The type is important, and must be correct for the ClassAd to be effective. The attributes

MyType = "Machine"
TargetType = "Job"

identify the grid resource as a machine, and that the machineis to be matched with a job. In Condor,
machines are matched with jobs, and jobs are matched with machines. These attributes are strings.
Strings are surrounded by double quote marks.

The attributesNameandMachine are likely to be defined to be the same string value as in the
example:

Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"

Both give the fully qualified host name for the resource. TheNamemay be different on an SMP
machine, where the individual CPUs are given names that can be distiguished from each other. Each
separate grid resource must have a unique name.

Where the job depends on the resource to specify the value of thegrid resourcecommand by
the use of the substitution macro, the ClassAd for the grid resource (machine) defines this value.
The example given as

Condor Version 7.2.3 Manual

5.3. The Grid Universe 516

grid_resource = "gt2 grid.example.com/jobmanager-pbs"

defines this value. Note that the invented name of this variable must match the one utilized within
the submit description file. To make the matchmaking work, both the job (as used within the submit
description file) and the grid resource (in this created and advertised ClassAd) must agree upon the
name of the attribute.

A machine’s ClassAd information can be time sensitive, and may change over time. Therefore,
ClassAds expire and are thrown away. In addition, the communication method by which ClassAds
are sent implies that entire ads may be lost without notice ormay arrive out of order. Out of order
arrival leads to the definition of an attribute which provides an ordering. This positive integer value
is given in the example ClassAd as

UpdateSequenceNumber = 4

This value must increase for each subsequent ClassAd. If state information for the ClassAd is kept
in a file, a script executed each time the ClassAd is to be sent may use a counter for this value.
An alternative for a stateless implementation sends the current time in seconds (since the epoch, as
given by the Ctime() function call).

The requirements that the grid resource sets for any job thatit will accept are given as

Requirements = (TARGET.JobUniverse == 9)

This set of requirments state that any job is required to be for thegrid universe.

The attributes

Rank = 0.000000
CurrentRank = 0.000000

are both necessary for Condor’s negotiation to procede, butare not relevant to grid matchmaking.
Set both to the floating point value 0.0.

The example machine ClassAd becomes more complex for the case where the grid resource
allows matches with more than one job:

example grid resource ClassAd for a gt2 job
MyType = "Machine"
TargetType = "Job"
Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"
resource_name = "gt2 grid.example.com/jobmanager-pbs"
UpdateSequenceNumber = 4
Requirements = (CurMatches < 10) && (TARGET.JobUniverse == 9)
Rank = 0.000000
CurrentRank = 0.000000
WantAdRevaluate = True
CurMatches = 1

In this example, the two attributesWantAdRevaluate andCurMatches appear, and the
Requirements expression has changed.

Condor Version 7.2.3 Manual

5.3. The Grid Universe 517

WantAdRevaluate is a boolean value, and may be set to eitherTrue orFalse . WhenTrue
in the ClassAd and a match is made (of a job to the grid resource), the machine (grid resource) is not
removed from the set of machines to be considered for furthermatches. This implements the ability
for a single grid resource to be matched to more than one job ata time. Note that the spelling of this
attribute is incorrect, and remains incorrect to maintain backward compatibility.

To limit the number of matches made to the single grid resource, the resource must have the
ability to keep track of the number of Condor jobs it has. Thisinteger value is given as the
CurMatches attribute in the advertised ClassAd. It is then compared in order to limit the number
of jobs matched with the grid resource.

Requirements = (CurMatches < 10) && (TARGET.JobUniverse == 9)
CurMatches = 1

This example assumes that the grid resource already has one job, and is willing to accept a
maximum of 9 jobs. IfCurMatches does not appear in the ClassAd, Condor uses a default value
of 0.

For multiple matching of a site ClassAd to work correctly, itis also necessary to add the follow-
ing to the configuration file read by thecondornegotiator:

NEGOTIATOR_MATCHLIST_CACHING = False
NEGOTIATOR_IGNORE_USER_PRIORITIES = True

This ClassAd (likely in a file) is to be periodically sent to the condorcollector daemon using
condoradvertise. A recommended implementation uses a script to create or modify the ClassAd
together withcron to send the ClassAd every five minutes. Thecondoradvertiseprogram must be
installed on the machine sending the ClassAd, but the remainder of Condor does not need to be
installed. The required argument for thecondoradvertisecommand isUPDATESTARTDAD.

condoradvertiseuses UDP to transmit the ClassAd. Where this is insufficient,specify the-tcp
option tocondoradvertiseto use TCP for communication.

Advanced usage

What if a job fails to run at a grid site due to an error? It will be returned to the queue, and Condor
will attempt to match it and re-run it at another site. Condorisn’t very clever about avoiding sites
that may be bad, but you can give it some assistance. Let’s saythat you want to avoid running at the
last grid site you ran at. You could add this to your job description:

match_list_length = 1
Rank = TARGET.Name != LastMatchName0

This will prefer to run at a grid site that was not just tried, but it will allow the job to be run there
if there is no other option.

Condor Version 7.2.3 Manual

5.3. The Grid Universe 518

When you specifymatch list length, you provide an integer N, and Condor will keep track
of the last N matches. The oldest match will be LastMatchName0, and next oldest will be Last-
MatchName1, and so on. (See thecondorsubmitmanual page for more details.) The Rank ex-
pression allows you to specify a numerical ranking for different matches. When combined with
match list length, you can prefer to avoid sites that you have already run at.

In addition,condorsubmithas two options to help you control grid universe job resubmissions
and rematching. Seeglobus resubmit and globus rematch in the condorsubmitmanual page.
These options are independent ofmatch list length.

There are some new attributes that will be added to the Job ClassAd, and may be useful to you
when you write your rank, requirements, globusresubmit or globusrematch option. Please refer to
the Appendix on page 879 to see a list containing the following attributes:

• NumJobMatches

• NumGlobusSubmits

• NumSystemHolds

• HoldReason

• ReleaseReason

• EnteredCurrentStatus

• LastMatchTime

• LastRejMatchTime

• LastRejMatchReason

The following example of a command within the submit description file releases jobs 5 minutes
after being held, increasing the time between releases by 5 minutes each time. It will continue to
retry up to 4 times per Globus submission, plus 4. The plus 4 isnecessary in case the job goes on
hold before being submitted to Globus, although this is unlikely.

periodic_release = (NumSystemHolds <= ((NumGlobusSubmit s * 4) + 4)) \
&& (NumGlobusSubmits < 4) && \
(HoldReason != "via condor_hold (by user $ENV(USER))") && \
((CurrentTime - EnteredCurrentStatus) > (NumSystemHolds * 60* 5))

The following example forces Globus resubmission after a job has been held 4 times per Globus
submission.

globus_resubmit = NumSystemHolds == (NumGlobusSubmits + 1) * 4

If you are concerned about unknown or malicious grid sites reporting to yourcondorcollector,
you should use Condor’s security options, documented in Section 3.6.

Condor Version 7.2.3 Manual

5.4. Glidein 519

5.4 Glidein

Glidein is a mechanism by which one or more grid resources (remote machines) temporarily join a
local Condor pool. The programcondorglidein is used to add a machine to a Condor pool. During
the period of time when the added resource is part of the localpool, the resource is visible to users
of the pool. But, by default, the resource is only available for use by the user that added the resource
to the pool.

After glidein, the user may submit jobs for execution on the added resource the same way that
all Condor jobs are submitted. To force a submitted job to runon the added resource, the submit
description file could contain a requirement that the job runspecifically on the added resource.

5.4.1 Whatcondor glidein Does

condorglidein works by installing and executing necessary Condor daemonsand configuration on
the remote resource, such that the resource reports to and joins the local pool.condorglidein ac-
complishes two separate tasks towards having a remote grid resource join the local Condor pool.
They are the set up task and the execution task.

The set up task generates necessary configuration files and locates proper platform-dependent
binaries for the Condor daemons. A script is also generated that can be used during the execution
task to invoke the proper Condor daemons. These files are copied to the remote resource as neces-
sary. The configuration variableGLIDEIN SERVERURLS defines a list of locations from which
the necessary binaries are obtained. Default values cause binaries to be downloaded from the UW
site. See section 3.3.24 on page 223 for a full definition of this configuration variable.

When the files are correctly in place, the execution task starts the Condor daemons.con-
dor glidein does this by submitting a Condor job to run under the grid universe. The job runs
thecondormasteron the remote grid resource. Thecondormasterinvokes other daemons, which
contact the local pool’scondorcollectorto join the pool. The Condor daemons exit gracefully when
no jobs run on the daemons for a preset period of time.

Here is an example of how a glidein resource appears, similarto how any other machine appears.
The name has a slightly different form, in order to handle thepossibility of multiple instances of
glidein daemons inhabiting a multi-processor machine.

% condor_status | grep denal
7591386@denal LINUX INTEL Unclaimed Idle 3.700 24064 0+00: 06:35

5.4.2 Configuration Requirements in the Local Pool

As remote grid resources join the local pool, these resources must report to the local pool’scon-
dor collector daemon. Security demands that the local pool’scondorcollector list all hosts from

Condor Version 7.2.3 Manual

5.5. Dynamic Deployment 520

which they will accept communication. Therefore, all remote grid resources accepted for glidein
must be givenHOSTALLOWWRITE permission. An expected way to do this is to modify the
empty variable (within the sample configuration file)GLIDEIN SITES to list all remote grid re-
sources accepted for glidein. The list is a space or comma separated list of hosts. This list is then
given the proper permissions by an additional redefinition of theHOSTALLOWWRITEconfiguration
variable, to also include the list of hosts as in the following example.

GLIDEIN_SITES = A.example.com, B.example.com, C.example .com
HOSTALLOW_WRITE = $(HOSTALLOW_WRITE) $(GLIDEIN_SITES)

Recall that for configuration file changes to take effect,condorreconfigmust be run.

If this configuration change to the security settings on the local Condor pool cannot be made, an
additional Condor pool that utilizes personal Condor may bedefined. The single machine pool may
coexist with other instances of Condor.condorglidein is executed to have the remote grid resources
join this personal Condor pool.

5.4.3 Running Jobs on the Remote Grid Resource After Glidein

Once the Globus resource has been added to the local Condor pool with condorglidein, job(s) may
be submitted. To force a job to run on the Globus resource, specify that Globus resource as a machine
requirement in the submit description file. Here is an example from within the submit description
file that forces submission to the Globus resource denali.mcs.anl.gov:

requirements = (machine == "denali.mcs.anl.gov") \
&& FileSystemDomain != "" \
&& Arch != "" && OpSys != ""

This example requires that the job run only on denali.mcs.anl.gov, and it prevents Condor from
inserting the file system domain, architecture, and operating system attributes as requirements in the
matchmaking process. Condor must be told not to use the submission machine’s attributes in those
cases where the Globus resource’s attributes do not match the submission machine’s attributes and
your job really is capable of running on the target machine. You may want to use Condor’s file-
transfer capabilities in order to copy input and output filesback and forth between the submission
and execution machine.

5.5 Dynamic Deployment

See section 3.2.9 for a complete description of Condor’s dynamic deployment tools.

Condor’s dynamic deployment tools (condorcold start andcondorglidein) allow new pools of
resources to be incorporated on the fly. While Condor is able to manage compute jobs remotely

Condor Version 7.2.3 Manual

5.6. The Condor Job Router 521

through Globus and other grid-computing protocols, dynamic deployment of Condor makes it pos-
sible to go one step further. Condor remotely installs and runs portions of itself. This process
of Condor gliding in to inhabit computing resources on demand leverages the lowest common de-
nominator of grid middleware systems, simple program execution, to bind together resources in
a heterogeneous computing grid, with different managementpolicies and different job execution
methods, into a full-fledged Condor system.

The mobility of Condor services also benefits from the development of Condor-C, which pro-
vides a richer tool set for interlinking Condor-managed computers. Condor-C is a protocol that
allows one Condor scheduler to delegate jobs to another Condor scheduler. The second scheduler
could be at a remote site and/or an entry point into a restricted network. Delegating details of man-
aging a job achieves greater flexibility with respect to network architecture, as well as fault tolerance
and scalability. In the context of glide in deployments, thebeach-head for each compute site is a
dynamically deployed Condor scheduler which then serves asa target for Condor-C traffic.

In general, the mobility of the Condor scheduler and job execution agents, and the flexibility
in how these are interconnected provide a uniform and feature-rich platform that can expand onto
diverse resources and environments when the user requires it.

5.6 The Condor Job Router

The Condor Job Router is an add-on to condorschedd that transforms jobs from one type into
another according to a configurable policy. This process of transforming the jobs is calledjob
routing.

One example of how the Job Router can be used is the task of sending excess vanilla universe
jobs to one or more remote grid sites. The Job Router can transform the vanilla universe jobs into
grid universe jobs that use any of the grid types supported byCondor. The rate at which jobs are
routed can be matched roughly to the rate at which the site is able to start running them. This makes
it possible to balance a large work flow across multiple grid sites, a local condor pool, and any
flocked condor pools, without having to guess in advance how quickly jobs will run and complete in
each of the different sites.

Job Routing is most appropriate for high throughput work flows, where there are many more jobs
than computers, and the goal is to keep as many of the computers busy as possible. Job Routing is
less suitable when there are a small number of jobs, and the scheduler needs to choose the best place
for each job, in order to finish them as quickly as possible. The Job Router does not know which
site will run the jobs faster, but it can decide whether to send more jobs to a site, based on whether
jobs already submitted to that site are sitting idle or not, as well as whether the site has experienced
recent job failures.

Condor Version 7.2.3 Manual

5.6. The Condor Job Router 522

5.6.1 Routing Mechanism

Thecondor job routerdaemon and configuration determine a policy for which vanilla universe jobs
may be transformed and sent to grid sites. A vanilla universejob is transformed into a grid universe
job by making a copy of the original job ClassAd, modifying some attributes of the job. The copy is
called the routed copy, and it shows up in the job queue under anew job id.

Until the routed copy finishes or is removed, the original copy of the job passively mirrors the
state of the routed job. During this time, the original job isnot available for matchmaking as a normal
vanilla universe job, because it is tied to the routed copy. The original jobs also does not evaluate
periodic expressions, such asPeriodicHold . Periodic expressions are evaluated for the routed
copy. When the routed copy completes, the original job ClassAd is updated such that it reflects the
final status of the job. If the routed copy is removed, the original job returns to the normal idle state,
and is available for matchmaking or rerouting. If, instead,the original job is removed or goes on
hold, the routed copy is removed.

Thecondor job router daemon utilizes arouting table, in which a ClassAd describes each site
to where jobs may be sent. The routing table is given usingNew ClassAds, a re-implementation
of the current ClassAd language, as currently used by Condor. A good place to learn about
the syntax of New ClassAds is the Informal Language Description in the C++ ClassAds tutorial:
http://www.cs.wisc.edu/condor/classad/c++tut.html. With the exception of a few ClassAd functions,
everything in the current ClassAd language is supported by the New ClassAd language. A job that
requires the unsupported ClassAd functions (those with names beginning withstringList) can-
not be considered for Job Routing.

Entries in the routing table are described with the New ClassAd language, but thecon-
dor job router daemon must interact with the remainder of Condor which utilizes the current
ClassAd language. Arequirements attribute in the routing table is given with the New ClassAd
language. An attribute for a job, as represented in the job queue uses the current ClassAd language.

Two essential differences distinguish the New ClassAd language from the current one. In the
New ClassAd language, each ClassAd is surrounded by square brackets. And, in the New ClassAd
language, each assignment statement ends with a semicolon.When the New ClassAd is embedded in
a Condor configuration file, it may appear all on a single line,but the readability is often improved by
inserting line continuation characters after each assignment statement. This is done in the examples.
Unfortunately, this makes the insertion of comments into the configuration file awkward, because
of the interaction between comments and line continuation characters in configuration files. An
alternative is to use C-style comments (/ * . . .* /). Another alternative is to read in the routing
table entries from a separate file, rather than embedding them in the Condor configuration file.

5.6.2 Job Submission with Job Routing Capability

If Job Routing is set up, then the following items ought to be considered for vanilla universe jobs to
have the necessary prerequisites to be considered for routing.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/classad/c++tut.html

5.6. The Condor Job Router 523

• Jobs appropriate for routing to the grid must not rely on access to a shared file system, or
other services that are only available on the local pool. Thejob will use Condor’s file transfer
mechanism, rather than relying on a shared file system to access input files and write output
files. In the submit description file, to enable file transfer,there will be a set of commands
similar to

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = input1, input2
transfer_output_files = output1, output2

Vanilla universe jobs and grid universe jobs differ in the set of files transferred back when
the job completes. Vanilla universe jobs transfer back all files created or modified, while grid
universe jobs only transfer back the file mapped withoutput, as well as those explicitly listed
with transfer output files. To work properly as a routed copy, explicitly specify all output
files that must be transferred upon job completion.

An additional difference between the vanilla universe jobsandgt2 grid universe jobs is that
gt2 jobs do not return any information about the job’s exit status. The exit status as reported
in the job ClassAd and user log are always 0. Therefore, jobs that may be routed to agt2 grid
site must not rely upon a non-zero job exit status.

• One configuration for routed jobs requires the jobs to identify themselves as candidates for Job
Routing. This may be accomplished by inventing a ClassAd attribute that the configuration
utilizes in setting the policy for job identification, and the job defines this attribute to identify
itself. If the invented attribute is calledWantJobRouter , then the job identifies itself as a
job that may be routed by placing in the submit description file:

+WantJobRouter = True

This implementation can be taken further, allowing the job to first be rejected within the local
pool, before being a candidate for Job Routing:

+WantJobRouter = LastRejMatchTime =!= UNDEFINED

• As appropriate to the potential grid site, create a grid proxy, and specify it in the submit
description file:

x509userproxy = /tmp/x509up_u275

This is not necessary if thecondor job router daemon is configured to add a grid proxy on
behalf of jobs.

Job submission does not change for jobs that may be routed.

$ condor_submit job1.sub

Condor Version 7.2.3 Manual

5.6. The Condor Job Router 524

wherejob1.sub might contain:

universe = vanilla
executable = my_executable
output = job1.stdout
error = job1.stderr
log = job1.ulog
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
+WantJobRouter = LastRejMatchTime =!= UNDEFINED
x509userproxy = /tmp/x509up_u275
queue

The status of the job may be observed as with any other Condor job, for example by looking in
the job’s log file. Before the job completes,condorq shows the job’s status. Should the job become
routed, a second job will enter the job queue. This is the routed copy of the original job. The
commandcondorrouter q shows a more specialized view of routed jobs, as this exampleshows:

$ condor_router_q -S
JOBS ST Route GridResource

40 I Site1 site1.edu/jobmanager-condor
10 I Site2 site2.edu/jobmanager-pbs

2 R Site3 condor submit.site3.edu condor.site3.edu

condorrouter historysummarizes the history of routed jobs, as this example shows:

$ condor_router_history
Routed job history from 2007-06-27 23:38 to 2007-06-28 23:3 8

Site Hours Jobs Runs
Completed Aborted

--- ----
Site1 10 2 0
Site2 8 2 1
Site3 40 6 0
--- ----
TOTAL 58 10 1

5.6.3 An Example Configuration

The following sample configuration sets up potential job routing to three routes (grid sites). Defini-
tions of the configuration variables specific to the Job Router are in section 3.3.21. One route is a
Condor site accessed via the Globus gt2 protocol. A second route is a PBS site, also accessed via

Condor Version 7.2.3 Manual

5.6. The Condor Job Router 525

Globus gt2. The third site is a Condor site accessed by Condor-C. Thecondor job router daemon
does not know which site will be best for a given job. The policy implemented in this sample con-
figuration stops sending more jobs to a site, if ten jobs that have already been sent to that site are
idle.

These configuration settings belong in the local configuration file of the machine where jobs are
submitted. Check that the machine can successfully submit grid jobs before setting up and using
the Job Router. Typically, the single required element thatneeds to be added for GSI authentication
is an X.509 trusted certification authority directory, in a place recognized by Condor (for example,
/etc/grid-security/certificates). The VDT (http://vdt.cs.wisc.edu) project provides
a convenient way to set up and install a trusted CAs, if needed.

These settings become the default settings for all routes
JOB_ROUTER_DEFAULTS = \

[\
requirements=target.WantJobRouter is True; \
MaxIdleJobs = 10; \
MaxJobs = 200; \

\
/ * now modify routed job attributes * / \
/ * remove routed job if it goes on hold or stays idle for over 6 hou rs * / \
set_PeriodicRemove = JobStatus == 5 || \

(JobStatus == 1 && (CurrentTime - QDate) > 3600 * 6); \
delete_WantJobRouter = true; \
set_requirements = true; \

]

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs on
JOB_ROUTER_ENTRIES = \

[GridResource = "gt2 site1.edu/jobmanager-condor"; \
name = "Site 1"; \

] \
[GridResource = "gt2 site2.edu/jobmanager-pbs"; \

name = "Site 2"; \
set_GlobusRSL = "(maxwalltime=$(ROUTED_JOB_MAX_TIME)) (jobType=single)"; \

] \
[GridResource = "condor submit.site3.edu condor.site3.e du"; \

name = "Site 3"; \
set_remote_jobuniverse = 5; \

]

Reminder: you must restart Condor for changes to DAEMON_LI ST to take effect.
DAEMON_LIST = $(DAEMON_LIST) JOB_ROUTER

For testing, set this to a small value to speed things up.
Once you are running at large scale, set it to a higher value
to prevent the JobRouter from using too much cpu.
JOB_ROUTER_POLLING_PERIOD = 10

#It is good to save lots of schedd queue history

Condor Version 7.2.3 Manual

http://vdt.cs.wisc.edu

5.6. The Condor Job Router 526

#for use with the router_history command.
MAX_HISTORY_ROTATIONS = 20

5.6.4 Routing Table Entry ClassAd Attributes

The conversion of a vanilla job to a routed copy requires the job ClassAd to be modified. Defaults for
routed copy attributes, as well as instructions for creating needed attributes are listed in the Routing
Table.

The following attributes and instructions for creating attributes may appear in a Routing Table
entry.

GridResource Specifies the value for theGridResource attribute that will be inserted into the
routed copy ClassAd.

Name An optional identifier that will be used in log messages concerning this route. If no name
is specified, the default used will be the value ofGridResource . Thecondor job router
distinguishes routes and advertises statistics based on this attribute’s value.

Requirements A Requirements expression in New ClassAd syntax that identifies jobs that may
be matched to the route. Note that, as with all settings, requirements specified in the config-
uration variableJOB ROUTERENTRIESoverride the setting ofJOB ROUTERDEFAULTS.
To specify global requirements that are not overridden byJOB ROUTERENTRIES, use
JOB ROUTERSOURCEJOB CONSTRAINT.

MaxJobs An integer maximum number of jobs permitted on the route at one time. The default is
100.

MaxIdleJobs An integer maximum number of routed jobs in the idle state. Ator above this value,
no more jobs will be sent to this site. This is intended to prevent too many jobs from being
sent to sites which are too busy to run them. If the value set for this attribute is too small, the
rate of job submission to the site will slow, because thecondor job routerdaemon will submit
jobs up to this limit, wait to see some of the jobs enter the running state, and then submit more.
The disadvantage of setting this attribute’s value too highis that a lot of jobs may be sent to a
site, only to site idle for hours or days. The default value is50.

FailureRateThreshold A maximum tolerated rate of job failures. Failure is determined by the
expression sets for the attributeJobFailureTest expression. The default threshold is
0.03 jobs/second. If the threshold is exceeded, submissionof new jobs is throttled until jobs
begin succeeding, such that the failure rate is less than thethreshold. This attribute implements
black hole throttling, such that a site at which jobs are sent only to fail (a black hole) receives
fewer jobs.

JobFailureTest An expression in New ClassAds syntax evaluated for each job that finishes, to
determine whether it was a failure. The default value if no expression is defined as-
sumes all jobs are successful. Routed jobs that are removed are considered to be fail-
ures. An example expression to treat all jobs running for less than 30 minutes as failures

Condor Version 7.2.3 Manual

5.6. The Condor Job Router 527

is other.RemoteWallClockTime < 1800 . A more flexible expression might refer-
ence a property or expression of the job that specifies a failure condition specific to the type
of job.

TargetUniverse An integer value specifying the desired universe for the routed copy of the job.
The default value is 9, which is thegrid universe.

UseSharedX509UserProxyA boolean expression in New ClassAds syntax, that whenTrue
causes the value ofSharedX509UserProxy to be the X.509 user proxy for the routed
job. Note that if thecondor job router daemon is running as root, the copy of this file that is
given to the job will have its ownership set to that of the userrunning the job. This requires the
trust of the user. It is therefore recommended to avoid this mechanism when possible. Instead,
require users to submit jobs withX509UserProxy set in the submit description file. If this
feature is needed, use the boolean expression to only allow specific values ofother.Owner
to use this shared proxy file. The shared proxy file should be owned by thecondor user.
Currently, to use a shared proxy, the job must also turn on sandboxing by having the attribute
JobShouldBeSandboxed .

SharedX509UserProxyA string representing file containing the X.509 user proxy for the routed
job.

JobShouldBeSandboxedA boolean expression in New ClassAd syntax, that whenTrue causes
the created copy of the job to be sandboxed. A copy of the inputfiles will be placed in the
condorschedddaemon’s spool area for the target job, and when the job runs,the output will
be staged back into the spool area. Once all of the output has been successfully staged back,
it will be copied again, this time from the spool area of the sandboxed job back to the original
job’s output locations. By default, sandboxing is turned off. Only to turn it on if using a shared
X.509 user proxy or if direct staging of remote output files back to the final output locations
is not desired.

OverrideRoutingEntry A boolean value that whenTrue , indicates that this entry in the routing
table replaces any previous entry in the table with the same name. WhenFalse , it indicates
that if there is a previous entry by the same name, the previous entry should be retained and
this entry should be ignored. The default value isTrue .

Set ¡ATTR¿ Sets the value of<ATTR> in the routed job ClassAd to the specified value. An ex-
ample of an attribute that might be set isPeriodicRemove . For example, if the routed job
goes on hold or stays idle for too long, remove it and return the original copy of the job to a
normal state.

Eval Set ¡ATTR¿ Defines an expression written in New ClassAd syntax. The expression is evalu-
ated, and the resulting value sets the value of the routed copy’s job ClassAd attribute<ATTR>.
An expected usage is where a New ClassAd expression evaluation is required. Recall that the
condor job routerdaemon evaluates using New ClassAd syntax, but the routed copy is repre-
sented by the current ClassAd language.

Copy ¡ATTR¿ Defined with the name of a routed copy ClassAd attribute. Copies the value of
<ATTR>from the original job ClassAd into the specified attribute named of the routed copy.
Useful to save the value of an expression, before replacing it with something else that refer-
ences the original expression.

Condor Version 7.2.3 Manual

5.6. The Condor Job Router 528

Delete ¡ATTR¿ Deletes<ATTR>from the routed copy ClassAd. A value assigned to this attribute
in the routing table entry is ignored.

5.6.5 Example: constructing the routing table from ReSS

The Open Science Grid has a service called ReSS (Resource Selection Service). It presents grid
sites as ClassAds in a Condor collector. This example buildsa routing table from the site ClassAds
in the ReSS collector.

Using JOB ROUTERENTRIES CMD , we tell the condor job router daemon to call a
simple script which queries the collector and outputs a routing table. The script, called
osg_ress_routing_table.sh , is just this:

#!/bin/sh

you _MUST_ change this:
export condor_status=/path/to/condor_status
if no command line arguments specify -pool, use this:
export _CONDOR_COLLECTOR_HOST=osg-ress-1.fnal.gov

$condor_status -format '[' BeginAd \
-format 'GridResource = "gt2 %s"; ' GlueCEInfoContactStri ng \

-format ']\n' EndAd "$@" | uniq

Save this script to a file and make sure the permissions on the file mark it as executable. Test
this script by calling it by hand before trying to use it with thecondor job router daemon. You may
supply additional arguments such as-constraint to limit the sites which are returned.

Once you are satisfied that the routing table constructed by the script is what you want, configure
thecondor job router daemon to use it:

command to build the routing table
JOB_ROUTER_ENTRIES_CMD = /path/to/osg_ress_routing_ta ble.sh <extra arguments>

how often to rebuild the routing table:
JOB_ROUTER_ENTRIES_REFRESH = 3600

Using the example configuration, use the above settings to replaceJOB ROUTERENTRIES
. Or, leaveJOB ROUTERENTRIES there and have a routing table containing entries from both
sources. When you restart or reconfigure thecondor job router daemon, you should see messages
in the Job Router’s log indicating that it is adding more routes to the table.

Condor Version 7.2.3 Manual

CHAPTER

SIX

Platform-Specific Information

The Condor Team strives to make Condor work the same way across all supported platforms. How-
ever, because Condor is a very low-level system which interacts closely with the internals of the op-
erating systems on which it runs, this goal is not always possible to achieve. The following sections
provide detailed information about using Condor on different computing platforms and operating
systems.

6.1 Linux

This section provides information specific to the Linux portof Condor. Linux is a difficult platform
to support. It changes very frequently, and Condor has some extremely system-dependent code (for
example, the checkpointing library).

Condor is sensitive to changes in the following elements of the system:

• The kernel version

• The version of the GNU C library (glibc)

• the version of GNU C Compiler (GCC) used to build and link Condor jobs (this only matters
for Condor’s Standard universe which provides checkpointing and remote system calls)

The Condor Team tries to provide support for various releases of the distribution of Linux. Red
Hat is probably the most popular Linux distribution, and it provides a common set of versions for
the above system components at which Condor can aim support.Condor will often work with Linux
distributions other than Red Hat (for example, Debian or SuSE) that have the same versions of the

529

6.1. Linux 530

above components. However, we do not usually test Condor on other Linux distributions and we do
not provide any guarantees about this.

New releases of Red Hat usually change the versions of some orall of the above system-level
components. A version of Condor that works with one release of Red Hat might not work with
newer releases. The following sections describe the details of Condor’s support for the currently
available versions of Red Hat Linux on x86 architecture machines.

6.1.1 Linux Kernel-specific Information

Distributions that rely on the Linux 2.4.x and all Linux 2.6.x kernels through version 2.6.10 do not
modify theatime of the input device file. This leads to difficulty when Condor is run using one
of these kernels. The problem manifests itself in that Condor cannot properly detect keyboard or
mouse activity. Therefore, using the activity in policy setting cannot signal that Condor should stop
running a job on a machine.

Condor version 6.6.8 implements a workaround for PS/2 devices. A bet-
ter fix is the Linux 2.6.10 kernel patch linked to from the directions posted at
http://www.cs.wisc.edu/condor/kernel.patch.html. This patch works better for PS/2 devices,
and may also work for USB devices. A future version of Condor will implement better recognition
of USB devices, such that the kernel patch will also definitively work for USB devices.

Condor additionally has problems running on some older Xen kernels, which interact badly with
assumptions made by thecondorprocddaemon. See the FAQ entry in section 7.6 for details.

6.1.2 Red Hat Version 9.x

Red Hat version 9.x is fully supported in Condor Version 7.2.3. condorcompileworks to link user
jobs for the Standard universe with the versions of gcc and glibc that come with Red Hat 9.x.

6.1.3 Red Hat Fedora 1, 2, and 3

Redhat Fedora Core 1, 2, and 3 now support the checkpointing of statically linked executables just
like previous revisions of Condor for Red Hat.condorcompileworks to link user jobs for the
Standard universe with the versions of gcc that are distributed with Red Hat Fedora Core 1, 2, and
3.

However, there are some caveats: A) You must install and use the dynamic Red Hat 9.x bina-
ries on the Fedora machine and B) if you wish to do run acondorcompiled binary in standalone
mode(either initially or in resumption mode), then you mustprepend the execution of said binary
with setarch i386. Here is an example: suppose we have a Condor-linked binary calledmyapp, run-
ning this application as a standalone executable will result in this command:setarch i386 myapp.
The subsequent resumption command will be:setarch i386 myapp -condor restart myapp.ckpt.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/kernel.patch.html

6.2. Microsoft Windows 531

When standard universe executablescondorcompiled under any currently supported Linux ar-
chitecture of the same kind (including Fedora 1, 2, and 3) arerunning inside Condor, they will
automatically execute in the i386 execution domain. This means that theexecshield functionality
(if available) will be turned off and the shared segment layout will default to Red Hat 9 style. There
is no need to do the above instructions concerningsetarch if the executables are being submitted
directly into Condor viacondorsubmit.

6.2 Microsoft Windows

Windows is a strategic platform for Condor, and therefore wehave been working toward a complete
port to Windows. Our goal is to make Condor every bit as capable on Windows as it is on Unix – or
even more capable.

Porting Condor from Unix to Windows is a formidable task, because many components of Con-
dor must interact closely with the underlying operating system. Instead of waiting until all compo-
nents of Condor are running and stabilized on Windows, we have decided to make a clipped version
of Condor for Windows. A clipped version is one in which thereis no checkpointing and there are
no remote system calls.

This section contains additional information specific to running Condor on Windows. Eventu-
ally this information will be integrated into the Condor Manual as a whole, and this section will
disappear. In order to effectively use Condor, first read theoverview chapter (section 1.1) and the
user’s manual (section 2.1). If you will also be administrating or customizing the policy and set
up of Condor, also read the administrator’s manual chapter (section 3.1). After reading these chap-
ters, review the information in this chapter for important information and differences when using
and administrating Condor on Windows. For information on installing Condor for Windows, see
section 3.2.5.

6.2.1 Limitations under Windows

In general, this release for Windows works the same as the release of Condor for Unix. However,
the following items are not supported in this version:

• The standard job universe is not present. This means transparent process checkpoint/migration
and remote system calls are not supported.

• Forgrid universe jobs, the only supported grid type iscondor.

• Accessing files via a network share that requires a Kerberosticket (such as AFS) is not yet
supported.

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 532

6.2.2 Supported Features under Windows

Except for those items listed above, most everything works the same way in Condor as it does in the
Unix release. This release is based on the Condor Version 7.2.3 source tree, and thus the feature set
is the same as Condor Version 7.2.3 for Unix. For instance, all of the following work in Condor:

• The ability to submit, run, and manage queues of jobs running on a cluster of Windows ma-
chines.

• All tools such ascondorq, condorstatus, condoruserprio, are included. Onlycon-
dor compileis not included.

• The ability to customize job policy using ClassAds. The machine ClassAds contain all the
information included in the Unix version, including current load average, RAM and virtual
memory sizes, integer and floating-point performance, keyboard/mouse idle time, etc. Like-
wise, job ClassAds contain a full complement of information, including system dependent
entries such as dynamic updates of the job’s image size and CPU usage.

• Everything necessary to run a Condor central manager on Windows.

• Security mechanisms.

• Support for SMP machines.

• Condor for Windows can run jobs at a lower operating system priority level. Jobs can be
suspended, soft-killed by using a WMCLOSE message, or hard-killed automatically based
upon policy expressions. For example, Condor can automatically suspend a job whenever
keyboard/mouse or non-Condor created CPU activity is detected, and continue the job after
the the machine has been idle for a specified amount of time.

• Condor correctly manages jobs which create multiple processes. For instance, if a Condor job
spawns multiple processes and Condor needs to kill the job, all processes created by the job
will be terminated.

• In addition to interactive tools, users and administrators can receive information from Condor
by e-mail (standard SMTP) and/or by log files.

• Condor includes a friendly GUI installation and set up program, which can perform a full
install or deinstall of Condor. Information specified by theuser in the set up program is stored
in the system registry. The set up program can update a current installation with a new release
using a minimal amount of effort.

• Condor can give a job access to the running user’s Registry hive.

6.2.3 Secure Password Storage

In order for Condor to operate properly, it must at times be able to act on behalf of users who
submit jobs. In particular, this is required on submit machines so that Condor can access a job’s

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 533

input files, create and access the job’s output files, and write to the job’s log file from within the
appropriate security context. It may also be desirable for Condor to execute the job itself under the
security context of its submitting user (see 6.2.4 for details on running jobs as the submitting user
on Windows).

On Unix systems, arbitrarily changing what user Condor performs its actions as is easily done
when Condor is started with root privileges. On Windows, however, performing an action as a
particular user requires knowledge of that user’s password, even when running at the maximum
privilege level.

Condor on Windows supports the notion ofuser privilege switchingthrough the use of a secure
password store. Users can provide Condor with their passwords using thecondorstore cred tool.
Passwords managed by Condor are encrypted and stored in a secure location within the Windows
registry. When Condor needs to perform an action as a particular user, it uses the securely stored
password to do so.

By default, the secure password store is managed by thecondorschedd. This approach works
in environments where the user’s password is only needed on the submit machine, which is the case
unless therun as owner capability described in section 6.2.4 is needed.

When therun as owner feature is needed, it is necessary to configure a centralizedcon-
dor credddaemon to manage the secure password store. This makes each user’s password avail-
able, via an encrypted connection to thecondorcredd, to any execute machine that may need it.
The following section contains instructions for setting upacondorcreddto manage passwords.

6.2.4 Executing Jobs as the Submitting User

By default, Condor executes jobs on Windows using dedicated“run accounts” that have minimal
access rights and privileges. As an alternative, Condor canbe configured to allow users to run jobs
using their Windows login accounts. This may be useful if jobs need access to files on a network
share or to other resources that aren’t available to a low-privilege run account.

This feature requires use of acondorcredddaemon for secure password storage and retrieval.
It is first necessary to select a machine on which to run thecondorcredd. Often, the machine
acting as the pool’s central manager is a good choice. An important restriction, however, is that the
condorcreddhost must be a machine running Windows.

All configuration settings necessary to enable thecondorcredd are contained in the ex-
ampleetc \condor config.local.credd file from the Condor distribution. Copy these
settings into a local configuration file for the machine that will run the condorcredd. Run
condor restart for these new settings to take effect, then verify (via Task Manager) that a
condorcreddprocess is running.

A second set of configuration parameters must be enabled for all machines in the pool. The
following settings should be used, with theLOCALCREDDsetting customized to point to the ma-
chine hosting thecondorcreddand theALLOWCONFIG setting customized if needed to refer to
an administrative account that exists on all Condor nodes. (A copy of these settings is available in

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 534

the comments contained in theetc \condor config.local.credd example file.)

CREDD_HOST = credd.cs.wisc.edu
CREDD_CACHE_LOCALLY = True

STARTER_ALLOW_RUNAS_OWNER = True

ALLOW_CONFIG = Administrator@ *
SEC_CLIENT_AUTHENTICATION_METHODS = NTSSPI, PASSWORD
SEC_CONFIG_NEGOTIATION = REQUIRED
SEC_CONFIG_AUTHENTICATION = REQUIRED
SEC_CONFIG_ENCRYPTION = REQUIRED
SEC_CONFIG_INTEGRITY = REQUIRED

The configuration employed here relies on thePASSWORDauthentication method to facilitate
secure communication between execute machines and thecondorcredd. In order forPASSWORD
authenticated communication to work, a “pool password” must be chosen and distributed. Once a
pool password is decided upon, it must be stored identicallyon each machine. The pool password
first should be stored on thecondorcreddhost, then the other machines in the pool.

To store the pool password on a given machine, runcondor store cred -c add when
logged in with the administrative account on that machine, and enter the password when prompted.
If the administrative account is shared across all machines(i.e. if it is a domain account or has the
same password on all machines), logging in separately to each machine in the pool can be avoided.
Instead, the pool password can be securely pushed out to eachmachine using commands of the form
condor store cred -c -n exec01.cs.wisc.edu add .

Once the pool password is distributed, executecondor reconfig -all from the
central manager. This will cause each execute machine to test its ability to au-
thenticate with the condorcredd. To see whether this test worked for each ma-
chine in the pool, run the commandcondor status -f "%s \t" Name -f "%s \n"
ifThenElse(isUndefined(LocalCredd), \"UNDEF\",LocalCredd) . Any rows in
the output with the “UNDEF” string indicate machines where secure communication is not working
properly. Verify that the pool password is stored correctlyon these machines.

Once these configuration changes are made and the pool password is distributed, a user that
wants a job to run using their own account can simply set therun as owner macro in the job’s
submit file to True.

6.2.5 Executing Jobs with the User’s Profile Loaded

Condor can be configured when using dedicated run accounts, to load the account’s pro-
file. A user’s profile includes a set of personal directories and a registry hive loaded under
HKEYCURRENTUSER.

This may be useful if the job requires direct access to the user’s registry entries. It also may

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 535

be useful when the job requires an application, and the application requires registry access. This
feature is always enabled on thecondorstartd, but it is limited to the dedicated run account. For
security reasons, the profiles are removed after the job has completed and exited. This ensures that
malicious jobs cannot discover what any previous job has done, nor sabotage the registry for future
jobs. It also ensures the next job has a fresh registry hive.

A user that then wants a job to run with a profile uses theload profile command in the job’s
submit description file:

load_profile = True

This feature is currently not compatible withrun as owner, and will be ignored if both are
specified.

6.2.6 Details on how Condor for Windows starts/stops a job

This section provides some details on how Condor starts and stops jobs. This discussion is geared
for the Condor administrator or advanced user who is alreadyfamiliar with the material in the Ad-
ministrator’s Manual and wishes to know detailed information on what Condor does when starting
and stopping jobs.

When Condor is about to start a job, thecondorstartd on the execute machine spawns acon-
dor starterprocess. Thecondorstarter then creates:

1. a run account on the machine with a login name of “condor-reuse-slotX”, where X is the slot
number of thecondorstarter. This account is added to group Users. This step is skipped if
the job is to be run using the submitting user’s account (see section 6.2.4).

2. a new temporary working directory for the job on the execute machine. This directory is
named “dirXXX”, where XXX is the process ID of thecondorstarter. The directory is
created in the$(EXECUTE) directory as specified in Condor’s configuration file. Condor
then grants write permission to this directory for the user account newly created for the job.

3. a new, non-visible Window Station and Desktop for the job.Permissions are set so that
only the account that will run the job has access rights to this Desktop. Any windows cre-
ated by this job are not seen by anyone; the job is run in the background. (Note: Setting
USEVISIBLE DESKTOPto True will allow the job to access the default desktop instead of
a newly created one.)

Next, thecondorstarter (called the starter) contacts thecondorshadow(called the shadow)
process, which is running on the submitting machine, and pulls over the job’s executable and input
files. These files are placed into the temporary working directory for the job. After all files have
been received, the starter spawns the user’s executable. Its current working directory set to the
temporary working directory (that is,$(EXECUTE)/dir XXX, where XXX is the process id of the
condorstarterdaemon).

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 536

While the job is running, the starter closely monitors the CPU usage and image size of all pro-
cesses started by the job. Every 20 minutes the starter sendsthis information, along with the total
size of all files contained in the job’s temporary working directory, to the shadow. The shadow then
inserts this information into the job’s ClassAd so that policy and scheduling expressions can make
use of this dynamic information.

If the job exits of its own accord (that is, the job completes), the starter first terminates any
processes started by the job which could still be around if the job did not clean up after itself. The
starter examines the job’s temporary working directory forany files which have been created or
modified and sends these files back to the shadow running on thesubmit machine. The shadow
places these files into theinitialdir specified in the submit description file; if noinitialdir was
specified, the files go into the directory where the user invokedcondorsubmit. Once all the output
files are safely transferred back, the job is removed from thequeue. If, however, thecondorstartd
forcibly kills the job before all output files could be transferred, the job is not removed from the
queue but instead switches back to the Idle state.

If the condorstartd decides to vacate a job prematurely, the starter sends a WMCLOSE mes-
sage to the job. If the job spawned multiple child processes,the WM CLOSE message is only sent to
the parent process (that is, the one started by the starter).The WM CLOSE message is the preferred
way to terminate a process on Windows, since this method allows the job to cleanup and free any
resources it may have allocated. When the job exits, the starter cleans up any processes left behind.
At this point, if transfer files is set toONEXIT(the default) in the job’s submit description file, the
job switches from states, from Running to Idle, and no files are transferred back. Iftransfer files is
set toALWAYS, then any files in the job’s temporary working directory which were changed or mod-
ified are first sent back to the submitting machine. But this time, the shadow places these so-called
intermediate files into a subdirectory created in the$(SPOOL) directory on the submitting machine
($(SPOOL) is specified in Condor’s configuration file). The job is then switched back to the Idle
state until Condor finds a different machine on which to run. When the job is started again, Condor
places into the job’s temporary working directory the executable and input files as before,plusany
files stored in the submit machine’s$(SPOOL) directory for that job.

NOTE: A Windows console process can intercept a WMCLOSE message via the Win32 Set-
ConsoleCtrlHandler() function if it needs to do special cleanup work at vacate time; a WMCLOSE
message generates a CTRLCLOSE EVENT. See SetConsoleCtrlHandler() in the Win32 documen-
tation for more info.

NOTE: The default handler in Windows for a WMCLOSE message is for the process to exit.
Of course, the job could be coded to ignore it and not exit, buteventually thecondorstartd will
become impatient and hard-kill the job (if that is the policydesired by the administrator).

Finally, after the job has left and any files transferred back, the starter deletes the temporary
working directory, the temporary account (if one was created), the WindowStation, and the Desktop
before exiting. If the starter should terminate abnormally, thecondorstartd attempts the clean up.
If for some reason thecondorstartd should disappear as well (that is, if the entire machine was
power-cycled hard), thecondorstartdwill clean up when Condor is restarted.

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 537

6.2.7 Security Considerations in Condor for Windows

On the execute machine (by default), the user job is run usingthe access token of an account dy-
namically created by Condor which has bare-bones access rights and privileges. For instance, if
your machines are configured so that only Administrators have write access toC:\WINNT , then
certainly no Condor job run on that machine would be able to write anything there. The only files
the job should be able to access on the execute machine are files accessible by the Users and Every-
one groups, and files in the job’s temporary working directory. Of course, if the job is configured
to run using the account of the submitting user (as describedin section 6.2.4), it will be able to do
anything that the user is able to do on the execute machine it runs on.

On the submit machine, Condor impersonates the submitting user, therefore the File Transfer
mechanism has the same access rights as the submitting user.For example, say only Administrators
can write toC:\WINNT on the submit machine, and a user gives the following tocondorsubmit:

executable = mytrojan.exe
initialdir = c:\winnt
output = explorer.exe
queue

Unless that user is in group Administrators, Condor will notpermit explorer.exe to be over-
written.

If for some reason the submitting user’s account disappearsbetween the timecondorsubmitwas
run and when the job runs, Condor is not able to check and see ifthe now-defunct submitting user
has read/write access to a given file. In this case, Condor will ensure that group “Everyone” has read
or write access to any file the job subsequently tries to read or write. This is in consideration for
some network setups, where the user account only exists for as long as the user is logged in.

Condor also provides protection to the job queue. It would bebad if the integrity of the job
queue is compromised, because a malicious user could removeother user’s jobs or even change
what executable a user’s job will run. To guard against this,in Condor’s default configuration all
connections to thecondorschedd(the process which manages the job queue on a given machine)
are authenticated using Windows’ eSSPI security layer. Theuser is then authenticated using the
same challenge-response protocol that Windows uses to authenticate users to Windows file servers.
Once authenticated, the only users allowed to edit job entryin the queue are:

1. the user who originally submitted that job (i.e. Condor allows users to remove or edit their
own jobs)

2. users listed in thecondor config file parameterQUEUESUPERUSERS. In the default
configuration, only the “SYSTEM” (LocalSystem) account is listed here.

WARNING: Do not remove “SYSTEM” fromQUEUESUPERUSERS, or Condor itself will not
be able to access the job queue when needed. If the LocalSystem account on your machine is
compromised, you have all sorts of problems!

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 538

To protect the actual job queue files themselves, the Condor installation program will automati-
cally set permissions on the entire Condor release directory so that only Administrators have write
access.

Finally, Condor has all the IP/Host-based security mechanisms present in the full-blown version
of Condor. See section 3.6.9 starting on page 307 for complete information on how to allow/deny
access to Condor based upon machine host name or IP address.

6.2.8 Network files and Condor

Condor can work well with a network file server. The recommended approach to having jobs access
files on network shares is to configure jobs to run using the security context of the submitting user
(see section 6.2.4). If this is done, the job will be able to access resources on the network in the
same way as the user can when logged in interactively.

In some environments, running jobs as their submitting users is not a feasible option. This
section outlines some possible alternatives. The heart of the difficulty in this case is that on the
execute machine, Condor creates a temporary user that will run the job. The file server has never
heard of this user before.

Choose one of these methods to make it work:

• METHOD A: access the file server as a different user via a net use command with a login and
password

• METHOD B: access the file server as guest

• METHOD C: access the file server with a ”NULL” descriptor

• METHOD D: create and have Condor use a special account

• METHOD E: use the contrib module from the folks at Bristol University

All of these methods have advantages and disadvantages.

Here are the methods in more detail:

METHOD A - access the file server as a different user via a net use command with a login and
password

Example: you want to copy a file off of a server before running it....

@echo off
net use \\myserver\someshare MYPASSWORD /USER:MYLOGIN
copy \\myserver\someshare\my-program.exe
my-program.exe

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 539

The idea here is to simply authenticate to the file server witha different login than the temporary
Condor login. This is easy with the ”net use” command as shownabove. Of course, the obvious
disadvantage is this user’s password is stored and transferred as clear text.

METHOD B - access the file server as guest

Example: you want to copy a file off of a server before running it as GUEST

@echo off
net use \\myserver\someshare
copy \\myserver\someshare\my-program.exe
my-program.exe

In this example, you’d contact the server MYSERVER as the Condor temporary user. However,
if you have the GUEST account enabled on MYSERVER, you will beauthenticated to the server
as user ”GUEST”. If your file permissions (ACLs) are setup so that either user GUEST (or group
EVERYONE) has access the share ”someshare” and the directories/files that live there, you can use
this method. The downside of this method is you need to enablethe GUEST account on your file
server. WARNING: This should be done *with extreme caution* and only if your file server is well
protected behind a firewall that blocks SMB traffic.

METHOD C - access the file server with a ”NULL” descriptor

One more option is to use NULL Security Descriptors. In this way, you can specify which shares
are accessible by NULL Descriptor by adding them to your registry. You can then use the batch file
wrapper like:

net use z: \\myserver\someshare /USER:""
z:\my-program.exe

so long as ’someshare’ is in the list of allowed NULL session shares. To edit this list, run
regedit.exe and navigate to the key:

HKEY_LOCAL_MACHINE\
SYSTEM\

CurrentControlSet\
Services\

LanmanServer\
Parameters\

NullSessionShares

and edit it. unfortunately it is a binary value, so you’ll then need to type in the hex ASCII codes
to spell out your share. each share is separated by a null (0x00) and the last in the list is terminated
with two nulls.

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 540

although a little more difficult to set up, this method of sharing is a relatively safe way to have
one quasi-public share without opening the whole guest account. you can control specifically which
shares can be accessed or not via the registry value mentioned above.

METHOD D - create and have Condor use a special account

Create a permanent account (called condor-guest in this description) under which Condor will
run jobs. On all Windows machines, and on the file server, create the condor-guest account.

On the network file server, give the condor-guest user permissions to access files needed to run
Condor jobs.

Securely store the password of the condor-guest user in the Windows registry usingcon-
dor store credon all Windows machines.

Tell Condor to use the condor-guest user as the owner of jobs,when required. Details for this
are in section 3.6.11.

METHOD E - access with the contrib module from Bristol

Another option: some hardcore Condor users at Bristol University developed their own module
for starting jobs under Condor NT to access file servers. It involves storing submitting user’s pass-
words on a centralized server. Below I have included the README from this contrib module, which
will soon appear on our website within a week or two. If you want it before that, let me know, and I
could e-mail it to you.

Here is the README from the Bristol Condor contrib module:

README
Compilation Instructions
Build the projects in the following order

CondorCredSvc
CondorAuthSvc
Crun
Carun
AfsEncrypt
RegisterService
DeleteService
Only the first 3 need to be built in order. This just makes sure that the
RPC stubs are correctly rebuilt if required. The last 2 are on ly helper
applications to install/remove the services. All projects are Visual Studio
6 projects. The nmakefiles have been exported for each. Only the project
for Carun should need to be modified to change the location of the AFS
libraries if needed.

Details
CondorCredSvc

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 541

CondorCredSvc is a simple RPC service that serves the domain account
credentials. It reads the account name and password from the registry of
the machine it's running on. At the moment these details are s tored in
clear text under the key

HKEY_LOCAL_MACHINE\Software\Condor\CredService

The account name and password are held in REG_SZ values "Acco unt" and
"Password" respectively. In addition there is an optional R EG_SZ value
"Port" which holds the clear text port number (e.g. "1234"). If this value
is not present the service defaults to using port 3654.

At the moment there is no attempt to encrypt the username/pas sword when it
is sent over the wire - but this should be reasonably straight forward to
change. This service can sit on any machine so keeping the reg istry entries
secure ought to be fine. Certainly the ACL on the key could be s et to only
allow administrators and SYSTEM access.

CondorAuthSvc and Crun
These two programs do the hard work of getting the job authent icated and
running in the right place. CondorAuthSvc actually handles the process
creation while Crun deals with getting the winstation/desk top/working
directory and grabbing the console output from the job so tha t Condor's
output handling mechanisms still work as advertised. Proba bly the easiest
way to see how the two interact is to run through the job creati on process:

The first thing to realize is that condor itself only runs Cru n.exe. Crun
treats its command line parameters as the program to really r un. e.g. "Crun
\\mymachine\myshare\myjob.exe" actually causes
\\mymachine\myshare\myjob.exe to be executed in the conte xt of the domain
account served by CondorCredSvc. This is how it works:

When Crun starts up it gets its window station and desktop - th ese are the
ones created by condor. It also gets its current directory - a gain already
created by condor. It then makes sure that SYSTEM has permiss ion to modify
the DACL on the window station, desktop and directory. Next i t creates a
shared memory section and copies its environment variable b lock into it.
Then, so that it can get hold of STDOUT and STDERR from the job i t makes
two named pipes on the machine it's running on and attaches a t hread to
each which just prints out anything that comes in on the pipe t o the
appropriate stream. These pipes currently have a NULL DACL, but only one
instance of each is allowed so there shouldn't be any issues i nvolving
malicious people putting garbage into them. The shared memo ry section and
both named pipes are tagged with the ID of Crun's process in ca se we're on
a multi-processor machine that might be running more than on e job. Crun
then makes an RPC call to CondorAuthSvc to actually start the job, passing

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 542

the names of the window station, desktop, executable to run, current
directory, pipes and shared memory section (it only attempt s to call
CondorAuthSvc on the same machine as it is running on). If the jobs starts
successfully it gets the process ID back from the RPC call and then just
waits for the new process to finish before closing the pipes a nd exiting.
Technically, it does this by synchronizing on a handle to the process and
waiting for it to exit. CondorAuthSvc sets the ACL on the proc ess to allow
EVERYONE to synchronize on it.

[Technical note: Crun adds "C:\WINNT\SYSTEM32\CMD.EXE /C " to the start of
the command line. This is because the process is created with the network
context of the caller i.e. LOCALSYSTEM. Pre-pending cmd.ex e gets round any
unexpected "Access Denied" errors.]

If Crun gets a WM_CLOSE (CTRL_CLOSE_EVENT) while the job is r unning it
attempts to stop the job, again with an RPC call to CondorAuth Svc passing
the job's process ID.

CondorAuthSvc runs as a service under the LOCALSYSTEM accou nt and does the
work of starting the job. By default it listens on port 3655, b ut this can
be changed by setting the optional REG_SZ value "Port" under the registry key

HKEY_LOCAL_MACHINE\Software\Condor\AuthService

(Crun also checks this registry key when attempting to conta ct
CondorAuthSvc.) When it gets the RPC to start a job CondorAut hSvc first
connects to the pipes for STDOUT and STDERR to prevent anyone else sending
data to them. It also opens the shared memory section with the environment
stored by Crun. It then makes an RPC call to CondorCredSvc (to get the
name and password of the domain account) which is most likely running on
another system. The location information is stored in the re gistry under
the key

HKEY_LOCAL_MACHINE\Software\Condor\CredService

The name of the machine running CondorCredSvc must be held in the REG_SZ
value "Host". This should be the fully qualified domain name of the
machine. You can also specify the optional "Port" REG_SZ val ue in case you
are running CondorCredSvc on a different port.

Once the domain account credentials have been received the a ccount is
logged on through a call to LogonUser. The DACLs on the window station,
desktop and current directory are then modified to allow the domain account
access to them and the job is started in that window station an d desktop
with a call to CreateProcessAsUser. The starting directory is set to the
same as sent by Crun, STDOUT and STDERR handles are set to the n amed pipes

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 543

and the environment sent by Crun is used. CondorAuthSvc also starts a
thread which waits on the new process handle until it termina tes to close
the named pipes. If the process starts correctly the process ID is returned
to Crun.

If Crun requests that the job be stopped (again via RPC), Cond orAuthSvc
loops over all windows on the window station and desktop spec ified until it
finds the one associated with the required process ID. It the n sends that
window a WM_CLOSE message, so any termination handling buil t in to the job
should work correctly.

[Security Note: CondorAuthSvc currently makes no attempt t o verify the
origin of the call starting the job. This is, in principal, a b ad thing
since if the format of the RPC call is known it could let anyone start a
job on the machine in the context of the domain user. If sensib le security
practices have been followed and the ACLs on sensitive syste m directories
(such as C:\WINNT) do not allow write access to anyone other t han trusted
users the problem should not be too serious.]

Carun and AFSEncrypt
Carun and AFSEncrypt are a couple of utilities to allow jobs t o access AFS
without any special recompilation. AFSEncrypt encrypts an AFS
username/password into a file (called .afs.xxx) using a sim ple XOR
algorithm. It's not a particularly secure way to do it, but it 's simple and
self-inverse. Carun reads this file and gets an AFS token bef ore running
whatever job is on its command line as a child process. It wait s on the
process handle and a 24 hour timer. If the timer expires first it briefly
suspends the primary thread of the child process and attempt s to get a new
AFS token before restarting the job, the idea being that the j ob should
have uninterrupted access to AFS if it runs for more than 25 ho urs (the
default token lifetime). As a security measure, the AFS cred entials are
cached by Carun in memory and the .afs.xxx file deleted as soo n as the
username/password have been read for the first time.

Carun needs the machine to be running either the IBM AFS clien t or the
OpenAFS client to work. It also needs the client libraries if you want to
rebuild it.

For example, if you wanted to get a list of your AFS tokens unde r Condor
you would run the following:

Crun \\mymachine\myshare\Carun tokens.exe

Running a job
To run a job using this mechanism specify the following in you r job
submission (assuming Crun is in C:\CondorAuth):

Condor Version 7.2.3 Manual

6.2. Microsoft Windows 544

Executable= c:\CondorAuth\Crun.exe
Arguments = \\mymachine\myshare\carun.exe
\\anothermachine\anothershare\myjob.exe
Transfer_Input_Files = .afs.xxx

along with your usual settings.

Installation
A basic installation script for use with the Inno Setup insta llation
package compiler can be found in the Install folder.

6.2.9 Interoperability between Condor for Unix and Condor for Windows

Unix machines and Windows machines running Condor can happily co-exist in the same Condor
pool without any problems. Jobs submitted on Windows can runon Windows or Unix, and jobs sub-
mitted on Unix can run on Unix or Windows. Without any specification (using therequirements
expression in the submit description file), the default behavior will be to require the execute machine
to be of the same architecture and operating system as the submit machine.

There is absolutely no need to run more than one Condor central manager, even if you have
both Unix and Windows machines. The Condor central manager itself can run on either Unix or
Windows; there is no advantage to choosing one over the other. Here at University of Wisconsin-
Madison, for instance, we have hundreds of Unix (Solaris, Linux, etc) and Windows machines in
our Computer Science Department Condor pool. Our central manager is running on Linux. All is
happy.

6.2.10 Some differences between Condor for Unix -vs- Condorfor Windows

• On Unix, we recommend the creation of a “condor” account when installing Condor. On
Windows, this is not necessary, as Condor is designed to run as a system service as user
LocalSystem.

• On Unix, Condor finds thecondor config main configuration file by looking in ˜condor,
in /etc, or via an environment variable. On NT, the location of condor config file is
determined via the registry keyHKEYLOCALMACHINE/Software/Condor . You can
override this value by setting an environment variable named CONDORCONFIG.

• On Unix, in the VANILLA universe at job vacate time Condor sends the job a softkill sig-
nal defined in the submit-description file (defaults to SIGTERM). On NT, Condor sends a
WM CLOSE message to the job at vacate time.

• On Unix, if one of the Condor daemons has a fault, a core file will be created in the$(Log)
directory. On Condor NT, a “core” file will also be created, but instead of a memory dump
of the process it will be a very short ASCII text file which describes what fault occurred and
where it happened. This information can be used by the Condordevelopers to fix the problem.

Condor Version 7.2.3 Manual

6.3. Macintosh OS X 545

6.3 Macintosh OS X

This section provides information specific to the MacintoshOS X port of Condor. The Macintosh
port of Condor is more accurately a port of Condor to Darwin, the BSD core of OS X. Condor uses
the Carbon library only to detect keyboard activity, and it does not use Cocoa at all. Condor on the
Macintosh is a relatively new port, and it is not yet well-integrated into the Macintosh environment.

Condor on the Macintosh has a few shortcomings:

• Users connected to the Macintosh viasshare not noticed for console activity.

• The memory size of threaded programs is reported incorrectly.

• No Macintosh-based installer is provided.

• The example start up scripts do not follow Macintosh conventions.

• Kerberos is not supported.

Condor does not yet provide Universal binaries for MacOSX. There are separate down loadable
packages for both PowerPC (ppc) and Intel (x86) architectures, so please ensure you are using the
right Condor binaries for the platform you are trying to run on.

6.4 AIX

This section provides information specific to the AIX ports of Condor.

6.4.1 AIX 5.2L

The version of Condor for AIX 5.2L has the same limitations asCondor for the AIX5.1L platform.

In addition, the Condor binaries for AIX 5.2L willnot execute on an AIX 5.1L machine.

6.4.2 AIX 5.1L

This is a relatively new port of Condor to the AIX architecture, and as such there are a few things
that are not finished. Over time, these will be fixed.

Condor limitations on AIX 5.1L:

• Keyboard Idle and Mouse Idle are wrong.

• The memory size of threaded programs is reported incorrectly.

Condor Version 7.2.3 Manual

6.4. AIX 546

• The memory and usage statistics of completed jobs is sometimes wrong.

• The standard universe is not supported.

• The LSF and PBS grid-types of the grid universe are not supported.

Note that Condor for the AIX 5.1L machinewill execute correctly on an AIX 5.2L machine.

Condor Version 7.2.3 Manual

CHAPTER

SEVEN

Frequently Asked Questions (FAQ)

This is where you can find quick answers to some commonly askedquestions about Condor.

7.1 Obtaining & Installing Condor

Where can I download Condor?

Condor can be downloaded from the mirrors listed athttp://www.cs.wisc.edu/condor/downloads.

When I click to download Condor, it sends me back to the downloads page!

If you are trying to download Condor through a web proxy, try disabling it. Our web site uses the
“referring page” as you navigate through our download menusin order to give you the right version
of Condor, but sometimes proxies block this information from reaching our web site.

What platforms do you support?

See Section 1.5, on page 5. Also, you might want to read the platform-specific information in
Chapter 6 on page 529.

547

http://www.cs.wisc.edu/condor/downloads

7.1. Obtaining & Installing Condor 548

What versions of Red Hat Linux does Condor support?

See Section6.1 on page 529.

Do you distribute source code?

For 7.0.0 and later releases, the Condor source code is available for public download alongside the
binary distributions.

How do I upgrade the Unix machines in my pool from 6.4.x to 6.6.x?

This series of steps explains how to upgrade a pool of machines from running Condor version 6.4.x
to version 6.6.x. Read through the entire set of directions before following them.

Briefly, the steps are to download the new version in order to replace your current binaries with
the new binaries. Condor will notice that there are new binaries, since it checks for this every few
minutes. The next time it checks, the new binaries will be used.

Step 1: (Optional) Place test jobs in queueThis optional first step safeguards jobs currently in
the queue when you upgrade. By completing this extra step, you will not lose any partially
completed jobs, even if something goes wrong with your upgrade.

Manufacture test jobs that utilize each universe you use in your Condor pool. Submit each
job, and put the job in the hold state, usingcondorhold.

Step 2: Place all jobs on holdPlace all jobs into the hold state while replacing binaries.

Step 3: Download Condor 6.6.xTo ensure that both new and current binaries are within the same
volume, make a new directory within your current release directory where 6.6.x will go. Unix
commands will be of the form

cd <release-dir>
mkdir new
cd new

Locate the correct version of the Condor binary, and download into thisnew directory.

Do not install the downloaded version. Do uncompress and then untar the downloaded ver-
sion. Further untar the release directory (calledrelease.tar). This will create the direc-
tories

bin
etc
include
sbin

Condor Version 7.2.3 Manual

7.1. Obtaining & Installing Condor 549

libexec
lib
man

From this list of created directories,bin , include , sbin , libexec , and lib will be
used to replace current directories. Note that older versions of Condor do not have a libexec
directory.

Step 4: Configuration files The downloaded version 6.6.x configuration file will have extra, new
suggestions for configuration macro settings, to go with newfeatures in Condor. These extra
configuration macros are not be required in order to run version Condor 6.6.x.

Make a backup copy of the current configuration, to safeguardbacking out of the upgrade, if
something goes wrong.

Work through the new example configuration file to see if thereis anything useful and merge
with your site-specific (current) configuration file.

Note that starting in Condor 6.6.x, security sessions are turned on by default. If you will be
retaining some 6.4.x series Condor installations in your pool, you must turn security sessions
off in your 6.6.x configuration files. This can be accomplished by setting

SEC_DEFAULT_NEGOTIATION = NEVER

Also in 6.6.x, the definition of Hawkeye / Startd Cron jobs haschanged. The old syntax
allowed the following

HAWKEYE_JOBS =\
job1:job1_:/path/to/job1:1h \
job2:job2_:/path/to/job2:5m \
...

This is no longer supported, and must be replaced with the following

HAWKEYE_JOBS = job1:job1_:/path/to/job1:1h
HAWKEYE_JOBS = $(HAWKEYE_JOBS) job2:job2_:/path/to/job 2:5m
HAWKEYE_JOBS = $(HAWKEYE_JOBS) ...

It should also be noted that in 6.6.x, thecondorcollector andcondornegotiatorcan be set
to run on non-standard ports. This will cause older (6.4.x and earlier) Condor installations in
that pool to no longer function.

Step 5: Replace release directoriesFor each of the directories that is to be replaced, move the
current one aside, and put the new one in its place. The Unix commands to do this will be of
the form

Condor Version 7.2.3 Manual

7.1. Obtaining & Installing Condor 550

cd <release-dir>

mv bin bin.v64
mv new/bin bin

mv include include.v64
mv new/include include

mv sbin sbin.v64
mv new/sbin sbin

mv lib lib.v64
mv new/lib lib

Do this series of directory moves at one sitting, especiallyavoiding a long time lag between
the moves relating to thesbin directory. Condor imposes a delay by design, but it does not
idly wait for the new binaries to be in place.

Step 6: Observe propagation of new binariesUse condorstatusto observe the propagation of
the upgrade through the pool. As the machines notice and use the new binaries, their ver-
sion number will change. Complete propagation should occurin five to ten minutes.
The command

condor_status -format "%s" Machine -format " %s\n" CondorV ersion

gives a single line of information about each machine in the pool, containing only the machine
name and version of Condor it is running.

Step 7: (Optional) Release test jobsRelease the test jobs that were placed into the hold state in
Step 1. If these test jobs complete successfully, then the upgrade is successful. If these test
jobs fail (possibly by leaving the queue before finishing), then the upgrade is unsuccessful. If
unsuccessful, back out of the upgrade by replacing the new configuration file with the backup
copy and moving the Version 6.4.x release directories back to their previous location. Also
send e-mail to condor-admin@cs.wisc.edu, explaining the situation and we’ll help you work
through it.

Step 8: Release all jobsRelease all jobs in the queue, but runningcondorrelease.

Step 9: (Optional) Install manual pagesThemandirectory was new with Condor version 6.4.x.
It contains manual pages. Note that installation of manual pages is optional; the chapter
containing manual pages are in section 9.

To install the manual pages, move theman directory from<release-dir>/new to the
desired location. Add the path name to this directory to theMANPATH.

What is Personal Condor?

Personal Condor is a term used to describe a specific style of Condor installation suited for individual
users who do not have their own pool of machines, but want to submit Condor jobs to run elsewhere.

Condor Version 7.2.3 Manual

mailto:condor-admin@cs.wisc.edu

7.1. Obtaining & Installing Condor 551

A Personal Condor is essentially a one-machine, self-contained Condor pool which can useflock-
ing to access resources in other Condor pools. See Section 5.2, on page 492 for more information
on flocking.

What do I do now? My installation of Condor does not work.

What to do to get Condor running properly depends on what sortof error occurs. One common error
category are communication errors. Condor daemon log files report a failure to bind. For example:

(date and time) Failed to bind to command ReliSock

Or, the errors in the various log files may be of the form:

(date and time) Error sending update to collector(s)
(date and time) Can't send end_of_message
(date and time) Error sending UDP update to the collector

(date and time) failed to update central manager

(date and time) Can't send EOM to the collector

This problem can also be observed by runningcondorstatus. It will give a message of the form:

Error: Could not fetch ads --- error communication error

To solve this problem, understand that Condor uses the first network interface it sees on the
machine. Since machines often have more than one interface,this problem usually implies that the
wrong network interface is being used. It also may be the casethat the system simply has the wrong
IP address configured.

It is incorrect to use the localhost network interface. Thishas IP address 127.0.0.1 on all ma-
chines. To check if this incorrect IP address is being used, look at the contents of the CollectorLog
file on the pool’s your central manager right after it is started. The contents will be of the form:

5/25 15:39:33 *** ***
5/25 15:39:33 ** condor_collector (CONDOR_COLLECTOR) STARTING UP
5/25 15:39:33 ** $CondorVersion: 6.2.0 Mar 16 2001 $
5/25 15:39:33 ** $CondorPlatform: INTEL-LINUX-GLIBC21 $
5/25 15:39:33 ** PID = 18658
5/25 15:39:33 *** ***
5/25 15:39:33 DaemonCore: Command Socket at <128.105.101. 15:9618>

The last line tells the IP address and port the collector has bound to and is listening on. If the IP
address is 127.0.0.1, then Condor is definitely using the wrong network interface.

There are two solutions to this problem. One solution changes the order of the network in-
terfaces. The preferred solution sets which network interface Condor should use by adding the
following parameter to the local Condor configuration file:

Condor Version 7.2.3 Manual

7.1. Obtaining & Installing Condor 552

NETWORK_INTERFACE = machine-ip-address

Wheremachine-ip-address is the IP address of the interface you wish Condor to use.

After an installation of Condor, why do the daemons refuse tostart, placing
this message in the log files?

ERROR "The following configuration macros appear to contai n default values
that must be changed before Condor will run. These macros are :
hostallow_write
(found on line 1853 of /scratch/adesmet/TRUNK/work/src/l ocaldir/condor_config)"
at line 217 in file condor_config.C

As of Condor 6.8.0, if Condor sees the bare key word:
YOUMUSTCHANGETHIS INVALID CONDORCONFIGURATIONVALUE as the value of
a configuration file entry, Condor daemons will log the given error message and exit.

By default, an installation of Condor 6.8.0 and later releases will have the configuration file entry
HOSTALLOWWRITEset to the above sentinel value. The Condor administrator must alter this value
to be the correct domain or IP addresses that the administrator desires. The wild card character (*)
may be used to define this entry, but that allows anyone, from anywhere, to submit jobs into your
pool. A better value will be of the form* .domainname.com .

Why do standard universe jobs never run after an upgrade?

Standard universe jobs that remain in the job queue across anupgrade from any Condor release
previous to 6.7.15 to any Condor release of 6.7.15 or more recent cannot run. They are missing a
required ClassAd attribute (LastCheckpointPlatform) added for all standard universe jobs
as of Condor version 6.7.15. This new attribute describes the platform where a job was running
when it produced a checkpoint. The attribute is utilized to identify platforms capable of continuing
the job (using the checkpoint).

This attribute becomes necessary due to bugs in some Linux kernels. A standard universe job
may be continued on some, but not all Linux machines. And, theCkptOpSys attribute is not
specific enough to be utilized.

There are two possible solutions for these standard universe jobs that cannot run, yet are in the
queue:

1. Remove and resubmit the standard universe jobs that remain in the queue across the upgrade.
This includes all standard universe jobs that have flocked into the pool. Note that the resub-
mitted jobs will start over again from the beginning.

Condor Version 7.2.3 Manual

7.2. Setting up Condor 553

2. For each standard universe job in the queue, modify its jobClassAd such that it can
possibly run within the upgraded pool. If the job has alreadyrun and produced a
checkpoint on a machine before the upgrade, determine the machine that produced the
checkpoint using theLastRemoteHost attribute in the job’s ClassAd. Then look at
that machine’s ClassAd (after the upgrade) to determine andextract the value of the
CheckpointPlatform attribute. Add this (usingcondorqedit) as the value of the new
attributeLastCheckpointPlatform in the job’s ClassAd. Note that this operation must
also have to be performed on standard universe jobs flocking in to an upgraded pool. It is
recommended that pools that flock between each other upgradeto a post 6.7.15 version of
Condor.

Note that if the upgrade to Condor takes place at the same timeas a platform change (such as
booting an upgraded kernel), there is no way to properly set the LastCheckpointPlatform
attribute. The only option is to remove and resubmit the standard universe jobs.

7.2 Setting up Condor

How do I set up a central manager on a machine with multiple network inter-
faces?

Please see section3.7.2 on page 329.

How do I get more than one job to run on my SMP machine?

Condor will automatically recognize a SMP machine and advertise each CPU of the machine sepa-
rately. For more details, see section 3.12.7 on page 399.

How do I configure a separate policy for the CPUs of an SMP machine?

Please see section 3.12.7 on page 399 for a lengthy discussion on this topic.

How do I set up my machines so that only specific users’ jobs will run on them?

Restrictions on what jobs will run on a given resource are enforced by only starting jobs that meet
specific constraints, and these constraints are specified aspart of the configuration.

To specify that a given machine should only run certain users’ jobs, and always run the jobs
regardless of other activity on the machine, load average, etc., place the following entry in the
machine’s Condor configuration file:

Condor Version 7.2.3 Manual

7.2. Setting up Condor 554

START = ((RemoteUser == "userfoo@baz.edu") || \
(RemoteUser == "userbar@baz.edu"))

A more likely scenario is that the machine is restricted to run only specific users’ jobs, contingent
on the machine not having other interactive activity and notbeing heavily loaded. The following
entries are in the machine’s Condor configuration file. Note that extra configuration variables are
defined to make theSTARTvariable easier to read.

Only start jobs if:
1) the job is owned by the allowed users, AND
2) the keyboard has been idle long enough, AND
3) the load average is low enough OR the machine is currently
running a Condor job, and would therefore accept running
a different one
AllowedUser = ((RemoteUser == "userfoo@baz.edu") || \

(RemoteUser == "userbar@baz.edu"))
KeyboardUnused = (KeyboardIdle > $(StartIdleTime))
NoOwnerLoad = ($(CPUIdle) || (State != "Unclaimed" && State != "Owner"))
START = $(AllowedUser) && $(KeyboardUnused) && $(NoOwnerL oad)

To configure multiple machines to do so, create a common configuration file containing this
entry for them to share.

How do I configure Condor to run my jobs only on machines that have the
right packages installed?

This is a two-step process. First, you need to tell the machines to report that they have special
software installed, and second, you need to tell the jobs to require machines that have that software.

To tell the machines to report the presence of special software, first add a parameter to their
configuration files like so:

HAS_MY_SOFTWARE = True

And then, if there are alreadySTARTDATTRSdefined in that file, addHASMYSOFTWAREto
them, or, if not, add the line:

STARTD_ATTRS = HAS_MY_SOFTWARE, $(STARTD_ATTRS)

NOTE: For these changes to take effect, eachcondorstartdyou update needs to be reconfigured
with condorreconfig-startd.

Next, to tell your jobs to only run on machines that have this software, add a requirements
statement to their submit files like so:

Condor Version 7.2.3 Manual

7.2. Setting up Condor 555

Requirements = (HAS_MY_SOFTWARE =?= True)

NOTE: Be sure to use =?= instead of == so that if a machine doesn’t have the
HAS MY SOFTWARE parameter defined, the job’s Requirements expression will not evaluate to
“undefined”, preventing it from running anywhere!

How do I configure Condor to only run jobs at night?

A commonly requested policy for running batch jobs is to onlyallow them to run at night, or at
other pre-specified times of the day. Condor allows you to configure this policy with the use of
theClockMin andClockDay condorstartdattributes. A complete example of how to use these
attributes for this kind of policy is discussed in subsubsection 3.5.9 on page 276.

How do I configure Condor such that all machines do not producecheckpoints
at the same time?

If machines are configured to produce checkpoints at fixed intervals, a large number of jobs are
queued (submitted) at the same time, and these jobs start on machines at about the same time, then
all these jobs will be trying to write out their checkpoints at the same time. It is likely to cause rather
poor performance during this burst of writing.

The RANDOMINTEGER() macro can help in this instance. Instead of defining
PERIODIC CHECKPOINTto be a fixed interval, each machine is configured to randomly choose
one of a set of intervals. For example, to set a machine’s interval for producing checkpoints to within
the range of two to three hours, use the following configuration:

PERIODIC_CHECKPOINT = $(LastCkpt) > (2 * $(HOUR) + \
$RANDOM_INTEGER(0,60,10) * $(MINUTE))

The interval used is set at configuration time. Each machine is randomly assigned a different
interval (2 hours, 2 hours and 10 minutes, 2 hours and 20 minutes, etc.) at which to produce check-
points. Therefore, the various machines will not all attempt to produce checkpoints at the same
time.

Why will the condor masternot run when a local configuration file is missing?

If a LOCALCONFIGFILE is specified in the global configuration file, but the specifiedfile does
not exist, thecondormasterwill not start up, and it prints a variation of the following example
message.

ERROR: Can't read config file /mnt/condor/hosts/bagel/co ndor_config.local

Condor Version 7.2.3 Manual

7.3. Running Condor Jobs 556

This is not a bug; it is a feature! Condor has always worked this way on purpose. There is a
potentially large security hole if Condor is configured to read from a file that does not exist. By
creating that file, a malicious user could change all sorts ofCondor settings. This is an easy way to
gain root access to a machine, where the daemons are running as root.

The intent is that if you’ve set up your global configuration file to read from a local configuration
file, and the local file is not there, then something is wrong. It is better for thecondormasterto exit
right away and log an error message than to start up.

If the condormastercontinued with the local configuration file missing, either A) someone
could breach security or B) you will have potentially important configuration information missing.
Consider the example where the local configuration file was onan NFS partition and the server was
down. There would be all sorts of really important stuff in the local configuration file, and Condor
might do bad things if it started without those settings.

If supplied it with an empty file, thecondormasterworks fine.

7.3 Running Condor Jobs

I’m at the University of Wisconsin-Madison Computer Science Dept., and I
am having problems!

Please see the web pagehttp://www.cs.wisc.edu/condor/uwcs. As it explains, your home directory
is in AFS, which by default has access control restrictions which can prevent Condor jobs from
running properly. The above URL will explain how to solve theproblem.

I’m getting a lot of e-mail from Condor. Can I just delete it al l?

Generally you shouldn’t ignoreall of the mail Condor sends, but you can reduce the amount you get
by telling Condor that you don’t want to be notified every timea job successfully completes, only
when a job experiences an error. To do this, include a line in your submit file like the following:

Notification = Error

See the Notification parameter in thecondorq man page on page 799 of this manual for more
information.

Why will my vanilla jobs only run on the machine where I submitted them
from?

Check the following:

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/uwcs

7.3. Running Condor Jobs 557

1. Did you submit the job from a local file system that other computers can’t access?

See Section 3.3.7, on page 168.

2. Did you set a special requirements expression for vanillajobs that’s preventing them from
running but not other jobs?

See Section 3.3.7, on page 168.

3. Is Condor running as a non-root user?

See Section 3.6.11, on page 316.

My job starts but exits right away with signal 9.

This can occur when the machine your job is running on is missing a shared library required by
your program. One solution is to install the shared library on all machines the job may execute on.
Another, easier, solution is to try to re-link your program statically so it contains all the routines it
needs.

Why aren’t any or all of my jobs running?

Problems like the followingare often reported to us:

I have submitted 100 jobs to my pool, and only 18 appear to be
running, but there are plenty of machines available. What sh ould I
do to investigate the reason why this happens?

Start by following these steps to understand the problem:

1. Runcondorq -analyze and see what it says.

2. Look at the User Log file (whatever you specified as ”log = XXX” in the submit file).

See if the jobs are starting to run but then exiting right away, or if they never even start.

3. Look at the SchedLog on the submit machine after it negotiates for this user. If a user doesn’t
have enough priority to get more machines the SchedLog will contain a message like ”lost
priority, no more jobs”.

4. If jobs are successfully being matched with machines, they still might be dying when they try
to execute due to file permission problems or the like. Check the ShadowLog on the submit
machine for warnings or errors.

5. Look at the NegotiatorLog during the negotiation for the user. Look for messages about
priority, ”no more machines”, or similar.

Condor Version 7.2.3 Manual

7.3. Running Condor Jobs 558

Another problemshows itself with statements within the log file produced by thecondorschedd
daemon (given by$(SCHEDDLOG)) that say the following:

2/3 17:46:53 Swap space estimate reached! No more jobs can be run!
12/3 17:46:53 Solution: get more swap space, or set RESERVED _SWAP = 0
12/3 17:46:53 0 jobs matched, 1 jobs idle

Condor computes the total swap space on your submit machine.It then tries to limit the total
number of jobs it will spawn based on an estimate of the size ofthe condorshadowdaemon’s
memory footprint and a configurable amount of swap space thatshould be reserved. This is done to
avoid the situation within a very large pool in which all the jobs are submitted from a single host.
The huge number ofcondorshadowprocesses would overwhelm the submit machine, it would run
out of swap space, and thrash.

Things can go wrong if a machine has a lot of physical memory and little or no swap space.
Condor does not consider the physical memory size, so the situation occurs where Condor thinks it
has no swap space to work with, and it will not run the submitted jobs.

To see how much swap space Condor thinks a given machine has, use the output of acon-
dor statuscommand of the following form:

condor_status -schedd [hostname] -long | grep VirtualMemo ry

If the value listed is 0, then this is what is confusing Condor. There are two ways to fix the
problem:

1. Configure your machine with some real swap space.

2. Disable this check within Condor. Define the amount of reserved swap space for the submit
machine to 0. SetRESERVEDSWAPto 0 in the configuration file:

RESERVED_SWAP = 0

and then send acondor restart to the submit machine.

Why does therequirementsexpression for the job I submitted
have extra things that I did not put in my submit description file?

There are several extensions to the submittedrequirements that are automatically added by
Condor. Here is a list:

• Condor automatically addsarch andopsys if not specified in the submit description file. It
is assumed that the executable needs to execute on the same platform as the machine on which
the job is submitted.

Condor Version 7.2.3 Manual

7.3. Running Condor Jobs 559

• Condor automatically adds the expression(Memory * 1024 > ImageSize) . This en-
sures that the job will run on a machine with at least as much physical memory as the memory
footprint of the job.

• Condor automatically adds the expression(Disk >= DiskUsage) if not already speci-
fied. This ensures that the job will run on a machine with enough disk space for the job’s local
I/O (if there is any).

• A pool administrator may define configuration variables that cause expressions to be
added torequirements . These configuration variables areAPPENDREQUIREMENTS,
APPENDREQVANILLA , and APPENDREQSTANDARD. These configuration variables
give pool administrators the flexibility to set policy for a local pool.

• Older versions of Condor needed to add confusing clauses about WINNT and the FileSys-
temDomain to vanilla universe jobs. This made sure that the jobs ran on a machine where
files were accessible. The Windows version supported automatically transferring files with
the vanilla job, while the Unix version relied on a shared filesystem. Since the Unix ver-
sion of Condor now supports transferring files, these expressions are no longer added to the
requirements for a job.

When I usecondor compileto produce a job, I get an error that says, ”Internal
ld was not invoked!”. What does this mean?

condorcompileenforces a specific behavior in the compilers and linkers that it supports (for exam-
ple gcc, g77, cc, CC, ld) where a special linker script provided by Condor must be invoked during
the final linking stages of the supplied compiler or linker.

In some rare cases, as withgcc compiled with the options–with-as or –with-ld , the enforce-
ment mechanism we rely upon to havegccchoose our supplied linker script is not honored by the
compiler. When this happens, an executable is produced, butthe executable is devoid of the Condor
libraries which both identify it as a Condor executable linked for the standard universe and imple-
ment the feature sets of remote I/O and transparent process checkpointing and migration.

Often, the only fix in order to use the compiler desired, is to reconfigure and recompile the
compiler itself, such that it does not use the errant optionsmentioned.

With Condor’s standard universe, we highly recommend that your source files are compiled with
the supported compiler for your platform. See section 1.5 for the list of supported compilers. For a
Linux platform, the supported compiler is the default compiler that came with the distribution. It is
often found in the directory/usr/bin .

Can I submit my standard universe SPARC Solaris 2.6 jobs and have them run
on a SPARC Solaris 2.7 machine?

No. You may only use binary compatibility between SPARC Solaris 2.5.1 and SPARC Solaris 2.6
and between SPARC Solaris 2.7 and SPARC Solaris 2.8, but not between SPARC Solaris 2.6 and

Condor Version 7.2.3 Manual

7.3. Running Condor Jobs 560

SPARC Solaris 2.7. We may implement support for this featurein a future release of Condor.

Can I submit my standard universe SPARC Solaris 2.8 jobs and have them run
on a SPARC Solaris 2.9 machine?

No. Although normal executables are binary compatible, technical details of taking checkpoints
currently prevents this particular combination. Note thatthis applies to standard universe jobs only.

Why have standard universe jobs in Condor 6.6.x have begun unexpectedly
segmentation faulting during a checkpoint after an upgradeof Redhat Enter-
prise Linux 3 to current update levels?

Redhat has apparently back-ported a 2.6 kernel feature called “execshield” to the current patch
levels of the RHEL3 product line. This feature is designed tomake buffer overflow attacks incredibly
difficult to exploit. However, it has the unfortunate side effect of completely breaking all user land
checkpointing algorithms including the one Condor utilizes. The solution is to turn off the kernel
feature for each execution of a standard universe job in the Condor system. The method employed
to do this is withUSERJOB WRAPPERand a shell script that looks much like this one:

#! /bin/sh

sa="/usr/bin/setarch"

if [-f $sa]; then
exec $sa i386 ${1+"$@"}

fi

exec ${1+"$@"}

Place this shell script into the$(SBIN) directory of your Condor installation with the name
of fix std univ and make sure tochmod 755 fixstd univ it. Then, setUSERJOB WRAPPER =
$(SBIN)/fix std univ in your global config file(or the config files which will affect your
Linux install of Condor). Then do acondorreconfigof your pool. When a standard universe job is
run on a machine, if thesetarchprogram is available (under Linux with the “execshield” feature),
then it will run the executable in the i386 personality, which turns off the “execshield” kernel
feature.

Why do my vanilla jobs keep cycling between suspended and unsuspended?

Condor tries to provide a number, the “Condor Load Average” (reported in the machine ClassAd
asCondorLoadAvg), which is intended to represent the total load average on the system caused

Condor Version 7.2.3 Manual

7.3. Running Condor Jobs 561

by any running Condor job(s). Unfortunately, it is impossible to get an accurate number for this
without support from the operating system. This is not available. So, Condor does the best it can,
and it mostly works in most cases. However, there are a numberof ways this statistic can go wrong.

The old default Condor policy was to suspend if the non-Condor load average went over a certain
threshold. However, because of the problems providing accurate numbers for this (described below),
some jobs would go into a cycle of getting suspended and resumed. The default suspend policy now
shipped with Condor uses the solution explained here.

While there are too many technical details of whyCondorLoadAvg might be wrong for a
short answer here, a brief explanation is presented. When a job has periodic behavior, and the load
it places upon a machine is changing over time, the system load also changes over time. However,
Condor thinks that the job’s share of the system load (what ituses to compute the CondorLoad) is
also changing. So, when the job was running, and then stops, both the system load and the Condor
load start falling. If it all worked correctly, they’d fall at the exact same rate, andNonCondorLoad
would be constant. Unfortunately,CondorLoadAvg falls faster, since Condor thinks the job’s
share of the total load is falling, too. Therefore,CondorLoadAvg falls faster than the system load,
NonCondorLoad goes up, and the old defaultSUSPENDexpression becomes true.

It appears that Condor should be able to avoid this problem, but for a host of reasons, it can not.
There is no good way (without help from the operating systemsCondor runs on; the help does not
exist) to get this right. The only way to compute these numbers more accurately without support
from the operating system is to sample everything at such a high rate that Condor itself would
create a large load average, just to try to compute the load average. This is Heisenberg’s uncertainty
principle in action.

A similar sampling error can occur when Condor is starting a job within the vanilla universe
with many processes and with a heavy initial load. Condor mistakenly decides that the load on the
machine has gotten too high while the job is in the initialization phase and kicks the job off the
machine.

To correct this problem, Condor needs to check to see if the load of the machine has been high
over an interval of time. There is an attribute,CpuBusyTime that can be used for this purpose.
This macro returns the time$(CpuBusy) (defined in the default configuration file) has been true,
or 0 if $(CpuBusy) is false.$(CpuBusy) is usually defined in terms of non-Condor load. These
are the default settings:

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
HighLoad = 0.5
CPUBusy = ($(NonCondorLoadAvg) >= $(HighLoad))

To take advantage ofCpuBusyTime , you can use it in yourSUSPENDexpression.

Here is an example:

SUSPEND = (CpuBusyTime > 3 * $(MINUTE)) && ((CurrentTime - JobStart) > 90)

The above policy says to only suspend the job if the CPU has been busy with non-Condor load
at least three minutes and it has been at least 90 seconds since the start of the job.

Condor Version 7.2.3 Manual

7.3. Running Condor Jobs 562

Why might my job be preempted (evicted)?

There are four circumstances under which Condor may evict a job. They are controlled by different
expressions.

Reason number 1 is the user priority: controlled by thePREEMPTIONREQUIREMENTSex-
pression in the configuration file. If there is a job from a higher priority user sitting idle, thecon-
dor negotiatordaemon may evict a currently running job submitted from a lower priority user if
PREEMPTIONREQUIREMENTSis True. For more on user priorities, see section 2.7 and sec-
tion 3.4.

Reason number 2 is the owner (machine) policy: controlled bythePREEMPTexpression in the
configuration file. When a job is running and thePREEMPTexpression evaluates to True, thecon-
dor startdwill evict the job. ThePREEMPTexpression should reflect the requirements under which
the machine owner will not permit a job to continue to run. Forexample, a policy to evict a currently
running job when a key is hit or when it is the 9:00am work arrival time, would be expressed in the
PREEMPTexpression and enforced by thecondorstartd. For more on thePREEMPTexpression,
see section 3.5.

Reason number 3 is the owner (machine) preference: controlled by theRANKexpression in
the configuration file (sometimes called the startd rank or machine rank). TheRANKexpression is
evaluated as a floating point number. When one job is running,a second idle job that evaluates to
a higherRANKvalue tells thecondorstartd to prefer the second job over the first. Therefore, the
condorstartdwill evict the first job so that it can start running the second(preferred) job. For more
onRANK, see section 3.5.

Reason number 4 is if Condor is to be shutdown: on a machine that is currently running a job.
Condor evicts the currently running job before proceeding with the shutdown.

Condor does not stop the Condor jobs running on my Linux machine when I
use my keyboard and mouse. Is there a bug?

There is no bug in Condor. Unfortunately, recent Linux 2.4.xand all Linux 2.6.x kernels through
version 2.6.10 do not post proper state information, such that Condor can detect keyboard and mouse
activity. Condor implements workarounds to piece togetherthe needed state information for PS/2
devices. A better fix of the problem utilizes the kernel patchlinked to from the directions posted
at http://www.cs.wisc.edu/condor/kernel.patch.html. This patch works better for PS/2 devices, and
may also work for USB devices. A future version of Condor willimplement better recognition of
USB devices, such that the kernel patch will also definitively work for USB devices.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/kernel.patch.html

7.3. Running Condor Jobs 563

What signals get sent to my jobs when Condor needs to preempt or kill them,
or when I remove them from the queue? Can I tell Condor which signals to
send?

The answer is dependent on the universe of the jobs.

Under the scheduler universe, the signal jobs get uponcondorrm can be set by the user in the
submit description file with the form of

remove_kill_sig = SIGWHATEVER

If this command is not defined, Condor further looks for a command in the submit description file
with the form

kill_sig = SIGWHATEVER

And, if that command is also not given, Condor uses SIGTERM.

For all other universes, the jobs get the value of the submit description file commandkill_sig ,
which is SIGTERM by default.

If a job is killed or evicted, the job is sent akill_sig , unless it is on the receiving end of a
hard kill, in which case it gets SIGKILL.

Under all universes, the signal is sent only to the parent PIDof the job, namely, the first child
of the condorstarter. If the child itself is forking, the child must catch and forward signals as
appropriate. This in turn depends on the user’s desired behavior. The exception to this is (again)
where the job is receiving a hard kill. Condor sends the valueSIGKILL to all the PIDs in the family.

Why does my Linux job have an enormous ImageSize and refuse torun any-
more?

Sometimes Linux jobs run, are preempted and can not start again because Condor thinks the image
size of the job is too big. This is because Condor has a problemcalculating the image size of
a program on Linux that uses threads. It is particularly noticeable in the Java universe, but it also
happens in the vanilla universe. It is not an issue in the standard universe, because threaded programs
are not allowed.

On Linux, each thread appears to consume as much memory as theentire program consumes, so
the image size appears to be (number-of-threads * image-size-of-program). If your program uses a
lot of threads, your apparent image size balloons. You can see the image size that Condor believes
your program has by using the -l option to condorq, and looking at the ImageSize attribute.

When you submit your job, Condor creates or extends the requirements for your job. In particu-
lar, it adds a requirement that you job must run on a machine with sufficient memory:

Condor Version 7.2.3 Manual

7.3. Running Condor Jobs 564

Requirements = ... ((Memory * 1024) >= ImageSize) ...

(Note that memory is the execution machine’s memory in megabytes while ImageSize is in
kilobytes). When your application is threaded, the image size appears to be much larger than it
really is, and you may not have a machine with sufficient memory to handle this requirement.

Unfortunately, calculating the correct ImageSize is rather hard to fix on Linux, and we do not
yet have a good solution. Fortunately, there is a workaroundwhile we work on a good solution for
a future release.

In the Requirements expression above, Condor added(Memory * 1024) >=
ImageSize) on your behalf. You can prevent Condor from doing this by giving it your
own expression about memory in your submit file, just as:

Requirements = Memory > 1024

You will need to change 1024 to a reasonably good estimate of the actual image size of your
program, in kilobytes. This expression says that your program requires 1 megabyte of memory. If
you underestimate the memory your application needs, you may have bad performance if you job
runs on machines that have insufficient memory.

In addition, if you have modified your machine policies to preempt jobs when they get big a
ImageSize, you will need to change those policies.

Why does the time output from condor statusappear as [?????] ?

Condor collects timing information for a large variety of uses. Collection of the data relies on
accurate times. Being a distributed system, clock skew among machines causes errant timing cal-
culations. Values can be reported too large or too small, with the possibility of calculating negative
timing values.

This problem may be seen by the user when looking at the outputof condorstatus. If the
ActivityTime field appears as [?????], then this calculated statistic wasnegative. condorstatus
recognizes that a negative amount of time will be nonsense toreport, and instead displays this string.

The solution to the problem is to synchronize the clocks on these machines. An administrator
can do this using a tool such asntp.

The user condor’s home directory cannot be found. Why?

This problem may be observed after installation, when attempting to execute

˜condor/condor/bin/condor_config_val -tilde

and there is a user named condor. The command prints a messagesuch as

Condor Version 7.2.3 Manual

7.3. Running Condor Jobs 565

Error: Specified -tilde but can't find condor's home direct ory

In this case, the difficulty stems from using NIS, because theCondor daemons fail to communi-
cate properly with NIS to get account information. To fix the problem, a dynamically linked version
of Condor must be installed.

Condor commands (includingcondor q) are really slow. What is going on?

Some Condor programs will react slowly if they expect to find acondorcollectordaemon, yet can-
not contact one. Notably,condorq can be very slow. Thecondorschedddaemon will also be slow,
and it will log lots of harmless messages complaining. If youare not running acondorcollector
daemon, it is important that the configuration variableCOLLECTORHOST be set to nothing. This
is typically done by settingCONDORHOSTwith

CONDOR_HOST=
COLLECTOR_HOST=$(CONDOR_HOST)

or

COLLECTOR_HOST=

Where are my missing files? The commandwhen to transfer output =
ON EXIT OR EVICT is in the submit description file.

Although it may appear as if files are missing, they are not. The transfer does take place whenever a
job is preempted by another job, vacates the machine, or is killed. Look for the files in the directory
defined by theSPOOLconfiguration variable. See section 2.5.4, on page 26 for details on the naming
of the intermediate files.

Why are my vm universe VMware jobs failing and being put on hold?

Strange behavior has been noted when Condor tries to run avm universe VMware job using a path
to a VMX file that contains a symbolic link. An example of an error message that may appear in
such a job’s user log:

Error from starter on master_vmuniverse_strtd@nostos.cs .wisc
.edu: register(/scratch/gquinn/condor/git/CONDOR_SRC /src/con
dor_tests/31426/31426vmuniverse/execute/dir_31534/v mN3hylp_c
ondor.vmx) = 1/Error: Command failed: A file was not found/(
ERROR) Can't create snapshot for vm(/scratch/gquinn/cond or/g
it/CONDOR_SRC/src/condor_tests/31426/31426vmunivers e/execute
/dir_31534/vmN3hylp_condor.vmx)

Condor Version 7.2.3 Manual

7.4. Condor on Windows 566

To work around this problem:

• If using file transfer (the submit description file containsvmware should transfer files =
true), then modify any configuration variableEXECUTE values on all execute machines,
such that they do not contain symbolic link path components.

• If using a shared file system, ensure that the submit description file commandvmware dir
does not use symbolic link path name components.

7.4 Condor on Windows

Will Condor work on a network of mixed Unix and Windows machines?

You can have a Condor pool that consists of both Unix and Windows machines.

Your central manager can be either Windows or Unix. For example, even if you had a pool
consisting strictly of Unix machines, you could use a Windows box for your central manager, and
vice versa.

Submitted jobs can originate from either a Windowsor a Unix machine, and be destined to run
on Windowsor a Unix machine. Note that there are still restrictions on thesupported universes for
jobs executed on Windows machines.

So, in summary:

1. A single Condor pool can consist of both Windows and Unix machines.

2. It does not matter at all if your Central Manager is Unix or Windows.

3. Unix machines can submit jobs to run on other Unix or Windows machines.

4. Windows NT machines can submit jobs to run on other Windowsor Unix machines.

What versions of Windows will Condor run on?

See Section 1.5, on page 5.

My Windows program works fine when executed on its own, but it does not
work when submitted to Condor.

First, make sure that the program really does work outside of Condor under Windows, that the disk
is not full, and that the system is not out of user resources.

Condor Version 7.2.3 Manual

7.4. Condor on Windows 567

As the next consideration, know that some Windows programs do not run properly becausethey
are dynamically linked, and they cannot find the.dll files that they depend on. Version 6.4.x of
Condor sets thePATHto be empty when running a job. To avoid these difficulties, doone of the
following

1. statically link the application

2. wrap the job in a script that sets up the environment

3. submit the job from a correctly-set environment with the command

getenv = true

in the submit description file. This will copy your environment into the job’s environment.

4. send the required.dll files along with the job using the submit description file command
transfer input files.

Why is the condor masterdaemon failing to start, giving an error about
”In StartServiceCtrlDispatcher, Error number: 1063”?

In Condor for Windows, thecondormasterdaemon is started as a service. Therefore, starting the
condormasterdaemon as you would on Unix will not work. Start Condor on Windows machines
using either

net start condor

or start the Condor service from the Service Control Managerlocated in the Windows Control Panel.

Jobs submitted from Windows give an error referring to a credential.

Jobs submitted from a Windows machine require a stashed password in order for Condor to perform
certain operations on the user’s behalf. Refer to section 6.2.3 for information about password storage
on Windows. The command which stashes a password for a user iscondorstore cred. See the
manual page on on page 793 for usage details.

The error message that Condor gives if a user has not stashed apassword is of the form:

ERROR: No credential stored for username@machinename

Correct this by running:
condor_store_cred add

Condor Version 7.2.3 Manual

7.4. Condor on Windows 568

Jobs submitted from Unix to execute on Windows do not work properly.

A difficulty with defaults causes jobs submitted from Unix for execution on a Windows platform to
remain in the queue, but make no progress. For jobs with this problem, log files will contain error
messages pointing to shadow exceptions.

This difficulty stems from the defaults for whether file transfer takes place. The workaround for
this problem is to place the line

TRANSFER_FILES = ALWAYS

into the submit description file for jobs submitted from a Unix machine for execution on a Windows
machine.

When I run condor statusI get a communication error, or the Condor daemon
log files report a failure to bind.

Condor uses the first network interface it sees on your machine. This problem usually means you
have an extra, inactive network interface (such as a RAS dialup interface) defined before to your
regular network interface.

To solve this problem, either change the order of your network interfaces in the Control Panel,
or explicitly set which network interface Condor should useby adding the following parameter to
your Condor configuration file:

NETWORK_INTERFACE = ip-address

Whereip-address is the IP address of the interface you wish Condor to use.

My job starts but exits right away with status 128.

This can occur when the machine your job is running on is missing a DLL (Dynamically Linked
Library) required by your program. The solution is to find theDLL file the program needs and put
it in the TRANSFERINPUT FILES list in the job’s submit file.

To find out what DLLs your program depends on, right-click theprogram in Explorer, choose
Quickview, and look under “Import List”.

How can I access network files with Condor on Windows?

Five methods for making access of network files work with Condor are given in section 6.2.8.

Condor Version 7.2.3 Manual

7.4. Condor on Windows 569

What is wrong when condor off cannot find my host, andcondor statusdoes
not give me a complete host name?

Given the command

condor_off hostname2

an error message of the form

Can't find address for master hostname2.somewhere.edu

appears. Yet, when looking at the host names with

condor_status -master

the output is of the form

hostname1.somewhere.edu
hostname2
hostname3.somewhere.edu

To correct this incomplete host name, add an entry to the configuration file for
DEFAULTDOMAINNAME that specifies the domain name to be used. For the example given,
the configuration entry will be

DEFAULT_DOMAIN_NAME = somewhere.edu

After adding this configuration file entry, usecondor restart to restart the Condor daemons and
effect the change.

DoesUSER JOB WRAPPERwork on Windows machines?

TheUSERJOB WRAPPERconfiguration variable does work on Windows machines. The wrapper
must be either a batch script with a file extension of.bat or .cmd , or an executable with a file
extension of.exe or .com .

An example of a batch script sets environment variables:

REM set some environment variables
set LICENSE_SERVER=192.168.1.202:5012
set MY_PARAMS=2

REM Run the actual job now
%*

Condor Version 7.2.3 Manual

7.4. Condor on Windows 570

condor storecred is failing, and I’m sure I’m typing my password correctly.

First, make sure thecondorscheddis running.

Next, check the SchedLog. It will contain more detailed information about the failure. Fre-
quently, the error is a result ofPERMISSION DENIEDerrors. You can read more about properly
configuring security settings on page 307.

My submit machine cannot have more than 120 jobs running concurrently.
Why?

Windows is likely to be running out of desktop heap. Confirm this to be the case by looking in the
log for thecondorschedddaemon to see ifcondorshadowdaemons are immediately exiting with
status 128. If this is the case, increase the desktop heap size. Open the registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control \Session Manager\SubSystems\Windows

The SharedSection value can have three values separated by commas. The third value controls
the desktop heap size for non-interactive desktops, which the Condor service uses. The default is
512 (Kbytes). 60condorshadowdaemons consume about 256 Kbytes, hence 120 shadows can run
with the default value. To be able to run a maximum of 300condorshadowdaemons, set this value
at 1280.

Reboot the system for the changes to take effect. For more information, see Microsoft Article
Q184802.

Why do Condor daemons exit after logging a 10038 (WSAENOTSOCK) error
on some machines?

Usually when Condor daemons exit in this manner, it is because the system in question has a non-
standard Winsock Layered Service Provider (LSP) installedon it. An LSP is, in effect, a plug-in
for the TCP/IP protocol stack. LSPs have been installed as part of anti-virus software and other
security-related packages.

There are several tools available to check your system for the presence of LSPs. One with which
we have had success isLSP-Fix, available at http://www.cexx.org/lspfix.htm. Any non-Microsoft
LSPs identified by this tool may potentially be causing the WSAENOTSOCK error in Condor.
Although theLSP-Fixtool allows the direct removal of an LSP, it is likely advisable to completely
remove the application for which the LSP is a part via the Control Panel.

Another approach is to completely reset the TCP/IP stack to its original state. This can be done
using thenetsh tool:

netsh int ip reset reset-stack.log

Condor Version 7.2.3 Manual

http://www.cexx.org/lspfix.htm

7.4. Condor on Windows 571

The command will return the TCP/IP stack back to the state is was in when the OS was first installed.
The log file defined above will record all the configuration changes made bynetsh .

Why do Condor daemons exit with ”Unexpected performance counter size”,
”unable to spawn the ProcD” or ”loadavg thread died, restarting. (exit
code=2)” errors?

Condor relies on some of Windows’ built-in performance counters for its operation. It is possible
(via the registry) for performance counters that Condor requires to be disabled. If this is the case,
you may see daemons exit with a message like:

1/26 09:16:42 (fd:2) (pid:5732) ERROR: "Unexpected perfor mance counter
size for total CPU: 0 (expected: 8)" at line 2846 in file
..\src\condor_procapi\procapi.cpp

or:

1/20 15:29:14 (pid:2484) ERROR "unable to spawn the ProcD" a t line 136
in file ..\src\condor_c++_util\proc_family_proxy.C

and even:

4/16 10:49:13 loadavg thread died, restarting. (exit code= 2)

To enable the performance counters, check the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service s\PerfProc\Performance .
If a valueDisable Performance Counters exists, delete it or set it to0.

Why does the Windows Installer fail with “Error 2738. Could n ot access VB-
Script run time for custom action”?

This error results when the VBScript engine is not registered. Since Condor’s installer depends on
the VBScript engine for custom steps, the installer will fail if it cannot find the VBScript engine.

The fix is to register the VMScript engine. With Administrative privilege:

1. Launch the Command Prompt (cmd.exe) as the Administrator.

2. At the Command Prompt, change directories to theSystem32 folder, within the Windows
folder.

3. Issue the command

Condor Version 7.2.3 Manual

7.4. Condor on Windows 572

regsvr32 vbscript.dll

If successful, the message

DllRegisterServer in vbscript.dll succeeded.

is printed.

Why does Condor sometimes fail to parse floating point numbers?

Condor assumes that all floating point numbers are of the formx.y, which, depending on a com-
puter’s current locale, may not always be the case. This problem occurs even if Condor is running
under an account that has had the locale configured correctly. The problem lies in the template user
account which is used to create Condor’s dynamic accounts. Even if the entire system is configured
to use a new locale, this template account seems to retain theoriginal system locale. The following
steps can be used fix this problem.

To create a default user profile, you must be logged on asAdministrator or be a member of
theAdministrators group. Create a new user profile for all new user accounts on a computer to be
based on. To create subsequent profiles, you can use the new user account as a template. Here is
how to use the new user profile as a template account to use as a new user’s profile:

1. Log on to the computer as the new user, and customize the desktop if appropriate.

2. Optionally, install and configure any applications to be shared by user accounts made from
this template.

3. Log off, and then log on as theAdministrator .

4. In theControl Panel, open theSystemControl Panel applet.

• OnVista you will need to click on theAdvanced system settings Tasklisted in the left
pane.

5. On theAdvancedtab, underUser Profiles, click Settings.

6. UnderProfiles stored on this computer, select the user you created to be the template, and
then clickCopy To.

7. To create the default user profile for the computer, type the path to the default user:

• On Windows 2000:%WinDir%\Profiles\Default ;

• On Windows XP:%SystemDrive%\Documents and Settings\Defualt ;

• On Vista:%SystemDrive%\Users\Default .

8. In theCopy To dialog box, underPermitted to use, click Change.

Condor Version 7.2.3 Manual

7.5. Grid Computing 573

9. In theSelect User or Groupdialog box, in theEnter the object name to selecttext box,
type:Everyoneand clickOK .

10. ClickOK to dismiss theCopy To dialog box.

11. ClickOK again to dismiss theUser Profilesdialog box.

12. Finally, clickOK one last time to dismiss theSystem Propertiesdialog.

If Condor has already created some dynamic accounts, you will need to remove them so that
Condor can re-create them with the new template account.

7.5 Grid Computing

What must be installed to access grid resources?

A single machine with Condor installed such that jobs may be submitted is the minimum software
necessary. If matchmaking or glidein is desired, then a single machine must not only be running
Condor such that jobs may be submitted, but also fill the role of a central manager. A Personal
Condor installation may satisfy both.

I am the administrator at Physics, and I have a 64-node cluster running Con-
dor. The administrator at Chemistry is also running Condor on her 64-node
cluster. We would like to be able to share resources. How do wedo this?

Condor’s flocking feature allows multiple Condor pools to share resources. By setting configuration
variables within each pool, jobs may be executed on either cluster. See the manual section on
flocking, section 5.2, for details.

What is glidein?

Glidein provides a way to temporarily add a resource to a local Condor pool. Glidein uses Globus
resource-management software to run jobs on the resource. Those jobs are initially portions of
Condor software, such that Condor is running on the resource, configured to be part of the local
pool. Then, Condor may execute the user’s jobs. There are several benefits to working in this way.
Standard universe jobs may be submitted to run on the resource. Condor can also dynamically
schedule jobs across the grid.

See the section on Glidein, section 5.4 of the manual for further information.

Condor Version 7.2.3 Manual

7.5. Grid Computing 574

Using my Globus gatekeeper to submit jobs to the Condor pool does not work.
What is wrong?

The Condor configuration file is in a non-standard location, and the Globus software does not know
how to locate it, when you see either of the following error messages.

first error message

% globus-job-run \
globus-gate-keeper.example.com/jobmanager-condor /bi n/date

Neither the environment variable CONDOR_CONFIG, /etc/con dor/,
nor ˜condor/ contain a condor_config file. Either set
CONDOR_CONFIG to point to a valid config file, or put a
"condor_config" file in /etc/condor or ˜condor/ Exiting.

GRAM Job failed because the job failed when the job manager
attempted to run it (error code 17)

second error message

% globus-job-run \
globus-gate-keeper.example.com/jobmanager-condor /bi n/date

ERROR: Can't find address of local schedd GRAM Job failed
because the job failed when the job manager attempted to run i t
(error code 17)

As described in section 3.2.2, Condor searches for its configuration file using the following
ordering.

1. File specified in theCONDORCONFIGenvironment variable

2. /etc/condor/condor config

3. ˜condor/condor config

4. $(GLOBUSLOCATION)/etc/condor config

Presuming the configuration file is not in a standard location, you will need to set the
CONDORCONFIGenvironment variable by hand, or set it in an initializationscript. One of the
following solutions for an initialization may be used.

1. Whereverglobus-gatekeeperis launched, replace it with a minimal shell script that sets
CONDORCONFIGand then startsglobus-gatekeeper. Something like the following should
work:

#! /bin/sh
CONDOR_CONFIG=/path/to/condor_config
export CONDOR_CONFIG
exec /path/to/globus/sbin/globus-gatekeeper "$@"

Condor Version 7.2.3 Manual

7.6. Troubleshooting 575

2. If you are startingglobus-gatekeeperusinginetd, xinetd, or a similar program, set the environ-
ment variable there. If you are usinginetd, you can use theenvprogram to set the environment.
This example does this; the example is shown on multiple lines, but it will be all on one line
in the inetdconfiguration.

globus-gatekeeper stream tcp nowait root /usr/bin/env
env CONDOR_CONFIG=/path/to/condor_config
/path/to/globus/sbin/globus-gatekeeper
-co /path/to/globus/etc/globus-gatekeeper.conf

If you’re usingxinetd, add an env setting something like the following:

service gsigatekeeper
{

env = CONDOR_CONFIG=/path/to/condor_config
cps = 1000 1
disable = no
instances = UNLIMITED
max_load = 300
nice = 10
protocol = tcp
server = /path/to/globus/sbin/globus-gatekeeper
server_args = -conf /path/to/globus/etc/globus-gatekee per.conf
socket_type = stream
user = root
wait = no

}

7.6 Troubleshooting

If I see PERMISSION DENIEDin my log files, what does that mean?

Most likely, the Condor installation has been misconfiguredand Condor’s access control security
functionality is preventing daemons and tools from communicating with each other. Other symp-
toms of this problem include Condor tools (such ascondorstatusandcondorq) not producing any
output, or commands that appear to have no effect (for example,condoroff or condoron).

The solution is to properly configure theHOSTALLOW* andHOSTDENY* settings (for host/IP
based authentication) or to configure strong authentication and setALLOW* andDENY* as ap-
propriate. Host-based authentication is described in section 3.6.9 on page 307. Information about
other forms of authentication is provided in section 3.6.1 on page 282.

What happens if the central manager crashes?

If the central manager crashes, jobs that are already running will continue to run unaffected. Queued
jobs will remain in the queue unharmed, but can not begin running until the central manager is
restarted and begins matchmaking again. Nothing special needs to be done after the central manager
is brought back on line.

Condor Version 7.2.3 Manual

7.6. Troubleshooting 576

Why did the condor schedddaemon die and restart?

Thecondorschedddaemon receives signal 25, dies, and is restarted when the history file reaches
a 2 Gbyte size limit. Until a larger history file size or the rotation of the history file is supported in
Condor, try one of these work arounds:

1. When the history file becomes large, remove it. Note that this causes a loss of the information
in the history file, but thecondorschedddaemon will not die.

2. When the history file becomes large, move it.

3. Stop keeping the history. Onlycondorhistory accesses the history file, so this particular
functionality will be gone. To stop keeping the history, place

HISTORY=

in the configuration, followed by acondorreconfigcommand to recognize the change in
currently executing daemons.

When I ssh/telnet to a machine to check particulars of how Condor is doing
something, it is always vacating or unclaimed when I know a job had been
running there!

Depending on how your policy is set up, Condor will trackany tty on the machine for the purpose
of determining if a job is to be vacated or suspended on the machine. It could be the case that after
you ssh there, Condor notices activity on the tty allocated to your connection and then vacates the
job.

What is wrong? I get no output from condor status, but the Condor daemons
are running.

One likely error messagewithin the collector log of the form

DaemonCore: PERMISSION DENIED to host <xxx.xxx.xxx.xxx> f or command 0 (UPDATE_STARTD_AD)

indicates a permissions problem. Thecondorstartd daemons do not have write permission
to the condorcollector daemon. This could be because you used domain names in your
HOSTALLOWWRITEand/orHOSTDENYWRITEconfiguration macros, but the domain name server
(DNS) is not properly configured at your site. Without the proper configuration, Condor cannot re-
solve the IP addresses of your machines into fully-qualifieddomain names (an inverse look up). If
this is the problem, then the solution takes one of two forms:

Condor Version 7.2.3 Manual

7.6. Troubleshooting 577

1. Fix the DNS so that inverse look ups (trying to get the domain name from an IP address) works
for your machines. You can either fix the DNS itself, or use theDEFAULTDOMAINNAME
setting in your Condor configuration file.

2. Use numeric IP addresses in theHOSTALLOWWRITEand/orHOSTDENYWRITEconfigura-
tion macros instead of domain names. As an example of this, assume your site has a machine
such as foo.your.domain.com, and it has two subnets, with IPaddresses 129.131.133.10, and
129.131.132.10. If the configuration macro is set as

HOSTALLOW_WRITE =* .your.domain.com

and this does not work, use

HOSTALLOW_WRITE = 192.131.133. * , 192.131.132. *

Alternatively, this permissions problem may be caused by being too restrictive in the setting
of your HOSTALLOWWRITEand/orHOSTDENYWRITEconfiguration macros. If it is, then the
solution is to change the macros, for example from

HOSTALLOW_WRITE = condor.your.domain.com

to

HOSTALLOW_WRITE =* .your.domain.com

or possibly

HOSTALLOW_WRITE = condor.your.domain.com, foo.your.dom ain.com, \
bar.your.domain.com

Another likely error messagewithin the collector log of the form

DaemonCore: PERMISSION DENIED to host <xxx.xxx.xxx.xxx> f or command 5 (QUERY_STARTD_ADS)

indicates a similar problem as above, but read permission isthe problem (as opposed to write per-
mission). Use the solutions given above.

Why does Condor leave mail processes around?

Under FreeBSD and Mac OSX operating systems, misconfiguration of of a system’s outgoing mail
causes Condor to inadvertently leave paused and zombie mailprocesses around when Condor at-
tempts to send notification e-mail. The solution to this problem is to correct the mailer configuration.

Execute the following command as the user under which Condordaemons run to determine
whether outgoing e-mail works.

Condor Version 7.2.3 Manual

7.7. Other questions 578

$ uname -a | mail -v your@emailaddress.com

If no e-mail arrives, then outgoing e-mail does not work correctly.

Note that this problem does not manifest itself on non-BSD Unix platforms, such as Linux.

Why are there spurious Condor errors on some machines running Xen ker-
nels?

Some older Xen kernels had a problem where the kernel’s jiffycounter could jump backwards in
time. This breaks an assumption made by thecondorprocd. This problem can only be worked
around by upgrading the Xen kernel to a version that fixes the issue with the jiffy counter. Running
Condor on an affected Xen kernel often results in failures ofthe following forms in Condor daemon
log files:

• error: parent process's birthday is later than our own

• ERROR: No family with the given PID is registered

7.7 Other questions

Is there a Condor mailing-list?

Yes. There are two useful mailing lists. First, we run an extremely low traffic mailing list
solely to announce new versions of Condor. Follow the instructions for Condor World at
http://www.cs.wisc.edu/condor/mail-lists/. Second, our users can be extremely knowledgeable, and
they help each other solve problems using the Condor Users mailing list. Again, follow the instruc-
tions for Condor Users at http://www.cs.wisc.edu/condor/mail-lists/.

My question isn’t in the FAQ!

If you have any questions that are not listed in this FAQ, try looking through the rest of the manual.
Try joining the Condor Users mailing list, where our users support each other in finding answers
to problems. Follow the instructions at http://www.cs.wisc.edu/condor/mail-lists/. If you still can’t
find an answer, feel free to contact us at condor-admin@cs.wisc.edu.

Note that Condor’s free e-mail support is provided on a best-effort basis, and at times we may
not be able to provide a timely response. If guaranteed support is important to you, please inquire
about our paid support services.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/mail-lists/
http://www.cs.wisc.edu/condor/mail-lists/
http://www.cs.wisc.edu/condor/mail-lists/
mailto:condor-admin@cs.wisc.edu

CHAPTER

EIGHT

Version History and Release Notes

8.1 Introduction to Condor Versions

This chapter provides descriptions of what features have been added or bugs fixed for each version
of Condor. The first section describes the Condor version numbering scheme, what the numbers
mean, and what the differentrelease seriesare. The rest of the sections each describe a specific
release series, and all the Condor versions found in that series.

8.1.1 Condor Version Number Scheme

Starting with version 6.0.1, Condor adopted a new, hopefully easy to understand version numbering
scheme. It reflects the fact that Condor is both a production system and a research project. The
numbering scheme was primarily taken from the Linux kernel’s version numbering, so if you are
familiar with that, it should seem quite natural.

There will usually be two Condor versions available at any given time, thestableversion, and
thedevelopmentversion. Gone are the days of “patch level 3”, “beta2”, or anyother random words
in the version string. All versions of Condor now have exactly three numbers, seperated by “.”

• The first number represents the major version number, and will change very infrequently.

• The thing that determines whether a version of Condor is “stable” or “development” is the
second digit. Even numbers represent stable versions, while odd numbers represent develop-
ment versions.

• The final digit represents the minor version number, which defines a particular version in a
given release series.

579

8.2. Upgrade Surprises 580

8.1.2 The Stable Release Series

People expecting the stable, production Condor system should download the stable version, denoted
with an even number in the second digit of the version string.Most people are encouraged to use this
version. We will only offer our paid support for versions of Condor from the stable release series.

On the stable series, new minor version releases will only bemade for bug fixes and to support
new platforms.No new features will be added to the stable series. People areencouraged to install
new stable versions of Condor when they appear, since they probably fix bugs you care about.
Hopefully, there won’t be many minor version releases for any given stable series.

8.1.3 The Development Release Series

Only people who are interested in the latest research, new features that haven’t been fully tested, etc,
should download the development version, denoted with an odd number in the second digit of the
version string. We will make a best effort to ensure that the development series will work, but we
make no guarantees.

On the development series, new minor version releases will probably happen frequently. People
should not feel compelled to install new minor versions unless they know they want features or bug
fixes from the newer development version.

Most sites will probably never want to install a developmentversion of Condor for any reason.
Only if you know what you are doing (and like pain), or were explicitly instructed to do so by
someone on the Condor Team, should you install a developmentversion at your site.

After the feature set of the development series is satisfactory to the Condor Team, we will put a
code freeze in place, and from that point forward, only bug fixes will be made to that development
series. When we have fully tested this version, we will release a new stable series, resetting the
minor version number, and start work on a new development release from there.

8.2 Upgrade Surprises

Occasional changes to Condor can cause unexpected errors orresults to users. Here is a list of
changes to note and be aware of.

• We believe that Condor 7.2.x and 7.0.x are wire-compatible, and can be freely mixed between
computers in a Condor pool. However, we do not regularly testthis compatibility and cannot
guarantee it. Therefore, we recommend using a single release of Condor when possible.
Please note that although Condor 7.2.x and 7.0.x may be mixedwithin a pool, they ought
not to be mixed them on a single computer. That is, acondormasterdaemon running 7.0.x
cannot run Condor daemons from version 7.2.x, or vice-versa.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 581

8.3 Stable Release Series 7.2

This is a stable release series of Condor. As usual, only bug fixes (and potentially, ports to new plat-
forms) will be provided in future 7.2.x releases. New features will be added in the 7.3.x development
series.

The details of each version are described below.

Version 7.2.3

Release Notes:

• The header files for ClassAds are now included within the release.

New Features:

• Enhanced the Debian 5.0 Condor port on the x8664 platform to include support for the stan-
dard universe.

Configuration Variable Additions and Changes:

• The new integer configuration variableSECTCP SESSIONDEADLINE specifies the num-
ber of seconds after which the client should give up its attempt to establish a security session
with a daemon that it is connecting to. The default value is 120 seconds.

• The new configuration variables SCHEDDCLUSTERINITIAL VALUE and
SCHEDDCLUSTERINCREMENTVALUE are integers that specify the cluster number
to use for the first job submission, and the stride used to increment the cluster id upon
successive submissions. See 3.3.11 and 3.3.11 for the complete definitions of these variables.

Bugs Fixed:

• Fixed a memory leak in thecondorcollectordaemon. The growth in memory over time was
approximately 10Mbytes per day per 1000 slots. This bug was introduced in Condor version
7.2.0.

• Fixed a problem that caused integrity checking of most UDP packets longer than about
40Kbytes to fail. This bug affected all previous versions ofCondor.

• By adding the new configuration variableSECTCP SESSIONDEADLINE, fixed a problem
that has existed since Condor version 7.1.2. The problem wasthat non-blocking read opera-
tions in the security handshake had no timeout, and could therefore lead to a socket remaining

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 582

allocated indefinitely, if the other side of the connection did not respond. When this prob-
lem was observed, the following message appeared in the log written by thecondorschedd
daemon:

file descriptor safety level exceeded

• Fixed a rarely observed bug in the event log reader code thatcould cause it to not detect missed
events.

• A bug in the Chirp java client has been fixed. The ChirpInputStream’sread() method was
returning negative values when encountering binary data.

• condordagmannow rejects negative node retry values.

• condordagmanno longer generates a rescue DAG if the DAG is aborted, but is considered
successful; this is when ABORT-DAG-ON returns the value 0.

• The user log event numbered 27, named"Job submitted to grid resource" , is
now written for all grid universe jobs. Previously, it was not written for pbs, lsf, nordugrid, or
unicore grid types.

• Fixed a bug where a Condor-C job with bothremote <foo> and
remote remote <foo> attributes would not have aremote <foo> attribute when
submitted to the remotecondorschedddaemon.

• Fixed a bug incondorconfigureand condor install that would leave the configuration
variable CONDORHOST unset when configuring a central manager without using the
–central-managercommand-line argument.

• Fixed a bug that could cause thecondorschedddaemon to leak memory and file descriptors
when using theEVENTLOGconfiguration variable.

• Fixed a bug in thecondorgridmanagerthat could cause it to not send a clean up signal to the
GRAM jobmanager for removed gt2 jobs.

• Fixed a bug that caused parallel jobs to not work when encryption was enabled.

• Fixed a bug in the Windows installer that caused it to fail tostart Condor.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 583

Version 7.2.2

Release Notes:

• None.

New Features:

• Added a full port of Condor to Debian 5.0 on the x86 platform.

• Added a clipped port of Condor to Debian 5.0 on the x8664 platform.

• Added the-DumpRescuecommand-line flag tocondordagmanand condorsubmitdag.
This flag is intended mainly for testing.

• Added support for the-debugoption tocondorqedit.

• The Job Router now uses a time slice timer for periodic expression evaluation, similar to the
condorschedddaemon. The evaluation interval is controlled by the configuration variable
PERIODIC EXPRINTERVAL, and defaults to 60 seconds, the same default value used by
thecondorschedddaemon.

• The Job Router now resets the source job, if a failure occurswhen updating thecondorschedd
daemon for a periodic expression that evaluated toTrue . The job’s periodic expressions
should be evaluated again some time in the future with a successful update.

Configuration Variable Additions and Changes:

• The new boolean configuration variableEVENTLOGFSYNCprovides control of the behav-
ior of Condor when writing events to the event log. Previously, the behavior was as if this
parameter were set toFalse . See 3.3.4 for the complete definition of this variable.

• The new boolean configuration variableEVENTLOGLOCKING provides control of the be-
havior of Condor when writing events to the event log. Previously, the behavior was controlled
by ENABLEUSERLOGLOCKING. See 3.3.4 for the complete definition of this variable.

• The new string configuration variableTRANSFERER specifies the path to thecon-
dor transferer program which is invoked by thecondorreplication daemon to perform
the actual transfer of the file set bySTATEFILE . This is part of the high availabil-
ity framework. Prior to Condor 7.2.2, the value ofTRANSFERERwas hard coded to
$(RELEASE DIR)/sbin/condor transferer . The use of this hard coded behavior
should be considered obsolete behavior, and will be removedin a future version of Condor.

• The PREEMPTIONREQUIREMENTSand theRANKexpression in the matchmaker can
now reference many more ClassAd attributes than justSubmittorPrio . New attributes
allow this expression to take into account resources currently in use, as well as group

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 584

usage and quota info. New attributes are:SubmitterUserResourcesInUse ,
RemoteUserResourcesInUse , RemoteGroupResourcesInUse ,
RemoteGroupQuota , SubmitterGroupResourcesInUse ,
SubmitterGroupQuota .

• AddedJOB ROUTERATTRSTO COPYconfiguration option. This is a comma separated list
of attributes that the Job Router should copy from the routedad to the source ad in addition to
internally hard coded attributes that are copied.

• Added JOB ROUTERRELEASEONHOLD. configuration option that will control whether
the Job Router will reset the source job to an untouched stateif it needs to yield the job
because the routed job went on hold. The option defaults to resetting the source job.

• The new configuration variablesPREEMPTIONREQUIREMENTSSTABLE and
PREEMPTIONRANKSTABLE identify for Condor if all attributes in the variables
PREEMPTIONREQUIREMENTSand PREEMPTIONRANK will not change within a
negotiation interval.

• The new configuration variablesOFFLINE LOG and OFFLINE EXPIRE ADSAFTER
specify the location of persistent machine ClassAds for hibernating machines, as well as the
lifetime of the persistent ClassAds.

Bugs Fixed:

• Fixed thecondorcollectordaemon such that hibernating machines never time out.

• Fixed incorrectly set ClassAd attribute values of machines entering a hibernation state. All
hibernating machines are unclaimed and idle, they have no load, the CPU is not busy, and the
keyboard and console appear as if they had been idle for a longtime.

• Fixed a bug where if any idle slot satisfied theHIBERNATEexpression, Condor would put
the machine into a sleep state irrespective of any active slots.

• Fixed a bug on Windows that made it impossible to use the defined string"S5" for hiberna-
tion.

• Fixed a bug in thecondorstarterwhere it would be running as real uid condor after job hooks
are invoked which causes issues when accessing files.

• Fixed a bug where some machines would send a final update ad tothecondorcollector, inval-
idating the persistent one that was previously sent (whenHIBERNATEevaluates toTrue).
This had the effect of dropping the machine out of the pool once the ad had grown stale.

• Fixed a bug where any two Condor daemons on Windows were ableto bind to the same port
at the same time.

• Fixed the behavior of thecondornegotiator so that when a Condor-G matchmaking ad
matches, the machine’s ad will be shuffled to the end for round-robin matching to multiple
gatekeepers with the same rank.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 585

• Resolved a bug in which the submit description file commandvm macaddr was improperly
parsed, and thus ignored, bycondorsubmitfor vm universe jobs.

• Condor’s Windows zip file distribution now includes the newC/C++ runtime libraries.

• Fixed a Windows platform bug for jobs that enable streamingI/O. The bug caused thecon-
dor starter to crash upon invocation of the job.

• Fixed a bug in which an ill-formed network packet could crash a Condor daemon. This would
not be seen in normal Condor operation, but sometimes port-scanning software could trigger
such a crash.

• Fixed a bug in whichcondorq would sometimes exit with the value zero, indicating success,
when it could not connect to acondorschedddaemon. It now exits with an error code.

• Fixed two seemingly small memory leaks in Condor’s SOAP interface. A small amount of
memory was lost per SOAP transaction. On a high traffic machine, this leak would eventually
render thecondorschedddaemon unresponsive.

• Fixed a bug in the parallel universe where periodic expressions involving theJobStatus
attribute would not function properly.

• Fixed a bug where Condor daemons could segmentation fault while trying to write a core file
to disk in the Unix ports.

• Fixed a bug in which the use of dedicated execute accounts (indicated by use of the configura-
tion variableDEDICATEDEXECUTEACCOUNTREGEXP) did not work properly in PrivSep
mode: those with the configuration variablePRIVSEP ENABLEDset toTrue .

• Fixed an erroneous log message that reported that the hook defined by
HOOKUPDATEJOB INFO had run, but would print the$(HOOKPREPAREJOB)
path. The correct hook ran, so this was only a logging error. The log message is only visible
at theD FULLDEBUGlevel.

• Fixed a bug that causedcondordagmanto crash if thedagman.out file reached a size of 2
GBytes.

• Fixed a problem affecting thecondorstarterwhen in PrivSep mode. After the user job exited,
an error was printed in thecondorstarter log file complaining that it failed tochown the
sandbox to Condor ownership. This error was not actually harmful, just noisy.

• Fixed a bug in thecondormasterthat caused it to not haveREPLICATION in its default list
for DCDAEMONLIST . The example configuration file for HAD has been updated to match,
as well.

• Fixed thecondor transfererdaemon and documentation to consistently use the value of the
configuration variableMAXTRANSFERERLIFETIME in High Availability code.

• Fixed a bug that causedcondordagmanto crash, if a splice DAG has node categories.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 586

• Changed splice-relatedcondordagmandebug messages tonot be printed at the default ver-
bosity. They are now mostly printed at debug level 4. For definitions of the debug levels, see
thecondordagmanmanual page at section 9.

• Fixed a bug that caused thecondorreplication daemon, as part of the high availability
framework, to start thecondor transfererclient incorrectly; the end result was that thecon-
dor transfererwas unable to authenticate via GSI using host-based certificates.

• Fixed a bug in which the ClassAd attributeRemoteWallClockTime could get too big after
a restart of thecondorschedddaemon, for jobs that were running at the time of the restart.

• Fixed a bug that was causing thecondorstartd to log the error message

ioctl(SIOCETHTOOL/GWOL) failed: Operation not permitted (1)

when started as a Personal Condor on Linux. The message is nowsuppressed in this case.
When the message is printed, an additional message is loggedinforming the user that this
error can be ignored, unless hibernation is being used.

• Fixed a bug that was causing thecondorstartd to sometimes publish the network adapter’s
hardware address incorrectly in its ClassAd.

• Fixed a case in whichcondorhistorycould get into an infinite loop when searching through
a corrupted history file.

• Fixed a bug in the user log reader code that could cause it to get into an inconsistent state after
detecting missed events.

• Condor version 7.2.2 and previous releases do not support communication with Con-
dor 7.3.x daemons using the new 7.3.x configuration variables CCBADDRESSor
PRIVATE NETWORKNAME. The version 7.2.2condorcollector daemon now recognizes
when it is receiving ClassAds from such daemons, and it will reject them. In prior versions,
Condor would accept the ClassAds, but attempts to use them led to unexpected behavior.

Known Bugs:

• None.

Additions and Changes to the Manual:

• A manual page forcondorpowernow appears in the manual.condorpowersends a packet
to a machine in a low power state, to cause the machine to wake from that state.

• Reorganized the user manual section that describes DAGMan.

• Added a note about the fact that environment values specified with theenvironment submit
description file command override values from the submittor’s environment, as imported with
getenv = True.

• Added new information to the section on Power Management pertaining to the handling of
hibernating machines.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 587

Version 7.2.1

Release Notes:

• This release addresses reported 7.2.0 problems with the Windows distribution.

New Features:

• Condor now has a clipped port to i386 Debian 5.0 (Lenny).

• Added standard universe support forgfortran.

• Added support for standard output and standard error to be greater than 2 Gigabytes.

Configuration Variable Additions and Changes:

• The configuration variableJAVA MAXHEAPARGUMENT now defaults to the value
-Xmx1024m. The installation process of Condor resets this value toUNDEFINEDin the
local configuration file, if the detected JVM is not from Sun Microsystems.

• A new feature has been added to thecondormasterthat makes it possible to append to the
DCDAEMONLIST configuration variable, instead of overwriting it. To take advantage of
this, place the plus character (’+’) as the first character in theDCDAEMONLIST definition.
For example:

DAEMON_LIST = NEW_DAEMON
DC_DAEMON_LIST = +NEW_DAEMON

• The new configuration variableDAGMANCOPYTO SPOOL controls whether thecon-
dor dagmanbinary gets copied to the spool directory when a DAG is submitted. See 3.3.25
for details.

• Added-versionand-help command line options tocondorsubmitdag.

Bugs Fixed:

• Fixed a bug in thecondorcollector which could cause it to hang indefinitely while reading
network input in rare conditions.

• Fixed a bug incondorchirp for Windows which was causing it to crash on invocation.

• Fixed a bug in the Windowscondormail program, which was causing it to become unrespon-
sive when run. If left running, the application also increased its memory consumption.

• Fixed a bug that could cause thecondorscheddto never evaluate periodic expressions.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 588

• Fixed a bug on Unix platforms wherecondorconfigurewould provide incorrect defaults for
theJAVA MAXHEAPARGUMENTattribute in the installed configuration files. The new cur-
rent default for Sun Java JVMs is-Xmx1024m.

• Fixed a bug on Unix platforms wherecondorconfigurewould imply that using the Unix user
root or UID 0 for the–owneroption is a good thing. It is not, and would then complain that
it could not find userroot in the password file.

• Fixed a bug on Unix platforms wherecondorconfigurewould emit errors about not being
able to executeldd when installing Condor on the Mac OS X 10.5 platform.condorconfigure
now correctly detects shared library requirements when installing the Condor binaries on the
Mac OS X 10.5 platform.

• Fixed a bug where execute-side daemons started before thecondorcreddwould fail to match
with Windows jobs withrun as owner set. This condition persisted until the execute-side
daemons were either restarted or reconfigured.

• Fixed a problem affecting the Job Router and Condor-C. Whenjobs spool input files, they
enter a temporary hold state, which could trigger actions bya naive periodic remove or release
expression. Periodic expressions are no longer evaluated when in this temporary hold state,
which has the hold reason"Spooling input data files" .

• The example init scriptcondor.boot.genericerroneously claimed that thecondormaster
would begin sending SIGKILL to child processes after 20 seconds if SIGQUIT (the fast
shutdown) failed. Thecondormasterwill actually wait $(SHUTDOWNFAST TIMEOUT)
seconds, a value that currently defaults to 300 seconds.

• Environment variable names are now properly treated as case-insensitive on Windows. The
most common symptom of this bug was the inability to specify acustomPATHenvironment
variable for a job from its submit description file.

• Changedcondorsubmit-debugto issue a warning when ignoring environment variables. This
occurs withgetenv = Trueset in a submit description file.

• Fixed a long-standing memory leak in SOAP interface. This caused the leak of a few hundred
bytes of memory for each connection. This could eventually have caused thecondorschedd
daemon to crash.

• Fixed Job Router hooks so that their output is properly propagated where appropriate.

• Implemented a fix for thecondorstartd that prevents it from crashing if the user specified the
configuration variableNUMSLOTSTYPE N, without also specifyingSLOT TYPE N.

• The sample configuration files now correctly set the defaultuniverse to vanilla. This default
has been true since 7.2.0, but was not reflected in the sample configuration files.

• Fixed a bug that incorrectly set the value of the job ClassAdattributeRequestMemory to
be 1024 times its correct size due to a mismatch in units; the attributeRequestMemory is
given in Mbytes, while the attributeImageSize is given in Kbytes.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 589

• Fixed a memory leak incondordagmanthat leaked a small amount of memory for each job
submitted.

• Fixed a bug that was causing the network mask to be advertised as a Condor sinful string,
rather than a dotted-quad.

• Fixed a handle leak in thecondorprocdon Windows.

Known Bugs:

• None.

Additions and Changes to the Manual:

• Added a FAQ entry for Windows describing how machines with miss-configured performance
counters may cause thecondorprocd to crash.

• Added a manual page for the commandcondorrouter history.

Version 7.2.0

Release Notes:

• A bug in some older Xen kernels can result in Condor errors due to a broken assumption in
thecondorprocddaemon. See the FAQ entry at section 7.6 for details.

• A problem has been discovered when using snapshot disks with vm universe VMware jobs,
if the path that thecondorvm-gahpuses to refer to the virtual machine’s VMX file contains a
symbolic link. See the FAQ entry at section 7.3 for details.

• The name of the Amazon EC2 GAHP binary has changed fromamazon-gahptoamazongahp.
This makes it consistent with the naming of other Condor binaries.

New Features:

• The defaultuniversefor jobs is nowvanilla, instead ofstandard. The default can be changed
using the configuration variableDEFAULTUNIVERSE.

• VMware vm universe jobs now have any BIOS settings saved in annvram file in the
vmware dir given in the job’s submit file transferred to the execute machine, so that they
apply to the job’s execution.

• Daemons that become unresponsive are now killed using the SIGABRT signal, which causes
a core file to be dropped. Setting the configuration variableNOTRESPONDINGWANTCORE
to False will revert to the previous behavior that used the SIGKILL signal.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 590

• Thecondor job router and thecondorq command with the-better-analyzeoption now sup-
port more ClassAd functions than they previously did. They now support all ClassAd func-
tions, except for those with names beginning with the stringstringList .

• condorstatusgiven the options-submitters -xml no longer emits a single blank line when
there are no submitters, instead it prints valid XML output with an empty body.

Configuration Variable Additions and Changes:

• The HAD configuration variableNEGOTIATORSTATEFILE has changed its name to
STATEFILE .

Bugs Fixed:

• Security Item: A flaw was found and fixed that could allow an unauthenticateduser to cause
Condor daemons to shut down, and could allow running jobs to be removed from the queue.

• Fixed a bug that causedcondordagmanto stay in the Condor queue, ifcondordagmanwas
accidentally submitted with an empty DAG input file.

• condorsubmitdagnow generates a.condor.sub file with the submit description file com-
mandcopy to spoolset toTrue , to ease version upgrades while large DAGs are running.

• Fixed a problem in thecondorstartd when usingSTARTDSLOT EXPRSfor attributes that
are sometimes present and sometimes absent from the machineClassAd. This is most typical
of attributes that enter the machine ClassAd from the job, via STARTDJOB EXPRS. When
the attribute went away from slot X (for example, because thejob on slot X finished), the
correspondingSlotX <AttributeName> attribute was not reliably removed from all of
the other slots.

• Removed some redundant information from thecondorstartd advertisements to thecon-
dor collector, from within the private ClassAd that is not user-visible. This fix reduces
UDP traffic and memory usage generated by thecondorstartd by about 20% in thecon-
dor collectorandcondornegotiatordaemons.

• Fixed thecondormasterdaemon to correctly preserve all command-line arguments when
restarting itself. In some cases, not preservingargv[0] confused external utilities that mon-
itor thecondormasterprocess by looking at the output ofpsor similar programs. Also, not
preserving-pid and-runfor could cause unexpected behavior.

• Fixed a bug that exhibited itself when the configuration variable
NEGOTIATORCONSIDERPREEMPTIONwas set to False , in which jobs would
not be matched to slots in the backfill state. Corrected, slots doing backfill are included in the
matchmaking process.

Condor Version 7.2.3 Manual

8.3. Stable Release Series 7.2 591

• The condor job router did not work while managing jobs from multiple users when read
access to thecondorscheddrequired authentication. Thecondor job routerwas also not able
to use authentication methods other than FS. Now it can use any authentication method, as
long as the resulting identity is listed in the configurationvariableQUEUESUPERUSERSor
thecondor job routerandcondorscheddare running as a Personal Condor in non-root mode.

• Fixed a bug in thecondorschedddaemon that could cause it to write an incorrect Unique ID
to the event log’s header.

• Fixed a bug in the user log reader API that could cause it to incorrectly return a
ULOG NO EVENT in rare cases.

• Fixed a bug in the user log reader API that could cause it to crash if the application attempted
to re-initialize the ReadUserLog object. The code now detects this condition, and returns
an error when the application attempts to re-initialization an already initialized ReadUserLog
object.

• Fixed a bug that limited the size ofstdin , stdout , andstderr files in the vanilla universe
to 2GBytes.

• Fixed a bug that could cause thecondorstarter to EXCEPT upon completion or eviction of a
vm universe job. The error message that appeared in theStarterLog file was

Write_Pipe: invalid pipe end

• When a held job is removed, the values of the attributesHoldReason , HoldReasonCode
andHoldReasonSubCode are moved toLastHoldReason , LastHoldReasonCode
andLastHoldReasonSubCode . Before, a hold reason could be lost if a removed job was
subsequently held.

• The executable attribute for amazon grid universe jobs no longer needs to be a valid file path.

• Improved error reporting when a Xen or VMware command failsin thevm universe.

• Forvm universe jobs, virtual floppy disks are no longer disabled.

• Fixed a bug introduced in Condor 7.1.4 that caused Condor toignore the virtual machine
status reported by Xen in thevm universe.

• Fixed a 20-second delay in the start up of thecondorc-gahpand thecondorvm-gahp.

• Fixed a bug which caused the net mask to be published into themachine ClassAd incorrectly.

• Fixed a bug introduced in Condor 7.1.4 which could cause anyCondor daemon to crash if the
level of debugging outputD ALL is enabled when acondorreconfigcommand is issued.

• Fixed a bug introduced in Condor 7.1.4 which caused standard universe jobs to fail to start
up, if security authentication, but not encryption was enabled between the submit side and the
execute side.

• Fixed a bug with streamingstdin , stdout , andstderr when usingglexec.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 592

Known Bugs:

• None.

Additions and Changes to the Manual:

• Initial documentation for dynamic provisioning is available in section 3.12.7.

• Documentation for Kerberos authentication (see section 3.6.3) and associated configuration
variables has been updated.

8.4 Development Release Series 7.1

This is the development release series of Condor. The details of each version are described below.

Version 7.1.4

Release Notes:

• The owner of the log file for thecondorvm-gahphas changed to thecondor user. In Condor
7.1.2 and previous versions, it was owned by the user that thevirtual machine is started under.
Therefore, the owner of and permissions on an existing log file are likely to be incorrect. To
correct the problem, an administrator may modify file permissions such that thecondor user
may read and write the log file. Alternatively, an administrator may delete the file, and Condor
will create a new file with the expected owner and permissions. In addition, the definition for
VMGAHPLOG in thecondor config.generic file has changed for Condor 7.1.3.

• The vm universe no longer supports the use of thexm command for running Xen virtual
machines. Thevirsh tool should be used instead.

• Condor no longer supports the standard universe feature inits ports to Solaris. We may resur-
rect this feature in the future if demand for it on this port grows again to sufficient levels.

New Features:

• Local entries in the configuration file may now be specified bypre-pending a local name and
a period to the normal name. Local settings take precedence over the other settings. The local
name can be specified on the command line to all daemons via thenew-local-namecommand
line option.

See section 3.3.1 for more details on how the local name will be used in the configuration, and
section 3.9.2 for more details on the command line parameters.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 593

• Dynamic Startd Provisioning: New configuration options allow for slots to be broken into
job-sized pieces. While this feature is still under ongoingdevelopment, we felt that what we
had so far, although not yet fulfilling our complete vision, is useful enough in its present form
to bring value to some installations.

• condorsubmitdag is now automatically run recursively on nested DAGs (unlessthe new
-no recurseoption is specified). See?? for details.

• Added the newSUBDAG EXTERNALkeyword (for specifying nested DAGs) tocon-
dor dagman. See?? for details.

• It is now possible to have multiple rotations of the “event log” file, such as “EventLog”,
“EventLog.1”, “EventLog.2”, ...

• The VM universe can now run VMware virtual machines on machines using privilege separa-
tion without requiring thecondorvm-gahpbinary to be setuid root. Running thecondorvm-
gahpas setuid root is no longer supported for VMware or Xen.

• Condor now supports the ability for thecondormasterto run a program as it shuts down.
This can be particularly useful for doing a graceful shutdown, followed by, a reboot. This is
accomplished through the newMASTERSHUTDOWN<Name> configuration variable. The
configuration variableMASTERSHUTDOWN<Name> is defined on page 175), and the man-
ual page forcondorset shutdownis on page 781.

• Thecondor leasemanageris a new daemon. It provides a mechanism for managing leases to
resources described by Condor’s ClassAd mechanism. These resources and leases are man-
aged to be persistent.

• VM universe now works with privilege separation (PrivSep)for VMware jobs. Xen is still not
supported in PrivSep mode.

• Added theDIR directive for theSPLICE keyword in the DAGMan language. Please read
section 2.10.6 on page 80 for more information.

• For gt4 type grid jobs (i.e. WS GRAM), include a request to retry failed attempts at file
clean-up in the RSL job description.

• Improved the scalability of some algorithms used by thecondorschedd and con-
dor negotiatorwhen dealing with large numbers of startds.

• Added the ability for thecondormaster (actually, any DaemonCore process with chil-
dren) to kill child processes that have quit responding SIGABRT instead of SIGKILL.
This is for debugging purposes on UNIX systems, and is controlled by the new
NOTRESPONDINGWANTCOREconfiguration parameter. If the child process is configured
with CREATECOREFILES enabled, the child process will then generate a core dump. This
feature is currently implemented only on UNIX systems.

See NOTRESPONDINGWANTCOREon page 164,NOTRESPONDINGTIMEOUT on
page164, andCREATECOREFILES on page 156 for more details.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 594

• Condor can now be configured to keep a backup of the job queue log on a local file system
in casecondorscheddoperations involving writes, flushes, or syncs to the job queue log fail.
This is most likely to happen when the job queue log is stored on a network file system like
NFS. Such a backup enables an administrator to see that a job failed to submit, but does not
perform any automatic recovery. See below for the these configuration parameters.

• Added preliminary support for “Green Computing”. This is supported only on Linux and
Windows. See section 3.15 on page 426 on “Power Management” for more details.

Configuration Variable Additions and Changes:

• Local versions of configuration parameters can now be specified via the use of the “-local-
name” command line parameters (see the above “New Features”entry).

• A new configuration parameterEVENTLOGMAXROTATIONShas been added to allow mul-
tiple rotations of the event log file. See 161 for details.

• A new configuration parameterEVENTLOGROTATIONLOCKhas been added to allow al-
low configuration of an alternate file for Condor to use while rotating event log files. See 161
for details.

• The configuration parameter MAXEVENTLOG has been renamed to
EVENTLOGMAXSIZE . For backward compatibility, if EVENTLOGMAXSIZE is
not defined, Condor will also tryMAXEVENTLOG. See 161 for details.

• The condorvm-gahpno longer requires its own configuration file. It now uses the normal
Condor configuration file. Parameters that used to reside in thecondorvm-gahp’s file should
now be placed in the Condor configuration file.

• The following VM universe-related configuration parameters have been removed:

– VMGAHPCONFIG

– VMMAXMEMORY

– XENCONTROLLER

– XENVIF PARAMETER

– XENNAT VIF PARAMETER

– XENBRIDGEVIF PARAMETER

– XENIMAGEIO TYPE

VMWARELOCALSETTINGS FILE andXENLOCALSETTINGS FILE have been added.
They allow a machine administrator to add settings to the virtual machine configuration files
written by Condor for VMware and Xen. See 234 and 235 for details.

• The configuration parameter familyMASTERSHUTDOWN<Name> can be used in conjunc-
tion with condorset shutdownto cause thecondormasterto execute a specified program as
it shuts down. See 175 andcondorset shutdownmanual page for more details.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 595

• The configuration parameterNOTRESPONDINGWANTCOREcontrols the type of signal
sent to child processes that DaemonCore has determined are no longer responding. See the
above discussion of the addition of this feature andNOTRESPONDINGWANTCOREon page
164 for details.

• The configuration parameterLOCALQUEUEBACKUPDIR should be set to the pathname
of a directory that is writable by the Condor user and is located on a non-network file system.
This is part of the “Job Queue Backup” feature, above.

• The configuration parameterLOCALXACTBACKUPFILTER controls whether or not the
condorscheddwill attempt to keep backups of transactions that were not written the job
queue log. If it is set to toFAILED , thecondorscheddwill attempt to keep a backup of the
transaction in the local queue backup directory, defined byLOCALQUEUEBACKUPDIR,
only if operations fail on the job queue log. If it is set to none NONE, no backups should be
performed even in the event of failure. If it is set toALL, then at all transactions should be
backed up. TheALL value will create quite a large number of files and slow thecondorschedd
substantially; it is only likely to be useful for users who are developing or debugging Condor.
This is part of the Job Queue Backup feature.

Bugs Fixed:

• In some rare cases, thecondorstartd failed to fully preempt jobs. The job itself was killed,
but thecondorstarterprocess watching over it would not be killed. The slot would then stay
in the Preempting state indefinitely.

• condorq performed poorly when querying a remote pool, using-pool. It was using an older
latency-bound protocol even when the remotecondorscheddwas new enough to use the
improved protocol that first appeared in version 6.9.3.

• When usingUSEVISIBLE DESKTOP the user’s (slot or owner) access-control entry re-
moved from the Desktop’s access-control list. This fixes theprevious behavior were users
were added and never removed, resulting in an overflow in access-control list, which can only
contain a fixed number of access-control entries.

• Fixed a bug where if log line caching was enabled incondordagmanandcondordagman
failed during the recovery process, the cache would stay active. Now the cache is disabled in
all cases at the end of recovery.

• Fixed a couple of bugs relevant only to theGLEXECSTARTER mode of operation. One
bug would result in theSPOOLdirectory being deleted if local universe jobs (which are not
supported inGLEXECSTARTERmode) were submitted. The other bug prevented COD jobs
from running. Neither of these are problems for the newer recommendedGLEXECJOB
mode.

• Fixed a bug that could cause thecondorprocdto crash, depending on the timing of its process
snapshots.

• Fixed a bug that caused job status notifications from WS GRAM4.2 servers to be lost.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 596

• Fixed a file descriptor leak in thecondorvm-gahp.

• Jobs now go on hold with a clear hold reason if a path to a directory is put in the transfer files
list. Previously, the attempt to run the job would simply fail and return to the idle state.

• If MAXEVENTLOGset to 0, then let event log grow without bounds. Previously this behavior
was broken, and settingMAXEVENTLOG to 0 resulted in the log rotating with every event.
Now it works as documented.

Known Bugs:

• When fixing theUSEVISIBLE DESKTOPbug, a new one was inadvertently introduced.
The bug manifests irrespective of the definition ofUSEVISIBLE DESKTOP: the new code
attempts to remove the current user’s access-control entryfrom the Desktop’s access-control
list even when it was not added by Condor. This has the effect of inhibiting the creation of
new process for the logged on user.

Additions and Changes to the Manual:

• The extra space character injected into the names of Condordaemons and programs has been
removed.

• Previously undocumented Condor Perl module subroutines have been documented.

Version 7.1.3

Release Notes:

• This developer release includes the majority of the bug fixes released in stable version 7.0.5,
including the security patches documented in that release.See section 8.5 below.

• Updated the version of Globus Toolkit: The Condor binariesare now linked against Globus
v4.2.0.

• Updated the version of OpenSSL: The Condor binaries are nowlinked against OpenSSL
0.9.8h.

• Updated the version of GCB: The Condor binaries are now linked against GCB 1.5.6.

• Changes to theALLOW* andDENY* configuration variables no longer require the use of the
-full option tocondorreconfigupon reconfiguration.

New Features:

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 597

• Added a new mechanism termedConcurrency Limits. This mechanism allows the Condor
pool administrator to define an arbitrary number of consumable resources in the configuration
file of the matchmaker. The availability of these consumableresources will be taken into
account during the matchmaking process. Individual jobs can specify how many of each type
of consumable resource is required. Typical applications of Concurrency Limits could include
management of software licenses, database connections, orany other consumable resource
that is external to Condor. NOTE: Documentation still beingwritten on this feature. See
section 3.12.11) for documentation.

• Added support for Condor to manage serial high throughput computing workloads on the IBM
Blue Gene supercomputer. The IBM Blue Gene/P is now a supported platform.

• Extended Job Hooks (see section 4.4) to allow for alternatetransformation and/or monitoring
engines for the Job Router (see section 5.6. Routing is stillcontrolled by the Job Router, but if
Job Router Hooks are configured, then external programs or scripts can be used to transform
and monitor the job instead of Condor’s internal engine.

• Added support for the new protocol for WS GRAM introduced inGlobus 4.2. For each
WS GRAM resource, Condor automatically determines whetherit is speaking the 4.0 or 4.2
version of the protocol and responds appropriately. When setting grid resourcein the submit
file, usegt4 for both WS GRAM 4.0 and 4.2.

• Added the ability for Windows slot users to load and run their jobs within the context of their
profile. This includes theMy Documents directory hierarchy, its monikers, and the user’s
registry hive. To use the profile, add aload profile command to the submit description file. A
current restriction prevents the use ofload profile in conjunction withrun as owner. Please
refer to section 6.2.5 for further details.

• TheStarterLog file for local universe jobs now displays the job id in each line in the file,
so that interleaved messages relevant to different jobs running concurrently can be identified.

• Added the-AllowVersionMismatch command line option tocondorsubmitdag andcon-
dor dagmanto (if absolutely necessary) allow a version mismatch betweencondordagman
and the.condor.sub file used to submit it. This permits a Condor version mismatchbe-
tweencondorsubmitdagandcondordagman).

• Streamlined the protocol between submit and execute machines; in some instances, fewer
messages will be exchanged over the network.

• When network requests are denied because of the authorization policy, Condor now logs an
explanation in the daemon log that denied the request. This helps the administrator understand
why the policy denied the request, in case it is not obvious. Asimilar explanation may be
logged for requests that are accepted. This is only generated if D SECURITY is added to the
daemon’s debug options.

Configuration Variable Additions and Changes:

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 598

• Added the new configuration variableMAXPENDINGSTARTDCONTACTS. This limits the
number of simultaneous connection attempts by thecondorscheddwhen it is requesting
claims from thecondorstartds. The intention is to protect thecondorscheddfrom being
overloaded by authentication operations. The default is 0,which indicates no limit.

• Added the new configuration variableSECINVALIDATE SESSIONSVIA TCP, which de-
faults toTrue . Previously, attempts to use an invalid security session resulted in a UDP rather
than a TCP response. In networks with different firewall rules for UDP and TCP, the filter-
ing of the session invalidation messages was easily overlooked, since it would not typically
happen during the initial vetting of the pool. If these packets were filtered out, then at the
subsequentcondorcollectorrestart, no daemons would be able to advertise themselves tothe
pool until their existing security sessions expired. The old behavior can be achieved by setting
this configuration parameter toFalse .

• Added the new configuration variableSECENABLEMATCHPASSWORDAUTHENTICATION
. This is a special authentication mechanism designed to minimize overhead in thecon-
dor scheddwhen communicating with the execute machine. Essentially,matchmaking results
in a secret being shared between thecondorscheddandcondorstartd, and this is used to
establish a strong security session between the execute andsubmit daemons without going
through the usual security negotiation protocol. This is especially important when operating
at large scale over high latency networks, as in a glidein pool with one submit machine and
thousands of execute machines on a network with 0.1 second round trip times. See 231 for
details.

• Added configuration entryGLEXECJOB which replaces the functionality previously encap-
sulated inGLEXECSTARTER. UsingGLEXECJOBenables privilege separation in Condor
via glexec in a manner much more consistent with how Condor’sown privilege separation
mechanism works. Specifically, the user identity switchingwill now occur between thecon-
dor starterand the actual user job.

• Added configuration parameterAMAZONGAHPWORKERMAXNUM to specify a ceiling on
the number of threads spawned on the submit machine to support jobs running on Amazon
EC2. Defaults to 5.

Bugs Fixed:

• Includes bug fixes from Condor v7.0.5, including the security fixes. See section 8.5.

• Fixed a bug in thecondorscheddthat would cause it to except if a crontab entry was incor-
rectly formatted.

• Fixed a bug in the CondorView server (collector) that caused it to except (crash) when it
received a machine ClassAd without a valid state. It now logsthis under levelD ALWAYSand
ignores the ClassAd.

• Fixed a bug from Condor version 7.1.2 that would cause Condor daemons to start consuming
a lot of cpu time after rare types of communication failures during security negotiation.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 599

• Fixed a bug from Condor version 7.1.2 that in rare cases could cause Condor to fail to recog-
nize when a call to exec() fails on Unix platforms.

• Fixed problems with configuration parameterJOB INHERITS STARTERENVIRONMENT
when using PrivSep.

• Improved the deletion of Amazon EC2 jobs when the server is unreachable.

• Fixed problems with Condor parallel universe jobs when recovering from a reboot of the
submit machine.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 7.1.2

Release Notes:

• None.

New Features:

• AddedformatTime() , a built-in ClassAd function to create a formatted representation of
the time. A detailed description of this function is available in section 4.1.1, which documents
all of the available built-in ClassAd functions.

• Improved Condor’s authentication handshake, so that daemons such as thecondorschedd,
which initiate connections to other daemons, spend less time waiting for responses. Au-
thentication over high latency networks is still rather expensive in Condor, so it still may be
necessary to scale up by running morecondorscheddandcondorcollectordaemons than one
would need for equivalent workloads on a low latency network. Additional improvements in
this area are planned.

Configuration Variable Additions and Changes:

• None.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 600

Bugs Fixed:

• Fixed a memory leak, introduced in Condor version 7.1.1, which caused thecondorstartd
daemon to grow without bound.

• Fixed a bug incondordagmanthat caused the user log file of the first node job in a DAG to
get created with 0600 permissions, regardless of the user’sumask. Note that this fix involved
removing the-condorlog and -storklog command-line arguments fromcondorsubmitdag
andcondordagman.

• Fixed a problem from Condor version 7.1.1 that in some casescaused thecondorstarter to
stop sending updates about the job status or to send updates too frequently.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 7.1.1

Release Notes:

• None.

New Features:

• Added a new feature tocondordagmanwhich caches the log lines emitted to the dag-
man.out file when in recovery mode and emits the cache as one call to the logging sub-
system when the cache size limit is reached. Under NFS conditions, this prevents an open
and close per line of the log and greatly improves performance. This feature is off by de-
fault and is controlled byDAGMANDEBUGCACHEENABLE, which takes a boolean, and
DAGMANDEBUGCACHESIZE , which is an integer in bytes of how big the cache should be
before flushing.

• Included some Windows example jobs (submit files and binaries).

• Added a new feature to the DAGMan language called splicing.Please read section 2.10.6 on
page 80.

• The Prepare Job Hook can now modify the job ClassAd before execution. For a complete
description of the new hook system, read section 4.4 on page 460.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 601

• Condor now coerces the result of $$([]) expressions withinsubmit description files to strings.
This means that submit files can do simple arithmetic. For example, you can describe a
command-line argument as:

arguments = $$([$(PROCESS)+100])

andcondorsubmitwill expand the argument to be the expected value.

• Condor daemons now periodically update thectime of their log files, instead of themtime ,
as they previously did. At start up, the daemons use thisctime to determine how long they
may have been down.

• Added the capability to thecondorstartd to allow it to power down machines based a user
specified policy. See section 3.15 on 426 on Power Managementfor more details.

• condoroff now supports the-peacefuloption for thecondorschedd, in addition to the ex-
isting support that already existed for thecondorstartd. When peacefully shut down, the
condorscheddstops starting new jobs and waits for all running jobs to finish before exiting.
The default shut down behavior is still-graceful, which checkpoints and stops all running
standard universe jobs and gracefully disconnects from other types of jobs in the hopes of
later restarting and reconnecting to them without any disturbance to the running job.

• Thecondor job router now supports deletion of attributes when transforming job ClassAds
from vanilla to grid universe. It also behaves more deterministically when choosing from
multiple possible routes. Rather than picking one at random, it uses a round-robin selection.

• condordagmannow checks that its submit file was generated by acondorsubmitdagwith
the same version ascondordagmanitself. It is a fatal error for the versions to differ.

Configuration Variable Additions and Changes:

• AddedDAGMANDEBUGCACHEENABLEandDAGMANDEBUGCACHESIZE which allow
DAGMan to maintain a cache of log lines and write out the cacheas one open/write/close
sequence.DAGMANDEBUGCACHEENABLEis a boolean which turns on the ability for
caching and defaults toFalse . DAGMANDEBUGCACHESIZE is a positive integer and
represents the size of the cache in bytes and defaults to 5 Megabytes.

• The existingBIND ALL INTERFACES configuration variable now defaults toTrue .

• Added theHIBERNATE expression, which, when evaluated in the context of each slot, de-
termines if a machine should enter a low power state. See page193 for more information.

• Added theHIBERNATECHECKINTERVAL configuration variable, which, if set to a non-
zero value, enables thecondorstartd to place the machine in a low power state based on the
evaluation of theHIBERNATEexpression. See page 193 for more information.

• The existingVALID SPOOLFILES configuration variable now automatically includes
SCHEDD.lock , the lock file used for high availabilitycondorscheddfail over. Other high
availability lock files are not currently included.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 602

• Added theSECDEFAULTAUTHENTICATIONTIMEOUT configuration variable, where
the definitionDEFAULTmay be replaced by the usual list of contexts for security settings
(for example,CLIENT, READ, andWRITE). This specifies the number of seconds that Con-
dor should allow for the authentication of network connections to complete. Previously, GSI
authentication was hard-coded to allow 5 minutes for authentication. Now it uses the same
default as all other methods: 20 seconds.

• Added theSTARTERUPDATEINTERVAL TIMESLICE configuration variable, which
specifies the highest fraction of time that thecondorstarter should spend collecting moni-
toring information about the job, such as disk usage. It defaults to 0.1. If checking the disk
usage of the job takes a long time, thecondorstarterwill monitor less frequently than speci-
fied bySTARTERUPDATEINTERVAL.

Bugs Fixed:

• Fixed a bug introduced in 7.1.0 affecting configurations inwhich authentication of all com-
munication between thecondorshadowandcondorscheddis required. This caused failure
in the final update after the job had finished running. The result was that the job would return
to the idle state to run again.

• Fixed a bug in Java universe where each slot would be told to potentially use all the memory
on the machine. Now, each JVM receives the physical memory divided by the number of
slots.

• On Windows, slot users would sometimes show up in the Windows Welcome Screen. This
has now been resolved. The slot users need to be manually removed for this to take effect and
the machine may need to be rebooted for the setting to be honored.

• Fixed a bug in the ClassAdstring() function. The function now properly converts integers
and floats to their string representation.

• The Windows Installer is now completely internationalized: it will no longer fail to install
because of a missing ”Users” group; instead, it will use the regionally appropriate group.

• Interoperability with Samba (as a PDC) has been improved. Condor uses a fast form of login
during credential validation. Unfortunately, this login procedure fails under Samba, even if
the credentials are valid. The new behavior is to attempt thefast login, and on failure, fall
back to the slower form.

• Windows slot users no longer have the Batch Privilege added, nor does Condor first attempt
a Batch login for slot users. This was causing permission problems on hardened versions of
Windows, such as Windows Sever 2003, in that not interactiveusers lacked the permission to
run batch files (via thecmd.exetool). This affected any user submitting jobs that used batch
files as the executable.

• If the IWD is not defined in a job classified ad that was either fetched by thecondorstartdvia
job hooks, or pushed to thecondorstartd via COD, thecondorstarter no longer treats this
as a fatal error, and instead uses the temporary job execution sandbox as the initial working
directory.

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 603

• Made some fixes to the new-style rescue DAG feature:

– condorsubmitdagno longer needs the-force flag if a rescue DAG will be run, even if
the files generated bycondorsubmitdagalready exist.

– condorsubmitdagwith the-forceflag now renames any existing new-style rescue DAG
files, and therefore runs the original DAG.

• Fixed a problem that caused new-style rescue DAGs to fail when condorsubmitdag is in-
voked with the-usedagdirflag.

Known Bugs:

• None.

Additions and Changes to the Manual:

• The manual now contains Windows installation instructions for controlling the configuration
for thevm universe.

Version 7.1.0

Release Notes:

• Upgrading to 7.1.0 from previous versions of Condor will make existing Standard Universe
jobs that have already run fail to match to machines running Condor 7.1.0 unless the job
previously ran on a machine using the Red Hat 5.0 release of Condor. This is because the
value of theCheckpointPlatform attribute of the machine ClassAd has changed in order
to better represent checkpoint compatibility. If this affects you, you can usecondorqedit to
change theLastCheckpointPlatform attribute of existing Standard Universe jobs to
match the newCheckpointPlatform advertised by the machine ClassAd where the job
last ran.

• Condor no longer supports root configuration files (for example,
/etc/condor/condor config.root , condor/condor config.root , and the
file defined by the configuration variableLOCALROOTCONFIGFILE). This feature was
intended to give limited powers to a Unix administrator to configure some aspects of Condor
without gaining root powers. However, given the flexibilityof the configuration system, we
decided that this was not practical. As long as Condor is started up as root, it should be
clearly understood that whoever has the ability to edit the Condor configuration files can
effectively run arbitrary programs as root.

New Features:

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 604

• In the past, Condor has always sent work to the execute machines by pushing jobs to the
condorstartd, either from thecondorscheddor via condorcod. As of version 7.1.0, The
condorstartd now has the ability to pull work by fetching jobs via a system of plug-ins or
hooks. Additional hooks are invoked by thecondorstarter to help manage work (especially
for fetched jobs, but thecondorstarter hooks can be defined and invoked for other kinds
of jobs as well). For a complete description of the new hook system, read section 4.4 on
page 460.

• Added the capability to insert commands into the.condor.sub file produced bycon-
dor submitdag with the -append and -insert sub file command-line arguments tocon-
dor submitdag and theDAGMANINSERT SUBFILE configuration variable. See the
condorsubmitdag manual page on page 825 and the configuration variable definition on
page 228 for more information.

• For platforms running a Windows operating system, theArch machine ClassAd attribute
more correctly reflects the architectures supported. Instead of values"INTEL" and
"UNDEFINED", the values will now be:"INTEL" for x86, "IA64" for Intel Itanium,
and "X86 64" for both AMD and Intel 64-bit processors. These values are listed in the
unnumbered subsection labeled Machine ClassAd Attributeson page 886.

• The Windows MSI installer now supports extendedvm universe options. These new options
include: the ability to set the networking type, how much memory thevm universe can use on
a host, and the ability to set the version ofVMwareinstalled on the host.

• Thecondorstatusandcondorq command line tools now have a version option which prints
the version of those specific tools. This can be useful when multiple versions of Condor are
installed on the same machine.

• The configuration variableCONDORVIEW HOSTmay now contain a port number and may (if
desired) refer to acondorcollectordaemon running on the same host as thecondorcollector
that is forwarding ads. It is also now possible to use the forwarded ads for matchmaking
purposes. For example, several collectors could forward ads to a single aggregating collector
which acondornegotiatorthen uses as its source of information for matchmaking.

• condordagmandeals with rescue DAGs in a more sophisticated way; this is especially helpful
for nested DAGs. See the rescue DAG subsection?? of thecondordagmanmanual section
for more information.

• Additional logging details for unusual error cases to helpidentify problems.

• A new (optional) daemon namedcondor job router has been added, so far only on Unix. It
may be configured to transform vanilla universe jobs into grid universe jobs, for example to
send excess jobs to other sites via Condor-C or Condor-G. Fordetails, see page 521.

• Previously, condorq -better-analyzewas supported on most but not all versions of Linux. It
is now supported on all Unix platforms but not yet on Windows.

Configuration Variable Additions and Changes:

Condor Version 7.2.3 Manual

8.4. Development Release Series 7.1 605

• Added new configuration variablesALLOWCLIENT andDENYCLIENT as client-side au-
thorization controls. When using a mutual authentication method (such as GSI, SSL, or
Kerberos), these variables allow the specification of whichauthenticated servers the Con-
dor tools and daemons should trust when they form a connection to the server. Because of the
addition of these variables, the GSI-specific, client-sideauthorization configuration variable
GSI DAEMONNAMEis retired, and no longer valid.

• Added theDAGMANINSERT SUBFILE variable, which allows a file of commands to be
inserted into.condor.sub files generated bycondorsubmitdag. See page 228 for more
information.

• The semantics ofCLAIM WORKLIFEwere previously not clearly defined before the start of
the first job. A delay between thecondorscheddclaiming a slot and thecondorshadowstart-
ing a job could be caused by the submit machine being very busyor byJOB STARTDELAY.
Previously, such a delay would unpredictably result in the first job being rejected if
CLAIM WORKLIFEexpired during that time. Now,CLAIM WORKLIFEis defined to ap-
ply only after the first job has started. Therefore, setting it to zero has the effect of allowing
exactly one job per claim to run. The default is still the special value -1, which places no limit
on how long the slot may continue accepting new jobs from thecondorscheddthat claimed
it.

• Added theDAGMANOLDRESCUEvariable, which controls whethercondordagmanwrites
rescue DAGs in the old way. See page 228 for more information.

• Added theDAGMANAUTORESCUEvariable, which controls whethercondordagmanauto-
matically runs an existing rescue DAG. See page 228 for more information.

• Added theDAGMANMAXRESCUENUMvariable, which controls the maximum ”new-style”
rescue DAG number written or automatically run bycondordagman. See page 228 for more
information.

Bugs Fixed:

• The Condor Build ID is now printed bycondorversionand placed in the logs for machines
running a Windows operating system.

• condorquill and thecondordbmsdcorrectly register themselves with the Windows firewall.

• condorsubmitdagnow avoids possibly running off the end of the argument list if an argument
requiring a value does not have one.

• The condorsubmitdag -debug argument now must be specified with at least-de to avoid
conflict with the-dagmanargument.

• Added missing information about the-config argument tocondorsubmitdag’s usage mes-
sage.

• condordagmanno longer considers duplicate edges in a DAG a fatal error (itis now a warn-
ing).

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 606

Known Bugs:

• No hook is invoked if a fetched job does not contain enough data to be spawned by acon-
dor starter or if other errors prevent the job from being run after thecondorstartd agrees
to accept the work. This limitation will be addressed in a future version of Condor, most
likely via the addition of a new hook invoked whenever thecondorstarter fails to spawn a
job. For more information about the new hook system includedin Condor version 7.1.0, read
section 4.4 on page 460.

Additions and Changes to the Manual:

• Added"WINNT60" for the Vista operating system to the documented list of possible values
for the machine ClassAd attributeOpSys.

8.5 Stable Release Series 7.0

This is a stable release series of Condor. It is based on the 6.9 development series. All new features
added or bugs fixed in the 6.9 series are available in the 7.0 series. As usual, only bug fixes (and
potentially, ports to new platforms) will be provided in future 7.0.x releases. New features will be
added in the 7.1.x development series.

On backwards compatibility: we believe that Condor 7.0.x and 6.8.x are wire-compatible, and
can be freely mixed between computers in a Condor pool. However, we do not regularly test this
compatibility and cannot guarantee it, so we recommend using a single release of Condor when
possible. Please note that although you can mix Condor 7.0.xand 6.8.x in a pool, you cannot mix
them on a single computer. That is, acondormasterdaemon running 6.8.x cannot run Condor
daemons from version 7.0.x, or vice-versa.

The details of each version are described below.

Version 7.0.6

Release Notes:

• None.

New Features:

• None.

Configuration Variable Additions and Changes:

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 607

• None.

Bugs Fixed:

• In some rare cases, thecondorstartd failed to fully preempt jobs. The job itself was killed,
but thecondorstarterprocess watching over it would not be killed. The slot would then stay
in the Preempting state indefinitely.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 7.0.5

Release Notes:

This release contains many bug fixes and some improvements toerror handling of Local
Universe jobs. Note that some of the bug fixes are security-related; therefore, we recommend
sites either upgrade Condor, or restrict permissions on whois allowed to submit Condor jobs to
trusted users. Bug fixes that are security related are clearly marked in the Bugs Fixed section
below along with a description of the potential security impact. The Condor Project believes in
the full disclosure of information, and therefore completevulnerability details can be found at
http://www.cs.wisc.edu/condor/security/. However, in order to give an adequate upgrade window
for production installations, we will delay posting the full vulnerability details fixed in this release
for 30 days (until the week of November 3rd 2008).

New Features:

• Local universe jobs now go on hold for the same specific reasons that vanilla jobs may go on
hold. Examples are missing input or executable files. Previously, when local universe jobs
failed in this manner, the jobs returned to the idle state in the job queue, repetitively attempting
to run, and failing over and over until the job is removed.

• Local universe jobs now have the ClassAd attributeNumShadowStarts . Although local
universe jobs do not have acondorshadowprocess, this attribute is introduced to keep man-
agement of local universe as similar to vanilla universe as possible. For local universe jobs,
this attribute is identical to the attributeJobRunCount , which indicates how many times a
localcondorstarterprocess has been created to run the job.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/security/

8.5. Stable Release Series 7.0 608

Configuration Variable Additions and Changes:

• None.

Bugs Fixed:

• Security Item: A flaw was found and fixed in the way Condor processes user submitted jobs.
It was possible for a user who had permissions to submit jobs into Condor to do so in a way
that could cause that job to run as any other non-root user. Wehave not had any reported
incidents exploiting this flaw. (CVE-2008-3826)

• Security Item: A stack-based buffer overflow flaw was found and fixed in thecondorschedd
daemon. A user who had permissions to submit a job could do so in a manner that could cause
thecondorscheddto crash, or potentially, execute arbitrary code on the submit machine with
thecondorschedd’s identity. We are not aware of any known exploits for this flaw. We have
not had any reported incidents exploiting this flaw. (CVE-2008-3828)

• Security Item: A denial-of-service flaw was found and fixed in thecondorschedddaemon. A
user who had permissions to submit a job could have done so in amanner that would cause
condorscheddto crash. We have not had any reported incidents exploiting this flaw. (CVE-
2008-3829)

• Security Item: A flaw was found and fixed in the way Condor processes allow anddeny net
masks for access control. If Condor’s configuration file contained overlapping net masks in
the allow or deny rules, it could have caused those rules to beignored, potentially allowing
unintended access to users in Condor’s deny authorization lists. We have not had any reported
incidents exploiting this flaw. (CVE-2008-3830)

• Fixed a segmentation fault bug withcondorsubmit -dump when universe=grid or
x509userproxy=<anything> .

• Fixed a stack overflow bug in thecondornegotiatordaemon.

• Fixedcondorsubmit-dump such that it would function with the standard universe.

• Fixed a memory leak in thecondorstartd, which occurred during the handling of acon-
dor reconfigcommand.

• When the configuration variableNEGOTIATORCONSIDERPREEMPTIONis defined to be
False , this no longer results in machines in the Owner state being ignored during matchmak-
ing. Previously, even ifSTARTwasTrue , machines in the Owner state were disregarded.

• SettingJobLeaseDuration to be less than 15 minutes caused thecondorschedddae-
mon to abort and restart the next time acondorreconfigcommand was executed. The error
message in thecondorscheddlog appeared as:

ALIVE_INTERVAL in the condor configuration is too high (300).

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 609

• Fixed a slow memory leak affecting thecondorstartd, condorschedd, andcondorcollector
daemons. This leak would probably require many months of continuous operation before
causing noticeable problems.

• Fixed a bug that caused acondorschedddaemon crash. The crash occurred during a fast shut
down of thecondorschedddaemon as it dealt with local universe jobs or with any job that
required reconnection when thecondorschedddaemon started up.

• Local and scheduler universe jobs were failing to increment theJobRunCount attribute in
the job ClassAd when an attempt to run the job was made. This problem was introduced in
6.9.5.

• Some rare types of failures during file transfer caused the Condor daemon conducting the
transfer to hang indefinitely. For example, if the file transfer process created by thecon-
dor scheddwas killed by an administrator or crashed due to an internal error, the con-
dor scheddwould become unresponsive.

• GCB was updated, fixing minor bugs with GCB temporary files (typically the file(s)
/tmp/gcb-inherit- *). These bugs did not impact GCB functionality. Earlier versions
would leave temporary files behind. Temporary files would have permissions of 000. With
the fix, under normal operations the files should be deleted, and thecondor user should have
read and write access to the files.

• Evaluation of the configuration variableSTARTDAD REEVALEXPRdid not work for many
types of expressions. The problem resulted in the followingmessage in thecondornegotiator
daemon log:

Can't evaluate STARTD_AD_REEVAL_EXPR ...

• Reconnecting to parallel universe jobs after a restart of the condorschedddaemon, would
sometimes fail. The failure was caused by thecondorshadowtrying to connect to the address
of the previous instance of thecondorscheddrather than the address of the current instance.

• Made thecondorgridmanagerless aggressive in forwarding refreshed proxies for gt2 grid
universe jobs. Now, the refreshed proxy will not be forwarded until the old proxy has less
than six hours of life until expiration.

• Fixed a bug in thecondorgridmanagerthat could result in job status updates from the Grid
Monitor to be ignored.

• The Grid Monitor no longer changes the last-modified time ofGRAM state files whose job’s
status is FAILED. This should make it easier for file cleanersto remove the the GRAM state
files of old, abandoned jobs.

• Fixed a problem that could cause flocked jobs to fail due to authorization errors in thecon-
dor starter. Such failures were more likely to occur for long-running jobs or if thecon-
dor scheddwere issued a full reconfig during the job’s execution.

• Fixed a condorgridmanager crash on Windows. This crash only appeared if
GRIDMANAGERDEBUGwere set to a higher level than the default.

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 610

• In PrivSep mode, a job would previously fail if it created a symlink in its sandbox pointing to
a file owned by a UID other than that used to run the job. This behavior has been fixed.

Known Bugs:

• None.

Additions and Changes to the Manual:

• Descriptions of previously undocumented Condor Perl module subroutines have been added
to the manual. See section??.

Version 7.0.4

Release Notes:

• This release fixes a problem causing possible incorrect handling of wild cards in authorization
lists. Examples of the configuration variables that specifyauthorization lists are

ALLOW_WRITE
DENY_WRITE
HOSTALLOW_WRITE
HOSTDENY_WRITE

If a configuration variable uses the asterisk character (*) in configuration variables that specify
the authorization policy, it is advisable to upgrade. This is especially true for the use of wild
cards in anyDENYlist, since this problem could result in access being allowed, when it should
have been denied. This issue affects all previous versions of Condor.

• The default daemon-to-daemon security session duration has been changed from 100 days to
1 day. This should reduce memory usage in thecondorcollector in pools with short-lived
condorstartds (e.g. glidein pools or pools whose machines are rebooted every night).

New Features:

• Added functionality to periodically update timestamps onlock files. This prevents adminis-
trative programs from deleting in-use lock files and causingundefined behavior.

• When the configuration variableSCHEDDNAMEends in the@symbol, Condor will no longer
append the fully qualified host name to the value. This makes it possible to configure a high
availability job queue that works with the remote submission of jobs.

Configuration Variable Additions and Changes:

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 611

• Added configuration variable:LOCKFILE UPDATEINTERVAL . Please see page 165 for a
complete description.

• Changed the default value of configuration variableSECDEFAULTSESSIONDURATION
from 8640000 seconds (100 days) to 86400 seconds (1 day).

Bugs Fixed:

• Fixed a bug in thecondorc-gahpthat caused it to fail repeatedly on Windows, if more than
two Condor-C jobs were submitted at the same time.

• Fixed a problem that caused thecondorcollector’s memory usage to increase dramatically, if
condorfindhostwas run repeatedly.

• Fixed a bug where Windows jobs suspended by Condor would never be continued, despite log
files indicating successful continuation. This problem hasexisted since the 6.9.2 release of
Condor.

• Fixed a problem that could causecondordagmanto core dump if straced, especially if the
dagman.out file is on a shared file system.

• Fixed a problem introduced in 7.0.1 that could cause thecondorschedddaemon to crash
when starting parallel or MPI universe jobs. In some cases, the problem would result in the
following log message:

ERROR ``Assertion ERROR on (mrec->request_claim_sock == s ock)'' \
at line 1361 in file dedicated_scheduler.C

• Thecondorprocd daemon now periodically updates the timestamps on the namedpipe file
system objects that it uses for communication. This prevents these objects from being cleaned
up by programs liketmpwatch, which would result in Condor daemon exceptions.

• Fixed a problem introduced in Condor 7.0.2 that would causedaemons to fail on start up on
Windows 2000.

• Fixed a problem where standard universe jobs would fail to start when using PrivSep, if the
PROCDADDRESSconfiguration variable was not defined.

• If the X509 proxy of a vanilla universe job has been refreshed, the updated file will no longer
be returned when the job completes.

• If ClassAd attributesStreamOut or StreamErr are missing from the job ClassAd of a
grid universe job, the default value for these attributes isnowFalse .

Known Bugs:

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 612

• A bug in 7.0.4 affects jobs using Condor file transfer on submit machines that are configured
to deny write access from execute machines. The result is that output from jobs may fail to
be copied back to the submit machine. The problem may or may not affect jobs that run for
less than eight hours, but it definitely will affect jobs thatrun for more than eight hours. An
example of a configuration vulnerable to this problem is one where DAEMON level access is
allowed to all execute nodes but WRITE level access is not. When the problem happens, the
condorshadowlog will contain a line like the following:

DaemonCore: PERMISSION DENIED to unknown user from host ...
for command 61001 (FILETRANS_DOWNLOAD), access level WRIT E

The workaround for this problem is to allow WRITE access fromthe execute nodes. If the
existing configuration requires WRITE access to be authenticated, then simply add WRITE
access by the authenticated condor identities associated with all execute nodes. If WRITE
access is not currently required to be authenticated, then allow unauthenticated WRITE access
from all worker nodes. Note that this doesnot imply that execute nodes will be able to
modify the job queue without authenticating. Remote commands that modify the job queue
(for example,condorsubmitor condorqedit) always require that the user be authenticated,
no matter what configuration options are used; if no method ofremote authentication can
succeed in the pool for WRITE operations, then commands thatmodify the job queue can
only run on the submit machine.

Additions and Changes to the Manual:

• None.

Version 7.0.3

Release Notes:

• This is a bug fix release. A bug in Condor version 7.0.2 sometimes caused thecondorschedd
to become unresponsive for 20 seconds when starting thecondorshadowto run a job. There-
fore, anyone running 7.0.2 is strongly encouraged to upgrade.

New Features:

• None.

Configuration Variable Additions and Changes:

• The configuration variable VALID SPOOLFILES now automatically includes
SCHEDD.lock , the lock file used for high availabilitycondorscheddfail over. Other
high availability lock files are not currently included.

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 613

Bugs Fixed:

• Fixed a problem sometimes causing minutes or more of lag between the time of job suspension
or unsuspension and the corresponding entries in the job user log.

• Fixed a problem incondorq -better-analyzehandling requirements expressions containing
the expression=!= UNDEFINED.

• Configuration variableGRIDMANAGERGAHPCALL TIMEOUT is now recognized for nor-
dugrid grid universe jobs.

• Fixed a bug that could cause thecondorschedddaemon to abort and restart some time after a
graceful restart, when jobs to which thecondorschedddaemon reconnected were preempted.

• Fixed a bug causing failure to reconnect to jobs which use$$([expression]) in
their ClassAds. The jobs would go on hold with the hold reason: "Cannot expand
$$([expression])."

• Fixed a bug in Condor version 7.0.2 that sometimes caused the condorschedddaemon to
become unresponsive for 20 seconds when starting thecondorshadowdaemon to run a job.

Known Bugs:

• None.

Additions and Changes to the Manual:

• See section 4.5.1 for documentation on finding the port number thecondorschedddaemon is
listening on for use with the web service API.

Version 7.0.2

Release Notes:

• On Unix, Condor no longer requires itsEXECUTEdirectory to be world-writable, as long as
it is not on a root-squashed NFS mount and is owned by the user given in theCONDORIDS
setting (or by Condor’s real UID, if not started asroot). Condor will automatically remove
world-writability from existingEXECUTEdirectories where possible. Note: TheEXECUTE
directory has never been required to be world-writable on Windows.

• With this release, a binary package for IA64 SUSE Linux Enterprise 8 will no longer be made
available.

New Features:

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 614

• A clipped port to FreeBSD 7.0 x86 and x8664 is available, but at this time, it is not available
for download as a binary package.

• Previously,condorq -better-analyzewas supported on most but not all versions of Linux. It
is now supported on all Unix platforms, but not yet on Windowsplatforms.

Configuration Variable Additions and Changes:

• The new configuration variableGRIDMANAGERMAXWSDESTROYSPERRESOURCE
limits the number of simultaneous WS destroy commands issued to a given server for grid
universe jobs of type gt4. The default value is 5.

Bugs Fixed:

• Fixed a bug in the standard universe where if a Linux machinewas configured to use the
Network Service Cache Daemon (nscd), taking a checkpoint would be deferred indefinitely.

• Fixed a bug that caused the Quill daemon to crash.

• Fixed bug that prevented Quill, when running on a Windows host, from successfully updating
the database.

• Fixed a bug that prevented Quill’scondordbmsddaemon from proper shutting down upon
request when running on Windows platforms.

• Fixed a bug that caused Stork to be completely broken.

• As a back port from Condor versions 7.1, the Windows Installer is now completely interna-
tionalized: it will no longer fail to install because of a missing ”Users” group; instead, it will
use the regionally appropriate group.

• As a back port from Condor versions 7.1, interoperability with Samba (as a PDC) has been
improved. Condor uses a fast form of login during credentialvalidation. Unfortunately, this
login procedure fails under Samba, even if the credentials are valid. The new behavior is to
attempt the fast login, and on failure, fall back to the slower form.

• As a back port from Condor versions 7.1, Windows slot users no longer have the Batch Priv-
ilege added, nor does Condor first attempt a Batch login for slot users. This was causing
permission problems on hardened versions of Windows, such as Windows Sever 2003, in
that not interactive users lacked the permission to run batch files (via thecmd.exetool). This
affected any user submitting jobs that used batch files as theexecutable.

• Fixed a bug that could sometimes cause thecondorscheddto either EXCEPT or crash shortly
after a user issues acondorrm command with the-forcex option.

• condorhistory in a Quill environment, when given the-constraint option, would ignore at-
tributes from the vertical schema. This has been fixed.

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 615

• In Unix, when started asroot , thecondormasternow changes the effective user id back to
root (instead of condor) when restarting itself. This occurs forexample due to the command
condorrestart. This makes no difference unless thecondormasteris wrapped with a script,
and the script expects to be run asroot not only on initial start up, but on restart as well.

• The dedicated scheduler would sometimes take two negotiation cycles to acquire all the ma-
chines it needed to run a job. This has been now fixed.

• condordagmanno longer prints ”Argument added” and ”Retry Abort Value” diagnostic mes-
sages at the default verbosity, to reduce the size of thedagman.out file and the start up time
for very large DAGs.

• condordagmannow prints a few fatal parse errors at lower verbosity settings than it did
previously.

• condorpreenno longer deletesMyProxypassword files in the Condor spool directory.

• When using TCP updates (UDP updates are the default), thecondorcollector would some-
times freeze for 20 seconds when receiving an invalidation notice. The notice is received
when Condor is being turned off on a machine in the pool.

• Fixed a case in which thecondorschedd’s job queue log file could get corrupted when en-
countering errors writing to the disk such as ‘out of space’.This type of corruption was
detected by thecondorscheddthe next time it restarted and read the file to restore the job
queue, so you would only have been affected by this problem ifyour condorscheddrefused
to start up until you fixed or removed the job queue log file. This bug has existed in all versions
of Condor, but it became more likely to occur in 6.9.4.

• The configuration settingJAVA may now contain spaces. Previously, this did not work.

• Fixed a problem that caused occasional failure to detect hung Condor daemons.

• Fixed a file descriptor leak in the negotiator. The leak happened whenever the negotiator failed
to initiate the NEGOTIATE command to acondorschedd, for example if security negotiation
failed with thecondorschedd. Under Unix, this would eventually cause thecondornegotiator
to run out of file descriptors, exit, and restart. This bug affected all previous versions of
Condor.

• Fixed several bugs in the user log reader that caused it to generate an invalid persisted state if
no events had been read in. When read back in, this persisted state would cause the reader to
segfault during initialization.

• Fixed a bug causing communication problems if different portions of a Condor pool were
configured with different values ofSECDEFAULTSESSIONDURATION. This bug affects
all previous versions of Condor. The client side of the connection was always using its own
security session duration, even if the server’s duration was shorter. Among other potential
problems, this was observed to cause file transfer failures when the starter was configured
with a longer session duration than the shadow.

• Fixed a bug in the user log writer that was causing the writing of events to the global event
log fail in some conditions.

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 616

• In the grid universe, submission of nordugrid jobs is now properly throttled by
configuration parametersGRIDMANAGERMAXSUBMITTEDJOBS PERRESOURCEand
GRIDMANAGERMAXPENDINGSUBMITSPERRESOURCE.

• The NorduGrid GAHP server can now properly extract job execution information from newer
NorduGrid servers. Previously, the GAHP could crash when talking to newer servers.

• Fixed a bug that causedcondorconfigval -set or -rset to fail if security negotiation was
turned off. This happens, for example, ifSECDEFAULTNEGOTIATION = NEVER. This
bug was introduced in Condor 7.0.0.

• Fixed a bug that could cause incorrect IP addresses to be advertised when thecondorcollector
was on a multi-homed host.

• Fixed a problem where unexpected ownership and permissions on files inside a job’s working
directory could cause thecondorstarter to EXCEPT.

• Improved the speed at which thecondorstartd can handle claim requests, particularly when
thecondorstartdmanages a large number of slots.

• Fixed an error in the way thecondorprocdcalculates image size for jobs that involve multiple
processes. Previously the maximum image size for any singleprocess was being used. Now
the image size sum across all processes is used.

• The condorprocd no longer truncates its log file on start up. Enabling a log filefor the
condorprocd is only recommended for debugging, since it is not rotated toconserve disk
space.

• Fixed a problem present in Condor 7.0.1 and 7.1.0 where thecondorstartd will crash upon
deactivating or releasing a COD claim.

• Condor on Windows can now correctly handle job image size when processes are created that
allocate more than 2GB of address space.

• The JOB INHERITS STARTERENVIRONMENT setting now works when the
GLEXECSTARTERfeature is in use.

• Fixed a problem causingcondorscheddto perform poorly when handling large job queues in
which there are any idle local or scheduler universe jobs (for example, Condor cron jobs).

• Sped upcondorscheddgraceful shutdown when disconnecting from running jobs that have
job leases. Previously, it would only disconnect from one such job at a time, so if there were
a lot of jobs running,condorscheddcould take so long to shut down that job leases expire
before it has a chance to restart and reconnect to the jobs.

• Fixed a bug that could cause incorrect IP addresses to be advertised when thecondorcollector
was on a multi-homed host.

Known Bugs:

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 617

• None.

Additions and Changes to the Manual:

• None.

Version 7.0.1

Release Notes:

• Fixed a bug in Condor’s authorization policy reader. The bug affects cases where the policy
(ALLOW/DENYandHOSTALLOW/HOSTDENYsettings) mixes host-based authorizations with
authorizations that refer to the authenticated user name. In some cases, this bug would result
in host-based settings not being applied to authenticated users.

New Features:

• Support for Backfill Jobs is now available on Windows platforms. For more information on
this, please see section 3.12.9 on page 418.

• Condor has been ported to Red Hat Enterprise Linux 5.0 running on the 32-bit x86 architecture
and on the 64-bit x8664 architecture.

• The commandemail attributes in a job submit description file defines a set of job ClassAd
attributes whose values should be included in the e-mail notification of job completion.

• The configuration variableCONDORVIEW HOST may now contain a port number, and may
refer to acondorcollectordaemon running on the same host as thecondorcollector that is
forwarding ClassAds. It is also now possible to use the forwarded ClassAds for matchmaking
purposes. For example, severalcondorcollectordaemons could forward ClassAds to a single
aggregatingcondorcollector daemon which acondornegotiatorthen uses as its source of
information for matchmaking.

• condorconfigure and condor install now detect missing shared libraries (such as
libstdc++.so.5 on Linux), and print messages and exit if missing libraries are detected.
The new command line option–ignore-missing-libscauses it not to exit after the messages
have been printed, and to proceed with the installation.

• Added a–force command line option tocondorconfigure(andcondor install) which will
turn on–overwrite and–ignore-missing-libs.

• condorconfigurenow writes simple sh and csh shell scripts which can be sourced by their
respective shells to set the user’sPATHandCONDORCONFIGenvironment variables. By
default, these are created in the root of the Condor installation, but this can be changed via
the–env-scripts-dir command line option. Also, the creation of these scripts canbe disabled
with the–no-env-scriptscommand line option.

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 618

Configuration Variable Additions and Changes:

• The new configuration variablesPREEMPTIONREQUIREMENTSSTABLE and
PREEMPTIONRANKSTABLE are boolean values to identify whether or not attributes
used within the definition ofPREEMPTIONREQUIREMENTSandPREEMPTIONRANK
remain unchanged during a negotiation cycle. See section 3.3.17 on page 213 for complete
definitions.

• The configuration variableSTARTERUPLOADTIMEOUT changed its default value to 300
seconds.

• The new configuration variableCKPTPROBE specifies an internal to Condor executable
which determines information about how a process is laid outin memory, in addition to other
information. This executable is not yet available on Windows platforms.

• The new configuration variableCKPTSERVERCHECKPARENTINTERVAL sets an inter-
val of time between checks by the checkpoint server to see if its parent, thecondormaster
daemon, has gone away unexpectedly. The checkpoint server shuts itself down if this hap-
pens. The default interval for checking is 120 seconds. Setting this parameter to 0 disables
the check.

Bugs Fixed:

• Upgrade from PCRE v5.0 to PCRE v7.6, due to security vulnerabilities found in PCRE v5.0.

• Fixed file descriptor leak in thecondorscheddwhen using the SOAP interface.

• Fixed a bug that primarily affected pools withMaxJobRetirementTime (0 by default)
set larger thanREQUESTCLAIM TIMEOUT(30 minutes by default). Since 6.9.3, when the
condorscheddtimed out requesting a claim to a slot, thecondorstartd was not made aware
of the canceled request. This resulted in some wasted time (up to ALIVE INTERVAL) in
which thecondorstartdwould wait for a job to run.

• A problem with condorhistory in a Quill environment incorrectly interpreting the-name
option has been fixed.

• A memory leak that preventedcondor load history from running with large history files has
been fixed.

• A bug incondorhistorywhen running in a quill environment has been fixed. This bug would
cause the command to crash in some situations.

• The job ClassAd attributeEmailAttributes now works for grid universe jobs.

• On 32-bit Linux platforms, the job queue database file may now exceed 2GB. Previously, the
condorscheddwould halt with an error when trying to write past the 2GB mark.

• On 32-bit Linux platforms,condorhistorycan now read from history files larger than 2GB
exceptwhen using the-backwardsoption.

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 619

• Local universe jobs are now scheduled to run more promptly.Previously, new local universe
jobs would sometimes take up toSCHEDDINTERVAL (default 5 minutes) to be considered
for running.

• The memory usage of thecondorcollector used to grow over time if daemons with new
names kept joining and then leaving the pool (for example, ina Glidein pool). This was
due to statistics on dropped updates that accumulated for all daemons that ever advertised
themselves to thecondorcollector. These statistics are now periodically purged of infor-
mation about daemons which have not reported in a long time. How long is controlled by
COLLECTORSTATSSWEEP, which defaults to 2 days.

• Condor daemons would die when trying to send ClassAd advertisements to a host name that
could not be resolved by DNS.

• Since 6.9.5, file transfer errors for vanilla, java, or parallel jobs would sometimes not result in
the job going on hold as it should. This was most likely for very small files that failed to be
written for some reason.

• TheImageSize reported for jobs on AIX was too big by a factor of 1024.

• Since 6.9.5,condorglidein failed in the set up stage, due to the change in syntax of quoting
rules in the Condor submit description file for gt2 argument strings.

• Fixed a bug in thecondorgridmanagerthat could prevent refreshed X509 proxies from being
forwarded to the remote machine for grid universe jobs of type gt4.

• Fixed a bug in Condor’s authorization policy reader. The bug affects cases where the policy
(ALLOW/DENYandHOSTALLOW/HOSTDENYsettings) mixes host-based authorizations with
authorizations that refer to the authenticated user name. In some cases, this bug would result
in host-based settings not being applied to authenticated users.

• Fixed a bug incondorhistorywhich causes a crash whencondorquill is enabled.

• Fixed a problem affecting the GSI and SSL authentication methods. When these methods
successfully authenticated the user but failed to find a mapping of the X509 name to a condor
user id, they were setting the authenticated name togsi andssl respectively. However,
these names contain no domain, so they could not be referred to in the authorization policy.
Now these anonymous mappings aregsi@unmappeduser and ssl@unmappeduser .
Therefore, configuration to deny access by users who are not explicitly mapped in the map
file appears as:

DENY_READ =* @unmappeduser
DENY_WRITE =* @unmappeduser

Known Bugs:

• When usingcondorcompilewith the RHEL5 x86 port of Condor to produce a standard uni-
verse executable, one will see a warning message about how linking with dynamic libraries
is not portable. This warning is erroneous and should be ignored. It will be fixed in a future
version of Condor.

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 620

Additions and Changes to the Manual:

• The existing configuration variables SYSTEMPERIODIC HOLD ,
SYSTEMPERIODIC RELEASE, and SYSTEMPERIODIC REMOVE have documented
definitions. See section 3.3.11 for definitions.

• A manual page forcondor load historyhas been added.

Version 7.0.0

Release Notes:

• PVM support has been dropped.

• The time zone for thePostgreSQL8.2 database used with Quill on Windows machines must
be explicitly set to use an abbreviation. This Windows environment variable isTZ. Proper
abbreviations for the value of this variable may be found within thePostgreSQLinstallation in
a file,share/timezonesets/<continent>.txt , where<continent> is replaced
by the continent of the desired time zone.

New Features:

• The Windows MSI installer now supports VM Universe.

• Eliminated the “tarball in a tarball” in our distribution. The con-
tents of release.tar from the distribution tarball (for example,
condor-6.9.6-linux-x86-centos45-dynamic.tar.gz) is now included
in the distribution tarball.

• Updatedcondorconfigureto match the above change. The–install option now takes a direc-
tory path as its parameter, for example–install=/path/to/release. It previously took the path
to therelease.tar tarball.

• Addedcondor install, which is a symlink tocondorconfigure. Invoking

condor_install

is identical to running

condor_configure --install=.

• Added the option–prefix=dir to condorconfigureandcondor install. This is an alias for
–install-dir=dir .

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 621

• Added the option–backup option tocondorconfigureandcondor install. This option re-
names the targetsbin directory, if thecondormasterdaemon exits while in the targetsbin
directory. Previous versions ofcondorconfiguredid this by default.

• Changed the default behavior ofcondor install to exit with a warning if the targetsbin
directory exists, thecondormasterdaemon is in thesbin directory, and neither the–backup
nor –overwrite options are specified. This preventscondor install from improperly moving
ansbin directory out of the way. For example,

condor_install --prefix=/usr

will not move/usr/sbin out of the way unless the–backupoption is also specified.

• Updated the usage summary ofcondorconfigureandcondor install to be much more read-
able.

Configuration Variable Additions and Changes:

• The new configuration variableDEADCOLLECTORMAXAVOIDANCETIME defines the
maximum time in seconds that a daemon will fail over from a primarycondorcollector to a
secondarycondorcollector. See section 3.3.3 on page 156 for a complete definition.

Bugs Fixed:

• Fixed a memory leak in thecondorprocddaemon on Windows.

• Fixed a problem that could cause Condor daemons to crash if afailure occurred when com-
municating with thecondorprocd.

• Fixed a couple of problems that were preventing thecondorstartd from properly removing
per-job directories when running with PrivSep.

• Thecondorstartd will no longer fail to initialize, claiming theEXECUTEdirectory has im-
proper permissions, when PrivSep is enabled.

• Look ups of ClassAd attributeCurrentTime are now case-insensitive, just like all other
attributes.

• Fixed problems causing the following error message in the log file:

ERROR: receiving new UDP message but found a short message st ill waiting to be closed (consumed=1). Closing

• The existence of the executable given in the submit file is now enforced (when transferring
the executable and not using VM universe).

• The copy ofcondordagmanthat ships with Condor is now automatically added to the listof
trusted programs in the Windows Firewall.

Condor Version 7.2.3 Manual

8.5. Stable Release Series 7.0 622

• Removedremove kill sig from the submission file generated bycondorsubmitdagon Win-
dows.

• Fixed the algorithm in thecondornegotiatordaemon, which with large numbers of machine
ClassAds (for example, 10,000) was causing long delays at the beginning of each negotiation
cycle.

• Use of MAXCONCURRENTUPLOADSwas resulting in a connection attempt from the
condorshadow to the condorscheddwith a fixed 10 second timeout, which is some-
times too small. This timeout has been increased to be the same as other connec-
tion timeouts between thecondorshadowand thecondorschedd, and it now respects
SHADOWTIMEOUTMULTIPLIER , so it can be adjusted if necessary.

• Fixed a problem withMAXCONCURRENTUPLOADSandMAXCONCURRENTDOWNLOADS
, which was sometimes allowing more than the configured number of concurrent transfers to
happen.

• Fixed a bug in thecondorscheddthat could cause it to crash due to file descriptor exhaustion
when trying to send messages to hundreds ofcondorstartds simultaneously.

• Fixed a 6.9.4 bug in thecondorstartd that would cause it to crash when a BOINC backfill job
exited.

• Since 6.9.4, when using glExec, configuringSLOTx EXECUTEwould causecondorstarter
to fail when starting the job.

• Fixed a bug from 6.9.5 which caused authentication failurefor the pool password authentica-
tion method.

• Fixed a bug that caused Condor daemons to crash when encountering some types of invalid
ClassAd expressions.

• Fixed a bug under Linux that could cause multi-process daemons lacking a log lock file to
crash while rotating logs that have reached their maximum configured size.

• Fixed a bug under Windows that sometimes caused connectionattempts between Condor dae-
mons to fail with Windows error number 10056.

• Fixed a problem in which there are multiplecondorcollector daemons in a pool for
fault tolerance. If the primarycondorcollector failed, thecondornegotiator would fail
over to the secondarycondorcollector indefinitely (or until the secondarycondorcollector
also failed or the administrator rancondorreconfig). This was a problem for users
flocking jobs to the pool, because flocking currently only works with the primarycon-
dor collector. Now, thecondornegotiatorwill fail over for a restricted amount of time, up to
DEADCOLLECTORMAXAVOIDANCETIME seconds. The default is one hour, but if query-
ing the dead primarycondorcollectortakes very little time to fail, thecondornegotiatormay
retry more frequently in order to remain responsive to flocked users.

• Fixed a problem preventing the use ofcondorq -analyzewith the-pool option.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 623

• Fixed a problem in thecondornegotiatorin which machines go unassigned when user prior-
ities result in the machines getting split into shares that are rounded down to 0. For example
if there are 10 machines and 100 equal priority submitters, then each submitter was getting
0.1 machines, which got rounded down to 0, so no machines wereassigned to anybody. The
message in thecondornegotiatorlog in this case was this:

Over submitter resource limit (0) ... only consider startd r anks

• Fixed a problem introduced in 6.9.3 that would cause daemons to run out of file descriptors if
they create sub-processes and are configured to use a lock filefor the debug log.

• Standard universe jobs now work properly when using PrivSep.

• Fixed problem with PrivSep mode where a job that dumps core would not get the core file
transferred back to the the submit host if thetransfer output filessubmit option were used.

• Fixed a bug that caused thecondorstarter to crash if a job calledcondorchirp with the
get job attr option.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

8.6 Development Release Series 6.9

This is the development release series of Condor. The details of each version are described below.

Version 6.9.5

Release Notes:

• There are some known vulnerabilities in the Virtual Machine (VM) universe support included
in this release that can allow VM universe jobs to read arbitrary files on the host machine.
VM universe is disabled by default, so this potential vulnerability does not affect most sites.
However, VM universe should not be enabled unless the job policy only allows users that you
trust completely to run jobs on the machine.

• Condor is now licensed under the terms of the Apache Licenseversion 2.0.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 624

• Dropped support for the following platforms:

– Red Hat Linux 7.x systems on the x86 processor.

– Digital Unix systems on the Alpha processor.

– Yellow Dog Linux 3.0 systems on the PPC processor.

– MacOS 10.3 systems on the PPC processor.

Theses ports are still supported in the 6.8 series of Condor.

• Dropped support for OGSA GRAM (grid-type gt3) in the grid universe. This version of
GRAM is not included in recent versions of the Globus Toolkit. This does not affect Condor’s
support for pre-WS GRAM (grid-type gt2) or WS GRAM (grid-type gt4).

• The suggested configuration value forSHADOWRENICE INCREMENThas been changed
from 10 to 0. If using the value 10 in an existing configurationfile, we recommend changing
it. This improves the performance of Condor on busy submit nodes where other processes
would cause low prioritycondorshadowdaemons to become starved for CPU time.

• For grid-type gt2 grid universe jobs, job arguments are nowhandled as they are for all other
job types. Previously, the user would have to manually escape characters that had special
meaning to GRAM’s RSL language.

• condorversionnow includes a specific build identification number for official builds of Con-
dor.

New Features:

• condorq, when Quill is enabled, now displays the last time Quill updated the database. This
permits seeing how fresh the database information is.

• condorhistory, when Quill is enabled, will now query the database for historical items even
when the-constraint option is given. Previously, it would go to the history file inthat case.

• condorsubmitcan now write the ClassAds it generates to a file instead of sending them to the
condorschedddaemon.

• When thecondormasterdaemon sends an obituary e-mail, it prints the last few linesof the
log file for that daemon, and the name of the file. This e-mail now contains the full path name
of that log file, not just the file name. This is more convenientfor sites which run multiple
instances of the same daemon on one machine.

• Added new policy for parallel universe jobs to control how they exit. If the attribute Paral-
lelShutdownPolicy is set to the string ”WAITFOR ALL”, then Condor will wait until every
node in the parallel job has completed to consider the job finished. If this attribute is not set,
or is set to any other string, the default policy is in effect.This policy is needed for MPI jobs:
when the first node exits, the whole job is considered done, and condor kills all other running
nodes in that parallel job.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 625

• Added new Windows specific ClassAd attributes:

– WindowsMajorVersion

– WindowsMinorVersion

– WindowsBuildNumber

For definitions, please see the unnumbered subsection labeled Machine ClassAd Attributes on
page 886.

• Added new authorization levels to allow fine-grained control over the security settings that
are used by the collector when receiving ClassAd updates by different types of daemons:
ADVERTISEMASTER, ADVERTISESTARTD, andADVERTISESCHEDD. An example of
what you can do with this is to require that allcondorstartdsthat join the pool be authenti-
cated with a pool password and exist within a restricted set of IP addresses, while schedds may
join the pool from a broader set of IP addresses and must authenticate with X509 credentials.

• Added ability to throttle in Condor’s file transfer mechanism the maximum number of simul-
taneous stage-outs and stage-ins for jobs submitted from the samecondorschedd. The config-
uration variables areMAXCONCURRENTDOWNLOADSandMAXCONCURRENTUPLOADS.
The default is 10 simultaneous uploads of input files and 10 simultaneous downloads of output
files. These limits currently do not apply to grid universe jobs or standard universe jobs.

• AddedSCHEDDQUERYWORKERS, which is 3 by default in Unix, and which is ignored in
Windows. This specifies the maximum number of concurrent sub-processes that thecon-
dor scheddwill spawn to handle queries.

• Condor-C now uses a more efficient protocol when querying the status of jobs from Condor
6.9.5 and newercondorschedddaemons.

• Added 4 new counters to the job ClassAd:

– NumJobStarts

– NumJobReconnects

– NumShadowExceptions

– NumShadowStarts

For more information, please see their descriptions in section 9 on page 879.

• Added a new attribute,GridJobStatus , to the ClassAds ofgrid universe jobs. This string
shows the job’s status as reported by the remote job management system.

• condorq -analyzenow shows the full hold reason for jobs that are on hold.

• Increased efficiency ofcondorpreenwhen there are large numbers of jobs in the job queue.
Without this, thecondorscheddwould become unresponsive for a long time (e.g. 10 minutes
with 20,000 jobs in the queue) whenevercondorpreenwas activated.

• A 6.9.5condorq can now query an oldercondorquill daemon directly for job information.

• Reduced memory requirements ofcondorshadow.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 626

• Added the ability tocondorsubmitto list unused or unexpanded variables in submission file.

• Added the capability to assign priorities to DAG nodes. Ready nodes within a DAG are
submitted in priority order bycondordagman.

• Added the capability to assign categories to DAG nodes, andthrottle submission of node jobs
by category.

• USECLONETO CREATEPROCESSES(which defaults to True) is now supported on ppc64,
SUSE 9. This also fixes a bug in which the Yellow Dog Linux version of Condor installed on
a ppc64 SUSE 9 machine would fail to start jobs.

• When thecondorpreensends email about old files being found, it now includes the name of
the machine and the number of files found in the subject of the message.

• The user log reading code is now able to handle global event log rotations correctly. The API
is backwards compatible, but with several new method, it is able to invisibly handle rotated
event log files.

• The user log writer code now generates a header record (as a “generic” event) with some meta
information to the event log. This header is not written to the “user log”, only to the global
event log. Some of the information stored in this header is used by the enhanced log reader
(see above) to more reliably detect rotated log files.

• The Grid Monitor now refrains from polling the status of jobs that it has learned are done.

• For grid-type condor jobs, thecondorgridmanageris now more efficient when querying the
status of jobs on the remotecondorscheddwhen there are jobs with different X509 subjects.

• URLs can now be given for the input and output files of grid-type nordugrid jobs in the grid
universe. URLs are forwarded to the NorduGrid server, whichperforms the transfers.

• The length of the paths to the job’s initial working directory, user log, and input/output files
are no longer limited to 255 characters. Previously,condorsubmitwould refuse to accept jobs
exceeding this POSIXPATH MAX limit. Now the only limit is whatever limit the operating
system enforces on the system where the files are accessed.

• The condorstartd now receives updates to the job ClassAd from thecondorstarter.
The primary benefit of this is thatDiskUsage is updated and can therefore be used
in policy expressions, such asPREEMPT. The frequency of updates is determined by
STARTERUPDATEINTERVAL.

• Several improvements have been made to Condor’s ability torun using privilege separation
on the execute side. See section 3.6.12 for details.

• Added support on Linux systems for reliably tracking all ofa job’s processes using a dedicated
supplementary group ID. This has the advantage of working regardless of whether a job runs
using a dedicated user account. See section 3.12.10 for details.

Configuration Variable Additions and Changes:

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 627

• The new variablesMAXCONCURRENTDOWNLOADSandMAXCONCURRENTUPLOADS
limit the number of simultaneous file transfers that may takeplace through Condor’s file trans-
fer mechanism for jobs submitted to the samecondorschedd. The default is 10 simultaneous
uploads of input files and 10 simultaneous downloads of output files. These limits currently do
not apply to grid universe jobs or standard universe jobs. See page 196 for more information.

• The default forJOB STARTDELAY has been changed from 2 seconds to 0. This means
the condorscheddwill not limit the rate at which it starts upcondorshadowprocesses by
default. The delay between startup of jobs may now be controlled individually for jobs us-
ing the job attributeNextJobStartDelay , which defaults to 0 seconds and is at most
MAXNEXTJOB STARTDELAY, which defaults to 10 minutes.

• The new variableSCHEDDQUERYWORKERSspecifies the maximum number of concurrent
sub-processes that thecondorscheddwill spawn to handle queries. This is ignored in Win-
dows. In Unix, the default is 3. See page 196 for more details.

• The new variableWANTUDPCOMMANDSOCKETcontrols if Condor daemons should create
a UDP command socket in addition to the TCP command socket (which is required). The de-
fault isTrue , but it is now possible to completely disable UDP command sockets by defining
this toFalse . See section 3.3.3 on page 157 for more information.

• The new variableNEGOTIATORINFORMSTARTDcontrols if thecondornegotiatorshould
inform thecondorstartd when it has been matched with a job. The default isTrue . See
section 3.3.17 on page 212 for more information.

• The new variableSHADOWLAZY QUEUEUPDATE controls if the condorshadow
should immediately update the job queue for certain attributes (for example, the new
NumJobStarts andNumJobReconnects counters) or if it should wait and only update
the job queue on the next periodic update. The default isTrue to do lazy, periodic updates.
See section 3.3.12 on page 202 for more information.

• The new variableWARNONUNUSEDSUBMIT FILE MACROScontrols if condorsubmit
should warn when there are unused or unexpanded variables ina submit file. The default is
True to list unused or unexpanded variables.

• SCHEDDROUNDATTR xxxx can now take a value that is a percentage, such as 25%.
This causes the value for the attribute<xxxx> to be rounded up to the specified per-
centage of its closest order of magnitude. For example, a setting of 25% will cause a
value near 100 to be rounded up to the next multiple of 25 and a value near 1000 will
be rounded up to the next multiple of 250. The purpose of this rounding is to be able
to better group similar jobs together for negotiation purposes. The configuration vari-
ablesSCHEDDROUNDATTR ImageSize , SCHEDDROUNDATTR ExecutableSize ,
andSCHEDDROUNDATTR DiskUsage now have a default value of 25% rather than 4.
The result is that instead of rounding to 10MB multiples, therounding scales at roughly 25%
of the number being rounded.

• The default forSTARTERUPDATEINTERVAL has been changed from 20 minutes to 5
minutes.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 628

• The new parametersPRIVSEP ENABLED and PRIVSEP SWITCHBOARDare required
when setting up execute-side Condor to use privilege separation. See section 3.6.12 for details.

• The new parametersUSEGID PROCESSTRACKING , MIN TRACKINGGID , and
MAXTRACKINGGID are used when setting up a Linux machine to use process tracking
based on dedicated supplementary group IDs. See section 3.12.10 for details.

Bugs Fixed:

• Updated the SOAP API’senum UniverseType to include all the supported universes.

• Missing files that Quill needed to function now appear in thedownloadable release of Condor.

• When acondorstarterdiscovered a missing username in the process of discoveringthe owner
of an executing job, a cryptic and misleading error message was emitted to the daemon log.
The error text has been cleaned up to be more meaningful.

• On Windows daylight saving is handled incorrectly by stat() and fstat(). According to the
MSDN, they both return the UTC time of a file; however, if daylight saving is detected, the
time is adjusted by one hour, which results in thecondormasterthinking that a different
version of it has been installed. In which case it recycles itself, and it’s child process twice a
year: not exactly what one would expect given that UTC time isnot intended to pay attention
to these regional changes.

• When the master starts a collector on a central manager, themaster now pauses for a short time
before starting any other daemons. This helps the other daemons to appear in the collector
more quickly.

• Patched the parallel universe scripts lamscript and mp1script so that they work with newer
versions of the GNU textutils.

• Fixed a bad bug in the standard universe–introduced in Condor 6.9.4, which would cause
corruption of any binary data being written to any fd the application opened. If an application
only writes ASCII data to an fd, the application will not encounter this bug.

• Condor daemons will now print an error message in the logs when<SUBSYS>ATTRScon-
tains attributes that are not valid ClassAd values. Previously, this was a silent error. The most
common reason for this problem is an unquoted string value.

• The condornegotiator now prints out the value of the configuration parameter
PREEMPTIONREQUIREMENTSif it is set. Previously, it always logged that it was unset,
even when it was.

• Fixed bug in the master that occurred if the collector was configured to use an ephemeral
command port (i.e. by explicitly setting the port to 0). The collector is now more reliable in
this situation.

• Standard universe jobs are no longer restricted in the length of file names that may be passed
to system calls within the program. Previously, file names approaching 255 characters or more
could cause the program to crash or behave incorrectly.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 629

• Fixed a long-standing bug causingcondorsubmitto fail when given a requirements expres-
sion longer than 2048 characters.

• Fixed a bug introduced in Condor 6.9.4 that caused grid universe jobs of type gt4 to not work
when the Condor daemons were started as root and any file transfer was associated with the
job.

• Fixed a bug introduced in Condor 6.9.4 that caused thecondorgridmanagerto exit immedi-
ately on startup when the Condor daemons were started as rootand a condor username didn’t
exist.

• Removed race condition that was causing thecondorscheddto core dump on Windows when
the Condor service was stopped.

• When grid universe jobs of grid-type condor, lsf, or pbs arerunning,condorq will now show
the correct accumulated runtime.

• When removing grid universe jobs of type gt2 that have just finished executing, the chance of
encountering Globus GRAM error 31 (the job manager failed tocancel the job as requested)
is now much reduced.

• Fixed a problem introduced in 6.9.4: thecondorscheddwould hang when given a constraint
with condorhold that included jobs that the user did not have permission to modify.

• Fixed a problem from 6.9.4 in which the schedd would not relinquish a claimed startd after
reconnecting to a disconnected job. After the job finished, the startd would remain in the
claimed idle state until the claim lease expired (20 minutesby default).

• Applied theQUERYTIMEOUTto fix problem where the schedd would block for a long time
when doing negotiation with flocked or HAD negotiator, and one of the collectors was not
routable (for instance, when the machine is powered off). Previously, there was no time-out
and would result in a the schedd waiting for the connection attempt to fail, which may take a
long time.

• If bothEXECUTELOGIN IS DEDICATEDandDEDICATEDEXECUTEACCOUNTREGEXP
are defined, the latter now takes precedence, whereas previously the reverse was true.

• Fixed a problem where ifSTARTDRESOURCEPREFIX was set to anything besidesslot
(the default), all jobs would run using the “condor-reuse-slot1” (Windows) orSLOT1 USER
account, regardless of the actual slot used for execution. This problem existed in versions
6.9.3 and 6.9.4 of Condor.

• Undocumented “DAGMan helper” functionality has been removed due to disuse

• Reworked Condor’s detection of CPUs and “Hyper Threads” under Linux. It now correctly
detects these on all machines that we’ve been able to test against. No configuration changes
are involved in this fix.

• When a standard universe job becomes held due to user job policy or a version mismatch, a
hold reason is now set in the job ad.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 630

• Invalid QUILL DB TYPEsettings could result in a segmentation fault incondorq. Condor
now ignores invalid settings and assumesPostgreSQL.

• In rare cases,condorreconfigcould causecondormasterand one of its children to become
deadlocked. This problem was only possible with security negotiation enabled, and it has
therefore existed in all versions of Condor since security negotiation was added.

• Fixed a potential crash in thecondorstarter if it’s told to shutdown while it’s disconnected
from thecondorshadow.

• Fixed the global event log rotation code. Previously, if two or more processes were concur-
rently writing to the event log, they didn’t correctly detect that another writer process had
rotated the file, and would do their own rotation, resulting in data loss.

• Fixed a bug in thecondorscheddthat could cause it to not match any jobs for long periods of
time.

• Fixed potential crash when GCB was turned on.

• Removed spurious attempts to open file /home/condor/execute/dir #####/userdir/externals/install/globus-
4.0.5/cert.pem when SSL authentication is enabled.

• Fixed problem where local universe jobs could leave stray processes behind after termination.

• Fixed a memory leak that affected all daemons receiving ClassAds via the network if encryp-
tion were enabled. This bug existed in versions 6.9.3 and 6.9.4.

• On Windows, fixed a problem that could cause spurious failures with Condor-C or with
streaming a job’s standard output or error.

Known Bugs:

• Condor on MacOSX 10.4 on the PowerPC architecture. will report zero image size and resi-
dent set size for jobs. This is due to bugs in the MacOSX 10.4 kernel on the PowerPC.

• There are some known vulnerabilities in the Virtual Machine (VM) universe support included
in this release that can allow VM universe jobs to read arbitrary files on the host machine.
VM universe is disabled by default, so this potential vulnerability does not affect most sites.
However, VM universe should not be enabled unless the job policy only allows users that you
trust completely to run jobs on the machine.

• Thecondorstartdwill crash if ENABLEBACKFILL is set to True. This was also the case in
6.9.4.

• The pool password authentication method fails to authenticate (and in fact will cause the client
to crash).

• If condordagmancannot execute a PRE or POST script (for example, if the script name
is specified incorrectly),condordagmanwill hang indefinitely. (Note that if the script is
executed and fails,condordagmandeals with this correctly.) (This bug was fixed in version
6.8.7.)

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 631

Version 6.9.4

Release Notes:

• The default in standard universe forcopy to spool is now true . In 6.9.3, it was changed to
false for all universes for performance reasons, but this is deemed too risky for standard
universe, because any modification of the executable is likely to make it impossible to resume
execution using checkpoint files made from the original version of the executable.

• Version 1.5.0 of the Generic Connection Broker (GCB) is nowused for building Condor. This
version of GCB fixes a few critical bugs.

– GCB was unable to pass information about sockets registeredat a GCB broker to child
processes due to a bug in the way a special environment variable was being set.

– All sockets for outbound connections were being registeredat the GCB broker, which
was putting severe strain on the GCB broker even under relatively low load. Now, only
sockets that are listening for inbound connections are registered at the broker.

– The USECLONETO CREATEPROCESSESsetting was causing havoc for applica-
tions linked with GCB. This configuration setting is now always disabled if GCB is
enabled.

– Fixed a race condition in GCBconnect() that would frequently cause connect() attempts
to fail, especially non-blocking connections.

– Fixed bugs in GCBselect() when GCB changes the direction of a connection fromactive
to passive (for example, so that a Condor daemon running behind a firewall will use an
outbound connection to communicate with a public client that had attempted to initiate
contact via the GCB broker).

– Also improved logging at the GCB broker.

Additionally, there was a bug in how Condor was publishing the classified ads for GCB-
enabled daemons. Condor used to be re-writing any attributes containing an IP address when
a classified ad was sent over a network connection (in an effort to provide correct behavior
for multi-homed machines). Now, this re-writing is disabled whenever GCB is enabled, since
GCB already has logic to determine the correct IP addresses to advertise.

For more information about GCB, see section 3.7.3 on page 332.

• The owner of the log file for thecondorgridmanagerhas changed to thecondor user. In
Condor 6.9.3 and previous versions, it was owned by the user submitting the job. Therefore,
the owner of and permissions on an existing log file are likelyto be incorrect. Condor issues
an error if thecondorgridmanageris unable to read and write the existing file. To correct
the problem, an administrator may modify file permissions such that thecondor user may
read and write the log file. Alternatively, an administratormay delete the file, and Condor
will create a new file with the expected owner and permissions. In addition, the definition
for GRIDMANAGERLOG in thecondor config.generic file has changed for Condor
6.9.4.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 632

New Features:

• Condor has been ported to Yellow Dog 5.0 Linux on the PPC architecture. This port of Condor
will also run on the Sony Playstation 3 running said distribution of Linux.

• Enhanced the standard universe to utilize Condor’s privilege separation mechanism.

• Implemented a completely new version of Quill. Quill can now record information about all
the daemons into a relational database. See section 3.11 fordetails on Quill.

• Jobs in the mpi universe now can have $$ expanded in their adsin the same way as other
universes.

• Added thevm universe, to facilitate running jobs under Xen or VMware virtual machines.

• Added the-subsystemcommand tocondorstatusthat queries all ClassAds of a given type.

• Improved the speed at which thecondorscheddwrites to its database filejob queue.log
and the job history file. In benchmark tests, this roughly doubles the maximum throughput
rate to approximately 20 jobs per second, although actual performance depends on the specific
hardware used.

• The condorstartd now records historical statistics about the total time (in seconds) that it
spends in every state/activity pair. If a given slot spent more than 0 seconds in any of the
possible pairs, the specifically-named ClassAd attribute for that pair is defined in the slot’s
ClassAd. The list of possible new machine attributes (alphabetically):

TotalTimeBackfillBusy
TotalTimeBackfillIdle
TotalTimeBackfillKilling
TotalTimeClaimedBusy
TotalTimeClaimedIdle
TotalTimeClaimedRetiring
TotalTimeClaimedSuspended
TotalTimeMatchedIdle
TotalTimeOwnerIdle
TotalTimePreemptingKilling
TotalTimePreemptingVacating
TotalTimeUnclaimedBenchmarking
TotalTimeUnclaimedIdle

• Thecondorshadownow waits and retries after failing to commit the final updateto the job
ClassAd in thecondorschedd’s job queue, rather than immediately aborting and causing the
job to be requeued to run again. See page 203 for the related configuration options.

• If the condorstarterfails with a core dump on Unix, the core dump file is now put in the LOG
directory. Previously, it was deleted by thecondorstartd.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 633

• Added a small amount of randomization to the default valuesof PERIODIC CHECKPOINT
(in the example config file) andPASSWDCACHEREFRESH(in Condor’s internal default) in
order to decreases the chances of synchronized timing across many processes causing over-
loading of servers.

• Added the new submit commandcron window. It is an alias todeferral window.

• Optimized the submission of grid-type gt4 grid universe jobs to the remote re-
source.Submission now takes one operation instead of three.

• Added new functionality for multi-homed machines (those with multiple network inter-
faces) to allow Condor to handle private networks in some cases without having to
use the Generic Connection Broker (GCB). See the entries below that describe the new
PRIVATE NETWORKNAME and PRIVATE NETWORKINTERFACE configuration vari-
ables.

Configuration Variable Additions and Changes:

• AddedSLOTx EXECUTE. This allows the execute directory to be configured independently
for each batch slot. You could use this, for example, to have jobs on a multi-CPU machine
using scratch space on different disks so that there is less chance of them interfering with each
other. See page 152 for more details.

• The semantics ofSLOT TYPE <N> has changed slightly. Previously, any resource shares
left undefined would default to a fractional share equal to1/NUM CPUS. Now, the default is
auto , which causes all remaining resources to be evenly divided.This is more convenient in
cases where some slots are configured to take more or less thantheir “fair” share and the rest
are desired to evenly split the remainder. The underlying reason for this change was to be able
to better support the specification of disk partition sharesin all the possible cases: Theauto
share takes into account how many slots are sharing the same disk partition.

• When set toTrue , the new configuration variableLOGSUSETIMESTAMPwill cause Con-
dor to print all daemon log messages using a Unix timestamp instead of a formatted date
string. This feature is useful for debugging Condor Glideins that may be executing in dif-
ferent timezones. It should be noted that this does not affect job user logs. The default is
False .

• The existing configuration variableLOGONNFS IS ERRORhas changed behavior. When
set toFalse , condorsubmitdoes not emit a warning about user logs files being on NFS.

• The existing configuration variablesDAEMONLIST , DCDAEMONLIST , and
MASTERHA LIST have changed behavior. Trailing commas are now ignored. Previ-
ously, trailing commas could cause thecondormasterto misbehave, including exiting with
an error.

• The <SUBSYS>DAEMONAD FILE was defined for thecondorschedd. This setting was
first made available in Condor 6.9.1 but was not used for any daemon. It appears in the
configuration file asSCHEDDDAEMONAD FILE and is set to the file .scheddclassad in the

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 634

LOG directory. This setting is not necessary unless you are using the Quill functionality, and
pools may upgrade to 6.9.4 without setting it if they are not using Quill.

• Added new configuration variablesDBMSD, DBMSDARGS, andDBMSDLOG, which define
the location of thecondordbmsddaemon, the command line arguments to that daemon, and
the location of the daemon’s log. Default values are

DBMSD = $(SBIN)/condor_dbmsd
DBMSD_ARGS = -f
DBMSD_LOG = $(LOG)/DbmsdLog

These configuration variables are only necessary when usingQuill, and then must be defined
on only one machine in the Condor pool.

• Added new configuration variables PRIVATE NETWORKNAME and
PRIVATE NETWORKINTERFACE , which allow Condor daemons to function more
properly on multi-homed machines and in certain network configurations that involve private
networks. There are no default values, both must be explicitly defined to have any effect. See
section 3.3.6 on page 165 for more information about these two new settings.

• Added new configuration variablesEVENTLOG, MAXEVENTLOG, EVENTLOGUSEXML
, andEVENTLOGJOB AD INFORMATIONATTRS to specify the new event log which logs
job user log events, but across all users. See section 3.3.4 on page 161 for definitions of these
configuration variables.

Bugs Fixed:

• Trailing commas in lists of items in submit files and configuration files are now ignored.
Previously, Condor would treat trailing commas in various surprising ways.

• Numerous bugs in GCB and the interaction between Condor andGCB. See the release notes
above for details.

• The submit file entry “coresize” was not being honored properly on many universe. It is now
honored on all universes except pvm and the grid universes (except where the grid type is
Condor). For the java universe, it controls the core file sizefor the JVM itself.

• Thecondorconfigureinstallation script now allows Condor to be installed on hosts without a
fully-qualified domain name.

• Fixed a bug incondordagman: if a DAG run with a per-DAG configuration file specification
generated a rescue DAG, the rescue DAG file did not contain theappropriate DAG configura-
tion file line. (This bug was introduced when the per-DAG configuration file option was added
in version 6.9.2.)

• Fixed a bug introduced in 6.9.3 when handling local universe jobs. The starter ignored failures
in contacting thecondorscheddin the final update to the job queue.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 635

• When thecondorscheddis issued a graceful shutdown command, any jobs that runningwith a
job lease are allowed to keep running. When thecondorscheddstarts back up at a later time, it
will spawncondorshadowto reconnect to the jobs if they are still executing. This mimics the
same behavior as a fast shutdown. This also fixes a bug in 6.9.3in which thecondorschedd
would fail to reconnect to jobs that were left running duringa graceful shutdown.

• When thecondorstarter is gracefully shutting down and if it has become disconnected from
thecondorshadow, it will wait for the job lease time to expire before giving upon telling the
condorshadowthat the job was evicted. Previously, thecondorstarterwould exit as soon as
it was done evicting the job.

• Job ad attributeHoldReasonCode is now properly set whencondorhold is called and
when jobs are submitted on hold.

• If a job specified a job lease duration, and thecondorscheddwas killed or crashed, thecon-
dor shadowused to notice when thecondorscheddwas gone, and gracefully shutdown the
job (evicting the job at the remote site). Now, thecondorshadowhonors the job lease du-
ration, and if the lease has not yet expired, it simply existswithout evicting the job, in the
hopes that thecondorscheddwill be restarted in time to reconnect to the still-running job and
resume computation.

• Fixed a bug from 6.9.3 in whichcondorq -format no longer worked when given an expres-
sion (as opposed to simple attribute reference). The expression was always treated as being
undefined.

• When a condor daemon such as thecondorscheddor condornegotiatortried to establish
many new security sessions for UDP messages in a short span oftime, it was possible for
the daemon to run out of file descriptors, causing it to abort execution and be restarted by the
condormaster. A problem was found and fixed in the mechanism that protects against this.

• Improved error descriptions when Condor-C encounters failures when sending input files to
the remote schedd.

• Rare failure conditions during stage in would cause Condor-C to put the state of the job in the
remote schedd into an invalid state in which it would run but later fail during stage out. This
now results in the job on the submit side going on hold with a staging failure.

• Fixed a bug which could causecondorstorecred to crash during common use.

• Fixed a bug where the vanilla universecondorstarter would possibly crash when running a
job not as the owner of the job.

• Fixed a bug which would cause acondorstarter being used for the local universe to core
dump.

• Fixed a bug which caused thecondorscheddto core dump while processing a job’s crontab
entries in the submit description file.

• Fixed a privilege separation bug in the standard universecondorstarter.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 636

Known Bugs:

• standard universe jobs do not work when writing binary data. The behavior exhibited in this
case may include the job crashing, or corrupt binary written.

• grid universe jobs for the gt4 grid type do not work, if Condor daemons are started as root
and there is file transfer associated with or specified by the job. These jobs are placed on hold.

• TheSTARTDRESOURCEPREFIX setting on Windows results in broken behavior on both
Condor 6.9.3 and 6.9.4. Specifically, when this setting is given a value other than its default
(“slot”), all jobs will run using the “condor-reuse-slot1”user account, regardless of the actual
slot used for execution.

Additions and Changes to the Manual:

• New documentation for the newvm universe in the User’s Manual, section 2.11. Definitions
of configuration variables for thevm universe are in section 3.3.28.

• New RDBMS schema tables added for Quill in section 3.11.4.

• ClassAd attribute definitions reside in a new appendix. In addition to machine and job at-
tributes, DaemonMaster and Scheduler attributes are included.

Version 6.9.3

Release Notes:

• As of version 6.9.3, the entire Condor system has undergonea major terminology change.
For almost 10 years, Condor has used the termvirtual machineor vm to refer to each distinct
resource that could run a Condor job (for example, each of theCPUs on an SMP machine).
Back when we chose this terminology, it made sense, since each of these resource was like
an independent machine in a pool, with its own state, ClassAd, claims, and so on. However,
in recent years, the termvirtual machineis now almost universally associated with the kinds
of virtual machines created using tools such as VMware and Xen. Entire operating systems
run inside a given process, usually emulating the underlying hardware on a host machine.
So, to avoid confusion with these other kinds of virtual machines, the oldvirtual machine
terminology has been replaced by the termslot.

Numerous configuration settings, command-line arguments to Condor tools, ClassAd attribute
names, and so on, have all been modified to reflect the newslot terminology. In general, the
old settings and options will still work, but are now retiredand may disappear in the future.

• Thecondor install installation script has been removed. All sites should usecondorconfigure
when setting up a new Condor installation.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 637

• TheSECONDARYCOLLECTORLIST configuration variable has been removed. Sites rely-
ing on this variable should instead use the configuration variableCOLLECTORHOST. It may
be used to define a list ofcondorcollectordaemon hosts.

• Cleaned up and improved help information forcondorhistory.

New Features:

• Numerous scalability and performance improvements. Given enough memory, the schedd can
now handle much larger job queues (e.g. 10s of thousands) without the severe degradation in
performance that used to be the case.

• Added theSTARTLOCALUNIVERSE andSTARTSCHEDULERUNIVERSE parameters
for thecondorschedd. This allows administrators to control whether a Local/Scheduler uni-
verse job will be started. This expression is evaluated against the job’s ClassAd before the
Requirements expression.

• All Local and Scheduler universe jobs now have theirRequirements expressions evaluated
before execution. If the expression evaluates to false, thejob will not be allowed to begin
running. In previous versions of Condor, Local and Scheduler universe jobs could begin
execution without thecondorscheddchecking the validity of theRequirements .

• AddedSCHEDDINTERVAL TIMESLICE andPERIODIC EXPRTIMESLICE . These in-
dicate the maximum fraction of time that the schedd will spend on the respective activities.
Previously, these activities were done on a fixed interval, so with very large job queue sizes,
the fraction of time spent was increasing to unreasonable levels.

• Under Intel Linux, addedUSECLONETO CREATEPROCESSES. This defaults to true and
results in scalability improvements for processes using large amounts of memory (e.g. a
schedd with a lot of jobs in the queue).

• Jobs in the parallel universe now can have $$ expanded in their ads in the same way as other
universes.

• Local universe jobs now support policy expression evaluation, which includes the
ONEXIT REMOVE, ONEXIT HOLD, PERIODIC REMOVE, PERIODIC HOLD, and
PERIODIC RELEASE attributes. The periodic expressions are evaluated at intervals
determined by thePERIODIC EXPRINTERVAL configuration macro.

• Jobs can be scheduled to executed periodically, similar tothe crontab functionality
found in Unix systems. Thecondorscheddcalculates the next runtime for a job based
on the new CRONMINUTE, CRONHOUR, CRONDAYOF MONTH, CRONMONTH, and
CRONDAYOF WEEKattributes. A preparation time defined by theCRONPREPTIME at-
tribute allows a job to be submitted to the execution machinebefore the actual time the job
is to begin execution. Jobs that would like to be run repeatedly will need to define the the
ONEXIT REMOVEattribute properly so that they are re-queued after executing each time.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 638

• Condor now looks for its configuration file in/usr/local/etc if the CONDORCONFIG
environment variable is not set and there is no condorconfig file located in/etc/condor .
This allows a default Condor installation to be more compatible with Free BSD.

• If a user job requests streaming input or output in the submit file, the job can now run with job
leases and the job will continue to run for the lease durationshould the submit machine crash.
Previously, jobs with streaming i/o would be evicted if the submit machine crashed. While the
submit machine is down, if the job tried to issue a streaming read or write, the job will block
until the submit machine returns or the job lease expires.

• Ever since version 6.7.19,condorsubmithas added a default job lease duration of 20 minutes
to all jobs that support these leases. However, there was no way to disable this functionality if a
user did not want job lease semantics. Now, a user can placejob_lease_duration = 0
in their submit file to manually disable the job lease.

• Added new configuration knobSTARTERUPLOADTIMEOUT which sets the timeout for
thecondorstarter to upload output files to thecondorshadowon job exit. The default value
is 200 seconds, which should be sufficient for serial jobs. For parallel jobs, this may need to
be increased if many large output files are sent back to the shadow on job exit.

• condordagmannow aborts the DAG on “scary” submit events. These are submitevents
in which the Condor ID of the event does not match the expectedvalue. Previously,con-
dor dagmanprinted a warning, but continued. To restore Condor to the previous behavior, set
the newDAGMANABORTONSCARYSUBMIT configuration variable toFalse .

• When thecondormasterdetects that its GCB broker is unavailable and there is a listof
alternative brokers, it will restart immediately ifMASTERWAITS FORGCBBROKERis set
to False instead of waiting for another broker to became available.condorglideinnow sets
MASTERWAITS FORGCBBROKERto False in its configuration file.

• When using GCB and a list of brokers is available, thecondormasterwill now pick a random
broker rather than the least-loaded one.

• All Condor daemons now evaluate some ClassAd expressions whenever they are about to
publish an update to thecondorcollector. Currently, the two supported expressions are:

DAEMON SHUTDOWN If True , the daemon will gracefully shut itself down and will not be
restarted by thecondormaster(as if it sent itself acondoroff command).

DAEMON SHUTDOWN FAST If True , the daemon will quickly shut itself down and will not
be restarted by thecondormaster(as if it sent itself acondoroff command using the
-fast option).

For more information about these expressions, see section 3.3.5 on page 164.

• When thecondormastersends email announcing that another daemon has died, exited, or
been killed, it now notes the name of the machine, the daemon’s name, and a summary of the
situation in the Subject line.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 639

• Anyplace in a Condor configuration or submit description file where wild cards may be used,
you can now place wild cards at both the beginning and end of the string pattern (i.e. match
strings that contain the text between the wild cards anywhere in the string). Previously, only
one wild card could appear in the string pattern.

• Added optional configuration settingNEGOTIATORMATCHEXPRS. This allows the nego-
tiator to insert expressions into the matched ClassAd. See page 214 for more information.

• Increased speed of ClassAd parsing.

• Added DEDICATEDEXECUTEACCOUNTREGEXP and deprecated the boolean setting
EXECUTELOGIN IS DEDICATED, because the latter could not handle a policy where
some jobs run as the job owner and some run as dedicated execution accounts. Also added sup-
port forSTARTERALLOWRUNASOWNERunder Unix. See Section 3.3.7 and Section 3.6.11
for more information.

• All Condor daemons now publish aMyCurrentTime attribute which is the current local
time at the time the update was generated and sent to thecondorcollector. This is in addition
to theLastHeardFrom attribute which is inserted by thecondorcollector(the current local
time at the collector when the update is received).

• condorhistorynow accepts partial command line arguments. For example, -constraint can be
abbreviated -const. This bringscondorhistoryin line with other Condor command line tools.

• condorhistory can now emit ClassAds formatted as XML with the new -xml option. This
bringscondorhistorymore in linecondorq.

• The$$ substitution macro syntax now supports the insertion of literal$$ characters through
the use of$$(DOLLARDOLLAR). Also, $$ expansion is no longer recursive, so if the value
being substituted in place of a$$ macro itself contains$$ characters, these are no longer
interpreted as substitution macros but are instead inserted literally.

• When started as root on a Linux 64-bit x86 machine, Condor daemons will now leave core
files in the log directory when they crash. This matches Condor’s behavior on most other
Unix-like operating systems, including 32-bit x86 versions of Linux.

• The CONDORSLOTvariable is now placed into the environment for jobs of all universes.
This variable indicates what slot a given job is running on, and will have the same value as
theSlotID from the machine classified ad where the job is running. TheCONDORSLOT
variable replaces the deprecatedCONDORVMenvironment variable, which was only defined
for standard universe jobs.

• Added aUSEPROCDconfiguration parameter. If this parameter is set to true fora given
daemon, the daemon will use thecondorprocdprogram to monitor process families. If set to
false, the daemon will execute process family monitoring logic on its own. Thecondorprocd
is more scalable and is also an essential piece in the ongoingprivilege separation effort. The
disadvantage of using the ProcD is that it is newer, less-hardened code.

Configuration Variable Additions and Changes:

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 640

• The SECONDARYCOLLECTORLIST configuration variable has been removed. Sites re-
lying on this variable should instead use the configuration variableCOLLECTORHOST to
define a list ofcondorcollectordaemon hosts.

• Added new configuration variables STARTLOCALUNIVERSE and
STARTSCHEDULERUNIVERSE for the condorschedddaemon. These boolean ex-
pressions default toTrue . STARTLOCALUNIVERSEis relevant only to local universe
jobs. STARTSCHEDULERUNIVERSEis relevant only to scheduler universe jobs. These
new variables allow an administrator to define aSTARTexpression specific to these jobs. The
expression is evaluated against the job’s ClassAd before theRequirements expression.

• Added new configuration variables SCHEDDINTERVAL TIMESLICE and
PERIODIC EXPRTIMESLICE . These configuration variables address a scalability
issue for very large job queues. Previously, thecondorschedddaemon handled an activity
related to counting jobs, as well as the activity related to evaluating periodic expressions
for jobs at the fixed time interval of 5 minutes. With large jobqueues, the fraction of the
condorschedddaemon execution time devoted to these two activities became excessive, such
that it could be doing little else. The fixed time interval is now gone, and Condor calculates
the amount of time spent on the two activities, using these new configuration variables to
calculate an appropriate time interval.

Each is a floating point value within the range (noninclusive) 0.0 to 1.0. Each determines
the maximum fraction of the time interval that thecondorschedddaemon will spend on the
respective activity.SCHEDDINTERVAL TIMESLICE defaults to the value 0.05, such that
the calculated time interval will be 20 * the amount of time spent on the counting jobs activ-
ity. PERIODIC EXPRTIMESLICE defaults to the value 0.01, such that the calculated time
interval will be 100 * the amount of time spent on the periodicexpression evaluation activity.

• Added new configuration variableUSECLONETO CREATEPROCESSES, relevant only to
the Intel Linux platform. This boolean value defaults toTrue , and it results in scalability
improvements for Condor processes using large amounts of memory. These processes may
clone themselves instead of forking themselves. An exampleof the improvement occurs for a
condorschedddaemon with a lot of jobs in the queue.

• Added new configuration variableSTARTERUPLOADTIMEOUT, which allows a config-
urable time (in seconds) for a timeout used by thecondorstarter. The default value of 200
seconds replaces the previously hard coded value of 20 seconds. This timeout before job fail-
ure is to upload output files to thecondorshadowupon job exit. The default value should be
sufficient for serial jobs. For parallel jobs, it may need to be increased if there are many large
output files.

• Added new configuration variableDAGMANABORTONSCARYSUBMIT . This boolean
variable defaults toTrue , and causescondordagmanto abort the DAG on “scary” sub-
mit events. These are submit events in which the Condor ID of the event does not match
the expected value. Previously,condordagmanprinted a warning, but continued. To restore
Condor to the previous behavior, setDAGMANABORTONSCARYSUBMITto False .

• Added new configuration variableNEGOTIATORMATCHEXPRS . It causes thecon-
dor negotiatorto insert expressions into the matched ClassAd. See page 214for details.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 641

• Added new configuration variable DEDICATEDEXECUTEACCOUNTREGEXP
to replace the retired EXECUTELOGIN IS DEDICATED , because

EXECUTELOGIN IS DEDICATEDcould not handle a policy where some jobs run as
the job owner and others run as dedicated execution accounts. Also added support for
the existing configuration variableSTARTERALLOWRUNASOWNERunder Unix. See
Section 3.3.7 and Section 3.6.11 for more information.

• Added new configuration variableUSEPROCD. This boolean variable defaults toFalse for
thecondormaster, andTrue for all other daemons. WhenTrue , the daemon will use the
condorprocd program to monitor process families. WhenFalse , a daemon will execute
process family monitoring logic on its own. Thecondorprocd is more scalable and is also
an essential piece in the ongoing privilege separation effort. The disadvantage of using the
condorprocd is that it is newer, less-hardened code.

Bugs Fixed:

• On Unix systems, Condor can now handle file descriptors larger than FDSETSIZE when
using the select system call. Previously, file descriptors larger than FDSETSIZE would cause
memory corruption and crashes.

• When an update to thecondorcollector from thecondorstartd is lost, it is possible for mul-
tiple claims to the same resource to be handed out by thecondornegotiator. This is still true.
What is fixed is that these multiple claims will not result in mutual annihilation of the various
attempts to use the resource. Instead, the first claim to be successfully requested will proceed
and the others will be rejected.

• condorglideinwas settingPREENINTERVAL =0 in the default configuration, but this is no
longer a legal value, as of 6.9.2.

• condorglidein was not setting necessary configuration parameters forcondorprocd in the
default glidein configuration.

• In 6.9.2, Condor daemons crashed after failing to authenticate a network connection.

• condorstatuswill now accurately report theActvtyTime (activity time) value in Condor
pools where not all machines are in the same timezone, or if there is clock-skew between the
hosts.

• Fixed the known issue in Condor 6.9.2 where using theEXECUTELOGIN IS DEDICATED
setting on UNIX platforms would cause thecondorprocd to crash.

• Failure when activating a COD claim no longer will result inan opportunistic job running on
the samecondorstartdbeing left suspended. This problem was most likely to be seenwhen
using theGLEXECSTARTERfeature.

• In Condor 6.9.2 for Tru64 UNIX, thecondormasterwould immediately fail if started as root.
This problem has been fixed.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 642

• Condor 6.9.2 introduced a problem where thecondormasterwould fail if started as root with
the UID part of theCONDORIDS parameter set to 0 (root). This issue has been fixed.

Known Bugs:

• The 6.9.3condorschedddaemon incorrectly handles jobs with leases (true by default for
vanilla, java, and parallel universe jobs) when shutting down gracefully. These jobs are al-
lowed to continue running, but when thecondorschedddaemon is started back up, it fails
to reconnect to them. The result is that the orphaned jobs areleft running for the duration
of the job’s lease time (a default time of 20 minutes). The state of the jobs in the restarted
queue is independent of any orphaned running jobs, so these queued jobs may begin running
on another machine while orphans are still running.

• condorq -format in 6.9.3 does not work with expressions. It behaves as if the expression
evaluates to an undefined result.

Version 6.9.2

Release Notes:

• As part of ongoing security enhancements, Condor now has a new, required daemon:con-
dor procd. This daemon is automatically started by thecondormaster, you do not need to
add it toDAEMONLIST . However, you must be certain to update thecondormasterif you
update any of the other Condor daemons.

• Some configuration settings that previously accepted 0 no longer do so. Instead the daemon
using the setting will exit with an error message listing theacceptable range to its log.
For these settings 0 was equivalent to requesting the default. As this was undocumented
and confusing behavior it is no longer present. To request a setting use its default, either
comment it out, or set it to nothing (“EXAMPLESETTING=”). Settings impacted include but
are not limited to: MASTERBACKOFFCONSTANT, MASTERBACKOFFCEILING
, MASTERRECOVERFACTOR , MASTERUPDATEINTERVAL ,
MASTERNEWBINARY DELAY , PREENINTERVAL , SHUTDOWNFAST TIMEOUT
, SHUTDOWNGRACEFULTIMEOUT , MASTER<name> BACKOFFCONSTANT ,
MASTER<name> BACKOFFCEILING ,

• Version 1.4.1 of the Generic Connection Broker (GCB) is nowused for building Condor. This
version of GCB fixes a timing bug where a client may incorrectly think a network connection
has been established, and also guards against an unresponsive client from causing a denial of
service by the broker. For more information about GCB, see section 3.7.3 on page 332.

New Features:

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 643

• On UNIX, an execute-side Condor installation can run without root privileges and still execute
jobs as different users, properly clean up when a job exits, and correctly enforce policies
specified by the Condor administrator and resource owners. Privileged functionality has been
separated into a well-defined set of functions provided by a setuid helper program. This
feature currently does not work for the standard or PVM universes.

• Added support for EmailAttributes in the parallel universe. Previously, it was only valid in
the vanilla and standard universes.

• Added configuration parameterDEDICATEDSCHEDULERUSEFIFO which defaults to
true. When false, the dedicated scheduler will use a best-fitalgorithm to schedule parallel
jobs. This setting is not recommended, as it can cause starvation. When true, the dedicated
scheduler will schedule jobs in a first-in, first-out manner.

• Added-dump to condorconfigval which will print out all of the macros defined in any of
the configuration files found by the program.condorconfigval -dump -v will augment the
output with exactly what line and in what file each configuration variable was found. NOTE: :
The output format of the-dump option will most likely change in a future revision of Condor.

• Node names incondordagmanDAG files can now be DAG keywords, except for PARENT
and CHILD.

• Improved the log message whenOnExitRemove or OnExitHold evaluates to UNDE-
FINED.

• Added theDAGMANONEXIT REMOVEconfiguration macro, which allows customization of
theOnExitRemove expression generated bycondorsubmitdag.

• When using GCB, Condor can now be told to choose from a list ofbrokers.
NET REMAPINAGENT is now a space and comma separated list of brokers. On start up,
thecondormasterwill query all of the brokers and pick the least-used one for it and its chil-
dren to use. If none of the brokers are operational, then thecondormasterwill wait until one
is working. This waiting can be disabled by settingMASTERWAITS FORGCBBROKER
to FALSE in the configuration file. If the chosen broker fails and recovery is not possible or
another broker is available, thecondormasterwill restart all of the daemons.

• When using GCB, communications between parent and child Condor daemons on the same
host no longer use the GCB broker. This improves scalabilityand also allows a single host to
continue functioning if the GCB broker is unavailable.

• Thecondorscheddnow uses non-blocking methods to send the “alive” message tothecon-
dor startd when renewing the job lease. This prevents thecondorscheddfrom blocking for
20 seconds while trying to connect to a machine that has become disconnected from the net-
work.

• condoradvertisecan read the classad to be advertised from standard input.

• Unix Condor daemons now reinitialize their DNS configuration (e.g. IP addresses of the name
servers) on reconfig.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 644

• A configuration file forcondordagmancan now be specified in a DAG file or on thecon-
dor submitdagcommand line.

• Addedcondorcod option -leasefor creation of COD claims with a limited duration lease.
This provides automatic cleanup of COD claims that are not renewed by the user. The default
lease is infinitely long, so existing behavior is unchanged unless-leaseis explicitly specified.

• Addedcondorcod commanddelegateproxy which will delegate an x509 proxy to the re-
quested COD claim. This is primarily useful for sites wishing to use glexec to spawn the
condorstarterused for COD jobs. The new command optionally takes an-x509proxyargu-
ment to specify the proxy file. If this argument is not present, condorcodwill search for the
proxy using the same logic ascondorsubmitdoes.

• STARTDDEBUGcan now be empty, indicating a default, minimal log level. Itnow defaults
to empty. Previously it had to be non-empty and defaulted to include DCOMMAND.

• The addition of thecondorprocddaemon means that all process family monitoring and con-
trol logic is no longer replicated in each Condor daemon thatneeds it. This improves Condor’s
scalability, particularly on machines with many processes.

Bugs Fixed:

• Under various circumstances, condor 6.9.1 daemons would abort with the message, “ER-
ROR: Unexpected pending status for fake message delivery.”A specific example is
whenOnExitRemove or OnExitHold evaluated to UNDEFINED. This caused thecon-
dor scheddto abort.

• In Condor 6.9.1, thecondorscheddwould die during startup when trying to reconnect to
running jobs for which thecondorscheddcould not find a startd ClassAd. This would happen
shortly after logging the following message: “Could not findmachine ClassAds for one or
more jobs. May be flocking, or machine may be down. Attemptingto reconnect anyway.”

• Improved Condor’s validity checking of configuration values. For example, in some cases
where Condor was expecting an integer but was given an expression such as 12*60, it would
silently interpret this as 12. Such cases now result in the condor daemon exiting after issuing
an error message into the log file.

• When sending aWMCLOSEmessage to a process on Windows, Condor daemons now invoke
the helper programcondorsoftkill to do so. This prevents the daemon from needing to tem-
porarily switch away from its dedicated service Window Station and Desktop. It also fixes
a bug where daemons would leak Window Station and Desktop handles. This was mainly a
problem in thecondorscheddwhen running many scheduler universe jobs.

Known Bugs:

• condorglideingenerates a default config file that setsPREENINTERVAL to an invalid value
(0). To fix this, remove the setting ofPREENINTERVAL.

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 645

• There are a couple of known issues with Condor’sGLEXECSTARTER feature when used
in conjunction with COD. First, thecondorcod tool invoked with thedelegateproxy
option will sometimes incorrectly report that the operation has failed. In addition, the
GLEXECSTARTERfeature will not work properly with COD unless the UID that the each
COD job runs as is different than the UID of the opportunisticjob or any other COD jobs that
are running on the execute machine when the COD claim is activated.

• TheEXECUTELOGIN IS DEDICATEDfeature has been found to be broken on UNIX plat-
forms. Its use will cause thecondorprocdto crash, bringing down the other Condor daemons
with it.

Version 6.9.1

Release Notes:

• The 6.9.1 release contains all of the bug fixes and enhancements from the 6.8.x series up to
and including version 6.8.3.

• Version 1.4.0 of the Generic Connection Broker (GCB) library is now used for building Con-
dor, and it is the 1.4.0 versions of thegcb broker and gcb relay serverprograms that are
included in this release. This version of GCB includes enhancements used by Condor along
with a new GCB-related command-line tool:gcb broker query. Condor 6.9.1 will not work
properly with older versions of thegcb broker or gcb relay server. For more information
about GCB, see section 3.7.3 on page 332.

New Features:

• Improved the performance of the ClassAd matching algorithm, which speeds up thecon-
dor scheddand other daemons.

• Improved the scalability of the algorithm used by thecondorschedddaemon to find runnable
jobs. This makes a noticeable difference incondorschedddaemon performance, when there
are on the order of thousands of jobs in the queue.

• theD COMMANDdebugging level has been enhanced to log many more messages.

• Updated the version of DRMAA, which contains several greatimprovements regarding scal-
ability and race conditions.

• Added theDAGMANSUBMIT DEPTHFIRST configuration macro, which causescon-
dor dagmanto submit ready nodes in more-or-less depth-first order, if set to True . The
default behavior is to submit the ready nodes in breadth-first order.

• Added configuration parameterUSEPROCESSGROUPS. If it is set toFalse , then Condor
daemons on Unix machines will not create new sessions or process groups. This is intended
for use with Glidein, as we have had reports that some batch systems cannot properly track
jobs that create new process groups. The default value isTrue .

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 646

• The default value for the submit file commandcopy to spool has been changed toFalse ,
because copying the executable to the spool directory for each job (or job cluster) is almost
never desired. Previously, the default wasTrue in all cases, except for grid universe jobs and
remote submissions.

• More types of file transfer errors now result in the job goingon hold, with a specific error
message about what went wrong. The new cases involve failures to write output files to disk
on the submit side (for example, when the disk is full). As always, the specific error number is
recorded inHoldReasonSubCode , so you can enforce an automated error handling policy
usingperiodic releaseor periodic remove.

• Added the<SUBSYS>DAEMONAD FILE configuration variable, which is similar to the
<SUBSYS>ADDRESSFILE . This new variable will be used in future versions of Condor,
but is not necessary for 6.9.1.

Bugs Fixed:

• Fixed a bug in thecondormasterso that it will now send obituary e-mails when it kills child
processes that it considers hung.

• condorconfigureused to always make a personal Condor with–install even when–type
called for only execute or submit types. Now,condorconfigurehonors the–type argument,
even when using–install. If –type is not specified, the default is to still install a full personal
Condor with the following daemons:condormaster, condorcollector, condornegotiator,
condorschedd, condorstartd.

• While removing, putting on hold, or vacating a large numberof jobs, it was possible for the
condorscheddand thecondorshadowto temporarily deadlock with each other. This has
been fixed under Unix, but not yet under Windows.

• Communication from acondorscheddto acondorstartdnow occurs in a nonblocking man-
ner. This fixes the problem of thecondorscheddblocking when the claimed machine running
thecondorstartdcannot be reached, for example because the machine is turnedoff.

Known Bugs:

• Under various circumstances, condor 6.9.1 daemons abort with the message, “ERROR:
Unexpected pending status for fake message delivery.” A specific example is when
OnExitRemove or OnExitHold evaluated to UNDEFINED, which causes thecon-
dor scheddto abort.

• In Condor 6.9.1, thecondorscheddwill die during startup when trying to reconnect to running
jobs for which thecondorscheddcan not find a startd ClassAd. This happens shortly after
logging the following message: “Could not find machine ClassAds for one or more jobs. May
be flocking, or machine may be down. Attempting to reconnect anyway.”

Condor Version 7.2.3 Manual

8.6. Development Release Series 6.9 647

Version 6.9.0

Release Notes:

• The 6.9.0 release contains all of the bug fixes and enhancements from the 6.8.x series up to
and including version 6.8.2.

New Features:

• Preliminary support for usingglexecon execute machines has been added. This feature causes
thecondorstartd to spawn thecondorstarteras the user thatglexecdetermines based on the
user’s GSI credential.

• A “per-job history files” feature has been added to thecondorschedd. When enabled,
this will cause thecondorscheddto write out a copy of each job’s ClassAd when it
leaves the job queue. The directory to place these files in is determined by the parameter
PERJOB HISTORYDIR . It is the responsibility of whatever external entity (for example,
an accounting or monitoring system) is using these files to remove them as it completes its
processing.

• condorchirp command now supports writing messages to the user log.

• condorchirp getattr and putattr now send all classad getattr and putattrcommands to the proc
0 classad, which allows multiple proc parallel jobs to use proc 0 as a scratch pad.

• Parallel jobs now support anAllRemoteHosts attribute, which lists all the hosts across all
procs in a cluster.

• TheDAGMANABORTDUPLICATES configuration macro (which causescondordagmanto
abort itself if it detects anothercondordagmanrunning on the same DAG) now defaults to
True instead ofFalse .

Bugs Fixed:

• None.

Known Bugs:

• None.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 648

8.7 Stable Release Series 6.8

This is a stable release series of Condor. It is based on the 6.7 development series. All new features
added or bugs fixed in the 6.7 series are available in the 6.8 series. As usual, only bug fixes (and
potentially, ports to new platforms) will be provided in future 6.8.x releases. New features will be
added in the forthcoming 6.9.x development series.

The 6.8.x series supports a different set of platforms than 6.6.x. Please see the updated table of
available platforms in section 1.5 on page 5.

The details of each version are described below.

Version 6.8.8

Release Notes:

• This release fixes a security vulnerability that affects those who rely upon Con-
dor’s network message integrity checking (where the configuration is set to
SEC_DEFAULT_INTEGRITY = REQUIRED). Not all of Condor’s network commu-
nications are vulnerable to the integrity checking bug, so based on the scope of the affected
parts, we consider the level of threat to be modest. A denial of service attack could be
launched against Condor by an attacker who tampers with Condor’s network communi-
cations. All previous releases of Condor are affected by this bug. For users of the 6.9
development series, a fix for this problem will be released aspart of the new 7.0.0 stable
series release, which is planned to happen near the end of 2007.

New Features:

• None.

Bugs Fixed:

• Fixed a named pipe collision on Windows: streaming error and output would not work on
more than one slot (Condor version 6.8.8 terminology: Condor vm) at a time.

• Fixed a bug in Condor’s network message integrity checking.

• Fixed a forward-compatibility problem when a 6.8condorstartd runs jobs for a 6.9 or later
condorscheddand the communication between them is configured to use integrity checking
or encryption. The problem caused thecondorstartd to crash.

• Fixed a problem that sometimes caused corruption of ClassAd data that is forwarded from one
condorcollectordaemon to another viaCONDORVIEW HOST.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 649

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 6.8.7

Release Notes:

• None.

New Features:

• None.

Bugs Fixed:

• On Windows, fixed a problem that could cause spurious failures with Condor-C or with
streaming a job’s standard output or error.

• A claim in the state Claimed/Idle could not be preempted until it transitioned into Busy or
went away of its own accord. This bug was introduced in 6.7.1.

• The user-based authorization parameters in the configuration file (for example,ALLOWREAD)
now properly recognize values where the user name contains awild card (for example,
* @cs.wisc.edu/bird.cs.wisc.edu).

• A rare threading problem in the Windows version of Condor has been fixed. The problem
could cause memory corruption in thecondorstarter while receiving input files and in the
condorscheddwhile transferring input/output files for a remotely submitted job or a spooled
job.

• Increased the verbosity of some error messages (related toreading log files) incon-
dor dagman.

• Fixed a bug incondordagmanthat would cause it to hang if it was unable to successfully
spawn a PRE or POST script. This case is now dealt with as a PRE or POST script failure.

Known Bugs:

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 650

• None.

Additions and Changes to the Manual:

• None.

Version 6.8.6

Release Notes:

• Condor is now officially supported on Microsoft Vista.

• Condor is now officially supported on MacOS running natively on Intel CPUs. (and Condor
binaries for Intel MacOS are now available for download).

• Condor now uses Globus 4.0.5 for GSI, pre-WS GRAM, and GridFTP support.

New Features:

• On all Unix ports of Condor except MacOSX, AIX, and Tru64, separate debug symbol files
are now supported. This allows meaningful debugging of corefiles in addition to attaching to
stripped executables during runtime.

• condordagmannow prints reports of pending nodes to thedagman.out , if it has been wait-
ing more thanDAGMANPENDINGREPORTINTERVAL seconds without seeing any node
job events. This is to help diagnose the problem ifcondordagmangets ”stuck”.

• Optimized the submission of grid-type gt4 grid universe jobs to the remote resource. Submis-
sion now takes one operation instead of three.

• The condorshadowwill obtain a session key to thecondorscheddat the start of the job
instead of potentially waiting until the job completes. This reduces the chances of re-running
already completed jobs in the event of authentication failures (for instance, if a Kerberos KDC
is down or overloaded).

Bugs Fixed:

• On MacOS, Condor is more robust about how it monitors characteristics (such as image size)
of a running job. Fixed several issues that would cause thecondorstartd to exit on MacOS
10.4 running on Intel processors.

• Fixed bug in the local universe where the local universe execute directory was not removed
when the job could not start. The most common case was an incorrectly named executable
file.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 651

• Fixed a bug that prevented dollar dollar expansions with a default argument that contained
forward slashes from expanding properly. An example that now works correctly, but exhibited
the incorrect behavior:

$$(SomeVariable:/path/to/file)

• The Windows installer now works on MS Vista. Also, it does not pop up any command
windows.

• Thecondorckpt serverwas fixed to honorHIGHPORTandLOWPORT. While the well-known
ports for the checkpoint data server have not changed, the helper processes that perform the
store and restore (which communicate directly with the standard universe job) now bind to
ports within specified ranges. Note that this will limit the number of simultaneous store/restore
requests to the number of available ports.

• Fixed a bug incondordagmanthat caused recovery/bootstrap mode to be very slow on large
DAGs (i.e., ones with hundreds of thousands of nodes).

• Fixed a bug that causedcondordagmanto incorrectly deal with VARS lines specifying more
than one macro name (this bug was introduced in version 6.8.5).

• Fixed a bug in the configuration macroRANDOMINTEGERwhen used as part of a larger ex-
pression. The entire configuration value containing the reference toRANDOMINTEGERwas
being replaced by the chosen random integer, rather than just havingRANDOMINTEGER()
itself be replaced.

• Fixed a bug in the GSI configuration parameters. IfGSI DAEMONDIRECTORYwas set and
GRIDMAPwas not set, then Condor would look in the wrong location for the GSI private key
and mapfile.

• condorq would produce garbage output in its error message when failing to contact the col-
lector specified via-pool.

• In Unix only, fixed a file descriptor leak that could cause thecondorschedddaemon to crash.

• File transfer failures for spooled jobs no longer result incondorscheddchild processes hang-
ing around for 8 hours before finally exiting. Too many such processes occasionally resulted
in memory exhaustion.

• Fixed a bug incondordagman: DIR andABORT-DAG-ONspecifications were not propa-
gated to rescue DAGs.

• Added a workaround for a bug in the Globus GRAM JobManager
(http://bugzilla.mcs.anl.gov/globus/showbug.cgi?id=5467) that can cause very short
jobs’ standard output and error to be lost.

• Disable GSI authorization callouts for the GridFTP serverthat Condor starts to perform file
transfers for grid-type gt4 grid universe jobs.

Known Bugs:

Condor Version 7.2.3 Manual

http://bugzilla.mcs.anl.gov/globus/show_bug.cgi?id=5467

8.7. Stable Release Series 6.8 652

• Grid universe type GT4 (web services GRAM) does not work properly on Itanium-based
machines, because it requires Java 1.5, which is not available on the Itanium (ia64).

Additions and Changes to the Manual:

• Several updates to the DAGMan documentation (section 2.10).

• Improved the group quota documentation.

Version 6.8.5

Release Notes:

• This release is not fully compatible with the 6.6 series (oranything earlier than that). Specif-
ically, a 6.6 schedd will be rejected when it tries to contacta 6.8.5 startd to make use of a
claim.

• The Globus libraries used by Condor now include the following advisory packages:

– globusgssassist-3.23

– globusxio-0.35

– globusgramprotocol-6.5

– globusgasstransfer-2.12

See http://www.globus.org/toolkit/advisories.html fordetails on the bugs fixed
by these updated packages. The patch given in Globus Bugzilla 5091
(http://bugzilla.mcs.anl.gov/globus/showbug.cgi?id=5091) is also included.

New Features:

• A clipped port to x86 Debian 4.0 has been added.

• The functionality embodied incondorq -better-analyzeis now available for X8664 native
ports of Condor.

• We now supply distinct, native ports for Mac OS X 10.3 and 10.4.

• There is a new configuration macroCOLLECTORREQUIREMENTSthat may be used to filter
out unwanted ClassAd updates. For more information, see section 3.3.16.

• Added a-f option tocondorstore cred, which generates a pool password file that can be used
for the PASSWORD authentication method on Unix Condor installations.

Bugs Fixed:

Condor Version 7.2.3 Manual

http://www.globus.org/toolkit/advisories.html
http://bugzilla.mcs.anl.gov/globus/show_bug.cgi?id=5091

8.7. Stable Release Series 6.8 653

• The config file entryHOSTALLOWDAEMONis now looked at in addition toALLOWDAEMON
.

• Fixed a bug where under certain conditions Condor’s file logging codes would perform a
segmentation fault.

• Removed periodic re-indexing of the quill historyvertical table. This should not be needed
with the current schema, and it should speed up database re-indexing operations.

• Fixed a bug that would cause the dedicated scheduler to crash, if the condorscheddwas
suspended or blocked for more than approximately 10 minutes. The most likely cause of a
suspension is acondorscheddexecutable mounted from a remote NFS file system.

• Fixed a bug where if-lc was specified multiple times for the compiler when usingcon-
dor compile(some tools likepgf90do this),condorcompilewould fail to link the application
and emit a multiply defined symbol error for many symbols.

• Fixed a bug where Condor erroneously indicates that a scheduler universe’s job executable is
missing or not executable. This occurred if the scheduler universe job had been submitted with
CopyToSpool = falsein the submit description file, and the user had a umask which prevented
the user namedcondor from following the search path to the user-owned executable.

• Fixed a bug that could cause thecondorscheddto crash if it received too many matches in
one negotiation cycle (more than 1000 on a Linux platform).

• Fixed a bug in whichcondorhistorydid not honor the-format flag properly when Quill is in
use.

• Fixed a bug in which a java property that includes surrounding double quote marks caused
the detection of a java virtual machine to go awry. The fix, which may change in the future,
changes any extra double quotes within a property value to single quotes.

• Fixed a bug in which thecondorquill daemon crashed occasionally when the Postgres
database server was unavailable.

• The Solaris 9 Condor package can be used under Solaris 10 again. Changes in 6.7.20 broke
this compatibility.

• condordagmannow does a better job, especially in recovery mode, of detecting potentially
incorrect submit events. Those have Condor IDs not matchingwhat is expected.

• condordagmannow truncates existing node job user log files to zero length,rather than delet-
ing the log files. This prevents breaking the link if a user logfile is set up as a link.

• When starting a GridFTP server to handle file transfers for gt4 grid jobs, the
condorgridmanager now properly sets the GLOBUSTCP PORTRANGE and
GLOBUS TCP SOURCERANGE environment variables if appropriate.

• Fixed a bug that could cause a security session to get deleted by the server (for example, the
condorschedd) before the client (for example, thecondorshadow) was done using it. This
bug can be observed as communication failure the next time the client tried to connect to the

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 654

server. In some cases, this caused jobs to be re-queued to be run again, because the final
update of the job queue failed.

• If a grid job becomes held while it’s still submitted to the remote resource and is then removed,
thecondorgridmanagerwill now attempt to remove the job from the remote resource before
letting it leave the local job queue.

• Fixed a bug in thecondorc-gahpthat caused it to not use the user’s credential for authentica-
tion with the remote schedd on some connections.

• The condorc-gahpnow properly lists all of the commands it supports in response to the
COMMANDS command.

• Fix a bug in how thecondorc-gahpupdates configuration parameterGSI DAEMONNAME
to include the job’s credential if it has one.

• Removed the 5096-character restriction on the length of DAG macro values (and names) in
condordagman.

• Condor-G will now notice when jobs are missing from the status reports sent by the Grid
Monitor. Jobs can disappear for short periods of time under normal circumstances, but a pro-
longed absence is often a sign of problems on the remote machine. The amount of time that
a job can go missing from the Grid Monitor status reports before thecondorgridmanagerre-
acts can be set by the new configuration parameterGRID MONITORNOSTATUSTIMEOUT
. The default is 15 minutes.

• condorq -analyze will now print a warning if a job being analyzed is already completed or if
a grid universe job being analyzed has already been matched.

• In condorshadow, when forwarding an updated X509 proxy to an executing job, the
logic for whether to delegate or copy the proxy (determined by configuration parameter
DELEGATEJOB GSI CREDENTIALS) was reversed. The authentication logic for this op-
eration was also incorrect, causing the operation to fail inmany instances.

• Made a small improvement to the reliability of Condor’s process ancestry tracking under
Linux. However, jobs that create children with more than 4096 bytes of environment are
still problematic, due to a Linux kernel limitation that prevents reading more than 4k from
/proc/¡pid¿/environ. The only truly reliable way to ensurethat Condor is aware of all processes
spawned by a Unix job is to useVMx USER.

• condorglideinoption-run here no longer fails when the current working directory is not in
PATH.

• condorglideinoption-runtime would cause runtime errors at startup under some batch sys-
tems. The problematic parentheses characters are no longergenerated as part of the environ-
ment value that is set by this option.

• On rare occasions, thecondorstartd will compute a negative MIPS rating when performing
benchmarks on the machine. This caused theMips attribute to disappear from the machine
ad. Now, thecondorstartd ignores these bogus results. The cause of the negative MIPS
ratings is still unknown.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 655

• Fixed a bug that causedcondordagmanto hang if it processed, in recovery mode, a node for
which all submit attempts failed and a POST script was run.

• Fixed a bug that would cause thecondornegotiator’s memory usage to grow over time when
job or machine ClassAds made use of ClassAd functions that doregular expression matching
operations.

• Fixed a bug that was preventing Condor daemons from cachingDNS information for hosts
authenticated via HOSTALLOW settings (i.e. no strong authentication). The collector, in
particular, should spend much less time on IP to host name lookups.

• When a job has an X509 proxy file (as indicated by theX509UserProxy attribute in the
job ad), thecondorstarternow always setsX509 USERPROXYin the job’s environment to
point to a copy of that proxy file.

• Fixed several bugs that could cause thecondorc-gahpto time out when talking to thecon-
dor scheddand falsely report that commands completed successfully. Acommon result is
grid type condor grid universe jobs being placed on hold because thecondorgridmanager
mistakenly thinks they disappeared from the remotecondorschedd’s queue.

• Fixed a bug in Stork which was causing it to write the output and error log files as the wrong
user, and read the input file as the wrong user.

• Fixed a bug in Stork which was causing it to kill hung jobs as the wrong user.

• Fixed some possible static buffer overflows related to the transferring of a job’s data files.

• Jobs with standard output and error going to the same file should not lose data in the common
case.

• Heavily loaded condor daemons (e.g.condorschedd) had a problem when they got behind
processing the exit status of child process (e.g.condorshadow). The problem was that the
daemon would continue to expect status updates from its child, even after the child had exited,
and when the daemon decided that the lack of status updates meant that the child was hung,
the daemon would try to kill any process that happened to havethe same pid as the child
which had already exited. In the case of the schedd, this would also result in the job run
attempt being marked as a failure and the job would remain in the queue to run again. Condor
no longer activates the “hung child” procedure for jobs which have exited but which have not
yet had their exit status processed internally by the daemon.

• For grid-type condor jobs, made thecondorgridmanagermore tolerant of unexpected re-
sponses from the remote condorschedd.

• On HPUX and AIX, fixed a bug that could cause Condor’s processfamily tracking logic to
lose track of processes.

• Fixed a memory error that would causecondorq to sometimes crash when using Quill.

• Fixed a problem where the Windowscondorcredd would be inaccessible to other Condor
components ifCREDDHOSTwere set to a DNS alias and not the canonical DNS name.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 656

• Fixed a bug in thecondorshadowon Windows where it would fail to correctly perform the
PASSWORD authentication method.

• The Windowscondorcreddnow uses the configuration parameterCREDDHOST, if defined,
to set its name when advertising itself to thecondorcollector. Thus, ifCREDDHOSTis set
to something other than thencondorcredd’s host name, clients can still locate the daemon.

• Fixed a bug in thecondorc-gahpthat could cause it to not perform hold, release, or remove
commands on jobs in the remotecondorschedd.

• Fixed the default value of configuration parameterSTARTDAD REEVALEXPR.

Known Bugs:

• condordagmanincorrectly parses DAG file VARS lines specifying more than one macron-
ame/value pair. You can work around this problem by specifying each macroname/value pair
on a separate line. (This bug was introduced in version 6.8.5.)

Version 6.8.4

Release Notes:

• None.

New Features:

• Added new toolcondordumphistory which will enable schema migration to future Quill
schema versions.

• Quill can now automatically rebuild the indexes on thePostgreSQLdatabase tables. Some
sites reported that even with auto vacuuming turned on, the indexes on the tables were growing
without bounds. Rebuilding the indexes fixes that problem. Rebuilding is disabled by setting
the parameterQUILL SHOULDREINDEX to False . Re-indexing happens immediately
after the history file is purged of old data. So, if Quill is configured to never delete history
data, the tables are never re-indexed. Also,condorquill was changed so that the history
deletion also happens at start time. This ensures that old history rows are deleted if Quill
crashes before the scheduled deletion time.

• Added more information to StarterLog for an error message involved in file transfers:

Download acknowledgment missing attribute: Result.

The extra information is a full dump of the ClassAd that was received, in order to help deter-
mine why the expected attribute was not found.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 657

• Added output to thedagman.out file documenting whencondordagmanshortcuts node
retries because ofcondorsubmitfailures or a helper command failure.

Bugs Fixed:

• Fixed a bug incondorq that only happened when running with a Quill database and using the
long (-l) option. The bug was introduced in 6.8.3. The bug truncated the output ofcondorq,
and only displayed some of the job attributes.

• Fixed a bug incondorsubmitthat caused standard universe jobs to be unable to open their
standard output or standard error, ifshould transfer files is YES or IF NEEDED in the
submit description file.

• Fixed a bug incondorglidein that could cause it to request the queue unknown when submit-
ting its setup job to GRAM, leading to failures.

• TheOnExitRemove expression generated for DAGMan bycondorsubmitdagevaluated to
UNDEFINED for some values ofExitCode , causingcondordagmanto go on hold.

• Fixed a bug in which garbage values (random bits from memory) were sometimes written to
the pool history file in the field representing the backfill state.

• condorsubmitdag now generates a submit file (.condor.sub) for condordagmanthat
sendsstdout andstderr to separate files. This has always been recommended, and recent
versions of Condor causestdout andstderr to overwrite each other if they are directed
to the same file.

• Fixed several bugs for grid typenordugrid jobs. Thecondorgridmanagerwould create an
invalid RSL for these jobs and save their output to the wrong location in some cases.

• condorglidein now properly escapes glidein tarball URLs that contain characters that have
special meaning to GRAM RSL. It also turns on TCP updates to thecondorcollector, if they
are enabled on the submit machine.

• When using the submit file optiongetenv=true, environment variables containing a newline
in their value are no longer inserted into the job’s environment. Thecondorschedddaemon
does not allow newlines within ClassAd values, so the attempt to insert such values resulted
in failure of job submission and caused thecondorschedddaemon to abort.

• Fixed a bug that causedcondordagmanto hang if a node with a POST script and retries
initially runs but fails, and then has allcondorsubmitattempts fail on the retry.

• Fixed a problem in the Windows installer where theDAEMONLIST parameter would be
incorrectly set if the “Join an existing Condor pool” optionwas selected or the “Submit
jobs to Condor pool” option was unchecked. In the first case, acondorcollector andcon-
dor negotiatorwould incorrectly be run on the machine. In the second case, acondorschedd
would incorrectly be run. The problem exists in all previous6.8 and 6.9 series releases.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 658

• Fixed a bug in the handling of local universe jobs for a very busy condorschedddaemon.
When a local universe job completed, thecondorstarter might not be able to connect to
thecondorschedddaemon to update final information about the job, such as the exit status.
Under this circumstance, thecondorstarter would hang indefinitely. The bug is fixed by
having thecondorstarterattempt to retry a few times (with a delay in between each attempt)
before exiting with a fatal error. The fatal error causes thejob to restart.

Known Bugs:

• SettingDAGMANDELETEOLDLOGSto false can causecondordagmanto have problems
(including hanging), especially when running a rescue DAG.If you want to keep your old user
log files, the best thing to do is to rename them before eachcondordagmanrun. If you do
run with DAGMANDELETEOLDLOGSset to false, check yourdagman.out file for error
messages about submit event Condor IDs not matching the expected value. If you get such
an error, you will probably have tocondorrm thecondordagmanjob, remove or rename the
old user log file(s) and run the rescue DAG. (Note: this bug also applies to earlier versions of
condordagman.)

Version 6.8.3

Release Notes:

• In this release, the commandcondorq -longdoes not work when querying the Quill database.
Instead, use the commandcondorq -direct quilld -long, or use a previous version ofcondorq.

• Performed a security audit of all places where Condor opensfiles, to make certain files are
opened with a reasonable permission mode and with the OEXCL flag whenever possible.

New Features:

• Added theJOB INHERITS STARTERENVIRONMENTconfiguration macro. When set to
True , jobs inherit all environment variables from thecondorstarter. This is useful for glidein
jobs that need to access environment variables from the batch system running the glidein dae-
mons. The default for this configuration macro isFalse , so existing behavior is unchanged.
This feature does not apply to standard and pvm universe jobs.

• Changed the default UDP receive buffer for thecondorcollectorfrom 1M to 10M. This value
can be configured with the (existing)COLLECTORSOCKETBUFSIZE macro.

NOTE: For some Linux distributions, it may be necessary to configure a larger value than
the default; this parameter is /proc/sys/net/core/rmemmax . You can see the values that the
condorcollector actually used by enabling DFULLDEBUG for thecondorcollector and
looking at the log line that looks like this:

Reset OS socket buffer size to 2048k (UDP), 255k (TCP).

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 659

• Added a new configuration macro to control the size of the TCPsend buffers for thecon-
dor collector. This macro used to be the same asCOLLECTORSOCKETBUFSIZE. The
new macro isCOLLECTORTCP SOCKETBUFSIZE , and it defaults to 128K.

• Added a clipped port for SuSE Linux Enterprise Server 9 running on the PowerPC architec-
ture. Note the known bug below.

• Thecondorscheddnow maintains a birth date for the job queue. Nothing in Condor currently
uses this feature, but future versions ofcondorquill may require it.

• There is a new configuration file macroRANDOMINTEGER(min,max[,step]). It produces a
pseudo-random integer within the rangemin andmax, inclusive at configuration time.

Bugs Fixed:

• Fixed a deadlock situation between thecondorscheddand thecondorstartd that can signif-
icantly impact thecondorschedd’s performance. The likelihood of the deadlock increased
based upon the number of VMs advertised by thecondorstartd.

• Fixed a bug reading the user job log on Windows that caused occasional DAGMan confusion.
Thanks to Fairview Software, Inc. for both finding the bug andwriting a patch.

• Fixed a denial of service problem: Condor daemons no longerfreeze for 20 seconds when a
client connects to them and then sends no data. This behavioris common with port scanners.

• Fixed a race condition withcondorquill caused byPostgreSQL’s default transaction isolation
level being “read committed”. This bug would cause truncated condorq reads when using
Quill.

• Fixed a bug where thecondorckpt serverwould segfault when turned off withcondoroff
-fast.

• Fixed a bug in thecondorstartd where it could die with SIGABRT when acondorstarter
exited under certain rare circumstances. The bug seems to have been most likely to appear on
x86 64 Linux machines, but could potentially affect all platforms.

• Fixed a problem withcondorhistory when running with Quill enabled, which caused it to
allocate an unbounded amount of memory.

• Fixed a problem withcondorq when running with Quill, which caused it to silently truncate
the printing of the job queue.

• Fixed a bug in the condorgridmanager that caused the follow-
ing configuration files parameters to be ignored for grid types con-
dor and nordugrid jobs: GRIDMANAGERRESOURCEPROBEINTERVAL,
GRIDMANAGERMAXPENDINGSUBMITSPERRESOURCE, and
GRIDMANAGERMAXSUBMITTEDJOBS PERRESOURCE.

• Fixed a bug incondorrun that caused it to abort on non-fatal warnings fromcondorsubmit
and print incorrect error messages.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 660

• Fixed a bug in thecondorgridmanagerdealing with grid type gt4 grid universe jobs. If the
job’s standard output or error was not specified in the job ClassAd, thecondorgridmanager
would create an improper GRAM RSL string, causing the job to fail.

• Fixed a bug in thecondorgridmanagerthat could cause it to delegate the wrong credential
when refreshing the credentials for a grid type gt4 grid universe job.

• The condorgridmanagercould get into a state where it would no longer start up Globus
jobmanagers for grid type gt2 grid universe jobs, if previous requests failed due to connection
errors. This bug has been fixed.

• Thecondorc-gahpnow properly exits when the pipe to its parent goes away. Before, it would
fill its log with large amounts of useless messages, before exiting several minutes later.

• Fixed a bug where a problem opening standard input, output,or error, the standard universe
might generate an incorrect warning in thecondorshadow’s log.

• The condorgridmanagernow recovers properly when a proxy refresh fails for a gt2 grid
universe job in the stage-out state. Before, the job would become held with a hold reason of
“Globus error 3: an I/O operation failed”.

• A number of fixes to minor typos and incorrect formatting in Condor’s log files.

• WhenREQUESTCLAIM TIMEOUTwas reached and thecondorscheddfailed to contact the
condorstartd to release the claim, thecondorscheddwould periodically try releasing the
claim indefinitely, possibly resulting in a lengthy communication delay each time.

• Under Windows, Condor daemons such as thecondorscheddwere sometimes limiting their
use of pending connect operations more than they should have. This would result in the
message, “file descriptor safety level exceeded”.

• condor fetchlogno longer allows or documents the -dagman option. The option’s appearance
was an error. The option never worked.

• Thecondorscheddensures that the initial job queue log file contains a sequence number for
use by Quill. This fixes a case in which no sequence number was inserted, because the initial
rotation of this (empty) file failed. Quill also now reports exactly what the problem is if it
reads a job queue log in this state, rather than simply crashing. This problem has so far only
been observed under Windows.

• Fixed a problem on Windows where, when submitting a job witha sandbox (for example,
using the-s or -r option tocondorsubmit), an erroneous file permissions check in thecon-
dor scheddwould result in a failed submission.

• The condorstartd would crash shortly after start up if theRANKexpression contained any
use of the unary minus operator. This patch should also fix anyother cases where Condor
daemons crashed due to the use of the unary minus operator in ClassAd expressions.

• Stork now writes a terminated event to the user log when it removes a transfer job from its
queue because of failures to invoke a transfer module. Without this event, DAGMan would
not notice that these jobs had left the queue.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 661

• Fixed a problem where thecondorscheddon Windows would incorrectly reject a job if the
client provided anOwner attribute that was correct but differed in case from the authenticated
name. This bug was thought to have been fixed in Condor 6.8.0.

• Fixed problems withcondorstore cred behaving strangely when storing or removing a user
name that is some initial substring of “condorpool”. Specifying such a user name would be
incorrectly interpreted as equivalent to specifying the-c option.

• Fixed a problem withcondorglidein spewing lots of text to the screen when checking the
status of a job it submitted.

• A new version of the GT4 GAHP is included, with the followingchanges:

– A new axis.jar from Globus fixes a thread safety bug that can cause
lockups in subscriptions for WS notifications. See Globus Bugzilla 4858
(http://bugzilla.globus.org/bugzilla/showbug.cgi?id=4858).

– Fixed bugs that caused memory related to destroyed jobs to not be reclaimed in both the
client and the server.

– Removed redundant usage of Secure Message, Secure Conversation, and Transport Se-
curity when talking to a WS GRAM service. Now, only TransportSecurity is used.

• Fixed memory leaks incondorquill.

• Fixed a bug that might have causedcondorstartdproblems launching thecondorstarter for
the standard universe on 64-bit systems.

• Improved Condor’s file transfer. If you request that Condorautomatically transfer back your
output, it now detects changes better. Previously, it wouldonly transfer back files that had a
more recent timestamp than the spool date. Now, it will transfer back any file that has changed
in date (including being dated in the past) or changed in size.

Known Bugs:

• SuSE Linux Enterprise Server 9 on PowerPC only: The defaultJava interpreter on SuSE
Linux Enterprise Server 9 running on the PowerPC architecture has compatibility problems
with this release of Condor. The problem exhibits itself as thecondorstartd hanging, never
reporting itself to thecondorcollector. The workaround is to either disable the Java universe
(setJAVA to an empty string), or disable just-in-time compilation when running in the Java
universe with the following configuration setting:

JAVA_EXTRA_ARGUMENTS = -Djava.compiler=NONE

Version 6.8.2

Release Notes:

Condor Version 7.2.3 Manual

http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=4858

8.7. Stable Release Series 6.8 662

• Condor now uses Globus 4.0.3 for GSI, GRAM, and GridFTP support. This
includes a patch for the OpenSSL vulnerability detailed in CVE-2006-4339 and
http://www.openssl.org/news/secadv20060905.txt. It also includes fixes for Globus Bugzilla
4689 (http://bugzilla.globus.org/bugzilla/showbug.cgi?id=4689) and a bug that can cause du-
plicate UUIDs to be generated for WS GRAM jobs.

• Thecondorschedddaemon no longer forks separate processes to change ownership of job di-
rectories in the spool. Previously on Unix-like systems, this would create a new process before
a job started running and after it finished running. Some sites with very busycondorschedd
daemons were encountering scaling problems.

New Features:

• Because, by default, thecondorstartd daemon references the job ClassAd attribute
NumCkpts , Condor’s default configuration will now round up the value of NumCkpts , in
order to improve matchmaking performance. See the entry onSCHEDDROUNDATTR in
section 3.3.11.

• Enhanced the RHEL3 x8664 port of Condor to include the standard universe.

• condorsubmitdag -f no longer deletes thedagman.out file. condorsubmitdagwithout
the -f option will now submit a DAGMan run even if thedagman.out file exists. In this
case, the file will be appended to.

• Added a property to the Windows installer program to determine whether the Condor service
will be started after installation. The property name is STARTSERVICE, and the default value
is “Y”.

Bugs Fixed:

• A bug caused thecondormasterdaemon to kill only immediate children within the process
tree, upon an abnormal exit of thecondormasterdaemon. Thecondormasterdaemon now
kills all descendant processes.

• Fixed a bug where if the file system was full, the debugging log files (for exampleSchedLog)
would silently lose messages. Now, if the disk is full, the Condor daemons will exit.

• Fixed a bug in thecondorschedddaemon that caused it to stop negotiating for grid universe
jobs in the case that it decided it could not spawn any newcondorshadowprocesses.

• Added the ProcessId class (which more uniquely identifies aprocess than a PID does) to the
condordagmanabort duplicate runs feature. This makes it less likely thata given instance of
condordagmanwill mistakenly conclude that another instance ofcondordagmanis already
running on the same DAG. Also fixed an unrelated bug in the abort duplicate runs feature that
could cause acondordagmanto not abort itself when it should.

• Condor daemons leaked memory (consuming more and more memory over time) when pars-
ing ClassAds that use functions with arguments.

Condor Version 7.2.3 Manual

http://www.openssl.org/news/secadv_20060905.txt
http://bugzilla.globus.org/bugzilla/show_bug.cgi?id=4689

8.7. Stable Release Series 6.8 663

• Fixed a bug in thecondorstarterdaemon, which caused it to look in the wrong place for the
job’s executable, ifTransferExecutable was set toTrue in the job ClassAd.

• condorhistoryno longer crashes ifHISTORYis not defined in the Condor configuration file.

• Fixed an unintentional change to the value of-Condorlog in a condordagmansubmit de-
scription file: it is once again the log file of the first node job.

• Fixed a bug incondorq that would causecondorq -hold or condorq -run to exit with an
error on some platforms.

• Fixed a bug on Unix platforms, in which a misconfiguration ofMAIL would cause thecon-
dor masterdaemon to restart all of its child daemons whenever it tried (and failed) to send
e-mail to the administrator.

• Network related error messages have been improved to make debugging easier. For example,
when timing out on a read or write operation, the peer’s address is now included in the error
message.

• An invalid value forUPDATEINTERVAL now causes thecondorstartd daemon to abort.
Previously, it would continue running, but some invalid values (for example, 0) could cause it
to stop sending periodic ClassAd updates to thecondorcollector, even after being reconfig-
ured with a valid value. Only a complete restart of thecondorstartd daemon was sufficient
to get it out of this state.

• Fixed a bug that caused X.509 limited proxies to be delegated as impersonation (i.e. non-
limited) proxies. Any authentication attempted with the resulting proxies would fail.

• Fixed a couple bugs that would cause Condor to lose track of some Condor-related processes
and subsequently fail to clean up (kill) these processes.

• Fixed a bug that would causecondorhistory to crash when dealing with rotated history files.
Note that history file rotation is turned on by default. (See Section 3.3.3 for descriptions of
ENABLEHISTORYROTATIONandMAXHISTORYROTATIONS.)

Known Bugs:

• None.

Version 6.8.1

Release Notes:

• Version 6.8.1 fixes important bugs, some of which have security implications. All users are
encouraged to upgrade, and full disclosure of the vulnerabilities will be given at the end of
October 2006.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 664

• Condor is now linked against GSI from Globus 4.0.2. This
includes a patch for Globus Security Advisories 2006-01
(http://www.globus.org/mailarchive/security-announce/2006/08/msg00000.html) and
2006-02 (http://www.globus.org/mailarchive/security-announce/2006/08/msg00001.html).
It also includes a patch for the OpenSSL vulnerability detailed in CVE-2006-4339 and
http://www.openssl.org/news/secadv20060905.txt.

• The PCRE (Perl Compatible Regular Expressions) library used by Condor is now dynamically
linked and shipped as a DLL with Condor for Windows, rather than being statically linked.

New Features:

• Added an optional argument to thecondordagmanABORT-DAG-ON command that allows
the DAGMan exit code to be specified separately from the node value that causes the abort;
also, a DAG can now be aborted on a zero exit code from a node.

• Added theALLOWFORCERM configuration variable. If this expression evaluates toTrue ,
then ancondorrm -f attempt is allowed. If it evaluated toFalse , the attempt is disallowed.
The expression is evaluated in the context of the job ClassAd. If not defined, the value defaults
to True , matching the behavior of previous Condor releases.

• condordagmanwill now reject DAGs for which any of the nodes’ user job log files are on
NFS (because of the unreliability of NFS file locking, this can cause DAGs to fail). This fea-
ture can be turned off by setting theDAGMANLOGONNFS IS ERRORconfiguration macro
to False (the default isTrue).

• condorsubmitcan now be configured to reject jobs for which the log file is on NFS. To
do this, set theLOGONNFS IS ERRORconfiguration macro toTrue . The default is that
condorsubmit will issue a warning for a log file on NFS.

• Added the DAGMANABORTDUPLICATES configuration macro, which causescon-
dor dagmanto attempt to detect at startup whether anothercondordagmanis already running
on the same DAG; if so, the secondcondordagmanwill abort itself.

• The new configuration variableNETWORKMAXPENDINGCONNECTSmay be used to limit
the maximum number of simultaneous network connection attempts. This is primarily rel-
evant to thecondorschedddaemon, which may try to connect to large numbers ofcon-
dor startd daemons when claiming them. Thecondornegotiator may also connect to
large numbers ofcondorstartd daemons when initiating security sessions used for sending
MATCH messages. On Unix, the default is to allow up to eighty percent of the process file
descriptor limit. On Windows, the default is 1600.

• Added some more debug output tocondordagmanto clarify fatal errors.

• The -format argument tocondorq andcondorstatuscan now take an expression in addition
to a simple attribute name.

• DRMAA is now available on most Linux platforms, Windows andPPC MacOS.

Condor Version 7.2.3 Manual

http://www.globus.org/mail_archive/security-announce/2006/08/msg00000.html
http://www.globus.org/mail_archive/security-announce/2006/08/msg00001.html
http://www.openssl.org/news/secadv_20060905.txt

8.7. Stable Release Series 6.8 665

Bugs Fixed:

• When a large number of jobs (roughly 200 or more) are runningfrom a singlecondorschedd
daemon, and those jobs are using job leases (the default in 6.8), it is possible for thecon-
dor schedddaemon to enter a state where it crashes on startup until all of the job leases
expire.

• Condor jobs submitted with theNiceUser priority were not being matched if the
NEGOTIATORMATCHLISTCACHINGsetting was TRUE (which is enabled by default).

• Fixed a Quill bug that prevented it from running on Windows.The symptom showed with
errors in the QuillLog such as

POLLING RESULT: ERROR

• Fixed a bug in Quill where it would cause errors such as

duplicate key violates unique constraint "history_vertic al_pkey"

in the QuillLog and thePostgreSQLlog file. These errors triggered a significant slowdown
in the performance of Quill and the database. This would onlyhappen when a job attribute
changed type from a string type to a numeric type, or vice versa.

• In those unusual cases where Condor is unable to create a newprocess, it shuts down cleanly,
eliminating a small possibility of data corruption.

• Fixed a bug with the gt4 and nordugrid grid universe jobs that caused thestdout and
stderr of a job to not be transferred correctly, if the given file names had absolute paths.

• condordagman now echos warnings fromcondorsubmit and stork submit to the
dagman.out file.

• Fixed a bug introduced in 6.7.20, causing thecondorckpt server to exit immediately after
starting up, unless Condor’s security negotiation was disabled.

• MAX<SUBSYS>LOG defaults to one Megabyte, even if the setting is missing fromthe
configuration. Previously it was 64 Kilobytes.

• Fixed a bug related to non-blocking connect that could occasionally cause Condor daemons
to crash.

• Fixed a rare bug where an exceptionally large query to thecondorcollectorcould cause it to
crash. The most common cause was a singlecondorschedddaemon restarting, and trying to
recover a large number of job leases at once. More than approximately 250 running jobs on a
singlecondorschedddaemon would be necessary to trigger this bug.

• When using theJOB PROXYOVERRIDEFILE configuration parameter, the X.509 proxy
will now be properly forwarded for Condor-C jobs.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 666

• Greatly reduced the chance that a Condor-C job in the REMOVED state will be HELD due to
an expired proxy or failure to talk to the remotecondorschedd.

• Fixed error and debug messages added in Condor version 6.7.20 that incorrectly reported IP
and port numbers. These messages were intended to report thepeer’s address, but they were
instead reporting the local address of the network socket.

• Fixed a bug introduced in Condor version 6.7.20 which couldcause Condor daemons to die
with the message

PANIC -- OUT OF FILE DESCRIPTORS

The conditions causing this related to failed attempts to send updated status to thecon-
dor collectordaemon, with both non-blocking updates and security negotiation enabled (the
defaults).

• Also fixed a bug in the negotiator with the same effect as above, except it only happened with
the configuration settingNEGOTIATORUSENONBLOCKINGSTARTDCONTACT=False.

• Fixed a bug incondorscheddunder Solaris that could also cause file descriptors to become
exhausted over time when many machines were claimed in a short spans of time (e.g. over
100) and thecondorscheddprocess file descriptor limit was near 256.

• Fixed a bug incondorscheddunder Windows that could cause network sockets to be allocated
and never released back to the system. The circumstances that could cause this were very rare.
The error message in the logs indicating that this problem was happening is

ERROR: DuplicateHandle() failed in Sock::set_inheritabl e

In cases where this error message is displayed, the network socket is closed.

• Under some conditions, when making TCP connections, Condor was still trying to connect
for the full duration of the operation timeout (often 10 or 20seconds), even if the connection
attempt was refused (for example, because the port being accessed is not accepting connec-
tions). Now, the connect operation finishes immediately after the first such failure, allowing
the Condor process to continue with other tasks.

• Fixed the problems relating to credential cache problems in the Kerberos authentication mech-
anism. The current version of Kerberos is 1.4.3.

• Fixed bugs in the SSL authentication mechanism that causedthecondorscheddto crash when
submitting a job (on Unix) and caused all tools and daemons tocrash on Windows when using
SSL.

• Some of the binaries required to use Condor-C on Windows were mistakenly not included in
previous releases of Condor. This has been fixed.

• Fixed a problem on Windows where thecondorstartd could fail to include some attributes
in its ClassAd. This would result in some jobs incorrectly not being matched to that ma-
chine. This only happened ifCREDDHOSTwas defined and Condor daemons on the execute
machine were unable to authenticate with thecondorcredd.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 667

• Fixed acondordagmanbug which had prevented the$(DAGManJobId) attribute from
being expanded in job submit files (for example, when used as the value to define thePriority
command).

• Fixed a bug incondorsubmitthat caused parallel universe jobs submitted via Condor-C to
become mpi universe jobs.

• Fixed a bug which could cause Condor daemons to hang if they try to write to the standard
error stream (stderr) on some platforms. In general, this should never happen, but can, due
to third party libraries (beyond our control) trying to write error or other messages.

• Fixedcondorstatusto report error messages.

• Fixed a bug in which setting the configuration variable

NEGOTIATOR_CONSIDER_PREEMPTION = False

caused an incorrect calculation. The fraction of the pool already being claimed by a user was
calculated using the wrong total number ofcondorstartd daemons. This could cause some
condorstartd daemons to remain unclaimed, even when there were jobs available to run on
them.

• Fixed a security vulnerability in Condor’s FS and FSREMOTE authentication methods. The
vulnerability allowed an attacker to impersonate another user on the system, potentially allow-
ing submission of jobs as a different user. This may allow escalation to root privilege if the
Condor binaries and configuration files have improper permissions. The fix is not backwards
compatible, which means all daemons and tools using FS authentication must be running
Condor 6.8.1 or greater. The same applies to FSREMOTE; All daemons and tools using
FS REMOTE must be using Condor 6.8.1 or greater. In practice, this means that for FS, all
Condor binaries on one host must be version 6.8.1 or greater,but versions can be different
from host to host. For FSREMOTE it means all binaries across all hosts must be 6.8.1 or
greater.

• Fixed a couple race conditions in stork and the credd where credential files were possibly
created with improper permissions before being set to ownerpermissions.

• Fixed a bug in thecondorgridmanagerthat caused it to delegate 12-hour proxies for grid-type
gt4 jobs and then not refresh them.

• Fixed a bug in thecondorgridmanagerthat caused a directory needed for staging-in of grid-
type gt4 job files to be removed when thecondorGridmanagerexited, causing the stage-in
to fail.

• Fixed a bug that caused thecheckpoint serverto restart because of (ostensibly) getting an
unexpected errno from select().

• Fixed a bug on Windows where settingoutput or error to a relative or absolute path (as
opposed to a simple file name without path information) wouldnot work properly.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 668

• History file rotation did not previously work on Windows because the name of a rotated files
would contain an ISO 8601 extended format timestamp, which contains colon characters. The
naming convention for rotated files has been modified to use ISO 8601 basic format, avoiding
this problem.

• The CLAIMTOBE authentication method (which is inherentlyinsecure and should only be
used for testing or other special circumstances) previously would authenticate without pro-
viding the “domain” portion of the user name. As an example, auser would be authenticated
as simply “user” rather than “user@cs.wisc.edu”. This problem has been fixed, but the new
protocol is not backwards compatible so the fix is turned off by default. Correct behavior can
be enabled by setting theSECCLAIMTOBEINCLUDE DOMAINparameter toTrue .

• Fixed a bug with theNEGOTIATORMATCHLISTCACHINGthat would cause very low-
priority jobs (like jobs submitted withnice user=True) to not match even if resources
were available.

• Fixed a buffer overflow that could crash thecondornegotiator.

• SCHEDDROUNDATTR <xxxx> preserves the value being rounded up when it is a multiple
of the power of 10 specified for rounding. Previously, the value would be incremented; now it
remains the same. For example, if SCHEDDROUND ATTR ¡xxxx¿=2 and the value being
rounded up is 100, it now remains 100, rather than being incremented to 200.

• Fixedcondorupdatesstatsto report it’s version number correctly.

Known Bugs:

• The-completedsinceoption tocondorhistoryworks when Quill is enabled. The behavior of
condorhistory-completedsinceis undefined when Quill isnot enabled.

Version 6.8.0

Release Notes:

• The default configuration for Condor now requires thatHOSTALLOWWRITE be explicitly
set. Condor will refuse to start if the default configurationis used unmodified. Existing
installations should not need to change anything. For thosewho desire the earlier default, you
can set it to ”*”, but note that this is potentially a securityhole allowing anyone to submit jobs
or machines to your pool.

• Most Linux distributions are now supported using dynamically linked binaries built
on a RedHat Enterprise Linux 3 machine. Recent security patches to a number of
Linux distributions have rendered the binaries built on RedHat 9 machines ineffective.
The download pages have been changed to reflect this, but Linux users should be
aware of this change. The recommended download for most x86 Linux users is now:
condor-6.8.0-linux-x86-rhel3-dynamic.tar.gz .

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 669

• Some log messages have been clarified or moved to different debugging levels. For example,
certain messages that looked like errors were printed toD ALWAYS, even though nothing was
wrong and the system was behaving as expected.

• The new features and bugs fixed in the rest of this section only refer to changes made since the
6.7.20 release, not the last stable release (6.6.11). For a complete list of changes since 6.6.11,
read the 6.7 version history in section??on page??.

New Features:

• Version 1.4 of the Condor DRMAA libraries are now included with the Condor release. For
more information about DRMAA, see section 4.5.2 on page 480.

• Version 1.0.15 of the Condor GAHP is now used for Condor-G and Condor-C.

• Added the-outfile dir command-line argument tocondorsubmitdag. This allows you to
change the directory in whichcondordagmanwrites thedagman.out file.

• Added a new–summary (also -s) option to thecondorupdatestatstool. If enabled, this
prevents it from displaying the entire history for each machine and only displays the summary
info.

Bugs Fixed:

• Fixed a number of potential static buffer overflows in various Condor daemons and libraries.

• Fixed some small memory leaks in thecondorstartd, condorschedd, and a potential leak that
effected all Condor daemons.

• Fixed a bug in Quill which caused it to crash when certain long attributes appeared in a job
ad.

• The startd would crash after a reconfig if the address of a collector had not been resolved since
the previous reconfig (e.g. because DNS was down during that time).

• Once a Condor daemon failed to lookup the IP address of the collector (e.g. because DNS
was down), it would fail to contact the collector from that time until the next reconfig. Now,
each time Condor tries to contact the collector, it generates a fresh DNS query if the previous
attempt failed.

• When using Condor-C or the -s or -r command-line options to condorsubmit, the job’s stan-
dard output and error would be placed in the job’s initial working directory, even if the job ad
said to place them in a different directory.

• Greatly sped up the parsing of large DAGs (by a factor of 50 orso) by using a hash table
instead of linear search to find DAG nodes.

• Fixed a bug incondordagmanthat caused an EXECUTABLEERROR event from a node job
to abort the DAG instead of just marking the relevant node as failed.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 670

• Fixed a bug incondorcollector that caused it to discard machine ads that don’t have an
IP address field (either StartdIpAddr or STARTDIP ADDR). Thecondorstartd will always
produce a StartdIpAddr field, but machine ads published throughcondoradvertisemay not.

• When usingBIND ALL INTERFACESon a dual-homed machine, a bug introduced in 6.7.18
was causing Condor daemons to sometimes incorrectly reporttheir IP addresses, which could
cause jobs to fail to start running.

• Made the event checking incondordagmanless strict: added the new ”allow duplicate
events” value to theDAGMANALLOWEVENTSmacro (this value is part of the default); 16
value now also allows terminate event before submit; changed ”allow all events” to ”allow
almost all events” (all except ”run after terminal event”),so it is more useful.

• condordagmanandcondorsubmitdagnow report-NoEventChecksas ignored rather than
deprecated.

• Fixed a bug in thecondordagman-maxidle feature: a shadow exception event now puts the
corresponding job into the idle state incondordagman’s internal count.

• Fixed a problem on Windows where daemons would sometimes crash when dealing with UNC
path names.

• Fixed a problem where thecondorscheddon Windows would incorrectly reject a job if the
client provided anOwner attribute that was correct but differed in case from the authenticated
name.

• Fixed acondorstartd crash introduced in version 6.7.20. This crash would appearif an
execute machine was matched for preemption but then not claimed in time by the appropriate
condorschedd.

• Resolved an issue where thecondorstartd was unable to clean up jobs’ execute directories
on Windows when thecondormasterwas started from the command line rather than as a
service.

• Added more patches to Condor’s DRMAA interface to make it more compatible with Sun
Grid Engine’s DRMAA interface.

• Removed the unusedD UPDOWNdebug level and added theD CONFIGdebug level.

• Fixed a bug that causedcondorq with the-l or -xml arguments to print out duplicate attributes
when using Quill.

• Fixed a bug that prevented Condor-C jobs (universe grid jobs of type condor) from submitting
correctly if QUEUEALL USERSTRUSTEDis set to True.

• Fixed a bug that could cause thecondornegotiator to crash if the pool con-
tains several different versions of thecondorschedd and in the config file
NEGOTIATORMATCHLISTCACHINGis set to True.

• Changed the default value for config file entryNEGOTIATORMATCHLISTCACHINGfrom
False to True. When set to True, this will instruct the negotiator to safely cache data in order
to improve matchmaking performance.

Condor Version 7.2.3 Manual

8.7. Stable Release Series 6.8 671

• Thecondormasternow recognizescondorquill as a valid Condor daemon without any man-
ual configuration on the part of site administrators. This simplifies the configuration changes
required to enable Quill.

• Fixed a rare bug in thecondorstarter where if there was a failure transferring job output
files back to the submitting host, it could hang indefinitely,and the job appeared as if it was
continuing to run.

Known Bugs:

• The-completedsinceoption tocondorhistoryworks when Quill is enabled. The behavior of
condorhistory-completedsinceis undefined when Quill isnot enabled.

Condor Version 7.2.3 Manual

CHAPTER

NINE

Command Reference Manual (man pages)

672

cleanuprelease(1) 673

cleanup release

uninstall a previously installed software release installed byinstall release

Synopsis

cleanup release[-help]

cleanup releaseinstall-log-name

Description

cleanupreleaseuninstalls a previously installed software release installed by install release. The
program works through the install log in reverse order, removing files as it goes. Each delete is
logged in the install log to allow recovery from a crash. The install log name is provided as the
install-log-nameargument to this program.

Options

-help Display brief usage information and exit.

Exit Status

cleanupreleasewill exit with a status of 0 (zero) upon success, and non-zerootherwise.

See Also

install release(on page 856).

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

cleanuprelease(1) 674

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condoradvertise(1) 675

condor advertise

Send a ClassAd to thecondorcollectordaemon

Synopsis

condor advertise [-help | -version] [-pool centralmanagerhostname[:portname]] [-debug] [-tcp]
update-command[classad-filename]

Description

condoradvertisesends a ClassAd to thecondorcollector daemon on the central manager ma-
chine. The required argumentupdate-commandsays what daemon type’s ClassAd is to be up-
dated. The optional argumentclassad-filenameis the file from which the ClassAd should be read. If
classad-filenameis omitted or is “-”, then the ClassAd is read from standard input.

Theupdate-commandmay be one of the following strings:

UPDATE STARTD AD

UPDATE SCHEDD AD

UPDATE MASTER AD

UPDATE GATEWAY AD

UPDATE CKPT SRVR AD

UPDATE NEGOTIATOR AD

UPDATE HAD AD

UPDATE AD GENERIC

UPDATE SUBMITTOR AD

UPDATE COLLECTOR AD

UPDATE LICENSE AD

UPDATE STORAGE AD

condoradvertisecan also be used to invalidate and delete ClassAds currentlyheld by thecon-
dor collectordaemon. In this case theupdate-commandwill be one of the following strings:

INVALIDATE STARTD ADS

Condor Version 7.2.3, Command Reference

condoradvertise(1) 676

INVALIDATE SCHEDD ADS

INVALIDATE MASTER ADS

INVALIDATE GATEWAY ADS

INVALIDATE CKPT SRVR ADS

INVALIDATE NEGOTIATOR ADS

INVALIDATE HAD ADS

INVALIDATE ADS GENERIC

INVALIDATE SUBMITTOR ADS

INVALIDATE COLLECTOR ADS

INVALIDATE LICENSE ADS

INVALIDATE STORAGE ADS

For any of these INVALIDATE commands, the ClassAd in the required file consists of three entries.
The file contents will be similar to:

MyType = "Query"
TargetType = "Machine"
Requirements = Name == "condor.example.com"

The definition forMyType is alwaysQuery . TargetType is set to theMyType of the ad to
be deleted. ThisMyType is DaemonMaster for the condormasterClassAd,Machine for the
condorstartd ClassAd,Scheduler for the condorscheddClassAd, andNegotiator for the
condornegotiatorClassAd.Requirements is an expression evaluated within the context of ads
of TargetType . WhenRequirements evaluates toTrue , the matching ad is invalidated. A
full example is given below.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portname]Specify a pool by giving the central manager’s host
name and an optional port number. The default is theCOLLECTORHOSTspecified in the
configuration file.

Condor Version 7.2.3, Command Reference

condoradvertise(1) 677

-tcp Use TCP for communication. Without this option, UDP is used.

-debug Print debugging information as the command executes.

General Remarks

The job and machine ClassAds are regularly updated. Therefore, the result ofcondoradvertise
is likely to be overwritten in a very short time. It is unlikely that either Condor users (those who
submit jobs) or administrators will ever have a use for this command. If it is desired to update or set
a ClassAd attribute, thecondorconfigval command is the proper command to use.

For those administrators who do needcondoradvertise, you can optionally include these attributes:

DaemonStartTime - The time the service you are advertising started running. Measured in seconds
since the Unix epoch.

UpdateSequenceNumber - An integer that begins at 0 and increments by one each time you re-
advertise the same ad.

If both of the above are included, thecondorcollector will automatically include the following
attributes:

UpdatesTotal - The actual number of advertisements for thisdaemon that thecondorcollectorhas
seen.

UpdatesLost - The number of advertisements that for this daemon that thecondorcollectorexpected
to see, but did not.

UpdatesSequenced - The total of UpdatesTotal and UpdatesLost.

UpdatesHistory - SeeCOLLECTORDAEMONHISTORYSIZE in section 3.3.16.

Examples

Assume that a machine called condor.example.com is turned off, yet its condorstartdClassAd does
not expire for another 20 minutes. To avoid this machine being matched, an administrator chooses to
delete the machine’scondorstartd ClassAd. Create a file (calledremove file in this example)
with the three required attributes:

MyType = "Query"
TargetType = "Machine"
Requirements = Name == "condor.example.com"

This file is used with the command:

Condor Version 7.2.3, Command Reference

condoradvertise(1) 678

% condor_advertise INVALIDATE_STARTD_ADS remove_file

Exit Status

condoradvertisewill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorcheckuserlogs(1) 679

condor check userlogs

Check user log files for errors

Synopsis

condor checkuserlogsUserLogFile1[UserLogFile2. . .UserLogFileN]

Description

condorcheckuserlogsis a program for checking a user log or set of users logs for errors. Output
includes an indication that no errors were found within a logfile, or a list of errors such as an execute
or terminate event without a corresponding submit event, ormultiple terminated events for the same
job.

condorcheckuserlogs is especially useful for debuggingcondordagmanproblems. If con-
dor dagmanreports an error it is often useful to runcondorcheckuserlogson the relevant log
files.

Exit Status

condorcheckuserlogswill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorcheckpoint(1) 680

condor checkpoint

send a checkpoint command to jobs running on specified hosts

Synopsis

condor checkpoint [-help | -version]

condor checkpoint [-debug] [-namename| name| -addr ” <a.b.c.d:port>” | ” <a.b.c.d:port>”
. . .]| [-all]

condor checkpoint [-debug] [-pool centralmanagerhostname[:portnumber]| -namename]|
[-addr ” <a.b.c.d:port>”] . . . [| -all]

Description

condorcheckpointsends a checkpoint command to a set of machines within a single pool. This
causes the startd daemon on each of the specified machines to take a checkpoint of any running job
that is executing under the standard universe. The job is temporarily stopped, a checkpoint is taken,
and then the job continues. If no machine is specified, then the command is sent to the machine that
issued thecondorcheckpointcommand.

The command sent is a periodic checkpoint. The job will take acheckpoint, but then the job will
immediately continue running after the checkpoint is completed.condorvacate, on the other hand,
will result in the job exiting (vacating) after it produces acheckpoint.

If the job being checkpointed is running under the standard universe, the job produces a checkpoint
and then continues running on the same machine. If the job is running under another universe, or if
there is currently no Condor job running on that host, thencondorcheckpointhas no effect.

There is generally no need for the user or administrator to explicitly run condorcheckpoint. Taking
checkpoints of running Condor jobs is handled automatically following the policies stated in the
configuration files.

Options

-help Display usage information

-version Display version information

Condor Version 7.2.3, Command Reference

condorcheckpoint(1) 681

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namename Send the command to a machine identified byname

name Send the command to a machine identified byname

-addr ” <a.b.c.d:port>” Send the command to a machine’s master located at” <a.b.c.d:port>”

” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-all Send the command to all machines in the pool

Exit Status

condorcheckpointwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

To send acondorcheckpointcommand to two named machines:

% condor_checkpoint robin cardinal

To send thecondorcheckpointcommand to a machine within a pool of machines other than the
local pool, use the-pool option. The argument is the name of the central manager for the pool. Note
that one or more machines within the pool must be specified as the targets for the command. This
command sends the command to a the single machine namedcae17within the pool of machines that
hascondor.cae.wisc.eduas its central manager:

% condor_checkpoint -pool condor.cae.wisc.edu -name cae1 7

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

condorcheckpoint(1) 682

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorchirp (1) 683

condor chirp

Access files or job ClassAd from an executing job

Synopsis

condor chirp [-help]

condor chirp fetch RemoteFileName LocalFileName

condor chirp put [-mode mode] [-perm UnixPerm] LocalFileName RemoteFileName

condor chirp removeRemoteFileName

condor chirp get job attr JobAttributeName

condor chirp set job attr JobAttributeName AttributeValue

condor chirp ulog Message

Description

condorchirp is run from a user job while executing. It accesses files or jobClassAd attributes on
the submit machine. Files can be read, written or removed. Job attributes can be read, and most
attributes can be updated.

Descriptions using the termslocal and remoteare given from the point of view of the executing
program.

If the input file name forput is a dash,condorchirp uses standard input as the source. If the output
file name forfetch is a dash,condorchirp writes to standard output instead of a local file.

Jobs that usecondorchirp must have the attributeWantIOProxy set toTrue in the job ad. To do
this, place

+WantIOProxy = true

in the submit description file for the job.

condorchirp only works for jobs run in the vanilla, mpi, parallel and javauniverses.

The optional-modemodeargument is one or more of the following characters describing the
RemoteFileNamefile.

• w: open for writing

Condor Version 7.2.3, Command Reference

condorchirp (1) 684

• a: force all writes to append

• t: truncate before use

• c: create the file, if it does not exist

• x: fail if ’c’ is given, and the file already exists

The optional-perm UnixPermargument describes the file access permissions in a Unix format (for
example, 660).

Options

-help Display usage information and exit.

fetch Copy theRemoteFileNamefrom the submit machine to the execute machine.

remove Remove theRemoteFileNamefile from the submit machine.

put Copy theLocalFileNamefrom the execute machine to the submit machine. Perm is the unix
permission to open the file with.

get job attr Prints the named job ClassAd attribute to standard output.

set job attr Sets the named job ClassAd attribute with the given attribute value.

ulog Appends a message to the job’s user log.

Examples

To copy a file from the submit machine to the execute machine while the user job is running, run

% condor_chirp fetch remotefile localfile

To print to standard output the value of theRequirements expression from within a running job,
run

% condor_chirp get_job_attr Requirements

Condor Version 7.2.3, Command Reference

condorchirp (1) 685

Note that the remote (submit-side) directory path is relative to the submit directory, and the local
(execute-side) directory is relative to the current directory of the running program.

To append the word ”foo” to a file on the submit machine, run

% echo foo | condor_chirp put -mode wat - RemoteFile

To append the message ”Hello World” to the user log, run

% condor_chirp ulog "Hello World"

Exit Status

condorchirp will exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorcod (1) 686

condor cod

manage COD machines and jobs

Synopsis

condor cod [-help | -version]

condor cod request [-pool centralmanagerhostname[:portnumber]| -namescheddname
]| [-addr ” <a.b.c.d:port>”] [[-help | -version] | [-debug| -timeout N | -classad file]
][-requirements expr] [-lease N]

condor codrelease-id ClaimID [[-help | -version] | [-debug | -timeout N | -classad file]][-fast]

condor cod activate -id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]
][-keyword string | -jobad filename| -cluster N | -proc N | -requirements expr]

condor cod deactivate -id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]
][-fast]

condor codsuspend-id ClaimID [[-help | -version] | [-debug | -timeout N | -classad file]]

condor codrenew-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]]

condor codresume-id ClaimID [[-help | -version] | [-debug | -timeout N | -classad file]]

condor cod delegateproxy -id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]
][-x509proxy ProxyFile]

Description

condorcod issues commands that manage and use COD claims on machines, given proper autho-
rization.

Instead of specifying an argument ofrequest, release, activate, deactivate, suspend, renew, or
resume, the user may invoke thecondorcod tool by appending an underscore followed by one
of these arguments. As an example, the following two commands are equivalent:

condor_cod release -id "<128.105.121.21:49973>#1073352 104#4"

condor_cod_release -id "<128.105.121.21:49973>#107335 2104#4"

To make these extended-name commands work, hard link the extended name to thecondorcod
executable. For example on a Unix machine:

Condor Version 7.2.3, Command Reference

condorcod (1) 687

ln condor_cod_request condor_cod

The requestargument gives a claim ID, and the other commands (release, activate, deactivate,
suspend, andresume) use the claim ID. The claim ID is given as the last line of output for arequest,
and the output appears of the form:

ID of new claim is: "<a.b.c.d:portnumber>#x#y"

An actual example of this line of output is

ID of new claim is: "<128.105.121.21:49973>#1073352104#4 "

Also see section 4.3 for more a complete description of COD.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr ” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-leaseN For therequestof a new claim, automatically release the claim afterN seconds.

request Create a new COD claim

release Relinquish a claim and kill any running job

activate Start a job on a given claim

deactivate Kill the current job, but keep the claim

suspend Suspend the job on a given claim

Condor Version 7.2.3, Command Reference

condorcod (1) 688

renew Renew the lease to the COD claim

resume Resume the job on a given claim

delegateproxy Delegate an X509 proxy for the given claim

General Remarks

Examples

Exit Status

condorcod will exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorcold start (1) 689

condor cold start

install and start Condor on this machine

Synopsis

condor cold start -help

condor cold start [-basedir directory] [-force] [-setuponly| -runonly] [-arch architecture]
[-site repository] [-localdir directory] [-runlocalconfig file] [-logarchive archive]
[-spoolarchive archive] [-execarchivearchive] [-filelock] [-pid] [-artifact filename] [-wget]
[-globuslocation directory] -configfilefile

Description

condorcold start installs and starts Condor on this machine, setting up or using a predefined config-
uration. In addition, it has the functionality to determinethe local architecture if one is not specified.
Additionally, this program can install pre-madelog , execute , and/orspool directories by spec-
ifying the archived versions.

Options

-arch architecturestr Use the givenarchitecturestrto fetch the installation package. The string is
in the format:

<condorversion>-<machinearch>-<os name>-<os version>

(for example 6.6.7-i686-Linux-2.4). The portion of this string <condorversion> may be
replaced with the string ”latest” (for example, latest-i686-Linux-2.4) to substitute the most
recent version of Condor.

-artifact filename Use filename for name of the artifact file used to determine whether the
condormasterdaemon is still alive.

-basedirdirectory The directory to install or find the Condor executables and libraries. When not
specified, the current working directory is assumed.

-execarchivearchive Create the Condorexecute directory from the givenarchivefile.

-filelock Specifies that this program should use a POSIX file lock midwife program to create an
artifact of the birth of acondormasterdaemon. A file lock undertaker can later be used to

Condor Version 7.2.3, Command Reference

condorcold start (1) 690

determine whether thecondormasterdaemon has exited. This is the preferred option when
the user wants to check the status of thecondormasterdaemon from another machine that
shares a distributed file system that supports POSIX file locking, for example, AFS.

-force Overwrite previously installed files, if necessary.

-globuslocationdirectory The location of the globus installation on this machine. When not
specified/opt/globus is the directory used. This option is only necessary when other
options of the form-*archive are specified.

-help Display brief usage information and exit.

-localdir directory The directory where the Condorlog , spool , andexecute directories will
be installed. Each running instance of Condor must have its own local directory.

-logarchivearchive Create the Condor log directory from the givenarchivefile.

-pid This program is to use a unique process id midwife program to create an artifact of the birth
of a condormasterdaemon. A unique pid undertaker can later be used to determine whether
thecondormasterdaemon has exited. This is the default option and the preferred method to
check the status of thecondormasterdaemon from the same machine it was started on.

-runlocalconfig file A special local configuration file bound into the Condor configuration at
runtime. This file only affects the instance of Condor started by this command. No other
Condor instance sharing the same global configuration file will be affected.

-runonly Run Condor from the specified installation directory without installing it. It is possible to
run several instantiations of Condor from a single installation.

-setuponly Install Condor without running it.

-site repository The ftp, http, gsiftp, or mounted file system directory wherethe installation pack-
ages can be found (for example,www.cs.example.edu/packages/coldstart).

-spoolarchivearchive Create the Condor spool directory from the givenarchivefile.

-wget Usewgetto fetch thelog , spool , andexecute directories, if other options of the form
-*archive are specified.wgetmust be installed on the machine and in the user’s path.

Condor Version 7.2.3, Command Reference

condorcold start (1) 691

-configfilefile A required option to specify the Condor configuration file to use for this installation.
This file can be located on an http, ftp, or gsiftp site, or alternatively on a mounted file system.

Exit Status

condorcold start will exit with a status value of 0 (zero) upon success, and non-zero otherwise.

Examples

To start a Condor installation on the current machine, using
http://www.example.com/Condor/deployment as the installation site:

% condor_cold_start \
-configfile http://www.example.com/Condor/deployment /condor_config.mobile \
-site http://www.example.com/Condor/deployment

Optionally if this instance of Condor requires a local configuration filecondor config.local :

% condor_cold_start \
-configfile http://www.example.com/Condor/deployment /condor_config.mobile \
-site http://www.example.com/Condor/deployment \
-runlocalconfig condor_config.local

See Also

condorcold stop(on page 692),filelock midwife(on page 852),uniq pid midwife(on page 874).

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorcold stop(1) 692

condor cold stop

reliably shut down and uninstall a running Condor instance

Synopsis

condor cold stop-help

condor cold stop [-force] [-basedir directory] [-localdir directory] [-runlocalconfig file]
[-cleaninstall] [-cleanlocal] [-stop] [-logarchive archive] [-spoolarchive archive]
[-execarchivearchive] [-filelock] [-pid] [-artifact file] [-nogurl] [-globuslocation directory]
-configfilefile

Description

condorcold stop reliably shuts down and uninstall a running Condor instance. This program
first usescondor local stop to reliably shut down the running Condor instance. It then usescon-
dor cleanuplocal to create and store archives of thelog , spool , andexecute directories. Its
last task is to uninstall the Condor binaries and libraries usingcleanuprelease.

Options

-artifact file Usesfile as the artifact file to determine whether thecondormasterdaemon is still
alive.

-basedirdirectory Directory where the Condor installation can be found. When not specified, the
current working directory is assumed.

-cleaninstall Remove the Condor installation. If none of the options-cleaninstall, -cleanlocal, or
-stopare specified, the program behaves as though all of them have been provided.

-cleanlocal The program will remove thelog , spool , exec directories for this Condor instance.
If none of the options-cleaninstall, -cleanlocal, or -stop are specified, the program behaves
as though all of them have been provided.

-configfilefile The same configuration file path given tocondorcold start. This program assumes
the file is in the installation directory or the current working directory.

Condor Version 7.2.3, Command Reference

condorcold stop(1) 693

-execarchivearchive The program will create a tar’ed and gzip’ed archive of theexecute
directory and stores it asarchive. Thearchivecan be a file path or a grid-ftp url.

-filelock Determine whether thecondormasterdaemon has exited using a file lock undertaker.
This option must match the corresponding option given tocondorcold start.

-force Ignore the status of thecondorschedddaemon (whether it has jobs in the queue or not)
when shutting down Condor.

-globuslocationdirectory The directory containing the Globus installation. This option is re-
quired if any of the options of the form-*archive are used, and Globus is not installed in
/opt/globus .

-localdir directory Directory where thelog , spool , andexecute directories are stored for this
running instance of Condor. Required if the-cleanlocaloption is specified.

-logarchivearchive The program will create a tar’ed and gzip’ed archive of thelog directory and
stores it asarchive. Thearchivecan be a file path or a grid-ftp url.

-nogurl Do not useglobus-url-copyto store the archives. This implies that the archives can only
be stored on mounted file systems.

-pid Determine whether thecondormasterdaemon has exited using a unique process id under-
taker. This option must match the corresponding option given tocondorcold start.

-runlocalconfig file Bind file into the configuration used by this instance of Condor. This option
should the one provided tocondorcold start.

-spoolarchivearchive The program will create a tar’ed and gzip’ed archive of thespool directory
and stores it asarchive. Thearchivecan be a file path or a grid-ftp url.

-stop The program will shut down this running instance of Condor. If none of the options
-cleaninstall, -cleanlocal, or -stop are specified, the program behaves as though all of them
have been provided.

Exit Status

condorcold stopwill exit with a status value of 0 (zero) upon success, and non-zero otherwise.

Condor Version 7.2.3, Command Reference

condorcold stop(1) 694

Examples

To shut down a Condor instance on the target machine:

% condor_cold_stop -configfile condor_config.mobile

To shutdown a Condor instance and archive the log directory:

% condor_cold_stop -configfile condor_config.mobile \
-logarchive /tmp/log.tar.gz

See Also

condorcold start (on page 689),filelock undertaker (on page 854),uniq pid undertaker (on
page 876).

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorcompile(1) 695

condor compile

create a relinked executable for submission to the StandardUniverse

Synopsis

condor compilecc | CC | gcc| f77 | g++ | ld | make| . . .

Description

Use condorcompileto relink a program with the Condor libraries for submissioninto Condor’s
Standard Universe. The Condor libraries provide the program with additional support, such as
the capability to checkpoint, which is required in Condor’sStandard Universe mode of operation.
condorcompilerequires access to the source or object code of the program tobe submitted; if
source or object code for the program is not available (i.e. only an executable binary, or if it is a
shell script), then the program must submitted into Condor’s Vanilla Universe. See the reference
page forcondorsubmitand/or consult the ”Condor Users and Administrators Manual” for further
information.

To usecondorcompile, simply enter ”condorcompile” followed by whatever you would normally
enter to compile or link your application. Any resulting executables will have the Condor libraries
linked in. For example:

condor_compile cc -O -o myprogram.condor file1.c file2.c . ..

will produce a binary ”myprogram.condor” which is relinkedfor Condor, capable of
checkpoint/migration/remote-system-calls, and ready tosubmit to the Standard Universe.

If the Condor administrator has opted to fully installcondorcompile, thencondorcompilecan be
followed by practically any command or program, including make or shell-script programs. For
example, the following would all work:

condor_compile make

condor_compile make install

condor_compile f77 -O mysolver.f

condor_compile /bin/csh compile-me-shellscript

If the Condor administrator has opted to only do a partial install of condorcompile, the you are
restricted to followingcondorcompilewith one of these programs:

Condor Version 7.2.3, Command Reference

condorcompile(1) 696

cc (the system C compiler)

acc (ANSI C compiler, on Sun systems)

c89 (POSIX compliant C compiler, on some systems)

CC (the system C++ compiler)

f77 (the system FORTRAN compiler)

gcc (the GNU C compiler)

g++ (the GNU C++ compiler)

g77 (the GNU FORTRAN compiler)

ld (the system linker)

f90 (the system FORTRAN 90 compiler)

NOTE: If you use explicitly call “ld” when you normally create your binary, simply use:

condor_compile ld <ld arguments and options>

instead.

NOTE: f90 (FORTRAN 90) is only supported on Solaris and Digital Unix.

Exit Status

condorcompileis a script that executes specified compilers and/or linkers. If an error is encoun-
tered before calling these other programs,condorcompilewill exit with a status value of 1 (one).
Otherwise, the exit status will be that given by the executedprogram.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

Condor Version 7.2.3, Command Reference

condorcompile(1) 697

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorconfigbind (1) 698

condor config bind

bind together a set of configuration files

Synopsis

condor config bind -help

condor config bind -o outputfile configfile1 configfile2[configfile3. . .]

Description

condorconfigbind dynamically binds two or more Condor configuration files through the use of
a new configuration file. The purpose of this tool is to allow the user to dynamically bind a local
configuration file into an already created, and possible immutable, configuration file. This is partic-
ularly useful when the user wants to modify a configuration but cannot actually make any changes to
the global configuration file (even to change the list of localconfiguration files). This program does
not modify the given configuration files. Rather, it creates anew configuration file that specifies the
given configuration files as local configuration files.

Condor evaluates each of the configuration files in the given command-line order (left to right). A
value defined in two or more of the configuration files results in the last one evaluated defining the
value. It overrides any others. To bind a new local configuration into a global configuration, specify
the local configuration second within the command-line ordering.

Options

configfile1 First configuration file to bind.

configfile2 Second configuration file to bind.

configfile3. . . An optional list of other configuration files to bind.

-help Display brief usage information and exit

-o output file Specifies the file name where this program should output the binding configuration.

Condor Version 7.2.3, Command Reference

condorconfigbind (1) 699

Exit Status

condorconfigbind will exit with a status value of 0 (zero) upon success, and non-zero on error.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorconfigval (1) 700

condor config val

Query or set a given Condor configuration variable

Synopsis

condor config val [options] variable. . .

condor config val [options] -setstring. . .

condor config val [options] -rset string. . .

condor config val [options] -unsetvariable. . .

condor config val [options] -runset variable. . .

condor config val [options] -tilde

condor config val [options] -owner

condor config val [options] -config

condor config val [options] -dump

condor config val [options] -verbosevariable. . .

Description

condorconfigval can be used to quickly see what the current Condor configuration is on any given
machine. Given a list of variables,condorconfigval will report what each of these variables is
currently set to. If a given variable is not defined,condorconfigval will halt on that variable, and
report that it is not defined. By default,condorconfigval looks in the local machine’s configuration
files in order to evaluate the variables.

condorconfigval can also be used to quickly set configuration variables for a specific daemon on
a given machine. Each daemon remembers settings made bycondorconfigval. The configuration
file is not modified by this command. Persistent settings remain when the daemon is restarted.
Runtime settings are lost when the daemon is restarted. In general, modifying a host’s configuration
with condorconfigval requires theCONFIGaccess level, which is disabled on all hosts by default.
Administrators have more fine-grained control over which access levels can modify which settings.
See section 3.6.1 on page 282 for more details.

NOTE: The changes will not take effect until you perform acondorreconfig.

NOTE: It is generally wise to test a new configuration on a single machine to ensure you have
no syntax or other errors in the configuration before you reconfigure many machines. Having bad
syntax or invalid configuration settings is a fatal error forCondor daemons, and they will exit. Far

Condor Version 7.2.3, Command Reference

condorconfigval (1) 701

better to discover such a problem on a single machine than to cause all the Condor daemons in your
pool to exit.

Options

-namemachinename Query the specified machine’scondormasterdaemon for its configuration.

-pool centralmanagerhostname[:portnumber]Use the given central manager and an optional port
number to find daemons.

-address<ip:port> Connect to the given ip/port.

-master | -schedd| -startd | -collector | -negotiator The daemon to query (if not specified, master
is default).

-setstring. . . Set a persistent config file entry. The string must be a single argument, so you should
enclose it in double quotes. The string must be of the form “variable = value”.

-rset string. . . Set a runtime config file entry. See the description for-set for details about the
string to use.

-unsetvariable. . . Unset a persistent config file variable.

-runset variable. . . Unset a runtime config file variable.

-tilde Return the path to the Condor home directory.

-owner Return the owner of thecondorconfigval process.

-config Print the current configuration files in use.

-dump Returns a list of all of the defined macros in the configurationfiles found by con-
dor configval, along with their values. If the-verboseis suppled as well, then the specific
configuration file which defined each macro, along with the line number of its definition is
also printed. NOTE: The output of this argument is likely to change in a future revision of
Condor.

Condor Version 7.2.3, Command Reference

condorconfigval (1) 702

-verbosevariable. . . Returns the configuration file name and line number where a configuration
variable is defined.

variable. . . The variables to query.

Exit Status

condorconfigval will exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

To request the schedd daemon on host perdita to give the valueof theMAXJOBS RUNNINGcon-
figuration variable:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
500

To request the schedd daemon on host perdita to set the value of the MAXJOBS RUNNINGconfig-
uration variable to the value 10.

% condor_config_val -name perdita -schedd -set "MAX_JOBS_ RUNNING = 10"
Successfully set configuration "MAX_JOBS_RUNNING = 10" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous example.

% condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects the change implemented:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
10

To set the configuration variableMAXJOBS RUNNINGback to what it was before the command to
set it to 10:

% condor_config_val -name perdita -schedd -unset MAX_JOBS _RUNNING
Successfully unset configuration "MAX_JOBS_RUNNING" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

Condor Version 7.2.3, Command Reference

condorconfigval (1) 703

A command that will implement the change just set in the previous example.

% condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects that variable has gone back to is value before initial
set of the variable:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
500

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorconfigure(1) 704

condor configure

Configure or install Condor

Synopsis

condor configureor condor install [-- help]

condor configure or condor install [-- install[=<path/to/release>]] [-- install-dir= <path>]
[-- prefix=<path>] [-- local-dir=<path>] [-- make-personal-condor] [-- type = < submit,
execute, manager>] [-- central-manager = < hostname>] [-- owner = < ownername >]
[-- make-personal-stork] [-- overwrite] [-- ignore-missing-libs] [-- force] [-- no-env-scripts]
[-- env-scripts-dir = < directory >] [-- backup] [-- stork] [-- credd] [-- verbose]

Description

condorconfigureandcondor install refer to a single script that installs and/or configures Condor
on Unix machines. As the names imply,condor install is intended to perform a Condor installation,
andcondorconfigureis intended to configure (or reconfigure) an existing installation. Both will run
with Perl 5.6.0 or more recent versions.

condorconfigure(andcondor install) are designed to be run more than one time where required. It
can install Condor when invoked with a correct configurationvia

condor_install

or

condor_configure --install

or, it can change the configuration files when invoked via

condor_configure

Note that changes in the configuration files do not result in changes while Condor is running. To
effect changes while Condor is running, it is necessary to further use thecondorreconfigor con-
dor restart command. condorreconfig is required where the currently executing daemons need
to be informed of configuration changes.condorrestart is required where the options-- make-
personal-condoror -- type are used, since these affect which daemons are running.

Runningcondorconfigureor condor install with no options results in a usage screen being printed.
The-- help option can be used to display a full help screen.

Condor Version 7.2.3, Command Reference

condorconfigure(1) 705

Within the options given below, the phraserelease directoriesis the list of directories that are re-
leased with Condor. This list includes:bin , etc , examples , include , lib , libexec , man,
sbin , sql andsrc .

Options

—help Print help screen and exit

—install Perform installation, assuming that the current working directory contains the release
directories. Without further options, the configuration isthat of a Personal Condor, a
complete one-machine pool. If used as an upgrade within an existing installation directory,
existing configuration files and local directory are preserved. This is the default behavior of
condor install.

—install-dir= <path> Specifies the path where Condor should be installed or the path where it
already is installed. The default is the current working directory.

—prefix=<path> This is an alias for–install-dir .

—local-dir=<path> Specifies the location of the local directory, which is the directory that gener-
ally contains the local (machine-specific) configuration file as well as the directories where
Condor daemons write their run-time information (spool , log , execute). This loca-
tion is indicated by theLOCALDIR variable in the configuration file. When installing
(that is, if –install is specified),condorconfigurewill properly create the local directory in
the location specified. If none is specified, the default value is given by the evaluation of
$(RELEASE DIR)/local.$(HOSTNAME) .

During subsequent invocations ofcondorconfigure(that is, without the —install option), if
the —local-dir option is specified, the new directory will becreated and thelog , spool and
execute directories will be moved there from their current location.

—make-personal-condor Installs and configures for Personal Condor, a fully-functional, one-
machine pool.

—type= < submit, execute, manager> One or more of the types may be listed. This determines
the roles that a machine may play in a pool. In general, any machine can be a submit and/or
execute machine, and there is one central manager per pool. In the case of a Personal Condor,
the machine fulfills all three of these roles.

—central-manager=<hostname> Instructs the current Condor installation to use the spec-
ified machine as the central manager. This modifies the configuration variables

Condor Version 7.2.3, Command Reference

condorconfigure(1) 706

COLLECTORHOST and NEGOTIATORHOST to point to the given host name). The
central manager machine’s Condor configuration needs to be independently configured to act
as a manager using the option–type=manager.

—owner=<ownername> Set configuration such that Condor daemons will be executed as the
given owner. This modifies the ownership on thelog , spool andexecute directories and
sets theCONDORIDS value in the configuration file, to ensure that Condor daemonsstart up
as the specified effective user. See section 3.6.11 on UIDs inCondor on page 315 for details.
This is only applicable whencondorconfigureis run by root. If not run as root, the owner is
the user running thecondorconfigurecommand.

–overwrite Always overwrite the contents of thesbin directory in the installation directory. By
default,condor install will not install if it finds an existingsbin directory with Condor pro-
grams in it. In this case,condor install will exit with an error message. Specify–overwrite
or –backup to tell condor install what to do.

This preventscondor install from moving ansbin directory out of the way that it should not
move. This is particularly useful when trying to install Condor in a location used by other
things (/usr , /usr/local , etc.) For example:condor install –prefix=/usr will not move
/usr/sbin out of the way unless you specify the–backupoption.

The–backup behavior is used to preventcondor install from overwriting running daemons
– Unix semantics will keep the existing binaries running, even if they have been moved to a
new directory.

—backup Always backup thesbin directory in the installation directory. By default,con-
dor install will not install if it finds an existingsbin directory with Condor programs in
it. In this case,condor install with exit with an error message. You must specify–overwrite
or –backup to tell condor install what to do.

This preventscondor install from moving ansbin directory out of the way that it should not
move. This is particularly useful if you’re trying to install Condor in a location used by other
things (/usr , /usr/local , etc.) For example:condor install –prefix=/usr will not move
/usr/sbin out of the way unless you specify the–backupoption.

The–backup behavior is used to preventcondor install from overwriting running daemons
– Unix semantics will keep the existing binaries running, even if they have been moved to a
new directory.

—ignore-missing-libs Ignore missing shared libraries that are detected bycondor install. By
default, condor install will detect missing shared libraries such aslibstdc++.so.5
on Linux; it will print messages and exit if missing libraries are detected. The
—ignore-missing-libs will cause condor install to not exit, and to proceed with the
installation if missing libraries are detected.

Condor Version 7.2.3, Command Reference

condorconfigure(1) 707

—force This is equivalent to enabling both the—overwrite and—ignore-missing-libscommand
line options.

—no-env-scripts By default,condorconfigurewrites simple sh and csh shell scripts which can be
sourced by their respective shells to set the user’sPATHandCONDORCONFIGenvironment
variables. This option preventscondorconfigurefrom generating these scripts.

—env-scripts-dir=<directory> By default, the simple sh and csh shell scripts (see
—no-env-scripts for details) are created in the root directory of the Condor installa-
tion. This option causescondorconfigureto generate these scripts in the specified directory.

—make-personal-stork Creates a Personal Stork, using thecondorcredddaemon.

—stork Configures the Stork data placement server. Use this option with the—credd option.

—credd Configure the thecondorcredddaemon (credential manager daemon).

—verbose Print information about changes to configuration variablesas they occur.

Exit Status

condorconfigurewill exit with a status value of 0 (zero) upon success, and it will exit with a nonzero
value upon failure.

Examples

Install Condor on the machine (machine1@cs.wisc.edu) to bethe pool’s central manager. On ma-
chine1, within the directory that contains the unzipped Condor distribution directories:

% condor_install --type=submit,execute,manager

This will allow the machine to submit and execute Condor jobs, in addition to being the central
manager of the pool.

To change the configuration such that machine2@cs.wisc.eduis an execute-only machine (that is, a
dedicated computing node) within a pool with central manager on machine1@cs.wisc.edu, issue the
command on that machine2@cs.wisc.edu from within the directory where Condor is installed:

% condor_configure --central-manager=machine1@cs.wisc .edu --type=execute

Condor Version 7.2.3, Command Reference

condorconfigure(1) 708

To change the location of theLOCALDIR directory in the configuration file, do (from the directory
where Condor is installed):

% condor_configure --local-dir=/path/to/new/local/dir ectory

This will move thelog ,spool ,execute directories to/path/to/new/local/directory
from the current local directory.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorconverthistory(1) 709

condor convert history

Convert the history file to the new format

Synopsis

condor converthistory [-help]

condor converthistory history-file1[history-file2. . .]

Description

As of Condor version 6.7.19, the Condor history file has a new format to allow fast searches back-
wards through the file. Not all queries can take advantage of the speed increase, but the ones that
can are significantly faster.

Entries placed in the history file after upgrade to Condor 6.7.19 will automatically be saved in
the new format. The new format adds information to the stringwhich distinguishes and separates
job entries. In order to search within this new format, no changes are necessary. However, to be
able to search the entire history, the history file must be converted to the updated format.con-
dor converthistorydoes this.

Turn thecondorschedddaemon off while converting history files. Turn it back on after conversion
is completed.

Arguments tocondorconverthistoryare the history files to convert. The history file is normally in
the Condor spool directory; it is namedhistory . Since the history file is rotated, there may be
multiple history files, and all of them should be converted. On Unix platform variants, the easiest
way to do this is:

cd `condor_config_val SPOOL`
condor_convert_history history *

condorconverthistory makes a back up of each original history files in case of a problem. The
names of these back up files are listed; names are formed by appending the suffix.oldver to the
original file name. Move these back up files to a directory other than the spool directory. If kept in
the spool directory,condorhistorywill find the back ups, and will appear to have duplicate jobs.

Exit Status

condorconverthistorywill exit with a status value of 0 (zero) upon success, and it will exit with
the value 1 (one) upon failure.

Condor Version 7.2.3, Command Reference

condorconverthistory(1) 710

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condordagman(3) 711

condor dagman

meta scheduler of the jobs submitted as the nodes of a DAG or DAGs

Synopsis

condor dagman [-debug level] [-rescue filename] [-maxidle numberOfJobs]
[-maxjobs numberOfJobs] [-maxpre NumberOfPREscripts] [-maxpost NumberOfPOSTscripts]
[-noeventchecks] [-allowlogerror] [-usedagdir] -lockfile filename [-waitfordebug]
[-autorescue0—1] [-dorescuefrom number] -csdversionversionstring
[-allowversionmismatch] [-DumpRescue] -dagdag file [-dagdag file 2 . . .-dagdag file n]

Description

condordagmanis a meta scheduler for the Condor jobs within a DAG (directedacyclic graph) (or
multiple DAGs). In typical usage, a submitter of jobs that are organized into a DAG submits the
DAG usingcondorsubmitdag. condorsubmitdag does error checking on aspects of the DAG
and then submitscondordagmanas a Condor job.condordagmanuses log files to coordinate the
further submission of the jobs within the DAG.

As part ofdaemoncore, the set of command-line arguments given in section 3.9.2 work for con-
dor dagman.

Arguments tocondordagmanare either automatically set bycondorsubmitdagor they are spec-
ified as command-line arguments tocondorsubmitdag and passed on tocondordagman. The
method by which the arguments are set is given in their description below.

condordagmancan run multiple, independent DAGs. This is done by specifying multiple
-dagarguments. Pass multiple DAG input files as command-line arguments tocondorsubmitdag.

Debugging output may be obtained by using the-debug leveloption. Level values and what they
produce is described as

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

• level = 2; normal output, errors and warnings

• level = 3; output errors, as well as all warnings

• level = 4; internal debugging output

• level = 5; internal debugging output; outer loop debugging

• level = 6; internal debugging output; inner loop debugging

Condor Version 7.2.3, Command Reference

condordagman(3) 712

• level = 7; internal debugging output; rarely used

Options

-debug level An integer level of debugging output.level is an integer, with values of 0-7 inclusive,
where 7 is the most verbose output. This command-line optionto condorsubmitdag is
passed tocondordagmanor defaults to the value 3, as set bycondorsubmitdag.

-rescuefilename Sets the file name of the rescue DAG to write in the case of a failure. As passed by
condorsubmitdag, the name of the file will be the name of the DAG input file concatenated
with the string.rescue . This argument is now optional, and in general it is preferred to not
specify it. This allowscondordagmanto automatically generate an appropriate rescue DAG
name.

-maxidle NumberOfJobsSets the maximum number of idle jobs allowed beforecondordagman
stops submitting more jobs. Once idle jobs start to run,condordagmanwill resume
submitting jobs. NumberOfJobsis a positive integer. This command-line option tocon-
dor submitdag is passed tocondordagman. If not specified, the number of idle jobs is
unlimited.

-maxjobsnumberOfJobsSets the maximum number of jobs within the DAG that will be submitted
to Condor at one time.numberOfJobsis a positive integer. This command-line option to
condorsubmitdag is passed tocondordagman. If not specified, the default number of jobs
is unlimited.

-maxpre NumberOfPREscriptsSets the maximum number of PRE scripts within the DAG that
may be running at one time.NumberOfPREScriptsis a positive integer. This command-line
option to condorsubmitdag is passed tocondordagman. If not specified, the default
number of PRE scripts is unlimited.

-maxpostNumberOfPOSTscriptsSets the maximum number of POST scripts within the DAG that
may be running at one time.NumberOfPOSTScriptsis a positive integer. This command-line
option to condorsubmitdag is passed tocondordagman. If not specified, the default
number of POST scripts is unlimited.

-noeventchecksThis argument is no longer used; it is now ignored. Its functionality is now
implemented by theDAGMANALLOWEVENTSconfiguration macro (see section 3.3.25).

-allowlogerror This optional argument hascondordagmantry to run the specified DAG, even in
the case of detected errors in the user log specification.

Condor Version 7.2.3, Command Reference

condordagman(3) 713

-usedagdir This optional argument causescondordagmanto run each specified DAG as if the
directory containing that DAG file was the current working directory. This option is most
useful when running multiple DAGs in a singlecondordagman.

-lockfile filename Names the file created and used as a lock file. The lock file prevents execution
of two of the same DAG, as defined by a DAG input file. A default lock file ending with the
suffix .dag.lock is passed tocondordagmanby condorsubmitdag.

-waitfordebug This optional argument causescondordagmanto wait at startup until someone
attaches to the process with a debugger and sets the waitfor debug variable in maininit() to
false.

-autorescue0—1 Whether to automatically run the newest rescue DAG for the given DAG file, if
one exists (0 =false , 1 = true).

-dorescuefromnumber Forcescondordagmanto run the specified rescue DAG number for the
given DAG. A value of 0 is the same as not specifying this option. Specifying a non-existant
rescue DAG is a fatal error.

-csdversionversionstring versionstring is the version of thecondorsubmitdag program. At
startup,condordagmanchecks for a version mismatch with thecondorsubmitdagversion
in this argument.

-allowversionmismatch This optional argument causescondordagman to allow a version
mismatch betweencondordagmanitself and the.condor.sub file produced bycon-
dor submitdag (or, in other words, betweencondorsubmitdag and condordagman).
WARNING! This option should be used only if absolutely necessary. Allowing version
mismatches can cause subtle problems when running DAGs.

-DumpRescueThis optional argument causescondordagmanto immediately dump a rescue DAG
and then exit, as opposed to actually running the DAG. (This feature is mainly intended for
testing.)

-dagfilename filenameis the name of the DAG input file that is set as an argument tocon-
dor submitdag, and passed tocondordagman.

Exit Status

condordagmanwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Condor Version 7.2.3, Command Reference

condordagman(3) 714

Examples

condordagmanis normally not run directly, but submitted as a Condor job byrunning con-
dor submitdag. See the condorsubmitdag manual page 825 for examples.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condor fetchlog(1) 715

condor fetchlog

Retrieve a daemon’s log file that is located on another computer

Synopsis

condor fetchlog [-help | -version]

condor fetchlog [-pool centralmanagerhostname[:portnumber]] [-master | -startd | -schedd| -
collector | -negotiator | -kbdd] machine-name subsystem[.extension]

Description

condor fetchlogcontacts Condor running on the machine specified bymachine-name, and asks it
to return a log file from that machine. Which log file is determined from thesubsystem[.extension]
argument. The log file is printed to standard output. This command eliminates the need to remotely
log in to a machine in order to retrieve a daemon’s log file.

For security purposes of authentication and authorization, this command requires an administrator’s
level of access. See section 3.6.1 on page 282 for more details about Condor’s security mechanisms.

Thesubsystem[.extension]argument is utilized to construct the log file’s name. Without an optional
.extension, the value of the configuration variable namedsubsystemLOG defines the log file’s name.
When specified, the.extensionis appended to this value.

Acceptable strings for the argumentsubsystemare as given as possible values of the predefined
configuration variable$(SUBSYSTEM). See the definition in section 3.3.1.

A value for the optional.extensionargument may be one of the three strings:

1. .old

2. .slot<X>

3. .slot<X>.old

Within these strings,<X> is substituted with the slot number.

Options

-help Display usage information

Condor Version 7.2.3, Command Reference

condor fetchlog(1) 716

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-master Send the command to thecondormasterdaemon (default)

-startd Send the command to thecondorstartddaemon

-schedd Send the command to thecondorschedddaemon

-collector Send the command to thecondorcollectordaemon

-kbdd Send the command to thecondorkbdddaemon

Examples

To get thecondornegotiatordaemon’s log from a host namedhead.example.com from within
the current pool:

condor_fetchlog head.example.com NEGOTIATOR

To get thecondorstartddaemon’s log from a host namedexecute.example.com from within
the current pool:

condor_fetchlog execute.example.com STARTD

This command requested thecondorstartd daemon’s log from thecondormaster. If the con-
dor masterhas crashed or is unresponsive, ask another daemon running on that computer to return
the log. For example, ask thecondorstartddaemon to return thecondormaster’s log:

condor_fetchlog -startd execute.example.com MASTER

Exit Status

condor fetchlogwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Condor Version 7.2.3, Command Reference

condor fetchlog(1) 717

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorfindhost(1) 718

condor findhost

find machine(s) in the pool that can be used with minimal impact on currently running Condor jobs
and best meet any specified constraints

Synopsis

condor findhost [-help] [-m] [-n num] [-c c expr] [-r r expr] [-p centralmanagerhostname]

Description

condorfindhostsearches a Condor pool of machines for the best machine or machines that will
have the minimum impact on running Condor jobs if the machineor machines are taken out of the
pool. The search may be limited to the machine or machines that match a set of constraints and rank
expression.

condorfindhostreturns a fully-qualified domain name for each machine. The search is limited
(constrained) to a specific set of machines using the-c option. The search can use the-r option for
rank, the criterion used for selecting a machine or machinesfrom the constrained list.

Options

-help Display usage information and exit

-m Only search for entire machines. Slots within an entire machine are not considered.

-n num Find and list up tonummachines that fulfill the specification.num is an integer greater
than zero.

-c c expr Constrain the search to only consider machines that result from the evaluation ofc expr.
c expr is a ClassAd expression.

-r r expr r expr is the rank expression evaluated to use as a basis for machineselection.r expr is a
ClassAd expression.

-p centralmanagerhostnameSpecify the pool to be searched by giving the central manager’s host
name. Without this option, the current pool is searched.

Condor Version 7.2.3, Command Reference

condorfindhost(1) 719

General Remarks

condorfindhostis used to locate a machine within a pool that can be taken out of the pool with the
least disturbance of the pool.

An administrator should set preemption requirements for the Condor pool. The expression

(Interactive =?= TRUE)

will let condorfindhostknow that it can claim a machine even if Condor would not normally pre-
empt a job running on that machine.

Exit Status

The exit status ofcondorfindhostis zero on success. If not able to identify as many machines as
requested, it returns one more than the number of machines identified. For example, if 8 machines
are requested, andcondorfindhostonly locates 6, the exit status will be 7. If not able to locateany
machines, or an error is encountered,condorfindhostwill return the value 1.

Examples

To find and list four machines, preferring those with the highest mips (on Drystone benchmark)
rating:

condor_findhost -n 4 -r "mips"

To find and list 24 machines, considering only those where thekflops attribute is not defined:

condor_findhost -n 24 -c "kflops=?=undefined"

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorglidein (1) 720

condor glidein

add a remote grid resource to a local Condor pool

Synopsis

condor glidein [-help]

condor glidein [-admin address] [-anybody] [-archdir dir] [-basedir basedir]
[-count CPU count] [¡Execute Task Options¿] [¡Generate File Options¿]
[-gsi daemonname cert name] [-idletime minutes] [-install gsi trusted ca dir path]
[-install gsi gridmap file] [-localdir dir] [-memory MBytes] [-project name] [-queue name]
[-runtime minutes] [-runonly] [¡Set Up Task Options¿] [-suffix suffix] [-slots slot count]
¡contact argument¿

Description

condorglidein allows the temporary addition of a grid resource to a local Condor pool. The addi-
tion is accomplished by installing and executing some of theCondor daemons on the remote grid
resource, such that it reports in as part of the local Condor pool. condorglidein accomplishes two
separate tasks: set up and execution. These separated tasksallow flexibility, in that the user may use
condorglidein to do only one of the tasks or both, in addition to customizingthe tasks.

The set up task generates a script that may be used to start theCondor daemons during the execution
task, places this script on the remote grid resource, composes and installs a configuration file, and it
installs thecondormaster, condorstartdandcondorstarterdaemons on the grid resource.

The execution task runs the script generated by the set up task. The goal of the script is to invoke the
condormasterdaemon. The Condor jobglidein startupappears in the queue of the local Condor
pool for each invocation ofcondorglidein. To remove the grid resource from the local Condor pool,
usecondor rm to remove theglidein startupjob.

The Condor jobs to do both the set up and execute tasks utilizeCondor-G and Globus protocols (gt2
or gt4) to communicate with the remote resource. Therefore,an X.509 certificate (proxy) is required
for the user runningcondorglidein.

Specify the remote grid machine with the command line argument ¡contact argument¿.
¡contact argument¿takes one of 4 forms:

1. hostname

2. Globus contact string

3. hostname/jobmanager-¡schedulername¿

Condor Version 7.2.3, Command Reference

condorglidein (1) 721

4. -contactfilefilename

The argument-contactfilefilenamespecifies the full path and file name of a file that contains Globus
contact strings. Each of the resources given by a Globus contact string is added to the local Condor
pool.

The set up task ofcondorglidein copies the binaries for the correct platform from a central server.
To obtain access to the server, or to set up your own server, follow instructions on the Glidein Server
Setup page, at http://www.cs.wisc.edu/condor/glidein. Set up need only be done once per site, as the
installation is never removed.

By default, all files installed on the remote grid resource are placed in the directory
$(HOME)/Condor glidein . $(HOME) is evaluated and defined on the remote machine us-
ing a grid map. This directory must be in a shared file system accessible by all machines that will
run the Condor daemons. By default, the daemon’s log files will also be written in this directory.
Change this directory with the-localdir option to make Condor daemons write to local scratch space
on the execution machine. For debugging initial problems, it may be convenient to have the log files
in the more accessible default directory. If using the default directory, occasionally clean up old log
and execute directories to avoid running out of space.

Examples

To have 10 grid resources running PBS at a grid site with a gatekeeper named gatekeeper.site.edu
join the local Condor pool:

% condor_glidein -count 10 gatekeeper.site.edu/jobmanag er-pbs

If you try something like the above andcondorglidein is not able to automatically determine every-
thing it needs to know about the remote site, it will ask you toprovide more information. A typical
result of this process is something like the following command:

% condor_glidein \
-count 10 \
-arch 6.6.7-i686-pc-Linux-2.4 \
-setup_jobmanager jobmanager-fork \
gatekeeper.site.edu/jobmanager-pbs

The Condor jobs that do the set up and execute tasks will appear in the queue for the local Condor
pool. As a result of a successful glidein, usecondorstatusto see that the remote grid resources are
part of the local Condor pool.

A list of common problems and solutions is presented in this manual page.

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/glidein

condorglidein (1) 722

Generate File Options

-genconfig Create a local copy of the configuration file that may be used onthe remote resource.
The file is namedglidein condor config.<suffix> . The string defined by
<suffix> defaults to the process id (PID) of thecondorglidein process or is defined with
the -suffix command line option. The configuration file may be edited for later use with the
-useconfigoption.

-genstartup Create a local copy of the script used on the remote resource to invoke thecon-
dor master. The file is namedglidein startup.<suffix> . The string defined by
<suffix> defaults to the process id (PID) of thecondorglideinprocess or is defined with the
-suffix command line option. The file may be edited for later use with the-usestartupoption.

-gensubmit Generate submit description files, but do not submit. The submit description file for
the set up task is namedglidein setup.submit.<suffix> . The submit description
file for the execute task is namedglidein run.submit.<suffix> . The string defined
by <suffix> defaults to the process id (PID) of thecondorglideinprocess or is defined with
the-suffix command line option.

Set Up Task Options

-setuponly Do only the set up task ofcondorglidein. This option cannot be run simultaneously
with -runonly .

-setup here Do the set up task on the local machine, instead of at a remote grid resource. This may
be used, for example, to do the set up task ofcondorglidein in an AFS area that is read-only
from the remote grid resource.

-forcesetup During the set up task, force the copying of files, even if thisoverwrites existing files.
Use this to push out changes to the configuration.

-useconfigconfig file The set up task copies the specified configuration file, ratherthan generating
one.

-usestartupstartup file The set up task copies the specified startup script, rather than generating
one.

-setup jobmanager jobmanagernameIdentifies the jobmanager on the remote grid resource to
receive the files during the set up task. If a reasonable default can be discovered through

Condor Version 7.2.3, Command Reference

condorglidein (1) 723

MDS, this is optional. jobmanagernameis a string representing any gt2 name for the job
manager. The correct string in most cases will bejobmanager-fork. Other common strings
may bejobmanager, jobmanager-condor, jobmanager-pbs, andjobmanager-lsf.

Execute Task Options

-runonly Starts execution of the Condor daemons on the grid resource.If any of the necessary files
or executables are missing,condorglidein exits with an error code. This option cannot be
run simultaneously with-setuponly.

-run here Runscondormasterdirectly rather than submitting a Condor job that causes theremote
execution. To instead generate a script that does this, use-run here in combination with
-gensubmit. This may be useful for running Condor daemons on resources that are not
directly accessible by Condor.

Options

-help Display brief usage information and exit.

-basedirbasedir Specifies the base directory on the remote grid resource usedfor placing files.
The default directory is$(HOME)/Condor glidein on the grid resource.

-archdir dir Specifies the directory on the remote grid resource for placement of the Condor
executables. The default value for-archdir is based upon version information on the
grid resource. It is of the form<basedir >/ <condor-version >- <Globus
canonicalsystemname >. An example of the directory (without the base direc-
tory) for Condor version 6.1.13 running on a Sun Sparc machine with Solaris 2.6 is
6.1.13-sparc-sun-solaris-2.6 .

-localdir dir Specifies the directory on the remote grid resource in which to create log and exe-
cution subdirectories needed by Condor. If limited disk quota in the home or base directory
on the grid resource is a problem, set-localdir to a large temporary space, such as/tmp
or /scratch . If the batch system requires invocation of Condor daemons in a temporary
scratch directory, ’.’ may be used for the definition of the-localdir option.

-arch architecture Identifies the platform of the required tarball containing the correct Con-
dor daemon executables to download and install. If a reasonable default can be dis-
covered through MDS, this is optional. A list of possible values may be found at
http://www.cs.wisc.edu/condor/glidein/binaries. The architecture name is the same as the

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/glidein/binaries

condorglidein (1) 724

tarball name without the suffixtar.gz . An example is 6.6.5-i686-pc-Linux-2.4 .

-queuename The argumentnameis a string used at the grid resource to identify a job queue.

-project name The argumentnameis a string used at the grid resource to identify a project name.

-memory MBytes The maximum memory size in Megabytes to request from the gridresource.

-count CPU count The number of CPUs requested to join the local pool. The default is 1.

-slotsslot count For machines with multiple CPUs, the CPUs maybe divided up into slots.
slot count is the number of slots that results. By default, Condor divides multiple-CPU
resources such that each CPU is a slot, each with an equal share of RAM, disk, and swap
space. This option configures the number of slots, so that multi-threaded jobs can run in a slot
with multiple CPUs. For example, if 4 CPUs are requested and-slotsis not specified, Condor
will divide the request up into 4 slots with 1 CPU each. However, if -slots2 is specified,
Condor will divide the request up into 2 slots with 2 CPUs each, and if -slots1 is specified,
Condor will put all 4 CPUs into one slot.

-idletime minutes The amount of time that a remote grid resource will remain idle state, before
the daemons shut down. A value of 0 (zero) means that the daemons never shut down due to
remaining in the idle state. In this case, the-runtime option defines when the daemons shut
down. The default value is 20 minutes.

-runtime minutes The maximum amount of time the Condor daemons on the remote grid resource
will run before shutting themselves down. This option is useful for resources with enforced
maximum run times. Setting-runtime to be a few minutes shorter than the enforced limit
gives the daemons time to perform a graceful shut down.

-anybodySets the CondorSTARTexpression for the added remote grid resource toTrue . This
permits any user’s job which can run on the added remote grid resource to run. Without this
option, only jobs owned by the user executingcondorglideincan execute on the remote grid
resource. WARNING: Using this option may violate the usage policies of many institutions.

-admin addressWhere to send e-mail with problems. The default is the login of the user running
condorglideinat UID domain of the local Condor pool.

-suffix X Suffix to use when generating files. Default is process id.

Condor Version 7.2.3, Command Reference

condorglidein (1) 725

-gsi daemonnamecert name Includes and enables GSI authentication in the configuration for
the remote grid resource. The argument is the GSI certificatename that the daemons will use
to authenticate themselves.

-install gsi trusted ca dir path The argument identifies the directory contain-
ing the trusted CA certificates that the daemons are to use (for example,
/etc/grid-security/certificates). The contents of this directory will be
installed at the remote site in the directory<basedir >/grid-security .

-install gsi gridmap file The argument is the file name of the GSI-specific X.509 map
file that the daemons will use. The file will be installed at theremote site in
<basedir >/grid-security . The file contains entries mapping certificates to
user names. At the very least, it must contain an entry for thecertificate given by the
command-line option-gsi daemonname. If other Condor daemons use different cer-
tificates, then this file will also list any certificates that the daemons will encounter for
the condorschedd, condorcollector, and condornegotiator. See section 3.6.3 for more
information.

Exit Status

condorglidein will exit with a status value of 0 (zero) upon complete success, or with non-zero
values upon failure. The status value will be 1 (one) ifcondorglideinencountered an error making
a directory, was unable to copy a tar file, encountered an error in parsing the command line, or was
not able to gather required information. The status value will be 2 (two) if there was an error in the
remote set up. The status value will be 3 (three) if there was an error in remote submission. The
status value will be -1 (negative one) if no resource was specified in the command line.

Common problems are listed below. Many of these are best discovered by looking in theStartLog
log file on the remote grid resource.

WARNING: The file xxx is not writable by condor This error occurs whencondorglidein is run
in a directory that does not have the proper permissions for Condor to access files. An AFS
directory does not give Condor the user’s AFS ACLs.

Glideins fail to run due to GLIBC errors Check the list of available glidein binaries
(http://www.cs.wisc.edu/condor/glidein/binaries), and try specifying the architecture
name that includes the correct glibc version for the remote grid site.

Glideins join pool but no jobs run on them One common cause of this problem is that the remote
grid resources are in a different file system domain, and the submitted Condor jobs have an
implicit requirement that they must run in the same file system domain. See section 2.5.4
for details on using Condor’s file transfer capabilities to solve this problem. Another cause
of this problem is a communication failure. For example, a firewall may be preventing the

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/glidein/binaries

condorglidein (1) 726

condornegotiatoror thecondorschedddaemons from connecting to thecondorstartd on
the remote grid resource. Although work is being done to remove this requirement in the
future, it is currently necessary to have full bidirectional connectivity, at least over a restricted
range of ports. See page 166 for more information on configuring a port range.

Glideins run but fail to join the pool This may be caused by the local pool’s security settings or
by a communication failure. Check that the security settings in the local pool’s configuration
file allow write access to the remote grid resource. To not modify the security settings for the
pool, run a separate pool specifically for the remote grid resources, and use flocking to balance
jobs across the two pools of resources. If the log files indicate a communication failure, then
see the next item.

The startd cannot connect to the collectorThis may be caused by several things. One is a fire-
wall. Another is when the compute nodes do not have even outgoing network access. Con-
figuration to work without full network access to and from thecompute nodes is still in the
experimental stages, so for now, the short answer is that youmust at least have a range of open
(bidirectional) ports and set up the configuration file as described on page 166. Use the option
-genconfig, edit the generated configuration file, and then do the glidein execute task with the
option-useconfig.)

Another possible cause of connectivity problems may be the use of UDP by thecondorstartd
to register itself with thecondorcollector. Force it to use TCP as described on page 167.

Yet another possible cause of connectivity problems is whenthe remote grid resources
have more than one network interface, and the default one chosen by Condor is not
the correct one. One way to fix this is to modify the glidein startup script using the
-genstartup and -usestartup options. The script needs to determine the IP address as-
sociated with the correct network interface, and assign this to the environment variable
condor NETWORKINTERFACE.

NFS file locking problems If the -localdir option uses files on NFS (not recommended, but some-
times convenient for testing), the Condor daemons may have trouble manipulating file locks.
Try inserting the following into the configuration file:

IGNORE_NFS_LOCK_ERRORS = True

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorhistory(1) 727

condor history

View log of Condor jobs completed to date

Synopsis

condor history [-help]

condor history [-backwards] [-completedsincepostgrestimestamp] [-constraint expr]
[-f filename] [-format formatString AttributeName] [-l | -long | -xml] [-match number]
[-name schedd-name] [cluster | cluster.process| owner]

Description

condorhistorydisplays a summary of all Condor jobs listed in the specified history files, or in the
Quill database, when Quill is enabled. If no history files arespecified (with the-f option) and Quill is
not enabled, the local history file as specified in Condor’s configuration file ($(SPOOL)/history
by default) is read. The default listing summarizes (in chronological order) each job on a single line,
and contains the following items:

ID The cluster/process id of the job.

OWNER The owner of the job.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

RUN TIME Remote wall clock time accumulated by the job to date in days,hours, minutes, and
seconds. See the definition ofRemoteWallClockTime on page 884.

ST Completion status of the job (C = completed and X = removed).

COMPLETED The time the job was completed.

CMD The name of the executable.

If a job ID (in the form ofcluster id or cluster id.proc id) or anowner is provided, output will be
restricted to jobs with the specified IDs and/or submitted bythe specified owner. The-constraint
option can be used to display jobs that satisfy a specified boolean expression.

The history file is kept in chronological order, implying that new entries are appended at the end of
the file. As of Condor version 6.7.19, the format of the history file is altered to enable faster reading
of the history file backwards (most recent job first). Historyfiles written with earlier versions of
Condor, as well as those that have entries of both the older and newer format need to be converted to
the new format. See thecondorconverthistorymanual page on page 709 for details on converting
history files to the new format.

Condor Version 7.2.3, Command Reference

condorhistory(1) 728

Options

-help Display usage information and exit.

-backwards List jobs in reverse chronological order. The job most recently added to the history
file is first.

-completedsincepostgrestimestampWhen Quill is enabled, display only job ads that were in
the Completed job state on or after the date and time given by the postgrestimestamp. The
postgrestimestampfollows the syntax as given forPostgreSQLversion 8.0. The behavior of
this option is undefined when Quill isnot enabled.

-constraint expr Display jobs that satisfy the expression.

-f filename Use the specified file instead of the default history file. WhenQuill is enabled, this
option will force the query to read from the history file, and not the database.

-format formatStringAttributeName Display jobs with a custom format. See thecondorq man
page-format option for details.

-l or -long Display job ads in long format.

-match number Limit the number of jobs displayed tonumber.

-nameschedd-nameWhen Quill is enabled, query job ClassAds from the namedcondorschedd
daemon, not the defaultcondorschedddaemon.

-xml Display job ClassAds in xml format. The xml format is fully defined at
http://www.cs.wisc.edu/condor/classad/refman/.

Examples

To see all historical jobs since April 1, 2005 at 1pm,

%condor_history -completedsince '04/01/2005 13:00'

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/classad/refman/

condorhistory(1) 729

Exit Status

condorhistorywill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorhold (1) 730

condor hold

put jobs in the queue into the hold state

Synopsis

condor hold [-help | -version]

condor hold [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor hold [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] -all

Description

condorhold places jobs from the Condor job queue in the hold state. If the-nameoption is spec-
ified, the namedcondorscheddis targeted for processing. Otherwise, the localcondorschedd
is targeted. The jobs to be held are identified by one or more job identifiers, as described be-
low. For any given job, only the owner of the job or one of the queue super users (defined by the
QUEUESUPERUSERSmacro) can place the job on hold.

A job in the hold state remains in the job queue, but the job will not run until released withcon-
dor release.

A currently running job that is placed in the hold state bycondorhold is sent a hard kill signal. For
a standard universe job, this means that the job is removed from the machine without allowing a
checkpoint to be produced first.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

Condor Version 7.2.3, Command Reference

condorhold (1) 731

-addr ” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

cluster Hold all jobs in the specified cluster

cluster.processHold the specific job in the cluster

user Hold all jobs belonging to specified user

-constraint expressionHold all jobs which match the job ClassAd expression constraint (within
quotation marks). Note that quotation marks must be escapedwith the backslash characters
for most shells.

-all Hold all the jobs in the queue

See Also

condorrelease(on page 764)

Examples

To place on hold all jobs (of the user that issued thecondorhold command) that are not currently
running:

% condor_hold -constraint "JobStatus!=2"

Multiple options within the same command cause the union of all jobs that meet either (or both) of
the options to be placed in the hold state. Therefore, the command

% condor_hold Mary -constraint "JobStatus!=2"

places all of Mary’s queued jobs into the hold state, and the constraint holds all queued jobs not
currently running. It also sends a hard kill signal to any of Mary’s jobs that are currently running.
Note that the jobs specified by the constraint will also be Mary’s jobs, if it is Mary that issues this
examplecondorhold command.

Condor Version 7.2.3, Command Reference

condorhold (1) 732

Exit Status

condorhold will exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condor load history(1) 733

condor load history

Read a Condor history file into a Quill database

Synopsis

condor load history -f historyfilename[-name schedd-name jobqueue-birthdate]

Description

condor load historyreads a Condor history file, adding its information to a Quilldatabase. The Quill
database is located via configuration variables. The history file to read is defined by the required
-f historyfilenameargument.

The combination of acondorschedddaemon’s name together with its process creation date (the
job queue’s birthdate) define a unique identifier that may be attached to the Quill database with the
-name option. The format of birthdate expected is exactly the firstline of the job queue.log
file. The location of this file may be determined using

% condor_config_val spool

Be aware and expect that the reading and processing of a sizable history file may take a large amount
of time.

Options

-nameschedd-name jobqueue-birthdateThe schedd-nameand jobqueue-birthdatecombine to
form a unique name for the database. The expected values are the name of thecondorschedd
daemon and the first line of thejob queue.log file, which gives a job queue creation
time.

Exit Status

condor load historywill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

condor load history(1) 734

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condormaster(1) 735

condor master

The master Condor Daemon

Synopsis

condor master

Description

This daemon is responsible for keeping all the rest of the Condor daemons running on each ma-
chine in your pool. It spawns the other daemons, and periodically checks to see if there are new
binaries installed for any of them. If there are, thecondormasterwill restart the affected daemons.
In addition, if any daemon crashes, thecondormasterwill send e-mail to the Condor Administra-
tor of your pool and restart the daemon. Thecondormasteralso supports various administrative
commands that let you start, stop or reconfigure daemons remotely. Thecondormasterwill run on
every machine in your Condor pool, regardless of what functions each machine are performing.

Section 3.1.2 in the Administrator’s Manual has more information about thecondormasterand
other Condor daemons. See Section 3.9.2 for documentation on command line arguments forcon-
dor master.

TheDAEMONLIST configuration macro is used by thecondormasterto provide a per-machine
list of daemons that should be started and kept running. For daemons that are specified in the
DCDAEMONLIST configuration macro, thecondormasterdaemon will spawn them automatically
appending a-f argument. For those listed inDAEMONLIST , but not inDCDAEMONLIST , there
will be no -f argument.

Options

-n name Provides an alternate name for thecondormaster to override that given by the
MASTERNAMEconfiguration variable.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

condormaster(1) 736

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condormasteroff (1) 737

condor masteroff

Shutdown Condor and thecondormaster

Synopsis

condor masteroff [-help] [-version] [hostname ...]

Description

condormasteroff no longer exists.

General Remarks

condormasteroff no longer exists as a Condor command. Instead, use

condor_off -master

to accomplish this task.

See Also

See thecondoroff manual page.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condoroff (1) 738

condor off

Shutdown Condor daemons

Synopsis

condor off [-help | -version]

condor off [-graceful | -fast] [-debug] [-namename | name | -addr ” <a.b.c.d:port>” |
” <a.b.c.d:port>” . . .]| [-all]
[-subsystemmaster| startd| schedd| collector| negotiator| kbdd| quill]

condor off [-graceful | -fast] [-debug] [-pool centralmanagerhostname[:portnumber]|
-namename]| [-addr ” <a.b.c.d:port>”] . . . [| -all]
[-subsystemmaster| startd| schedd| collector| negotiator| kbdd| quill]

Description

condoroff shuts down a set of the Condor daemons running on a set of one ormore machines. It
does this cleanly so that checkpointable jobs may gracefully exit with minimal loss of work.

The commandcondoroff without any arguments will shut down all daemons exceptcondormaster.
Thecondormastercan then handle both local and remote requests to restart theother Condor dae-
mons if need be. To restart Condor running on a machine, see thecondoroncommand.

With the -subsystemmasteroption, condoroff will shut down all daemons including thecon-
dor master. Specification using the-subsystemoption will shut down only the specified daemon.

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. See section 3.6.1 on page 282 for further explanation.

Options

-help Display usage information

-version Display version information

-graceful Gracefully shutdown daemons (the default)

-fast Quickly shutdown daemons

Condor Version 7.2.3, Command Reference

condoroff (1) 739

-peaceful Wait indefinitely for jobs to finish

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namename Send the command to a machine identified byname

name Send the command to a machine identified byname

-addr ” <a.b.c.d:port>” Send the command to a machine’s master located at” <a.b.c.d:port>”

” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-all Send the command to all machines in the pool

-subsystemmaster| startd | schedd| collector| negotiator| kbdd| quill Send the command to
the named daemon. Without this option, the command is sent tothecondormasterdaemon.

Exit Status

condoroff will exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Examples

To shut down all daemons (other thancondormaster) on the local host:

% condor_off

To shut down only thecondorcollectoron three named machines:

% condor_off cinnamon cloves vanilla -subsystem collector

Condor Version 7.2.3, Command Reference

condoroff (1) 740

To shut down daemons within a pool of machines other than the local pool, use the-pooloption. The
argument is the name of the central manager for the pool. Notethat one or more machines within
the pool must be specified as the targets for the command. Thiscommand shuts down all daemons
except thecondormasteron the single machine namedcae17within the pool of machines that has
condor.cae.wisc.eduas its central manager:

% condor_off -pool condor.cae.wisc.edu -name cae17

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condoron (1) 741

condor on

Start up Condor daemons

Synopsis

condor on [-help | -version]

condor on [-debug] [-namename| name| -addr ” <a.b.c.d:port>” | ” <a.b.c.d:port>” . . .]|
[-all]
[-subsystemmaster| startd| schedd| collector| negotiator| kbdd| quill]

condor on [-debug] [-pool centralmanagerhostname[:portnumber]| -namename]|
[-addr ” <a.b.c.d:port>”] . . . [| -all]
[-subsystemmaster| startd| schedd| collector| negotiator| kbdd| quill]

Description

condoronstarts up a set of the Condor daemons on a set of machines. Thiscommand assumes that
thecondormasteris already running on the machine. If this is not the case,condoronwill fail com-
plaining that it cannot find the address of the master. The commandcondoron with no arguments
or with the-subsystemmasteroption will tell thecondormasterto start up the Condor daemons
specified in the configuration variableDAEMONLIST . If a daemon other than thecondormasteris
specified with the-subsystemoption,condoronstarts up only that daemon.

This command cannot be used to start up thecondormasterdaemon.

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. See section 3.6.1 on page 282 for further explanation.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namename Send the command to a machine identified byname

Condor Version 7.2.3, Command Reference

condoron (1) 742

name Send the command to a machine identified byname

-addr ” <a.b.c.d:port>” Send the command to a machine’s master located at” <a.b.c.d:port>”

” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-all Send the command to all machines in the pool

-subsystemmaster| startd | schedd| collector| negotiator| kbdd| quill Send the command to
the named daemon. Without this option, the command is sent tothecondormasterdaemon.

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

Exit Status

condoron will exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Examples

To begin running all daemons (other thancondormaster) given in the configuration variable
DAEMONLIST on the local host:

% condor_on

To start up only thecondornegotiatoron two named machines:

% condor_on robin cardinal -subsystem negotiator

To start up only a daemon within a pool of machines other than the local pool, use the-pool option.
The argument is the name of the central manager for the pool. Note that one or more machines
within the pool must be specified as the targets for the command. This command starts up only the
condorschedddaemon on the single machine namedcae17within the pool of machines that has
condor.cae.wisc.eduas its central manager:

% condor_on -pool condor.cae.wisc.edu -name cae17 -subsys tem schedd

Condor Version 7.2.3, Command Reference

condoron (1) 743

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorpower(1) 744

condor power

send packet intended to wake a machine from a low power state

Synopsis

condor power[-h]

condor power[-d] [-m MACaddress] [-s subnet] [ClassAdFile]

Description

condorpowersends one UDP Wake on LAN (WOL) packet to a machine specified either by com-
mand line arguments or by the contents of a machine ClassAd. The machine ClassAd may be in a
file, where the file name specified by the optional argumentClassAdFileis given on the command
line. With no command line arguments to specify the machine,and no file specified,condorpower
quietly presumes that standard input is the file source whichwill specify the machine ClassAd that
includes the public IP address and subnet of the machine.

condorpowerneeds a complete specification of the machine to be successful. If a MAC address is
provided on the command line, but no subnet is given, then thedefault value for the subnet is used.
If a subnet is provided on the command line, but no MAC addressis given, thencondorpowerfalls
back to taking its information in the form of the machine ClassAd as provided in a file or on standard
input. Note that this case implies that the command line specification of the subnet is ignored.

Options

-h Print usage information and exit.

-d Enable debugging messages.

-m MACaddressSpecify the MAC address in the standard format of six groups of two hexadecimal
digits separated by colons.

-ssubnet Specify the subnet in the standard form of an IP address. Without this option, the default
subnet used will be 255.255.255.255, causing a broadcast.

Condor Version 7.2.3, Command Reference

condorpower(1) 745

Exit Status

condorpowerwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorpreen(1) 746

condor preen

remove extraneous files from Condor directories

Synopsis

condor preen[-mail] [-remove] [-verbose]

Description

condorpreenexamines the directories belonging to Condor, and removes extraneous files and di-
rectories which may be left over from Condor processes whichterminated abnormally either due
to internal errors or a system crash. The directories checked are theLOG, EXECUTE, andSPOOL
directories as defined in the Condor configuration files.condorpreenis intended to be run as user
root or usercondor periodically as a backup method to ensure reasonable file system cleanliness
in the face of errors. This is done automatically by default by thecondormasterdaemon. It may
also be explicitly invoked on an as needed basis.

When condorpreen cleans theSPOOLdirectory, it always leaves behind the files specified in
the configuration variableVALID SPOOLFILES as given by the configuration. For theLOG
directory, the only files removed or reported are those listed within the configuration variable
INVALID LOGFILES list. The reason for this difference is that, in general, thefiles in theLOG
directory ought to be left alone, with few exceptions. An example of exceptions are core files. As
there are new log files introduced regularly, it is less effort to specify those that ought to be removed
than those that are not to be removed.

Options

-mail Send mail to the user defined in thePREENADMIN configuration variable, instead of
writing to the standard output.

-remove Remove the offending files and directories rather than reporting on them.

-verbose List all files found in the Condor directories, even those which are not considered
extraneous.

Condor Version 7.2.3, Command Reference

condorpreen(1) 747

Exit Status

condorpreenwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorprio (1) 748

condor prio

change priority of jobs in the condor queue

Synopsis

condor prio [-p priority] [+ | - value] [-n scheddname] [-pool pool name]
cluster| cluster.process| username| -a

Description

condorprio changes the priority of one or more jobs in the condor queue. If a clusterid and a pro-
cessid are both specified,condorprio attempts to change the priority of the specified process. If a
clusterid is specified without a processid, condorprio attempts to change priority for all processes
belonging to the specified cluster. If a username is specified, condorprio attempts to change priority
of all jobs belonging to that user. If the -a flag is set,condorprio attempts to change priority of all
jobs in the condor queue. The user must specify a priority adjustment or new priority. If the -p
option is specified, the priority of the job(s) are set to the next argument. The user can also adjust
the priority by supplying a + or - immediately followed by a digit. The priority of a job can be any
integer, with higher numbers corresponding to greater priority. Only the owner of a job or the super
user can change the priority for it.

The priority changed bycondorprio is only compared to the priority of other jobs owned by the
same user and submitted from the same machine. See the ”Condor Users and Administrators Man-
ual” for further details on Condor’s priority scheme.

Options

-p priority Set priority to the specified value

+ | - value Change priority by the specified value

-n scheddname Change priority of jobs queued at the specified schedd in the local pool

-pool pool name Change priority of jobs queued at the specified schedd in the specified pool

-a Change priority of all the jobs in the queue

Condor Version 7.2.3, Command Reference

condorprio (1) 749

Exit Status

condorprio will exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorq (1) 750

condor q

Display information about jobs in queue

Synopsis

condor q [-help]

condor q [-debug] [-global] [-submitter submitter] [-name name]
[-pool centralmanagerhostname[:portnumber]] [-analyze] [-better-analyze] [-run] [-hold]
[-globus] [-goodput] [-io] [-dag] [-long] [-xml] [-format fmt attr] [-cputime] [-currentrun]
[-avgqueuetime] [-jobads file] [-machineads file] [-direct rdbms| quilld | schedd]
[{cluster| cluster.process| owner| -constraintexpression. . .}]

Description

condorq displays information about jobs in the Condor job queue. By default,condorq queries the
local job queue but this behavior may be modified by specifying:

• the-global option, which queries all job queues in the pool

• a schedd name with the-name option, which causes the queue of the named schedd to be
queried

• a submitter with the-submitter option, which causes all queues of the named submitter to be
queried

To restrict the display to jobs of interest, a list of zero or more restrictions may be supplied. Each
restriction may be one of:

• aclusterand aprocessmatches jobs which belong to the specified cluster and have the speci-
fied process number

• aclusterwithout aprocessmatches all jobs belonging to the specified cluster

• aownermatches all jobs owned by the specified owner

• a -constraint expressionwhich matches all jobs that satisfy the specified ClassAd expression.
(See section 4.1 for a discussion of ClassAd expressions.)

If no ownerrestrictions are present in the list, the job matches the restriction list if it matches at least
one restriction in the list. Ifownerrestrictions are present, the job matches the list if it matches one
of theownerrestrictionsandat least one non-owner restriction.

Condor Version 7.2.3, Command Reference

condorq (1) 751

If the -long option is specified,condorq displays a long description of the queried jobs by printing
the entire job ClassAd. The attributes of the job ClassAd maybe displayed by means of the-format
option, which displays attributes with aprintf(3) format. Multiple -format options may be
specified in the option list to display several attributes ofthe job. If neither-long or -format are
specified,condorq displays a a one line summary of information as follows:

ID The cluster/process id of the condor job.

OWNER The owner of the job.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

RUN TIME Wall-clock time accumulated by the job to date in days, hours, minutes, and seconds.

ST Current status of the job, which varies somewhat according to the job universe and the timing
of updates. U = unexpanded (never been run), H = on hold, R = running, I = idle (waiting for
a machine to execute on), C = completed, and X = removed.

PRI User specified priority of the job, ranges from -20 to +20, with higher numbers corresponding
to greater priority.

SIZE The virtual image size of the executable in megabytes.

CMD The name of the executable.

If the -dag option is specified, the OWNER column is replaced with NODENAME for jobs started
by Condor DAGMan.

If the -run option is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

HOST(S) The host where the job is running.

If the -globusoption is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

STATUS The state that Condor believes the job is in. Possible valuesare

PENDING The job is waiting for resources to become available in orderto run.

ACTIVE The job has received resources, and the application is executing.

FAILED The job terminated before completion because of an error, user-triggered cancel, or
system-triggered cancel.

DONE The job completed successfully.

SUSPENDED The job has been suspended. Resources which were allocated for this job may
have been released due to a scheduler-specific reason.

UNSUBMITTED The job has not been submitted to the scheduler yet, pending the recep-
tion of the GLOBUSGRAM PROTOCOLJOB SIGNAL COMMIT REQUEST sig-
nal from a client.

Condor Version 7.2.3, Command Reference

condorq (1) 752

STAGE IN The job manager is staging in files, in order to run the job.

STAGE OUT The job manager is staging out files generated by the job.

UNKNOWN

MANAGER A guess at what remote batch system is running the job. It is a guess, because Condor
looks at the Globus jobmanager contact string to attempt identification. If the value is fork,
the job is running on the remote host without a jobmanager. Values may also be condor, lsf,
or pbs.

HOST The host to which the job was submitted.

EXECUTABLE The job as specified as the executable in the submit description file.

If the -goodputoption is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

GOODPUT The percentage of RUNTIME for this job which has been saved in a checkpoint. A
low GOODPUT value indicates that the job is failing to checkpoint. If a job has not yet
attempted a checkpoint, this column contains[?????] .

CPU UTIL The ratio of CPUTIME to RUN TIME for checkpointed work. A low CPUUTIL
indicates that the job is not running efficiently, perhaps because it is I/O bound or because the
job requires more memory than available on the remote workstations. If the job has not (yet)
checkpointed, this column contains[??????] .

Mb/s The network usage of this job, in Megabits per second of run-time.

If the -io option is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

READ The total number of bytes the application has read from files and sockets.

WRITE The total number of bytes the application has written to files and sockets.

SEEK The total number of seek operations the application hasperformed on files.

XPUT The effective throughput (average bytes read and written per second) from the application’s
point of view.

BUFSIZE The maximum number of bytes to be buffered per file.

BLOCKSIZE The desired block size for large data transfers.

These fields are updated when a job produces a checkpoint or completes. If a job has not yet
produced a checkpoint, this information is not available.

If the -cputime option is specified, the RUNTIME column is replaced with:

Condor Version 7.2.3, Command Reference

condorq (1) 753

CPU TIME The remote CPU time accumulated by the job to date (which has been stored in a
checkpoint) in days, hours, minutes, and seconds. (If the job is currently running, time accu-
mulated during the current run isnot shown. If the job has not produced a checkpoint, this
column contains 0+00:00:00.)

The -analyzeoption may be used to determine why certain jobs are not running by performing
an analysis on a per machine basis for each machine in the pool. The reasons may vary among
failed constraints, insufficient priority, resource ownerpreferences and prevention of preemption by
the PREEMPTIONREQUIREMENTSexpression. If the-long option is specified along with the
-analyzeoption, the reason for failure is displayed on a per machine basis.

The-better-analyzeoption does a more thorough job of determining why jobs are not running than
-analyze. There are scalability issues present when run on a pool witha large number of machines,
as well as when run to analyze a large number of queued jobs. The -better-analyzeoption make
take an excessively long time to complete in these cases. Therefore, it is recommended to constrain
-better-analyzeto only analyze one job at a time.

Options

-help Get a brief description of the supported options

-global Get queues of all the submitters in the system

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

-submitter submitter List jobs of specific submitter from all the queues in the pool

-pool centralmanagerhostname[:portnumber]Use thecentralmanagerhostnameas the central
manager to locate schedds. (The default is theCOLLECTORHOST specified in the configu-
ration file.

-analyze Perform an approximate analysis to determine how many resources are available to run
the requested jobs. These results are only meaningful for jobs using Condor’s matchmaker.
This option is never meaningful for Scheduler universe jobsand only meaningful for grid
universe jobs doing matchmaking.

-better-analyze Perform a more time-consuming, but potentially more extensive analysis to
determine how many resources are available to run the requested jobs.

Condor Version 7.2.3, Command Reference

condorq (1) 754

-run Get information about running jobs.

-hold Get information about jobs in the hold state. Also displays the time the job was placed into
the hold state and the reason why the job was placed in the holdstate.

-globus Get information only about jobs submitted to grid resourcesdescribed asgt2 or gt4.

-goodput Display job goodput statistics.

-io Display job input/output summaries.

-dag Display DAG jobs under their DAGMan.

-namename Show only the job queue of the named schedd

-long Display job ads in long format

-xml Display job ads in xml format. The xml format is fully defined at
http://www.cs.wisc.edu/condor/classad/refman/.

-format fmt attr Display attribute or expressionattr in format fmt. To display the attribute
or expression the format must contain a singleprintf(3) style conversion specifier.
Attributes must be from the job ClassAd. Expressions are ClassAd expressions and may refer
to attributes in the job ClassAd. If the attribute is not present in a given ClassAd and cannot
be parsed as an expression, then the format option will be silently skipped. The conversion
specifier must match the type of the attribute or expression.%s is suitable for strings such
asOwner, %d for integers such asClusterId , and %f for floating point numbers such as
RemoteWallClockTime . An incorrect format will result in undefined behavior. Do not
use more than one conversion specifier in a given format. Morethan one conversion specifier
will result in undefined behavior. To output multiple attributes repeat the-format option once
for each desired attribute. Likeprintf(3) style formats, you can include other text that
will be reproduced directly. You can specify a format without any conversion specifiers but
you must still give attribute. You can include\n to specify a line break.

-cputime Instead of wall-clock allocation time (RUNTIME), display remote CPU time accumu-
lated by the job to date in days, hours, minutes, and seconds.(If the job is currently running,
time accumulated during the current run isnot shown.)

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/classad/refman/

condorq (1) 755

-currentrun Normally, RUN TIME contains all the time accumulated during the current run plus
all previous runs. If this option is specified, RUNTIME only displays the time accumulated
so far on this current run.

-avgqueuetime Display the average of time spent in the queue, considering all jobs not completed
(those that do not haveJobStatus == 4 or JobStatus == 3 .

-jobadsfile Display jobs from a list of ClassAds from a file, instead of thereal ClassAds from the
condorschedddaemon. This is most useful for debugging purposes. The ClassAds appear as
if condorq -l is used with the header stripped out.

-machineadsfile When doing analysis, use the machine ads from the file insteadof the ones from
the condorcollector daemon. This is most useful for debugging purposes. The ClassAds
appear as ifcondorstatus-l is used.

-direct rdbms| quilld | scheddWhen the use of Quill is enabled, this option allows a direct query
to either the rdbms, thecondorquill daemon, or thecondorschedddaemon for the requested
queue information. It also prevents the queue location discovery algorithm from failing over
to alternate sources of information for the queue in case of error. It is useful for debugging
an installation of Quill. One of the stringsrdbms, quilld, orscheddis required with this option.

Restriction list The restriction list may have zero or more items, each of which may be:

cluster match all jobs belonging to cluster

cluster.proc match all jobs belonging to cluster with a process number ofproc

-constraint expressionmatch all jobs which match the ClassAd expression constraint

A job matches the restriction list if it matches any restriction in the list Additionally, ifowner
restrictions are supplied, the job matches the list only if it also matches anownerrestriction.

General Remarks

The default output fromcondorq is formatted to be human readable, not script readable. In an
effort to make the output fit within 80 characters, values in some fields might be truncated. Further-
more, the Condor Project can (and does) change the formatting of this default output as we see fit.
Therefore, any script that is attempting to parse data fromcondorq is strongly encouraged to use
the-format option (described above, examples given below).

Although-analyzeprovides a very good first approximation, the analyzer cannot diagnose all possi-
ble situations because the analysis is based on instantaneous and local information. Therefore, there

Condor Version 7.2.3, Command Reference

condorq (1) 756

are some situations (such as when several submitters are contending for resources, or if the pool is
rapidly changing state) which cannot be accurately diagnosed.

-goodput, -cputime, and-io are most useful for STANDARD universe jobs, since they rely on values
computed when a job checkpoints.

Examples

The -format option provides a way to specify both the job attributes and formatting of those at-
tributes. There must be only one conversion specification per -format option. As an example, to
list only Jane Doe’s jobs in the queue, choosing to print and format only the owner of the job, the
command line arguments for the job, and the process ID of the job:

%condor_q -submitter jdoe -format "%s" Owner -format " %s " A rgs -format "ProcId = %d\n" ProcId
jdoe 16386 2800 ProcId = 0
jdoe 16386 3000 ProcId = 1
jdoe 16386 3200 ProcId = 2
jdoe 16386 3400 ProcId = 3
jdoe 16386 3600 ProcId = 4
jdoe 16386 4200 ProcId = 7

To display only the JobID’s of Jane Doe’s jobs you can use the following.

%condor_q -submitter jdoe -format "%d." ClusterId -format "%d\n" ProcId
27.0
27.1
27.2
27.3
27.4
27.7

An example that shows the difference (first set of output) between not using an option tocondorq
and (second set of output) using the-globusoption:

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
100.0 smith 12/11 13:20 0+00:00:02 R 0 0.0 sleep 10

1 jobs; 0 idle, 1 running, 0 held

ID OWNER STATUS MANAGER HOST EXECUTABLE
100.0 smith ACTIVE fork grid.example.com /bin/sleep

Exit Status

condorq will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

Condor Version 7.2.3, Command Reference

condorq (1) 757

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorqedit(1) 758

condor qedit

modify job attributes

Synopsis

condor qedit [-debug] [-n schedd-name] [-pool pool-name]
{cluster| cluster.proc| owner| -constraint constraint} attribute-name attribute-value. . .

Description

condorqeditmodifies job ClassAd attributes of queued Condor jobs. The jobs are specified either
by cluster number, job ID, owner, or by a ClassAd constraint expression. Theattribute-valuemay
be any ClassAd expression. String expressions must be surrounded by double quotes.

To ensure security and correctness,condorqedit will not allow modification of the following
ClassAd attributes:

• Owner

• ClusterId

• ProcId

• MyType

• TargetType

• JobStatus

SinceJobStatus may not be changed withcondorqedit, usecondorhold to place a job in
the hold state, and usecondorreleaseto release a held job, instead of attempting to modify
JobStatus directly.

If a job is currently running, modified attributes for that job will not affect the job until it restarts. As
an example, forPeriodicRemove to affect when a currently running job will be removed from
the queue, that job must first be evicted from a machine and returned to the queue. The same is true
for other periodic expressions, such asPeriodicHold andPeriodicRelease .

Options

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

Condor Version 7.2.3, Command Reference

condorqedit(1) 759

-n schedd-nameModify job attributes in the queue of the specified schedd

-pool pool-nameModify job attributes in the queue of the schedd specified in the specified pool

Examples

% condor_qedit -name north.cs.wisc.edu -pool condor.cs.w isc.edu 249.0 answer 42
Set attribute "answer".
% condor_qedit -name perdita 1849.0 In '"myinput"'
Set attribute "In".
% condor_qedit jbasney NiceUser TRUE
Set attribute "NiceUser".
% condor_qedit -constraint 'JobUniverse == 1' Requirement s '(Arch == "INTEL") && (OpSys == "SOLARIS26") &&
Set attribute "Requirements".

General Remarks

A job’s ClassAd attributes may be viewed with

condor_q -long

Exit Status

condorqeditwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorreconfig(1) 760

condor reconfig

Reconfigure Condor daemons

Synopsis

condor reconfig [-help | -version]

condor reconfig [-debug] [-namename| name| -addr ” <a.b.c.d:port>” | ” <a.b.c.d:port>” . . .

]| [-all]
[-subsystemmaster| startd| schedd| collector| negotiator| kbdd| quill] [-full]

condor reconfig [-debug] [-pool centralmanagerhostname[:portnumber]| -namename]|
[-addr ” <a.b.c.d:port>”] . . . [| -all]
[-subsystemmaster| startd| schedd| collector| negotiator| kbdd| quill] [-full]

Description

condorreconfigreconfigures all of the Condor daemons in accordance with thecurrent status of the
Condor configuration file(s). Once reconfiguration is complete, the daemons will behave according
to the policies stated in the configuration file(s). The main exception is with theDAEMONLIST
variable, which will only be updated if thecondorrestartcommand is used. There are a few other
configuration settings that can only be changed if the Condordaemons are restarted. Whenever this
is the case, it will be mentioned in section 3.3 on page 142 which lists all of the settings used to
configure Condor. In general,condorreconfigshould be used when making changes to the config-
uration files, since it is faster and more efficient than restarting the daemons.

The commandcondorreconfigwith no arguments or with the-subsystemmasteroption will cause
the reconfiguration of thecondormasterdaemon and all the child processes of thecondormaster.

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. Note that changes to theALLOW* andDENY* configuration variables require the
-full option. See section 3.6.1 on page 282 for further explanation.

Options

-help Display usage information

-version Display version information

-full Perform a full reconfiguration. In addition to re-reading the configuration files, a full
reconfiguration will clear cached DNS information in the daemons. Use this option only

Condor Version 7.2.3, Command Reference

condorreconfig(1) 761

when the DNS information needs to be reinitialized.

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namename Send the command to a machine identified byname

name Send the command to a machine identified byname

-addr ” <a.b.c.d:port>” Send the command to a machine’s master located at” <a.b.c.d:port>”

” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-all Send the command to all machines in the pool

-subsystemmaster| startd | schedd| collector| negotiator| kbdd| quill Send the command to
the named daemon. Without this option, the command is sent tothecondormasterdaemon.

Exit Status

condorreconfigwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Examples

To reconfigure thecondormasterand all its children on the local host:

% condor_reconfig

To reconfigure only thecondorstartdon a named machine:

% condor_reconfig -name bluejay -subsystem startd

Condor Version 7.2.3, Command Reference

condorreconfig(1) 762

To reconfigure a machine within a pool other than the local pool, use the-pooloption. The argument
is the name of the central manager for the pool. Note that one or more machines within the pool
must be specified as the targets for the command. This commandreconfigures the single machine
namedcae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_reconfig -pool condor.cae.wisc.edu -name cae17

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorreconfigschedd(1) 763

condor reconfig schedd

Reconfigure condor schedd

Synopsis

condor reconfig schedd[-help] [-version] [hostname ...]

Description

condorreconfigscheddno longer exists.

General Remarks

condorreconfigscheddno longer exists as a Condor command. Instead, use

condor_reconfig -schedd

to accomplish this task.

See Also

See thecondorreconfigmanual page.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorrelease(1) 764

condor release

release held jobs in the Condor queue

Synopsis

condor release [-help | -version]

condor release [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor release [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] -all

Description

condorreleasereleases jobs from the Condor job queue that were previouslyplaced in hold state. If
the -nameoption is specified, the namedcondorscheddis targeted for processing. Otherwise, the
localcondorscheddis targeted. The jobs to be released are identified by one or more job identifiers,
as described below. For any given job, only the owner of the job or one of the queue super users
(defined by theQUEUESUPERUSERSmacro) can release the job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr ” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

Condor Version 7.2.3, Command Reference

condorrelease(1) 765

cluster Release all jobs in the specified cluster

cluster.processRelease the specific job in the cluster

user Release jobs belonging to specified user

-constraint expressionRelease all jobs which match the job ClassAd expression constraint

-all Release all the jobs in the queue

See Also

condorhold (on page 730)

Examples

To release all of the jobs of a user named Mary:

% condor_release Mary

Exit Status

condorreleasewill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorreschedule(1) 766

condor reschedule

Update scheduling information to the central manager

Synopsis

condor reschedule[-help | -version]

condor reschedule [-debug] [-namename| name| -addr ” <a.b.c.d:port>” | ” <a.b.c.d:port>”
. . .]| [-all]

condor reschedule [-debug] [-pool centralmanagerhostname[:portnumber]| -namename]|
[-addr ” <a.b.c.d:port>”] . . . [| -all]

Description

condorrescheduleupdates the information about a set of machines’ resources and jobs to the central
manager. This command is used to force an update before viewing the current status of a machine.
Viewing the status of a machine is done with thecondorstatuscommand.condorreschedulealso
starts a new negotiation cycle between resource owners and resource providers on the central man-
agers, so that jobs can be matched with machines right away. This can be useful in situations where
the time between negotiation cycles is somewhat long, and anadministrator wants to see if a job in
the queue will get matched without waiting for the next negotiation cycle.

A new negotiation cycle cannot occur more frequently than every 20 seconds. Requests for new
negotiation cycle within that 20 second window will be deferred until 20 seconds have passed since
that last cycle.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namename Send the command to a machine identified byname

Condor Version 7.2.3, Command Reference

condorreschedule(1) 767

name Send the command to a machine identified byname

-addr ” <a.b.c.d:port>” Send the command to a machine’s master located at” <a.b.c.d:port>”

” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-all Send the command to all machines in the pool

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

Exit Status

condorreschedulewill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

To update the information on three named machines:

% condor_reschedule robin cardinal bluejay

To reschedule on a machine within a pool other than the local pool, use the-pool option. The argu-
ment is the name of the central manager for the pool. Note thatone or more machines within the pool
must be specified as the targets for the command. This commandreschedules the single machine
namedcae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_reschedule -pool condor.cae.wisc.edu -name cae1 7

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

Condor Version 7.2.3, Command Reference

condorreschedule(1) 768

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorrestart (1) 769

condor restart

Restart the a set of Condor daemons

Synopsis

condor restart [-help | -version]

condor restart [-debug] [-namename| name| -addr ” <a.b.c.d:port>” | ” <a.b.c.d:port>” . . .]|
[-all]
[-subsystemmaster| startd| schedd| collector| negotiator| kbdd| quill]

condor restart [-debug] [-pool centralmanagerhostname[:portnumber]| -namename]|
[-addr ” <a.b.c.d:port>”] . . . [| -all]
[-subsystemmaster| startd| schedd| collector| negotiator| kbdd| quill]

Description

condorrestart restarts a set of Condor daemon(s) on a set of machines. The daemon(s) will be put
into a consistent state, killed, and then started anew.

If, for example, thecondormasterneeds to be restarted again with a fresh state, this is the com-
mand that should be used to do so. If theDAEMONLIST variable in the configuration file has been
changed, this command is used to restart thecondormasterin order to see this change. Thecon-
dor reconfigurecommand cannot be used in the case where theDAEMONLIST expression changes.

The commandcondorrestart with no arguments or with the-subsystemmasteroption will safely
shut down all running jobs and all submitted jobs from the machine(s) being restarted, then shut
down all the child daemons of thecondormaster, and then restart thecondormaster. This, in
turn, will allow the condormasterto start up other daemons as specified in theDAEMONLIST
configuration file entry.

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. See section 3.6.1 on page 282 for further explanation.

Options

-help Display usage information

-version Display version information

Condor Version 7.2.3, Command Reference

condorrestart (1) 770

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namename Send the command to a machine identified byname

name Send the command to a machine identified byname

-addr ” <a.b.c.d:port>” Send the command to a machine’s master located at” <a.b.c.d:port>”

” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-all Send the command to all machines in the pool

-subsystemmaster| startd | schedd| collector| negotiator| kbdd| quill Send the command to
the named daemon. Without this option, the command is sent tothecondormasterdaemon.

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

Exit Status

condorrestartwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Examples

To restart thecondormasterand all its children on the local host:

% condor_restart

To restart only thecondorstartdon a named machine:

% condor_restart -name bluejay -subsystem startd

To restart a machine within a pool other than the local pool, use the-pool option. The argument
is the name of the central manager for the pool. Note that one or more machines within the pool
must be specified as the targets for the command. This commandrestarts the single machine named
cae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

Condor Version 7.2.3, Command Reference

condorrestart (1) 771

% condor_restart -pool condor.cae.wisc.edu -name cae17

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorrm (1) 772

condor rm

remove jobs from the Condor queue

Synopsis

condor rm [-help | -version]

condor rm [-debug] [-forcex] [-pool centralmanagerhostname[:portnumber] |
-namescheddname]| [-addr ” <a.b.c.d:port>”] cluster. . .| cluster.process. . .| user. . . |
-constraint expression. . .

condor rm [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] -all

Description

condorrm removes one or more jobs from the Condor job queue. If the-name option is speci-
fied, the namedcondorscheddis targeted for processing. Otherwise, the localcondorscheddis
targeted. The jobs to be removed are identified by one or more job identifiers, as described be-
low. For any given job, only the owner of the job or one of the queue super users (defined by the
QUEUESUPERUSERSmacro) can remove the job.

When removing a grid job, the job may remain in the “X” state for a very long time. This is normal,
as Condor is attempting to communicate with the remote scheduling system, ensuring that the job
has been properly cleaned up. If it takes too long, or in rare circumstances is never removed, the job
may be forced to leave the job queue by using the-forcex option. This forcibly removes jobs that
are in the “X” state without attempting to finish any clean up at the remote scheduler.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

Condor Version 7.2.3, Command Reference

condorrm (1) 773

-addr ” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

-forcex Force the immediate local removal of jobs in the ’X’ state (only affects jobs already being
removed)

cluster Remove all jobs in the specified cluster

cluster.processRemove the specific job in the cluster

user Remove jobs belonging to specified user

-constraint expressionRemove all jobs which match the job ClassAd expression constraint

-all Remove all the jobs in the queue

General Remarks

Use the-forcexargument with caution, as it will remove jobs from the local queue immediately, but
can “orphan” parts of the job that are running remotely and haven’t yet been stopped or removed.

Examples

To remove all jobs of a user named Mary that are not currently running:

% condor_rm Mary -constraint Activity!=\"Busy\"

Note that quotation marks must be escaped with the backslashcharacters for most shells.

Exit Status

condorrm will exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Condor Version 7.2.3, Command Reference

condorrm (1) 774

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorrouter history(1) 775

condor router history

Display the history for routed jobs

Synopsis

condor router history [-- h]

condor router history [-- show records] [-- show iwd] [-- age days] [-- days days] [-- start
”YYYY-MM-DD HH:MM”]

Description

condorrouter history summarizes statistics for routed jobs over the previous 24 hours. With no
command line options, statistics for run time, number of jobs completed, and number of jobs aborted
are listed per route (site).

Options

—h Display usage information and exit.

—show records Displays individual records in addition to the summary.

—show iwd Include working directory in displayed records.

—agedays Set the ending time of the summary to bedaysdays ago.

—daysdays Set the number of days to summarize.

—start ”YYYY-MM-DD HH:MM” Set the start time of the summary.

Exit Status

condorrouter historywill exit with a status of 0 (zero) upon success, and non-zerootherwise.

Condor Version 7.2.3, Command Reference

condorrouter history(1) 776

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorrun (1) 777

condor run

Submit a shell command-line as a Condor job

Synopsis

condor run [-u universe] ”shell command”

Description

condorrun bundles a shell command line into a Condor job and submits thejob. Thecondorrun
command waits for the Condor job to complete, writes the job’s output to the terminal, and exits
with the exit status of the Condor job. No output appears until the job completes.

Enclose the shell command line in double quote marks, so it may be passed tocondorrun without
modification.condorrun will not read input from the terminal while the job executes.If the shell
command line requires input, redirect the input from a file, as illustrated by the example

% condor_run "myprog < input.data"

condorrun jobs rely on a shared file system for access to any necessary input files. The current
working directory of the job must be accessible to the machine within the Condor pool where the
job runs.

Specialized environment variables may be used to specify requirements for the machine where the
job may run.

CONDOR ARCH Specifies the architecture of the required platform. Valueswill be the same as
theArch machine ClassAd attribute.

CONDOR OPSYS Specifies the operating system of the required platform. Values will be the
same as theOpSys machine ClassAd attribute.

CONDOR REQUIREMENTS Specifies any additional requirements for the Condor job. Itis rec-
ommended that the value defined forCONDORREQUIREMENTSbe enclosed in parenthesis.

When one or more of these environment variables is specified,the job is submitted with:

Requirements = $CONDOR_REQUIREMENTS && Arch == $CONDOR_ARCH && \
OpSys == $CONDOR_OPSYS

Condor Version 7.2.3, Command Reference

condorrun (1) 778

Without these environment variables, the job receives the default requirements expression, which
requests a machine of the same platform as the machine on which condorrun is executed.

All environment variables set whencondorrun is executed will be included in the environment of
the Condor job.

condorrun removes the Condor job from the queue and deletes its temporary files, if condorrun is
killed before the Condor job completes.

Options

-u universe Submit the job under the specified universe. The default is vanilla. While any universe
may be specified, only the vanilla, standard, scheduler, andlocal universes result in a submit
description file that may work properly.

Examples

condorrun may be used to compile an executable on a different platform.As an example, first set
the environment variables for the required platform:

% setenv CONDOR_ARCH "SUN4u"
% setenv CONDOR_OPSYS "SOLARIS28"

Then, usecondorrun to submit the compilation as in the following three examples.

% condor_run "f77 -O -o myprog myprog.f"

or

% condor_run "make"

or

% condor_run "condor_compile cc -o myprog.condor myprog.c "

Files

condorrun creates the following temporary files in the user’s working directory. The placeholder
¡pid¿ is replaced by the process id ofcondor run.

Condor Version 7.2.3, Command Reference

condorrun (1) 779

.condor run.<pid> A shell script containing the shell command line.

.condor submit.<pid> The submit description file for the job.

.condor log.<pid> The Condor job’s log file; it is monitored bycondorrun, to determine
when the job exits.

.condor out.<pid> The output of the Condor job before it is output to the terminal.

.condor error.<pid> Any error messages for the Condor job before they are output to the
terminal.

condorrun removes these files when the job completes. However, ifcondorrun fails, it is possible
that these files will remain in the user’s working directory,and the Condor job may remain in the
queue.

General Remarks

condorrun is intended for submitting simple shell command lines to Condor. It does not provide
the full functionality ofcondorsubmit. Therefore, somecondorsubmiterrors and system failures
may not be handled correctly.

All processes specified within the single shell command linewill be executed on the single machine
matched with the job. Condor will not distribute multiple processes of a command line pipe across
multiple machines.

condorrun will use the shell specified in theSHELL environment variable, if one exists. Otherwise,
it will use /bin/shto execute the shell command-line.

By default,condorrun expects Perl to be installed in/usr/bin/perl . If Perl is installed in
another path, ask the Condor administrator to edit the path in thecondorrun script, or explicitly call
Perl from the command line:

% perl path-to-condor/bin/condor_run "shell-cmd"

Exit Status

condorrun exits with a status value of 0 (zero) upon complete success. The exit status ofcondorrun
will be non-zero upon failure. The exit status in the case of asingle error due to a system call will
be the error number (errno) of the failed call.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

condorrun (1) 780

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorset shutdown(1) 781

condor set shutdown

Set a program to execute uponcondormastershut down

Synopsis

condor set shutdown [-help | -version]

condor set shutdown -execprogramname [-debug] [-namename | name |
-addr ” <a.b.c.d:port>” | ” <a.b.c.d:port>” . . .]| [-all]

condor set shutdown-execprogramname[-debug] [-pool centralmanagerhostname[:portnumber]
| -namename]| [-addr ” <a.b.c.d:port>”] . . . [| -all]

Description

condorset shutdownsets a program (typically a script) to execute when thecondormasterdae-
mon shuts down. The-execprogramnameargument is required, and specifies the program to run.
The stringprogramnamemust match the string that definesName in the configuration variable
MASTERSHUTDOWN<Name> in thecondormasterdaemon’s configuration. If it does not match,
thecondormasterwill log an error and ignore the request.

For purposes of authentication and authorization, this command requires theADMINISTRATOR
access level. See section 3.6.1 on page 282 for further explanation.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namename Send the command to a machine identified byname

Condor Version 7.2.3, Command Reference

condorset shutdown(1) 782

name Send the command to a machine identified byname

-addr ” <a.b.c.d:port>” Send the command to a machine’s master located at” <a.b.c.d:port>”

” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-all Send the command to all machines in the pool

Exit Status

condorset shutdownwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

To have allcondormasterdaemons run the program/bin/rebootupon shut down, configure the
condormasterto contain a definition similar to:

MASTER_SHUTDOWN_REBOOT = /sbin/reboot

whereREBOOTis an invented name for this program that thecondormasterwill execute. On the
command line, run

% condor_set_shutdown -exec reboot -all
% condor_off -graceful -all

where the stringreboot matches the invented name.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorstats(1) 783

condor stats

Display historical information about the Condor pool

Synopsis

condor stats [-f filename] [-orgformat] [-pool centralmanagerhostname[:portnumber]]
[time-range] query-type

Description

condorstatsdisplays historic information about a Condor pool. Based onthe type of information
requested, a query is sent to thecondorcollectordaemon, and the information received is displayed
using the standard output. If the-f option is used, the information will be written to a file instead of
to standard output. The-pooloption can be used to get information from other pools, instead of from
the local (default) pool. Thecondorstatstool is used to query resource information (single or by
platform), submitter and user information, and checkpointserver information. If a time range is not
specified, the default query provides information for the previous 24 hours. Otherwise, information
can be retrieved for other time ranges such as the last specified number of hours, last week, last
month, or a specified date range.

The information is displayed in columns separated by tabs. The first column always represents the
time, as a percentage of the range of the query. Thus the first entry will have a value close to 0.0,
while the last will be close to 100.0. If the-orgformat option is used, the time is displayed as
number of seconds since the Unix epoch. The information in the remainder of the columns depends
on the query type.

Note that logging of pool history must be enabled in thecondorcollector daemon, otherwise no
information will be available.

One query type is required. If multiple queries are specified, only the last one takes effect.

Time Range Options

-lastday Get information for the last day.

-lastweek Get information for the last week.

-lastmonth Get information for the last month.

Condor Version 7.2.3, Command Reference

condorstats(1) 784

-lasthoursn Get information for the n last hours.

-from m d y Get information for the time since the beginning of the specified date. A start date
prior to the Unix epoch causescondorstatsto print its usage information and quit.

-to m d y Get information for the time up to the beginning of the specified date, instead of up to
now. A finish date in the future causescondorstatsto print its usage information and quit.

Query Type Arguments

The query types that do not list all of a category require further specification as given by an argument.

-resourcequeryhostnameA single resource query provides information about a singlemachine.
The information also includes the keyboard idle time (in seconds), the load average, and the
machine state.

-resourcelist A query of a single list of resources to provide a list of all the machines for which the
condorcollectordaemon has historic information within the query’s time range.

-resgroupqueryarch/opsys — “Total” A query of a specified group to provide information about
a group of machines based on their platform (operating system and architecture). The archi-
tecture is defined by the machine ClassAdArch , and the operating system is defined by the
machine ClassAdOpSys. The string “Total” ask for information about all platforms.

The columns displayed are the number of machines that are unclaimed, matched, claimed,
preempting, and in the owner state.

-resgrouplist Queries for a list of all the group names for which thecondorcollectorhas historic
information within the query’s time range.

-userqueryemail address/submitmachine Query for a specific submitter on a specific machine.
The information displayed includes the number of running jobs and the number of idle jobs.
An example argument appears as

-userquery jondoe@sample.com/onemachine.sample.com

-userlist Queries for the list of all submitters for which thecondorcollector daemon has historic
information within the query’s time range.

Condor Version 7.2.3, Command Reference

condorstats(1) 785

-usergroupqueryemail address — “Total” Query for all jobs submitted by the specific user,
regardless of the machine they were submitted from, or all jobs. The information displayed
includes the number of running jobs and the number of idle jobs.

-usergrouplist Queries for the list of all users for which thecondorcollectorhas historic informa-
tion within the query’s time range.

-ckptquery hostnameQuery about a checkpoint server given its host name. The information
displayed includes the number of Mbytes received, Mbytes sent, average receive bandwidth
(in Kbytes/sec), and average send bandwidth (in Kbytes/sec).

-ckptlist Query for the entire list of checkpoint servers for which thecondorcollectorhas historic
information in the query’s time range.

Options

-f filename Write the information to a file instead of the standard output.

-pool centralmanagerhostname[:portnumber]Contact the specified central manager instead of
the local one.

-orgformat Display the information in an alternate format for timing, which presents times-
tamps since the Unix epoch. This argument only affects the display of resoursequery,
resgroupquery, userquery, usergroupquery, andckptquery.

Exit Status

condorstatswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

condorstats(1) 786

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorstatus(1) 787

condor status

Display status of the Condor pool

Synopsis

condor status [-debug] [help options] [query options] [display options] [custom options]
[name. . .]

Description

condorstatusis a versatile tool that may be used to monitor and query the Condor pool. Thecon-
dor statustool can be used to query resource information, submitter information, checkpoint server
information, and daemon master information. The specific query sent and the resulting informa-
tion display is controlled by the query options supplied. Queries and display formats can also be
customized.

The options that may be supplied tocondorstatusbelong to five groups:

• Help optionsprovide information about thecondorstatustool.

• Query optionscontrol the content and presentation of status information.

• Display optionscontrol the display of the queried information.

• Custom optionsallow the user to customize query and display information.

• Host optionsspecify specific machines to be queried

At any time, only onehelp option, onequery optionand onecustom optionmay be specified. Any
number ofcustomandhost optionsmay be specified.

Options

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

-help (Help option) Display usage information

-diagnose (Help option) Print out query ad without performing query

Condor Version 7.2.3, Command Reference

condorstatus(1) 788

-any (Query option) Query all ads and display their type, target type, and name

-avail (Query option) Querycondorstartdads and identify resources which are available

-ckptsrvr (Query option) Querycondorckpt serverads and display checkpoint server attributes

-claimed (Query option) Querycondorstartdads and print information about claimed resources

-cod (Query option) Display only machine ClassAds that have COD claims. Information displayed
includes the claim ID, the owner of the claim, and the state ofthe COD claim.

-direct hostname (Query option) Go directly to the given host name to get the ads to display

-java (Query option) Display only Java-capable resources.

-license (Query option) Display license attributes.

-master (Query option) Querycondormasterads and display daemon master attributes

-negotiator (Query option) Querycondornegotiatorads and display attributes

-pool centralmanagerhostname[:portnumber](Query option) Query the specified central man-
ager using an optional port number.condorstatusqueries the machine specified by the
configuration variableCOLLECTORHOSTby default.

-quill (Query option) Display attributes of machines running Quill.

-run (Query option) Display information about machines currently running jobs.

-schedd (Query option) Querycondorscheddads and display attributes

-server (Query option) Querycondorstartdads and display resource attributes

-startd (Query option) Querycondorstartdads

Condor Version 7.2.3, Command Reference

condorstatus(1) 789

-state (Query option) Querycondorstartdads and display resource state information

-storage (Query option) Display attributes of machines with networkstorage resources.

-submitters (Query option) Query ads sent by submitters and display important submitter attributes

-subsystemtype (Query option) If type is one ofcollector, negotiator, master, schedd, startd,
or quill, then behavior is the same as the query option without the-subsystemoption. For
example,-subsystemcollector is the same as-collector. A value of type of CkptServer,
Machine, DaemonMaster, or Schedulertargets that type of ClassAd.

-vm (Query option) Querycondorstartd ClassAds, and display only VM-enabled machines.
Information displayed includes the the machine name, the virtual machine software version,
the state of machine, the virtual machine memory, and the type of networking.

-expert (Display option) Display shortened error messages

-long (Display option) Display entire ClassAds (same as-verbose)

-sort attr (Display option) Display entries in ascending order based on the value of the named
attribute

-total (Display option) Display totals only

-verbose (Display option) Display entire ClassAds. Implies that totals will not be displayed.

-xml (Display option) Display entire ClassAds, in XML format. The XML format is fully defined
at http://www.cs.wisc.edu/condor/classad/refman/.

-constraint const (Custom option) Add constraint expression. See section 4.1for details on writing
expressions.

-format fmt attr (Custom option) Display attribute or expressionattr in format fmt. To display
the attribute or expression the format must contain a singleprintf(3) style conversion
specifier. Attributes must be from the resource ClassAd. Expressions are ClassAd expressions
and may refer to attributes in the resource ClassAd. If the attribute is not present in a given
ClassAd and cannot be parsed as an expression, then the format option will be silently
skipped. The conversion specifier must match the type of the attribute or expression. %s

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/classad/refman/

condorstatus(1) 790

is suitable for strings such asName, %d for integers such asLastHeardFrom , and %f
for floating point numbers such asLoadAvg . An incorrect format will result in undefined
behavior. Do not use more than one conversion specifier in a given format. More than one
conversion specifier will result in undefined behavior. To output multiple attributes repeat the
-format option once for each desired attribute. Likeprintf(3) style formats, one may
include other text that will be reproduced directly. A format without any conversion specifiers
may be specified, but an attribute is still required. Include\n to specify a line break.

General Remarks

• The default output fromcondorstatusis formatted to be human readable, not script readable.
In an effort to make the output fit within 80 characters, values in some fields might be trun-
cated. Furthermore, the Condor Project can (and does) change the formatting of this default
output as we see fit. Therefore, any script that is attemptingto parse data fromcondorstatus
is strongly encouraged to use the-format option (described above).

• The information obtained fromcondorstartd andcondorschedddaemons may sometimes
appear to be inconsistent. This is normal sincecondorstartd andcondorschedddaemons
update the Condor manager at different rates, and since there is a delay as information propa-
gates through the network and the system.

• Note that theActivityTime in the Idle state isnot the amount of time that the machine
has been idle. See the section oncondorstartdstates in theAdministrator’s Manualfor more
information.

• When usingcondorstatuson a pool with SMP machines, you can either provide the host
name, in which case you will get back information about all slots that are represented on that
host, or you can list specific slots by name. See the examples below for details.

• If you specify host names, without domains, Condor will automatically try to resolve those
host names into fully qualified host names for you. This also works when specifying specific
nodes of an SMP machine. In this case, everything after the “@” sign is treated as a host name
and that is what is resolved.

• You can use the-direct option in conjunction with almost any other set of options. However,
at this time, the only daemon that will allow direct queries for its ad(s) is thecondorstartd.
So, the only options currently not supported with-direct are-scheddand-master. Most other
options use startd ads for their information, so they work seamlessly with-direct. The only
other restriction on-direct is that you may only use 1-direct option at a time. If you want to
query information directly from multiple hosts, you must run condorstatusmultiple times.

• Unless you use the local host name with-direct, condorstatuswill still have to contact a
collector to find the address where the specified daemon is listening. So, using a-pool option
in conjunction with-direct just tellscondorstatuswhich collector to query to find the address
of the daemon you want. The information actually displayed will still be retrieved directly
from the daemon you specified as the argument to-direct.

Condor Version 7.2.3, Command Reference

condorstatus(1) 791

Examples

Example 1To view information from all nodes of an SMP machine, use onlythe host name. For
example, if you had a 4-CPU machine, namedvulture.cs.wisc.edu , you might see

% condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX INTEL Claimed Busy 1.050 512 0+01 :47:42
slot2@vulture.cs.w LINUX INTEL Claimed Busy 1.000 512 0+01 :48:19
slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+ 11:05:32
slot4@vulture.cs.w LINUX INTEL Unclaimed Idle 0.000 512 1+ 11:05:34

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 4 0 2 2 0 0 0

Total 4 0 2 2 0 0 0

Example 2To view information from a specific nodes of an SMP machine, specify the node directly.
You do this by providing the name of the slot. This has the formslot#@hostname . For example:

% condor_status slot3@vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+ 11:10:32

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 1 0 0 1 0 0 0

Total 1 0 0 1 0 0 0

Constraint option examples

To use the constraint option to see all machines with theOpSys of "LINUX" , use

% condor_status -constraint OpSys==\"LINUX\"

Note that quotation marks must be escaped with the backslashcharacters for most shells.

To see all machines that are currently in the Idle state, use

% condor_status -constraint State==\"Idle\"

To see all machines that are bench marked to have a MIPS ratingof more than 750, use

% condor_status -constraint 'Mips>750'

Condor Version 7.2.3, Command Reference

condorstatus(1) 792

-cod option example

The-codoption displays the status of COD claims within a given Condor pool.

Name ID ClaimState TimeInState RemoteUser JobId Keyword
astro.cs.wi COD1 Idle 0+00:00:04 wright
chopin.cs.w COD1 Running 0+00:02:05 wright 3.0 fractgen
chopin.cs.w COD2 Suspended 0+00:10:21 wright 4.0 fractgen

Total Idle Running Suspended Vacating Killing
INTEL/LINUX 3 1 1 1 0 0

Total 3 1 1 1 0 0

Exit Status

condorstatuswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorstore cred (1) 793

condor storecred

securely stash user’s password

Synopsis

condor store cred [-help]

condor store credadd [-c | -u username][-p password] [-n machinename] [-f filename]

condor store creddelete[-c | -u username][-n machinename]

condor store credquery[-c | -u username][-n machinename]

Description

On a Windows machine,condorstore cred stores the password of a user/domain pair securely in
the Windows registry. Using this stored password, Condor isable to run jobs with the user ID of the
submitting user. In addition, Condor uses this password to acquire the submitting user’s credentials
when writing output or log files. The password is stored in thesame manner as the system does
when setting or changing account passwords. Whencondorstore cred is invoked, it contacts the
condorschedddaemon to carry out the requested operations on behalf of theuser. This is necessary
since registry keys are accessible only by the Windows SYSTEM account, not by administrators or
other users.

On a Unix machine,condorstore credis used to manage the pool password, placed in a file specified
by theSECPASSWORDFILE configuration variable, and for use in password authentication among
Condor daemons.

The password is stashed in a persistent manner; it is maintained across system reboots.

Theaddargument stores the current user’s password securely in theregistry. The user is prompted
to enter the password twice for confirmation, and charactersare not echoed. If there is already a
password stashed, the old password will be overwritten by the new password.

Thedeletedeletes the current password, if it exists.

Thequeryreports whether the password is stored or not.

Options

-c Apply the option to the pool password.

Condor Version 7.2.3, Command Reference

condorstore cred (1) 794

-f filename For Unix machines only, generates a pool password file namedfilenamethat may be
used with the PASSWORD authentication method.

-help Displays a brief summary of command options.

-n machinenameApply the command on the given machine.

-p passwordStores given password, rather than prompting.

-u usernameSpecify the user name.

Exit Status

condorstore cred will exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorsubmit(1) 795

condor submit

Queue jobs for execution under Condor

Synopsis

condor submit [-verbose] [-unused] [-name scheddname] [-remote scheddname]
[-pool pool name] [-disable] [-password passphrase] [-debug] [-appendcommand. . .][-spool]
[-dump filename] [submit description file]

Description

condorsubmitis the program for submitting jobs for execution under Condor. condorsubmitre-
quires a submit description file which contains commands to direct the queuing of jobs. One submit
description file may contain specifications for the queuing of many Condor jobs at once. A single
invocation ofcondorsubmitmay cause one or more clusters. A cluster is a set of jobs specified in
the submit description file betweenqueuecommands for which the executable is not changed. It is
advantageous to submit multiple jobs as a single cluster because:

• Only one copy of the checkpoint file is needed to represent all jobs in a cluster until they begin
execution.

• There is much less overhead involved for Condor to start thenext job in a cluster than for
Condor to start a new cluster. This can make a big difference when submitting lots of short
jobs.

Multiple clusters may be specified within a single submit description file. Each cluster must specify
a single executable.

The job ClassAd attributeClusterId identifies a cluster. See specifics for this attribute in the
Appendix on page 879.

Note that submission of jobs from a Windows machine requiresa stashed password to allow Con-
dor to impersonate the user submitting the job. To stash a password, use thecondorstore cred
command. See the manual page at page 793 for details.

SUBMIT DESCRIPTION FILE COMMANDS

Each submit description file describes one cluster of jobs tobe placed in the Condor execution
pool. All jobs in a cluster must share the same executable, but they may have different input and
output files, and different program arguments. The submit description file is the only command-line
argument tocondorsubmit. If the submit description file argument is omitted,condorsubmitwill
read the submit description from standard input.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 796

The submit description file must contain oneexecutablecommand and at least onequeuecommand.
All of the other commands have default actions.

The commands which can appear in the submit description file are numerous. They are listed here
in alphabetical order by category.

BASIC COMMANDS

arguments =<argument list> List of arguments to be supplied to the program on the command
line. In the Java Universe, the first argument must be the nameof the class containingmain .

There are two permissible formats for specifying arguments. The new syntax supports uniform
quoting of spaces within arguments; the old syntax supportsspaces in arguments only in
special circumstances.

In the old syntax, arguments are delimited (separated) by space characters. Double-quotes
must be escaped with a backslash (i.e. put a backslash in front of each double-quote).

Further interpretation of the argument string differs depending on the operating system. On
Windows, your argument string is simply passed verbatim (other than the backslash in front
of double-quotes) to the Windows application. Most Windowsapplications will allow you to
put spaces within an argument value by surrounding the argument with double-quotes. In all
other cases, there is no further interpretation of the arguments.

Example:

arguments = one \"two\" 'three'

Produces in Unix vanilla universe:

argument 1: one
argument 2: "two"
argument 3: 'three'

Here are the rules for using the new syntax:

1. Put double quotes around the entire argument string. Thisdistinguishes the new syntax
from the old, because these double-quotes are not escaped with backslashes, as required
in the old syntax. Any literal double-quotes within the string must be escaped by repeat-
ing them.

2. Use white space (e.g. spaces or tabs) to separate arguments.

3. To put any white space in an argument, you must surround thespace and as much of the
surrounding argument as you like with single-quotes.

4. To insert a literal single-quote, you must repeat it anywhere inside of a single-quoted
section.

Example:

Condor Version 7.2.3, Command Reference

condorsubmit(1) 797

arguments = "one ""two"" 'spacey ''quoted'' argument'"

Produces:

argument 1: one
argument 2: "two"
argument 3: spacey 'quoted' argument

Notice that in the new syntax, backslash has no special meaning. This is for the convenience
of Windows users.

environment = <parameter list> List of environment variables.

There are two different formats for specifying the environment variables: the old format and
the new format. The old format is retained for backward-compatibility. It suffers from a
platform-dependent syntax and the inability to insert somespecial characters into the environ-
ment.

The new syntax for specifying environment values:

1. Put double quote marks around the entire argument string.This distinguishes the new
syntax from the old. The old syntax does not have double quotemarks around it. Any
literal double quote marks within the string must be escapedby repeating the double
quote mark.

2. Each environment entry has the form

<name>=<value>

3. Use white space (space or tab characters) to separate environment entries.

4. To put any white space in an environment entry, surround the space and as much of the
surrounding entry as desired with single quote marks.

5. To insert a literal single quote mark, repeat the single quote mark anywhere inside of a
section surrounded by single quote marks.

Example:

environment = "one=1 two=""2"" three='spacey ''quoted'' v alue'"

Produces the following environment entries:

one=1
two="2"
three=spacey 'quoted' value

Under the old syntax, there are no double quote marks surrounding the environment specifi-
cation. Each environment entry remains of the form

Condor Version 7.2.3, Command Reference

condorsubmit(1) 798

<name>=<value>

Under Unix, list multiple environment entries by separating them with a semicolon (;). Under
Windows, separate multiple entries with a vertical bar (|). There is no way to insert a literal
semicolon under Unix or a literal vertical bar under Windows. Note that spaces are accepted,
but rarely desired, characters within parameter names and values, because they are treated as
literal characters, not separators or ignored white space.Place spaces within the parameter
list only if required.

A Unix example:

environment = one=1;two=2;three="quotes have no 'special ' meaning"

This produces the following:

one=1
two=2
three="quotes have no 'special' meaning"

If the environment is set with theenvironmentcommandandgetenvis also set to true, values
specified withenvironment override values in the submittor’s environment (regardless of the
order of theenvironment andgetenvcommands).

error = <pathname> A path and file name used by Condor to capture any error messages the pro-
gram would normally write to the screen (that is, this file becomesstderr). If not specified,
the default value of/dev/null is used for submission to a Unix machine. If not specified,
error messages are ignored for submission to a Windows machine. More than one job should
not use the same error file, since this will cause one job to overwrite the errors of another. The
error file and the output file should not be the same file as the outputs will overwrite each other
or be lost. For grid universe jobs,error may be a URL that the Globus toolglobusurl copy
understands.

executable =<pathname> An optional path and a required file name of the executable filefor this
job cluster. Only oneexecutablecommand within a submit description file is guaranteed to
work properly. More than one often works.

If no path or a relative path is used, then the executable file is presumed to be relative to the
current working directory of the user as thecondorsubmitcommand is issued.

If submitting into the standard universe, then the named executable must have been re-linked
with the Condor libraries (such as via thecondorcompilecommand). If submitting into the
vanilla universe (the default), then the named executable need not be re-linked and can be any
process which can run in the background (shell scripts work fine as well). If submitting into
the Java universe, then the argument must be a compiled.class file.

getenv =<True | False> If getenvis set toTrue , thencondorsubmitwill copy all of the user’s
current shell environment variables at the time of job submission into the job ClassAd. The
job will therefore execute with the same set of environment variables that the user had at
submit time. Defaults toFalse .

Condor Version 7.2.3, Command Reference

condorsubmit(1) 799

If the environment is set with theenvironmentcommandandgetenvis also set to true, values
specified withenvironment override values in the submittor’s environment (regardless of the
order of theenvironment andgetenvcommands).

input = <pathname> Condor assumes that its jobs are long-running, and that the user will not
wait at the terminal for their completion. Because of this, the standard files which normally
access the terminal, (stdin , stdout , andstderr), must refer to files. Thus, the file name
specified withinput should contain any keyboard input the program requires (that is, this file
becomesstdin). If not specified, the default value of/dev/null is used for submission to
a Unix machine. If not specified, input is ignored for submission to a Windows machine. For
grid universe jobs,input may be a URL that the Globus toolglobusurl copyunderstands.

Note that this command doesnot refer to the command-line arguments of the program. The
command-line arguments are specified by theargumentscommand.

log = <pathname> Use log to specify a file name where Condor will write a log file of what is
happening with this job cluster. For example, Condor will place a log entry into this file when
and where the job begins running, when the job produces a checkpoint, or moves (migrates)
to another machine, and when the job completes. Most users find specifying alog file to be
handy; its use is recommended. If nolog entry is specified, Condor does not create a log for
this cluster.

log xml = <True | False> If log xml is True , then the log file will be written in ClassAd XML.
If not specified, XML is not used. Note that the file is an XML fragment; it is missing the file
header and footer. Do not mix XML and non-XML within a single file. If multiple jobs write
to a single log file, ensure that all of the jobs specify this option in the same way.

notification = <Always | Complete| Error | Never> Owners of Condor jobs are notified by e-
mail when certain events occur. If defined byAlways, the owner will be notified whenever the
job produces a checkpoint, as well as when the job completes.If defined byComplete(the
default), the owner will be notified when the job terminates.If defined byError, the owner
will only be notified if the job terminates abnormally. If defined byNever, the owner will not
receive e-mail, regardless to what happens to the job. The statistics included in the e-mail are
documented in section 2.6.7 on page 45.

notify user =<email-address> Used to specify the e-mail address to use when Condor sends e-
mail about a job. If not specified, Condor defaults to using the e-mail address defined by

job-owner@UID_DOMAIN

where the configuration variableUID DOMAIN is specified by the Condor site administrator.
If UID DOMAINhas not been specified, Condor sends the e-mail to:

job-owner@submit-machine-name

output = <pathname> The output file captures any information the program would ordinarily
write to the screen (that is, this file becomesstdout). If not specified, the default value of
/dev/null is used for submission to a Unix machine. If not specified, output is ignored

Condor Version 7.2.3, Command Reference

condorsubmit(1) 800

for submission to a Windows machine. Multiple jobs should not use the same output file,
since this will cause one job to overwrite the output of another. The output file and the error
file should not be the same file as the outputs will overwrite each other or be lost. For grid
universe jobs,output may be a URL that the Globus toolglobusurl copyunderstands.

Note that if a program explicitly opens and writes to a file, that file shouldnot be specified as
theoutput file.

priority = <integer> A Condor job priority can be any integer, with 0 being the default. Jobs
with higher numerical priority will run before jobs with lower numerical priority. Note that
this priority is on a per user basis. One user with many jobs may use this command to order
his/her own jobs, and this will have no effect on whether or not these jobs will run ahead of
another user’s jobs.

queue [number-of-procs] Places one or more copies of the job into the Condor queue. Theoptional
argumentnumber-of-procsspecifies how many times to submit the job to the queue, and it
defaults to 1. If desired, any commands may be placed betweensubsequentqueuecommands,
such as newinput , output, error , initialdir , or argumentscommands. This is handy when
submitting multiple runs into one cluster with one submit description file.

universe =<vanilla | standard | scheduler| local | grid | mpi | java | vm> Specifies which
Condor Universe to use when running this job. The Condor Universe specifies a Condor exe-
cution environment. Thestandard Universe tells Condor that this job has been re-linked via
condorcompilewith the Condor libraries and therefore supports checkpointing and remote
system calls. Thevanilla Universe is the default (except where the configuration variable
DEFAULTUNIVERSE defines it otherwise), and is an execution environment for jobs which
have not been linked with the Condor libraries.Note:Use thevanilla Universe to submit shell
scripts to Condor. Thescheduler is for a job that should act as a metascheduler. Thegrid
universe forwards the job to an external job management system. Further specification of the
grid universe is done with thegrid resourcecommand. Thempi universe is for running mpi
jobs made with the MPICH package. Thejava universe is for programs written to the Java
Virtual Machine. Thevm universe facilitates the execution of a virtual machine.

COMMANDS FOR MATCHMAKING

rank = <ClassAd Float Expression> A ClassAd Floating-Point expression that states how to
rank machines which have already met the requirements expression. Essentially, rank ex-
presses preference. A higher numeric value equals better rank. Condor will give the job the
machine with the highest rank. For example,

requirements = Memory > 60
rank = Memory

asks Condor to find all available machines with more than 60 megabytes of memory and give
to the job the machine with the most amount of memory. See section 2.5.2 within the Condor
Users Manual for complete information on the syntax and available attributes that can be used
in the ClassAd expression.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 801

requirements =<ClassAd Boolean Expression> The requirements command is a boolean
ClassAd expression which uses C-like operators. In order for any job in this cluster to run
on a given machine, this requirements expression must evaluate to true on the given machine.
For example, to require that whatever machine executes a Condor job has a least 64 Meg of
RAM and has a MIPS performance rating greater than 45, use:

requirements = Memory >= 64 && Mips > 45

For scheduler and local universe jobs, the requirements expression is evaluated against the
Scheduler ClassAd which represents the thecondorschedddaemon running on the submit
machine, rather than a remote machine. Like all commands in the submit description file, if
multiple requirements commands are present, all but the last one are ignored. By default,
condorsubmitappends the following clauses to the requirements expression:

1. Arch and OpSys are set equal to the Arch and OpSys of the submit machine. In other
words: unless you request otherwise, Condor will give your job machines with the same
architecture and operating system version as the machine runningcondorsubmit.

2. Disk >= DiskUsage. TheDiskUsage attribute is initialized to the size of the exe-
cutable plus the size of any files specified in atransfer input files command. It exists
to ensure there is enough disk space on the target machine forCondor to copy over both
the executable and needed input files. TheDiskUsage attribute represents the maxi-
mum amount of total disk space required by the job in kilobytes. Condor automatically
updates theDiskUsage attribute approximately every 20 minutes while the job runs
with the amount of space being used by the job on the execute machine.

3. (Memory * 1024)>= ImageSize. To ensure the target machine has enough memory to
run your job.

4. If Universe is set to Vanilla, FileSystemDomain is set equal to the submit machine’s
FileSystemDomain.

View the requirements of a job which has already been submitted (along with everything
else about the job ClassAd) with the commandcondorq -l; see the command reference for
condorq on page 750. Also, see the Condor Users Manual for complete information on the
syntax and available attributes that can be used in the ClassAd expression.

FILE TRANSFER COMMANDS

should transfer files =<YES | NO | IF NEEDED > The should transfer files setting is used
to define if Condor should transfer files to and from the remotemachine where the job
runs. The file transfer mechanism is used to run jobs which arenot in the standard uni-
verse (and can therefore use remote system calls for file access) on machines which do not
have a shared file system with the submit machine.should transfer files equal toYESwill
cause Condor to always transfer files for the job.NO disables Condor’s file transfer mech-
anism. IF NEEDEDwill not transfer files for the job if it is matched with a resource in
the sameFileSystemDomain as the submit machine (and therefore, on a machine with
the same shared file system). If the job is matched with a remote resource in a different
FileSystemDomain , Condor will transfer the necessary files.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 802

If defining should transfer files you mustalso definewhen to transfer output (described
below). For more information about this and other settings related to transferring files, see
section 2.5.4 on page 26.

Note thatshould transfer files is not supported for jobs submitted to the grid universe.

stream error = <True | False> If True , thenstderr is streamed back to the machine from
which the job was submitted. IfFalse , stderr is stored locally and transferred back when
the job completes. This command is ignored if the job ClassAdattributeTransferErr is
False . The default value isTrue in the grid universe andFalse otherwise. This command
must be used in conjunction witherror , otherwisestderr will sent to/dev/null on Unix
machines and ignored on Windows machines.

stream input = <True | False> If True , thenstdin is streamed from the machine on which
the job was submitted. The default value isFalse . The command is only relevant for jobs
submitted to the vanilla or java universes, and it is ignoredby the grid universe. This command
must be used in conjunction withinput , otherwisestdin will be /dev/null on Unix
machines and ignored on Windows machines.

stream output = <True | False> If True , thenstdout is streamed back to the machine from
which the job was submitted. IfFalse , stdout is stored locally and transferred back when
the job completes. This command is ignored if the job ClassAdattributeTransferOut is
False . The default value isTrue in the grid universe andFalse otherwise. This command
must be used in conjunction withoutput, otherwisestdout will sent to /dev/null on
Unix machines and ignored on Windows machines.

transfer executable =<True | False> This command is applicable to jobs submitted to the grid,
vanilla, and MPI universes. Iftransfer executableis set toFalse , then Condor looks for the
executable on the remote machine, and does not transfer the executable over. This is useful for
an already pre-staged executable; Condor behaves more likersh. The default value isTrue .

transfer input files =< file1,file2,file...> A comma-delimited list of all the files to be transferred
into the working directory for the job before the job is started. By default, the file specified in
theexecutablecommand and any file specified in theinput command (for example,stdin)
are transferred.

Only the transfer of files is available; the transfer of subdirectories is not supported.

For more information about this and other settings related to transferring files, see section 2.5.4
on page 26.

transfer output files =< file1,file2,file...> This command forms an explicit list of output files
to be transferred back from the temporary working directoryon the execute machine to the
submit machine. Most of the time, there is no need to use this command. Other than for grid
universe jobs, iftransfer output files is not specified, Condor will automatically transfer
back all files in the job’s temporary working directory whichhave been modified or created
by the job. This is usually the desired behavior. Explicitlylisting output files is typically only
done when the job creates many files, and the user wants to keepa subset of those files. If
there are multiple files, they must be delimited with commas.WARNING: Do not specify

Condor Version 7.2.3, Command Reference

condorsubmit(1) 803

transfer output files in the submit description file unless there is a really good reason – it is
best to let Condor figure things out by itself based upon what the job produces.

For grid universe jobs, to have files other than standard output and standard error transferred
from the execute machine back to the submit machine, do usetransfer output files, listing all
files to be transferred. These files are found on the execute machine in the working directory
of the job.

For more information about this and other settings related to transferring files, see section 2.5.4
on page 26.

transfer output remaps= < “ name = newname ; name2= newname2 ... ”> This specifies
the name (and optionally path) to use when downloading output files from the completed
job. Normally, output files are transferred back to the initial working directory with the same
name they had in the execution directory. This gives you the option to save them with a dif-
ferent path or name. If you specify a relative path, the final path will be relative to the job’s
initial working directory.

namedescribes an output file name produced by your job, andnewnamedescribes the file
name it should be downloaded to. Multiple remaps can be specified by separating each with
a semicolon. If you wish to remap file names that contain equals signs or semicolons, these
special characters may be escaped with a backslash.

when to transfer output = < ON EXIT | ON EXIT OR EVICT > Setting
when to transfer output equal to ON EXIT will cause Condor to transfer the job’s
output files back to the submitting machine only when the job completes (exits on its own).

The ON EXIT OR EVICT option is intended for fault tolerant jobs which periodically save
their own state and can restart where they left off. In this case, files are spooled to the submit
machine any time the job leaves a remote site, either becauseit exited on its own, or was
evicted by the Condor system for any reason prior to job completion. The files spooled back
are placed in a directory defined by the value of theSPOOLconfiguration variable. Any output
files transferred back to the submit machine are automatically sent back out again as input files
if the job restarts.

For more information about this and other settings related to transferring files, see section 2.5.4
on page 26.

POLICY COMMANDS

hold = <True | False> If hold is set toTrue , then the job will be submitted in the hold state.
Jobs in the hold state will not run until released bycondorrelease. Defaults to false.

leave in queue =<ClassAd Boolean Expression> When the ClassAd Expression evaluates to
True , the job is not removed from the queue upon completion. This allows the user of a
remotely spooled job to retrieve output files in cases where Condor would have removed them
as part of the cleanup associated with completion. The job will only exit the queue once it has
been marked for removal (viacondorrm, for example) and theleave in queueexpression
has becomeFalse . leave in queuedefaults toFalse .

Condor Version 7.2.3, Command Reference

condorsubmit(1) 804

on exit hold = <ClassAd Boolean Expression> This expression is checked when the job exits
and if true, places the job on hold. If false then nothing happens and theon exit remove
expression is checked to determine if that needs to be applied.

For example: Suppose a job is known to run for a minimum of an hour. If the job exits after
less than an hour, the job should be placed on hold and an e-mail notification sent, instead of
being allowed to leave the queue.

on_exit_hold = (CurrentTime - JobStartDate) < (60 * $(MINUTE))

This expression places the job on hold if it exits for any reason before running for an hour.
An e-mail will be sent to the user explaining that the job was placed on hold because this
expression becameTrue .

periodic * expressions take precedence overon exit * expressions, and* hold ex-
pressions take precedence over a* remove expressions.

If left unspecified, this will default toFalse .

This expression is available for the vanilla, java, parallel, mpi, grid, local and scheduler uni-
verses. It is additionally available, when submitted from aUnix machine, for the standard
universe.

on exit remove =<ClassAd Boolean Expression> This expression is checked when the job exits
and if true, then it allows the job to leave the queue normally. If false, then the job is placed
back into the Idle state. If the user job runs under the vanilla universe, then the job restarts
from the beginning. If the user job runs under the standard universe, then it continues from
where it left off, using the last checkpoint.

For example, suppose you have a job that occasionally segfaults, but you know if you run the
job again with the same data, chances are that the will finish successfully. This is how you
would represent that withon exit remove (assuming the signal identifier for segmentation
fault is 11 on the platform where your job will be running):

on_exit_remove = (ExitBySignal == False) || (ExitSignal != 11)

This expression will only let the job leave the queue if the job was not killed by a signal
(it exited normally on its own) or if it was killed by a signal other than 11 (representing
segmentation fault). So, if it was killed by signal 11, it will stay in the job queue. In any other
case of the job exiting, the job will leave the queue as it normally would have done.

As another example, if your job should only leave the queue ifit exited on its own with status
0, you would use thison exit remove expression:

on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

If the job was killed by a signal or exited with a non-zero exitstatus, Condor would leave the
job in the queue to run again.

If left unspecified, theon exit remove expression will default toTrue .

Condor Version 7.2.3, Command Reference

condorsubmit(1) 805

periodic * expressions take precedence overon exit * expressions, and* hold ex-
pressions take precedence over a* remove expressions.

This expression is available for the vanilla, java, parallel, mpi, grid, local and scheduler uni-
verses. It is additionally available, when submitted from aUnix machine, for the standard
universe. Note that thecondorschedddaemon, by default, only checks these periodic expres-
sions once every 300 seconds. The period of these evaluations can be adjusted by setting the
PERIODIC EXPRINTERVAL configuration macro.

periodic hold = <ClassAd Boolean Expression> This expression is checked periodi-
cally at an interval of the number of seconds set by the configuration variable
PERIODIC EXPRINTERVAL. If it becomes true, the job will be placed on hold. If
unspecified, the default value isFalse .

See the Examples section for an example of aperiodic * expression.

periodic * expressions take precedence overon exit * expressions, and* hold ex-
pressions take precedence over a* remove expressions.

This expression is available for the vanilla, java, parallel, mpi, grid, local and sched-
uler universes. It is additionally available, when submitted from a Unix machine, for
the standard universe. Note that the schedd, by default, only checks periodic expressions
once every 300 seconds. The period of these evaluations can be adjusted by setting the
PERIODIC EXPRINTERVAL configuration macro.

periodic release =<ClassAd Boolean Expression> This expression is checked periodi-
cally at an interval of the number of seconds set by the configuration variable
PERIODIC EXPRINTERVAL while the job is in the Hold state. If the expression
becomesTrue , the job will be released.

This expression is available for the vanilla, java, parallel, mpi, grid, local and scheduler uni-
verses. It is additionally available, when submitted from aUnix machine, for the standard
universe. Note that thecondorschedddaemon, by default, only checks periodic expres-
sions once every 300 seconds. The period of these evaluations can be adjusted by setting
thePERIODIC EXPRINTERVAL configuration macro.

periodic remove =<ClassAd Boolean Expression> This expression is checked period-
ically at an interval of the number of seconds set by the configuration variable
PERIODIC EXPRINTERVAL. If it becomesTrue , the job is removed from the queue. If
unspecified, the default value isFalse .

See the Examples section for an example of aperiodic * expression.

periodic * expressions take precedence overon exit * expressions, and* hold ex-
pressions take precedence over a* remove expressions. So, theperiodic remove ex-
pression takes precedent over theon exit remove expression, if the two describe conflict-
ing actions.

This expression is available for the vanilla, java, parallel, mpi, grid, local and sched-
uler universes. It is additionally available, when submitted from a Unix machine, for
the standard universe. Note that the schedd, by default, only checks periodic expressions
once every 300 seconds. The period of these evaluations can be adjusted by setting the
PERIODIC EXPRINTERVAL configuration macro.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 806

next job start delay =<ClassAd Boolean Expression> This expression specifies the number of
seconds to delay after starting up this job before the next job is started. The maximum allowed
delay is specified by the Condor configuration variableMAXNEXTJOB STARTDELAY ,
which defaults to 10 minutes. Currently, this command does not apply toscheduleror local
universe jobs.

COMMANDS SPECIFIC TO THE STANDARD UNIVERSE

allow startup script = <True | False> If True, a standard universe job will execute a script in-
stead of submitting the job, and the consistency check to seeif the executable has been linked
usingcondorcompileis omitted. Theexecutablecommand within the submit description
file specifies the name of the script. The script is used to do preprocessing before the job is
submitted. The shell script ends with anexecof the job executable, such that the process id of
the executable is the same as that of the shell script. Here isan example script that gets a copy
of a machine-specific executable before theexec.

#! /bin/sh

get the host name of the machine
$host=`uname -n`

grab a standard universe executable designed specificall y
for this host
scp elsewhere@cs.wisc.edu:${host} executable

The PID MUST stay the same, so exec the new standard universe process.
exec executable ${1+"$@"}

If this command is not present (defined), then the value defaults to false.

append files = file1, file2, ... If your job attempts to access a file mentioned in this list, Condor will
force all writes to that file to be appended to the end. Furthermore, condorsubmit will not
truncate it. This list uses the same syntax as compressfiles, shown above.

This option may yield some surprising results. If several jobs attempt to write to the same
file, their output may be intermixed. If a job is evicted from one or more machines during
the course of its lifetime, such an output file might contain several copies of the results. This
option should be only be used when you wish a certain file to be treated as a running log
instead of a precise result.

This option only applies to standard-universe jobs.

buffer files= < “ name = (size,block-size) ; name2= (size,block-size) ... ”>

buffer size= <bytes-in-buffer>

buffer block size= <bytes-in-block> Condor keeps a buffer of recently-used data for each file a
job accesses. This buffer is used both to cache commonly-used data and to consolidate small

Condor Version 7.2.3, Command Reference

condorsubmit(1) 807

reads and writes into larger operations that get better throughput. The default settings should
produce reasonable results for most programs.

These options only apply to standard-universe jobs.

If needed, you may set the buffer controls individually for each file using the bufferfiles
option. For example, to set the buffer size to 1 Mbyte and the block size to 256 Kbytes for the
file input.data , use this command:

buffer_files = "input.data=(1000000,256000)"

Alternatively, you may use these two options to set the default sizes for all files used by your
job:

buffer_size = 1000000
buffer_block_size = 256000

If you do not set these, Condor will use the values given by these two configuration file
macros:

DEFAULT_IO_BUFFER_SIZE = 1000000
DEFAULT_IO_BUFFER_BLOCK_SIZE = 256000

Finally, if no other settings are present, Condor will use a buffer of 512 Kbytes and a block
size of 32 Kbytes.

compressfiles = file1, file2, ... If your job attempts to access any of the files mentioned in this list,
Condor will automatically compress them (if writing) or decompress them (if reading). The
compress format is the same as used by GNU gzip.

The files given in this list may be simple file names or completepaths and may include∗ as a
wild card. For example, this list causes the file /tmp/data.gz, any file named event.gz, and any
file ending in .gzip to be automatically compressed or decompressed as needed:

compress_files = /tmp/data.gz, event.gz, * .gzip

Due to the nature of the compression format, compressed filesmust only be accessed se-
quentially. Random access reading is allowed but is very slow, while random access writing
is simply not possible. This restriction may be avoided by using both compressfiles and
fetch files at the same time. When this is done, a file is kept in the decompressed state at the
execution machine, but is compressed for transfer to its original location.

This option only applies to standard universe jobs.

fetch files = file1, file2, ... If your job attempts to access a file mentioned in this list, Condor will
automatically copy the whole file to the executing machine, where it can be accessed quickly.
When your job closes the file, it will be copied back to its original location. This list uses the
same syntax as compressfiles, shown above.

This option only applies to standard universe jobs.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 808

file remaps= < “ name = newname ; name2= newname2 ... ”> Directs Condor to use a new
file name in place of an old one.namedescribes a file name that your job may attempt to
open, andnewnamedescribes the file name it should be replaced with.newnamemay include
an optional leading access specifier,local: or remote: . If left unspecified, the default
access specifier isremote: . Multiple remaps can be specified by separating each with a
semicolon.

This option only applies to standard universe jobs.

If you wish to remap file names that contain equals signs or semicolons, these special charac-
ters may be escaped with a backslash.

Example One: Suppose that your job reads a file nameddataset.1 . To instruct Condor
to force your job to readother.dataset instead, add this to the submit file:

file_remaps = "dataset.1=other.dataset"

Example Two: Suppose that your run many jobs which all read in the same large file, called
very.big . If this file can be found in the same place on a local disk in every ma-
chine in the pool, (say/bigdisk/bigfile ,) you can instruct Condor of this fact by
remappingvery.big to /bigdisk/bigfile and specifying that the file is to be
read locally, which will be much faster than reading over thenetwork.

file_remaps = "very.big = local:/bigdisk/bigfile"

Example Three: Several remaps can be applied at once by separating each witha semicolon.

file_remaps = "very.big = local:/bigdisk/bigfile ; datase t.1 = other.dataset"

local files = file1, file2, ... If your job attempts to access a file mentioned in this list, Condor will
cause it to be read or written at the execution machine. This is most useful for temporary files
not used for input or output. This list uses the same syntax ascompressfiles, shown above.

local_files = /tmp/ *

This option only applies to standard universe jobs.

want remote io = <True | False> This option controls how a file is opened and manipulated in
a standard universe job. If this option is true, which is the default, then thecondorshadow
makes all decisions about how each and every file should be opened by the executing job. This
entails a network round trip (or more) from the job to thecondorshadowand back again for
every singleopen() in addition to other needed information about the file. If setto false,
then when the job queries thecondorshadowfor the first time about how to open a file, the
condorshadowwill inform the job to automatically perform all of its file manipulation on the
local file system on the execute machine and any file remappingwill be ignored. This means
that theremust be a shared file system (such as NFS or AFS) between the executemachine
and the submit machine and thatALL paths that the job could open on the execute machine
must be valid. The ability of the standard universe job to checkpoint, possibly to a checkpoint
server, is not affected by this attribute. However, when thejob resumes it will be expecting
the same file system conditions that were present when the jobcheckpointed.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 809

COMMANDS FOR THE GRID

amazonami id = <Amazon EC2 AMI ID > AMI identifier of the VM image to run foramazon
jobs.

amazon instance type = <VM Type> Identifier for the type of VM desired for anamazon job.
The default value is “m1.small”.

amazonkeypair file = <pathname> The complete path and filename of a file into which Condor
will write an ssh key for use withamazonjobs. The key can be used to ssh into the virtual
machine once it is running.

amazonprivate key = <pathname> Used foramazonjobs. Path and filename of a file contain-
ing the private key to be used to authenticate with Amazon’s EC2 service via SOAP.

amazonpublic key = <pathname> Used foramazonjobs. Path and filename of a file containing
the public X509 certificate to be used to authenticate with Amazon’s EC2 service via SOAP.

amazonsecurity groups = group1, group2, ...Used foramazonjobs. A list of Amazon EC2 se-
curity group names, which should be associated with the job.

amazonuser data = <data> Used foramazonjobs. A block of data that can be accessed by the
virtual machine job inside Amazon EC2.

amazonuser data file = <pathname> Used foramazonjobs. A file containing data that can be
accessed by the virtual machine job inside Amazon EC2.

globus rematch = <ClassAd Boolean Expression> This expression is evaluated by thecon-
dor gridmanagerwhenever:

1. theglobus resubmit expression evaluates toTrue

2. the condorgridmanagerdecides it needs to retry a submission (as when a previous
submission failed to commit)

If globus rematch evaluates toTrue , thenbeforethe job is submitted again to globus, the
condorgridmanagerwill request that thecondorschedddaemon renegotiate with the match-
maker (thecondornegotiator). The result is this job will be matched again.

globus resubmit = <ClassAd Boolean Expression> The expression is evaluated by thecon-
dor gridmanagereach time thecondorgridmanagergets a job ad to manage. Therefore,
the expression is evaluated:

1. when a grid universe job is first submitted to Condor-G

2. when a grid universe job is released from the hold state

3. when Condor-G is restarted (specifically, whenever thecondorgridmanageris restarted)

If the expression evaluates toTrue , then any previous submission to the grid universe will be
forgotten and this job will be submitted again as a fresh submission to the grid universe. This
may be useful if there is a desire to give up on a previous submission and try again. Note that
this may result in the same job running more than once. Do not treat this operation lightly.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 810

globus rsl = <RSL-string> Used to provide any additional Globus RSL string attributeswhich
are not covered by other submit description file commands or job attributes. Used forgrid
universe jobs, where the grid resource has agrid-type-string of gt2.

globus xml = <XML-string > Used to provide any additional attributes in the GRAM XML job
description that Condor writes which are not covered by regular submit description file pa-
rameters. Used for grid typegt4 jobs.

grid resource =<grid-type-string> <grid-specific-parameter-list> For eachgrid-type-string
value, there are further type-specific values that must specified. This submit description file
command allows each to be given in a space-separated list. Allowablegrid-type-string values
areamazon, gt2, gt4, condor, lsf, nordugrid , pbs, andunicore. See section 5.3 for details
on the variety of grid types.

For agrid-type-string of amazon, no additional parameters are used. See section 5.3.7 for
details.

For agrid-type-string of condor, the first parameter is the name of the remotecondorschedd
daemon. The second parameter is the name of the pool to which the remotecondorschedd
daemon belongs. See section 5.3.1 for details.

For agrid-type-string of gt2, the single parameter is the name of the pre-WS GRAM resource
to be used. See section 5.3.2 for details.

For agrid-type-string of gt4, the first parameter is the name of the WS GRAM service to be
used. The second parameter is the name of WS resource to be used (usually the name of the
back-end scheduler). See section 5.3.2 for details.

For agrid-type-string of lsf, no additional parameters are used. See section 5.3.6 for details.

For a grid-type-string of nordugrid , the single parameter is the name of the NorduGrid
resource to be used. See section 5.3.3 for details.

For agrid-type-string of pbs, no additional parameters are used. See section 5.3.5 for details.

For agrid-type-string of unicore, the first parameter is the name of the Unicore Usite to be
used. The second parameter is the name of the Unicore Vsite tobe used. See section 5.3.4 for
details.

keystore alias =<name> A string to locate the certificate in a Java keystore file, as used for a
unicore job.

keystore file = <pathname> The complete path and file name of the Java keystore file containing
the certificate to be used for aunicore job.

keystore passphrasefile = <pathname> The complete path and file name to the file containing
the passphrase protecting a Java keystore file containing the certificate. Relevant for aunicore
job.

MyProxyCredentialName = <symbolic name> The symbolic name that identifies a credential to
theMyProxyserver. This symbolic name is set as the credential is initially stored on the server
(usingmyproxy-init).

Condor Version 7.2.3, Command Reference

condorsubmit(1) 811

MyProxyHost = <host>:<port> The Internet address of the host that is theMyProxyserver. The
host may be specified by either a host name (as inhead.example.com) or an IP address
(of the form 123.456.7.8). Theport number is an integer.

MyProxyNewProxyLifetime = <number-of-minutes> The new lifetime (in minutes) of the
proxy after it is refreshed.

MyProxyPassword =<password> The password needed to refresh a credential on theMyProxy
server. This password is set when the user initially stores credentials on the server (using
myproxy-init). As an alternative to usingMyProxyPasswordin the submit description file, the
password may be specified as a command line argument tocondorsubmitwith the-password
argument.

MyProxyRefreshThreshold =<number-of-seconds> The time (in seconds) before the expira-
tion of a proxy that the proxy should be refreshed. For example, if MyProxyRefreshThresh-
old is set to the value 600, the proxy will be refreshed 10 minutesbefore it expires.

MyProxyServerDN = <credential subject> A string that specifies the expected Distinguished
Name (credential subject, abbreviated DN) of theMyProxyserver. It must be specified when
theMyProxyserver DN does not follow the conventional naming scheme of ahost credential.
This occurs, for example, when theMyProxyserver DN begins with a user credential.

nordugrid rsl = <RSL-string> Used to provide any additional RSL string attributes which are
not covered by regular submit description file parameters. Used when theuniverse is grid ,
and the type of grid system isnordugrid .

transfer error = <True | False> For jobs submitted to the grid universe only. IfTrue , then the
error output (fromstderr) from the job is transferred from the remote machine back to the
submit machine. The name of the file after transfer is given bytheerror command. IfFalse ,
no transfer takes place (from the remote machine to submit machine), and the name of the file
is given by theerror command. The default value isTrue .

transfer input = <True | False> For jobs submitted to the grid universe only. IfTrue , then the
job input (stdin) is transferred from the machine where the job was submittedto the remote
machine. The name of the file that is transferred is given by the input command. IfFalse ,
then the job’s input is taken from a pre-staged file on the remote machine, and the name of the
file is given by theinput command. The default value isTrue .

For transferring files other thanstdin , seetransfer input files.

transfer output = <True | False> For jobs submitted to the grid universe only. IfTrue , then the
output (fromstdout) from the job is transferred from the remote machine back to the submit
machine. The name of the file after transfer is given by theoutput command. IfFalse , no
transfer takes place (from the remote machine to submit machine), and the name of the file is
given by theoutput command. The default value isTrue .

For transferring files other thanstdout , seetransfer output files.

x509userproxy =<full-pathname> Used to override the default path name for X.509 user cer-
tificates. The default location for X.509 proxies is the/tmp directory, which is generally a
local file system. Setting this value would allow Condor to access the proxy in a shared file

Condor Version 7.2.3, Command Reference

condorsubmit(1) 812

system (for example, AFS). Condor will use the proxy specified in the submit description file
first. If nothing is specified in the submit description file, it will use the environment variable
X509 USERCERT. If that variable is not present, it will search in the default location.

x509userproxyis relevant when theuniverse is grid , and the type of grid system is one of
gt2, gt4, or nordugrid .

COMMANDS FOR PARALLEL, JAVA, and SCHEDULER UNIVERSES

hold kill sig =<signal-number> For the scheduler universe only,signal-number is the signal
delivered to the job when the job is put on hold withcondorhold. signal-number may be
either the platform-specific name or value of the signal. If this command is not present, the
value ofkill sig is used.

jar files =<file list> Specifies a list of additional JAR files to include when using the Java uni-
verse. JAR files will be transferred along with the executable and automatically added to the
classpath.

java vm args =<argument list> Specifies a list of additional arguments to the Java VM itself,
When Condor runs the Java program, these are the arguments that go before the class name.
This can be used to set VM-specific arguments like stack size,garbage-collector arguments
and initial property values.

machine count = <max> For the parallel (and therefore, the mpi) universe, a singlevalue (max)
is required. It is neither a maximum or minimum, but the number of machines to be dedicated
toward running the job.

remove kill sig =<signal-number> For the scheduler universe only,signal-number is the signal
delivered to the job when the job is removed withcondorrm. signal-number may be either
the platform-specific name or value of the signal. This example shows it both ways for a
Linux signal:

remove_kill_sig = SIGUSR1
remove_kill_sig = 10

If this command is not present, the value ofkill sig is used.

COMMANDS FOR THE VM UNIVERSE

vm cdrom files = file1, file2,. . . A comma-separated list of input CD-ROM files.

vm checkpoint =<True | False> A boolean value specifying whether or not to take checkpoints.
If not specified, the default value isFalse . In the current implementation, setting both
vm checkpoint andvm networking to True does not yet work in all cases. Networking
cannot be used if a vm universe job uses a checkpoint in order to continue execution after
migration to another machine.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 813

vm macaddr = <MACaddr > Defines that MAC address that the virtual machine’s network inter-
face should have, in the standard format of six groups of two hexadecimal digits separated by
colons.

vm memory = <MBytes-of-memory> The amount of memory in MBytes that a vm universe job
requires.

vm networking = <True | False> Specifies whether to use networking or not. In the current im-
plementation, setting bothvm checkpoint andvm networking to True does not yet work
in all cases. Networking cannot be used if a vm universe job uses a checkpoint in order to
continue execution after migration to another machine.

vm networking type = <nat | bridge > When vm networking is True , this definition aug-
ments the job’s requirements to match only machines with thespecified networking. If not
specified, then either networking type matches.

vm no output vm = <True | False> WhenTrue , prevents Condor from transferring output files
back to the machine from which the vm universe job was submitted. If not specified, the
default value isFalse .

vm should transfer cdrom files =<True | False> Specifies whether Condor will transfer CD-
ROM files to the execute machine (True) or rely on access through a shared file system
(False).

vm type = <vmware | xen> Specifies the underlying virtual machine software that thisjob ex-
pects.

vmware dir = <pathname> The complete path and name of the directory where VMware-
specific files and applications such as the VMDK (Virtual Machine Disk Format) and VMX
(Virtual Machine Configuration) reside.

vmware should transfer files =<True | False> Specifies whether Condor will transfer
VMware-specific files located as specified byvmware dir to the execute machine (True) or
rely on access through a shared file system (False). Omission of this required command
(for VMware vm universe jobs) results in an error message from condorsubmit, and the job
will not be submitted.

vmware snapshotdisk = <True | False> WhenTrue , causes Condor to utilize a VMware snap-
shot disk for new or modified files. If not specified, the default value isTrue .

xen cdrom device =<device> Describes the Xen CD-ROM device whenvm cdrom files is de-
fined.

xen disk = file1:device1:permission1, file2:device2:permission2,. . . A list of comma separated
disk files. Each disk file is specified by 3 colon separated fields. The first field is the path and
file name of the disk file. The second field specifies the device,and the third field specifies
permissions.

An example that specifies two disk files:

xen_disk = /myxen/diskfile.img:sda1:w,/myxen/swap.img :sda2:w

Condor Version 7.2.3, Command Reference

condorsubmit(1) 814

xen initrd = <image-file> Whenxen kernel gives a path and file name for the kernel image to
use, this optional command may specify a path to and ramdisk (initrd) image file.

xen kernel = <included | any | path-to-kernel> A value of included specifies that the kernel is
included in the disk file. A value ofany specifies that the kernel is deployed on the execute
machine, and its location is given by configuration. If not one of these values, then the value
is a path and file name of the kernel to be used.

xen kernel params =<string> A string that is appended to the Xen kernel command line.

xen root = <string> A string that is appended to the Xen kernel command line to specify the root
device. This string is required whenxen kernel is any or gives a path to a kernel. Omission
for this required case results in an error message fromcondorsubmit, and the job will not be
submitted.

xen transfer files =<list-of-files> A comma separated list of all files that Condor is to transfer to
the execute machine.

ADVANCED COMMANDS

concurrency limits = <string-list> A list of resources that this job needs. The resources are pre-
sumed to have concurrency limits placed upon them, thereby limiting the number of concur-
rent jobs in execution which need the named resource. Commasand space characters delimit
the items in the list. Each item in the list may specify a numerical value identifying the integer
number of resources required for the job. The syntax followsthe resource name by a colon
character (:) and the numerical value. See section 3.12.11 for details onconcurrency limits.

copy to spool =<True | False> If copy to spool is True , thencondorsubmitcopies the exe-
cutable to the local spool directory before running it on a remote host. As copying can be
quite time consuming and unnecessary, the default value isFalse for all job universes other
than the standard universe. WhenFalse , condorsubmitdoes not copy the executable to a
local spool directory. The default isTrue in standard universe, because resuming execution
from a checkpoint can only be guaranteed to work using precisely the same executable that
created the checkpoint.

coresize =<size> Should the user’s program abort and produce a core file,coresizespecifies the
maximum size in bytes of the core file which the user wishes to keep. If coresizeis not
specified in the command file, the system’s user resource limit “coredumpsize” is used. This
limit is not used in HP-UX and DUX operating systems.

cron day of month = <Cron-evaluated Day> The set of days of the month for which a deferral
time applies. See section 2.12.2 for further details and examples.

cron day of week =<Cron-evaluated Day> The set of days of the week for which a deferral
time applies. See section 2.12.2 for details, semantics, and examples.

cron hour = <Cron-evaluated Hour> The set of hours of the day for which a deferral time ap-
plies. See section 2.12.2 for details, semantics, and examples.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 815

cron minute = <Cron-evaluated Minute> The set of minutes within an hour for which a deferral
time applies. See section 2.12.2 for details, semantics, and examples.

cron month = <Cron-evaluated Month> The set of months within a year for which a deferral
time applies. See section 2.12.2 for details, semantics, and examples.

cron prep time = <ClassAd Integer Expression> Analogous todeferral prep time. The num-
ber of seconds prior to a job’s deferral time that the job may be matched and sent to an
execution machine.

cron window = <ClassAd Integer Expression> Analogous to the submit commanddefer-
ral window. It allows cron jobs that miss their deferral time to begin execution.

See section 2.12.1 for further details and examples.

deferral prep time = <ClassAd Integer Expression> The number of seconds prior to a job’s de-
ferral time that the job may be matched and sent to an execution machine.

See section 2.12.1 for further details.

deferral time = <ClassAd Integer Expression> Allows a job to specify the time at which its exe-
cution is to begin, instead of beginning execution as soon asit arrives at the execution machine.
The deferral time is an expression that evaluates to a Unix Epoch timestamp (the number of
seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time). Deferral
time is evaluated with respect to the execution machine. This option delays the start of execu-
tion, but not the matching and claiming of a machine for the job. If the job is not available and
ready to begin execution at the deferral time, it has missed its deferral time. A job that misses
its deferral time will be put on hold in the queue.

See section 2.12.1 for further details and examples.

Due to implementation details, a deferral time may not be used for scheduler universe jobs.

deferral window = <ClassAd Integer Expression> The deferral window is used in conjunction
with thedeferral time command to allow jobs that miss their deferral time to begin execution.

See section 2.12.1 for further details and examples.

email attributes = <list-of-job-ad-attributes> A comma-separated list of attributes from the job
ClassAd. These attributes and their values will be includedin the e-mail notification of job
completion.

image size =<size> This command tells Condor the maximum virtual image size to which you
believe your program will grow during its execution. Condorwill then execute your job only
on machines which have enough resources, (such as virtual memory), to support executing
your job. If you do not specify the image size of your job in thedescription file, Condor will
automatically make a (reasonably accurate) estimate aboutits size and adjust this estimate
as your program runs. If the image size of your job is underestimated, it may crash due to
inability to acquire more address space, e.g. malloc() fails. If the image size is overestimated,
Condor may have difficulty finding machines which have the required resources.sizemust be
in Kbytes, e.g. for an image size of 8 megabytes, use asizeof 8000.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 816

initialdir = <directory-path> Used to give jobs a directory with respect to file input and output.
Also provides a directory (on the machine from which the job is submitted) for the user log,
when a full path is not specified.

For vanilla or MPI universe jobs where there is a shared file system, it is the current working
directory on the machine where the job is executed.

For vanilla, grid, or MPI universe jobs where file transfer mechanisms are utilized (there is
not a shared file system), it is the directory on the machine from which the job is submitted
where the input files come from, and where the job’s output files go to.

For standard universe jobs, it is the directory on the machine from which the job is submitted
where thecondorshadowdaemon runs; the current working directory for file input andoutput
accomplished through remote system calls.

For scheduler universe jobs, it is the directory on the machine from which the job is submitted
where the job runs; the current working directory for file input and output with respect to
relative path names.

Note that the path to the executable isnot relative toinitialdir ; if it is a relative path, it is
relative to the directory in which thecondorsubmitcommand is run.

job leaseduration = <number-of-seconds> For vanilla and java universe jobs only, the duration
(in seconds) of a job lease. The default value is twenty minutes for universes that support it. If
a job lease is not desired, the value can be explicitly set to 0to disable the job lease semantics.
See section 2.15.4 for details of job leases.

kill sig =<signal-number> When Condor needs to kick a job off of a machine, it will send the
job the signal specified bysignal-number. signal-number needs to be an integer which rep-
resents a valid signal on the execution machine. For jobs submitted to the standard universe,
the default value is the number forSIGTSTP which tells the Condor libraries to initiate a
checkpoint of the process. For jobs submitted to the vanillauniverse, the default isSIGTERM
which is the standard way to terminate a program in Unix.

load profile = <True | False> WhenTrue , loads the account profile of the dedicated run account
for Windows jobs. May not be used withrun as owner.

match list length = <integer value> Defaults to the value zero (0). Whenmatch list length is
defined with an integer value greater than zero (0), attributes are inserted into the job ClassAd.
The maximum number of attributes defined is given by the integer value. The job ClassAds
introduced are given as

LastMatchName0 = "most-recent-Name"
LastMatchName1 = "next-most-recent-Name"

The value for each introduced ClassAd is given by the value ofthe Nameattribute from
the machine ClassAd of a previous execution (match). As a jobis matched, the defini-
tions for these attributes will roll, withLastMatchName1 becomingLastMatchName2 ,
LastMatchName0 becomingLastMatchName1 , andLastMatchName0 being set by
the most recent value of theNameattribute.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 817

An intended use of these job attributes is in the requirements expression. The requirements
can allow a job to prefer a match with either the same or a different resource than a previous
match.

max job retirement time = <integer expression> An integer-valued expression (in seconds)
that does nothing unless the machine that runs the job has been configured to provide re-
tirement time (see section 3.5.8). Retirement time is a grace period given to a job to finish
naturally when a resource claim is about to be preempted. No kill signals are sent during a
retirement time. The default behavior in many cases is to take as much retirement time as the
machine offers, so this command will rarely appear in a submit description file.

When a resource claim is to be preempted, this expression in the submit file specifies the
maximum run time of the job (in seconds, since the job started). This expression has no
effect, if it is greater than the maximum retirement time provided by the machine policy. If
the resource claim isnot preempted, this expression and the machine retirement policy are
irrelevant. If the resource claimis preempted and the job finishes sooner than the maximum
time, the claim closes gracefully and all is well. If the resource claim is preempted and the
job doesnot finish in time, the usual preemption procedure is followed (typically a soft kill
signal, followed by some time to gracefully shut down, followed by a hard kill signal).

Standard universe jobs and any jobs running withnice user priority have a default
max job retirement time of 0, so no retirement time is utilized by default. In all other cases,
no default value is provided, so the maximum amount of retirement time is utilized by default.

Setting this expression does not affect the job’s resource requirements or preferences. For a
job to only run on a machine with a minimum , or to preferentially run on such machines,
explicitly specify this in the requirements and/or rank expressions.

nice user =<True | False> Normally, when a machine becomes available to Condor, Condor de-
cides which job to run based upon user and job priorities. Setting nice user equal toTrue
tells Condor not to use your regular user priority, but that this job should have last priority
among all users and all jobs. So jobs submitted in this fashion run only on machines which no
other non-niceuser job wants — a true “bottom-feeder” job! This is very handy if a user has
some jobs they wish to run, but do not wish to use resources that could instead be used to run
other people’s Condor jobs. Jobs submitted in this fashion have “nice-user.” pre-appended in
front of the owner name when viewed fromcondorq or condoruserprio. The default value
is False.

noop job = <ClassAd Boolean Expression> When this boolean expression isTrue , the job is
immediately removed from the queue, and Condor makes no attempt at running the job. The
log file for the job will show a job submitted event and a job terminated event, along with an
exit code of 0, unless the user specifies a different signal orexit code.

noop job exit code =<return value> Whennoop job is in the submit description file and eval-
uates toTrue , this command allows the job to specify the return value as shown in the job’s
log file job terminated event. If not specified, the job will show as having terminated with
status 0. This overrides any value specified withnoop job exit signal.

noop job exit signal =<signal number> When noop job is in the submit description file and
evaluates toTrue , this command allows the job to specify the signal number that the job’s
log event will show the job having terminated with.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 818

remote initialdir = <directory-path> The path specifies the directory in which the job is to be
executed on the remote machine. This is currently supportedin all universes except for the
standard universe.

rendezvousdir =<directory-path> Used to specify the shared file system directory to be used
for file system authentication when submitting to a remote scheduler. Should be a path to a
preexisting directory.

request cpus =<num-cpus> For pools that enable dynamiccondorstartdprovisioning (see sec-
tion 3.12.7), the number of CPUs requested for this job.

request disk = <quantity> For pools that enable dynamiccondorstartd provisioning (see sec-
tion 3.12.7), the amount of disk space requested for this job.

request memory = <quantity> For pools that enable dynamiccondorstartd provisioning (see
section 3.12.7), the amount of memory space requested for this job.

+<attribute > = <value> A line which begins with a ’+’ (plus) character instructscondorsubmit
to insert the followingattribute into the job ClassAd with the givenvalue.

In addition to commands, the submit description file can contain macros and comments:

Macros Parameterless macros in the form of$(macro name) may be inserted anywhere in Con-
dor submit description files. Macros can be defined by lines inthe form of

<macro_name> = <string>

Three pre-defined macros are supplied by the submit description file parser. The third of
the pre-defined macros is only relevant to MPI universe jobs.The $(Cluster) macro
supplies the value of theClusterId job ClassAd attribute, and the$(Process) macro
supplies the value of theProcId job ClassAd attribute. These macros are intended to aid
in the specification of input/output files, arguments, etc.,for clusters with lots of jobs, and/or
could be used to supply a Condor process with its own cluster and process numbers on the
command line. The$(Node) macro is defined only for MPI universe jobs. It is a unique
value assigned for the duration of the job that essentially identifies the machine on which a
program is executing.

To use the dollar sign character ($) as a literal, without macro expansion, use

$(DOLLAR)

In addition to the normal macro, there is also a special kind of macro called asubstitution
macrothat allows the substitution of a ClassAd attribute value defined on the resource machine
itself (gotten after a match to the machine has been made) into specific commands within the
submit description file. The substitution macro is of the form:

$$(attribute)

Condor Version 7.2.3, Command Reference

condorsubmit(1) 819

A common use of this macro is for the heterogeneous submission of an executable:

executable = povray.$$(opsys).$$(arch)

Values for theopsys andarch attributes are substituted at match time for any given re-
source. This allows Condor to automatically choose the correct executable for the matched
machine.

An extension to the syntax of the substitution macro provides an alternative string to use if the
machine attribute within the substitution macro is undefined. The syntax appears as:

$$(attribute:string_if_attribute_undefined)

An example using this extended syntax provides a path name toa required input file. Since
the file can be placed in different locations on different machines, the file’s path name is given
as an argument to the program.

argument = $$(input_file_path:/usr/foo)

On the machine, if the attributeinput file path is not defined, then the path/usr/foo
is used instead.

A further extension to the syntax of the substitution macro allows the evaluation of a ClassAd
expression to define the value. As all substitution macros, the expression is evaluated after a
match has been made. Therefore, the expression may refer to machine attributes by prefac-
ing them with the scope resolution prefixTARGET., as specified in section 4.1.2. To place
a ClassAd expression into the substitution macro, square brackets are added to delimit the
expression. The syntax appears as:

$$([ClassAd expression])

An example of a job that uses this syntax may be one that wants to know how much memory it
can use. The application cannot detect this itself, as it would potentially use all of the memory
on a multi-slot machine. So the job determines the memory perslot, reducing it by 10%
to account for miscellaneous overhead, and passes this as a command line argument to the
application. In the submit description file will be

arguments=--memory $$([TARGET.Memory * 0.9])

To insert two dollar sign characters ($$) as literals into a ClassAd string, use

$$(DOLLARDOLLAR)

The environment macro, $ENV, allows the evaluation of an environment variable to be used
in setting a submit description file command. The syntax usedis

$ENV(variable)

Condor Version 7.2.3, Command Reference

condorsubmit(1) 820

An example submit description file command that uses this functionality evaluates the sub-
mittor’s home directory in order to set the path and file name of a log file:

log = $ENV(HOME)/jobs/logfile

The environment variable is evaluated when the submit description file is processed.

The $RANDOMCHOICE macro allows a random choice to be made from a given list of
parameters at submission time. For an expression, if some randomness needs to be generated,
the macro may appear as

$RANDOM_CHOICE(0,1,2,3,4,5,6)

When evaluated, one of the parameters values will be chosen.

Comments Blank lines and lines beginning with a pound sign (’#’) character are ignored by the
submit description file parser.

Options

-verbose Verbose output - display the created job ClassAd

-unused As a default, causes no warnings to be issued about user-defined macros not being used
within the submit description file. The meaning reverses (toggles) when the configuration
variable WARNONUNUSEDSUBMIT FILE MACROS is set to the nondefault value of
False . Printing the warnings can help identify spelling errors ofsubmit description file
commands. The warnings are sent to stderr.

-namescheddname Submit to the specifiedcondorschedd. Use this option to submit to a
condorscheddother than the default local one.scheddname is the value of theName
ClassAd attribute on the machine where thecondorschedddaemon runs.

-remotescheddname Submit to the specifiedcondorschedd, spooling all required input files
over the network connection.scheddnameis the value of theNameClassAd attribute on
the machine where thecondorschedddaemon runs. This option is equivalent to using both
-nameand-spool.

-pool pool name Look in the specified pool for thecondorscheddto submit to. This option is
used with-nameor -remote.

-disable Disable file permission checks.

Condor Version 7.2.3, Command Reference

condorsubmit(1) 821

-passwordpassphraseSpecify a password to theMyProxyserver.

-debug Cause debugging information to be sent tostderr , based on the value of the configuration
variableSUBMIT DEBUG.

-appendcommand Augment the commands in the submit description file with the given command.
This command will be considered to immediately precede the Queue command within the
submit description file, and come after all other previous commands. The submit description
file is not modified. Multiple commands are specified by using the -appendoption multiple
times. Each new command is given in a separate-appendoption. Commands with spaces in
them will need to be enclosed in double quote marks.

-spool Spool all required input files, user log, and proxy over the connection to thecondorschedd.
After submission, modify local copies of the files without affecting your jobs. Any output
files for completed jobs need to be retrieved withcondor transferdata.

-dump filename Sends all ClassAds to the specified file, instead of to thecondorschedd.

submit description fileThe pathname to the submit description file. If this optionalargument is
missing or equal to “-”, then the commands are taken from standard input.

Exit Status

condorsubmitwill exit with a status value of 0 (zero) upon success, and a non-zero value upon
failure.

Examples

• Submit Description File Example 1: This example queues three jobs for execution by Condor.
The first will be given command line arguments of15and2000, and it will write its standard
output tofoo.out1 . The second will be given command line arguments of30 and2000,
and it will write its standard output tofoo.out2 . Similarly the third will have arguments of
45and6000, and it will usefoo.out3 for its standard output. Standard error output (if any)
from all three programs will appear infoo.error .

####################
#
submit description file
Example 1: queuing multiple jobs with differing
command line arguments and output files.
#

Condor Version 7.2.3, Command Reference

condorsubmit(1) 822

####################

Executable = foo
Universe = standard

Arguments = 15 2000
Output = foo.out1
Error = foo.err1
Queue

Arguments = 30 2000
Output = foo.out2
Error = foo.err2
Queue

Arguments = 45 6000
Output = foo.out3
Error = foo.err3
Queue

• Submit Description File Example 2: This submit description file example queues 150 runs
of programfoo which must have been compiled and linked for Sun workstations running
Solaris 8. Condor will not attempt to run the processes on machines which have less than
32 Megabytes of physical memory, and it will run them on machines which have at least
64 Megabytes, if such machines are available. Stdin, stdout, and stderr will refer toin.0 ,
out.0 , anderr.0 for the first run of this program (process 0). Stdin, stdout, and stderr will
refer to in.1 , out.1 , anderr.1 for process 1, and so forth. A log file containing entries
about where and when Condor runs, takes checkpoints, and migrates processes in this cluster
will be written into file foo.log .

####################
#
Example 2: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Executable = foo
Universe = standard
Requirements = Memory >= 32 && OpSys == "SOLARIS28" && Arch == "SUN4u"
Rank = Memory >= 64
Image_Size = 28 Meg

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log

Queue 150

• Command Line example: The following command uses the-appendoption to add two com-
mands before the job(s) is queued. A log file and an error log file are specified. The submit
description file is unchanged.

condor_submit -a "log = out.log" -a "error = error.log" mysu bmitfile

Condor Version 7.2.3, Command Reference

condorsubmit(1) 823

Note that each of the added commands is contained within quote marks because there are
space characters within the command.

• periodic remove example: A job should be removed from the queue, if the total suspen-
sion time of the job is more than half of the run time of the job.
Including the command

periodic_remove = CumulativeSuspensionTime >
((RemoteWallClockTime - CumulativeSuspensionTime) / 2.0)

in the submit description file causes this to happen.

General Remarks

• For security reasons, Condor will refuse to run any jobs submitted by user root (UID = 0) or
by a user whose default group is group wheel (GID = 0). Jobs submitted by user root or a user
with a default group of wheel will appear to sit forever in thequeue in an idle state.

• All path names specified in the submit description file must be less than 256 characters in
length, and command line arguments must be less than 4096 characters in length; otherwise,
condorsubmitgives a warning message but the jobs will not execute properly.

• Somewhat understandably, behavior gets bizarre if the user makes the mistake of requesting
multiple Condor jobs to write to the same file, and/or if the user alters any files that need to be
accessed by a Condor job which is still in the queue. For example, the compressing of data or
output files before a Condor job has completed is a common mistake.

• To disable checkpointing for Standard Universe jobs, include the line:

+WantCheckpoint = False

in the submit description file before the queue command(s).

See Also

Condor User Manual

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

condorsubmit(1) 824

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorsubmitdag(1) 825

condor submit dag

Manage and queue jobs within a specified DAG for execution on remote machines

Synopsis

condor submit dag[-help — -version]

condor submit dag [-no submit] [-verbose] [-force] [-maxidle NumberOfJobs]
[-maxjobs NumberOfJobs] [-dagman DagmanExecutable] [-maxpre NumberOfPREscripts]
[-maxpost NumberOfPOSTscripts] [-notification value] [-noeventchecks] [-allowlogerror]
[-r scheddname] [-debug level] [-usedagdir] [-outfile dir directory] [-config ConfigFileName]
[-insert sub file FileName] [-append Command] [-oldrescue 0—1] [-autorescue 0—1]
[-dorescuefrom number] [-allowversionmismatch] [-no recurse] [-update submit]
[-DumpRescue] DAGInputFile1[DAGInputFile2. . .DAGInputFileN]

Description

condorsubmitdag is the program for submitting a DAG (directed acyclic graph)of jobs for
execution under Condor. The program enforces the job dependencies defined in one or more
DAGInputFiles. EachDAGInputFilecontains commands to direct the submission of jobs implied by
the nodes of a DAG to Condor. See the Condor User Manual, section 2.10 for a complete description.

Options

-help Display usage information.

-version Display version information.

-no submit Produce the Condor submit description file for DAGMan, but donot submit DAGMan
as a Condor job.

-verbose Causecondorsubmitdagto give verbose error messages.

-force Requirecondorsubmitdag to overwrite the files that it produces, if the files already exist.
Note thatdagman.out will be appended to, not overwritten. If ”new-style” rescueDAG
mode (see section??) is in effect, and any ”new-style” rescue DAGs exist, the-force flag
will cause them to be renamed, and the original DAG will be run. If ”old-style” rescue DAG
mode (see section??) is in effect, any existing ”old-style” rescue DAGs will be deleted, and

Condor Version 7.2.3, Command Reference

condorsubmitdag(1) 826

the original DAG will be run.

-maxidle NumberOfJobsSets the maximum number of idle jobs allowed beforecondordagman
stops submitting more jobs. Once idle jobs start to run,condordagmanwill resume
submitting jobs.NumberOfJobsis a positive integer. If the option is omitted, the number of
idle jobs is unlimited. Note that for this argument, each individual process within a cluster
counts as a job, which is inconsistent with-maxjobs .

-maxjobsNumberOfJobsSets the maximum number of jobs within the DAG that will be submit-
ted to Condor at one time.NumberOfJobsis a positive integer. If the option is omitted, the
default number of jobs is unlimited. Note that for this argument, each cluster counts as one
job, no matter how many individual processes are in the cluster.

-dagmanDagmanExecutableAllows the specification of an alternatecondordagmanexecutable
to be used instead of the one found in the user’s path. This must be a fully qualified path.

-maxpre NumberOfPREscriptsSets the maximum number of PRE scripts within the DAG that
may be running at one time.NumberOfPREScriptsis a positive integer. If this option is
omitted, the default number of PRE scripts is unlimited.

-maxpostNumberOfPOSTscriptsSets the maximum number of POST scripts within the DAG
that may be running at one time.NumberOfPOSTScriptsis a positive integer. If this option is
omitted, the default number of POST scripts is unlimited.

-notification value Sets the e-mail notification for DAGMan itself. This information will be
used within the Condor submit description file for DAGMan. This file is produced by
condorsubmitdag. Seenotification within the section of submit description file commands
in thecondorsubmitmanual page on page 795 for specification ofvalue.

-noeventchecksThis argument is no longer used; it is now ignored. Its functionality is now
implemented by theDAGMANALLOWEVENTSconfiguration macro (see section 3.3.25).

-allowlogerror This optional argument hascondordagmantry to run the specified DAG, even in
the case of detected errors in the user log specification.

-r scheddname Submit to a remote schedd. The jobs will be submitted to the schedd on the
specified remote host. On Unix systems, the Condor administrator for you site must override
the default AUTHENTICATIONMETHODS configuration setting to enable remote file
system (FSREMOTE) authentication.

Condor Version 7.2.3, Command Reference

condorsubmitdag(1) 827

-debug level Passes the thelevel of debugging output desired tocondordagman. level is an
integer, with values of 0-7 inclusive, where 7 is the most verbose output. A default value of
3 is passed tocondordagmanwhen not specified with this option. See thecondordagman
manual page on page 711 for detailed descriptions of these values.

-usedagdir This optional argument causescondordagman to run each specified DAG as if
condorsubmitdag had been run in the directory containing that DAG file. This option
is most useful when running multiple DAGs in a singlecondordagman. Note that the
-usedagdirflag must not be used when running an ”old-style” rescue DAG (see section??).

-outfile dir directory Specifies the directory in which the.dagman.out file will be written. The
directorymay be specified relative to the current working directory ascondorsubmitdag is
executed, or specified with an absolute path. Without this option, the.dagman.out file is
placed in the same directory as the first DAG input file listed on the command line.

-configConfigFileName Specifies a configuration file to be used for this DAGMan run. Note
that the options specified in the configuration file apply to all DAGs if multiple DAGs are
specified. Further note that it is a fatal error if the configuration file specified by this option
conflicts with a configuration file specified in any of the DAG files, if they specify one. For
more information about howcondordagmanconfiguration files work, see section??.

-insert sub file FileName Specifies a file to insert into the.condor.sub file created bycon-
dor submitdag. The specified file must contain only legal submit file commands. Only one
file can be inserted. (If both the DAGMANINSERT SUB FILE configuration variable and
-insert sub file are specified,-insert sub file overrides DAGMANINSERT SUB FILE.)
The specified file is inserted into the.condor.sub file before the Queue command and
before any commands specified with the-appendoption.

-appendCommand Specifies a command to append to the.condor.sub file created bycon-
dor submitdag. The specified command is appended to the.condor.sub file immediately
before the Queue command. Multiple commands are specified byusing the-appendoption
multiple times. Each new command is given in a separate-appendoption. Commands with
spaces in them must be enclosed in double quotes. Commands specified with the-append
option are appended to the.condor.sub file after commands inserted from a file specified
by the-insert sub file option or the DAGMANINSERT SUB FILE configuration variable,
so the-appendcommand(s) will override commands from the inserted file if the commands
conflict.

-oldrescue0—1 Whether to use ”old-style” rescue DAG naming (see section??) when creating a
rescue DAG (0 =false , 1 = true).

Condor Version 7.2.3, Command Reference

condorsubmitdag(1) 828

-autorescue0—1 Whether to automatically run the newest rescue DAG for the given DAG file, if
one exists (0 =false , 1 = true).

-dorescuefromnumber Forcescondordagmanto run the specified rescue DAG number for the
given DAG. A value of 0 is the same as not specifying this option. Specifying a non-existent
rescue DAG is a fatal error.

-allowversionmismatch This optional argument causescondordagman to allow a version
mismatch betweencondordagmanitself and the.condor.sub file produced bycon-
dor submitdag (or, in other words, betweencondorsubmitdag and condordagman).
WARNING! This option should be used only if absolutely necessary. Allowing version
mismatches can cause subtle problems when running DAGs.

-no recurse This optional argument causescondorsubmitdag to not run itself recursively on
nested DAGs (the default is that recursion is enabled). (DAGnodes specified with the
SUBDAG EXTERNALkeyword or with submit file names ending in.condor.sub are
considered nested DAGs, and, by default,condorsubmitdag -nosubmit -updatesubmit is
run on the corresponding DAG files.)

-update submit This optional argument causes an existing.condor.sub file to not be treated
as an error; rather, the.condor.sub file will be overwritten, but the existing values of
-maxjobs, -maxidle, -maxpre, and-maxpostwill be preserved.

-DumpRescueThis optional argument tellscondordagmanto immediately dump a rescue DAG
and then exit, as opposed to actually running the DAG. (This feature is mainly intended for
testing.)

See Also

Condor User Manual

Exit Status

condorsubmitdagwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

To run a single DAG:

Condor Version 7.2.3, Command Reference

condorsubmitdag(1) 829

% condor_submit_dag diamond.dag

To run a DAG when it has already been run and the output files exist:

% condor_submit_dag -force diamond.dag

To run a DAG, limiting the number of idle node jobs in the DAG toa maximum of five:

% condor_submit_dag -maxidle 5 diamond.dag

To run a DAG, limiting the number of concurrent PRE scripts to10 and the number of concurrent
POST scripts to five:

% condor_submit_dag -maxpre 10 -maxpost 5 diamond.dag

To run two DAGs, each of which is set up to run in its own directory:

% condor_submit_dag -usedagdir dag1/diamond1.dag dag2/d iamond2.dag

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condor transferdata(1) 830

condor transfer data

transfer spooled data

Synopsis

condor transfer data [-help | -version]

condor transfer data [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor transfer data [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] -all

Description

condor transferdatacauses Condor to transfer spooled data. It is meant to be usedin conjunction
with the-spooloption ofcondorsubmit, as in

condor_submit -spool mysubmitfile

Submission of a job with the-spooloption causes Condor to spool all input files, the user log, and
any proxy across a connection to the machine where thecondorschedddaemon is running. After
spooling these files, the machine from which the job is submitted may disconnect from the network
or modify its local copies of the spooled files.

When the job finishes, the job hasJobStatus = 4, meaning that the job has completed. The output
of the job is spooled, andcondor transferdataretrieves the output of the completed job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

Condor Version 7.2.3, Command Reference

condor transferdata(1) 831

-addr ” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

cluster Transfer spooled data belonging to the specified cluster

cluster.processTransfer spooled data belonging to a specific job in the cluster

user Transfer spooled data belonging to the specified user

-constraint expressionTransfer spooled data for jobs which match the job ClassAd expression
constraint

-all Transfer all spooled data

Exit Status

condor transferdatawill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorupdatesstats(1) 832

condor updatesstats

Display output fromcondorstatus

Synopsis

condor updatesstats[-- help | - h] | [-- version]

condor updatesstats [-- long | - l] [-- history=<min>-<max>] [-- interval=<seconds>]
[-- notime] [-- time] [-- summary | - s]

Description

condorupdatesstatsparses the output fromcondorstatus, and it displays the information relating
to update statistics in a useful format. The statistics are displayed with the most recent update first;
the most recent update is numbered with the smallest value.

The number of historic points that represent updates is configurable on a per-source basis. See
COLLECTORDAEMONHISTORYSIZE in section 3.3.16.

Options

—help Display usage information and exit.

-h Same as—help.

—version Display Condor version information and exit.

—long All update statistics are displayed. Without this option, the statistics are condensed.

-l Same as—long.

—history=<min>-<max> Sets the range of update numbers that are printed. By default, the
entire history is displayed. To limit the range, the minimumand/or maximum number may be
specified. If a minimum is not specified, values from 0 to the maximum are displayed. If the
maximum is not specified, all values after the minimum are displayed. When both minimum
and maximum are specified, the range to be displayed includesthe endpoints as well as all
values in between. If no= sign is given, command-line parsing fails, and usage information
is displayed. If an= sign is given, with no minimum or maximum values, the defaultof the

Condor Version 7.2.3, Command Reference

condorupdatesstats(1) 833

entire history is displayed.

—interval=<seconds> The assumed update interval, in seconds. Assumed times for the the
updates are displayed, making the use of the—time option together with the—interval
option redundant.

—notime Do not display assumed times for the the updates. If more thanone of the options
—notime and—time are provided, the final one within the command line parsed determines
the display.

—time Display assumed times for the the updates. If more than one ofthe options—notime
and—time are provided, the final one within the command line parsed determines the display.

—summary Display only summary information, not the entire history for each machine.

-s Same as—summary.

Exit Status

condorupdatesstatswill exit with a status value of 0 (zero) upon success, and it will exit with a
nonzero value upon failure.

Examples

Assuming the default of 128 updates kept, and assuming that the update interval is 5 minutes,con-
dor updatesstatsdisplays:

$ condor_status -l host1 | condor_updates_stats --interva l=300
(Reading from stdin)

*** Name/Machine = 'HOST1.cs.wisc.edu' MyType = 'Machine' ***
Type: Main

Stats: Total=2277, Seq=2276, Lost=3 (0.13%)
0 @ Mon Feb 16 12:55:38 2004: Ok

...
28 @ Mon Feb 16 10:35:38 2004: Missed
29 @ Mon Feb 16 10:30:38 2004: Ok

...
127 @ Mon Feb 16 02:20:38 2004: Ok

Within this display, update numbered 27, which occurs laterin time than the missed update num-
bered 28, is Ok. Each change in state, in reverse time order, displays in this condensed version.

Condor Version 7.2.3, Command Reference

condorupdatesstats(1) 834

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condoruserlog(1) 835

condor userlog

Display and summarize job statistics from job log files.

Synopsis

condor userlog [-help] [-total | -raw] [-debug] [-evict] [-j cluster| cluster.proc] [-all]
[-hostname] logfile . . .

Description

condoruserlogparses the information in job log files and displays summaries for each workstation
allocation and for each job. See the manual page forcondorsubmiton page 795 for instructions for
specifying that Condor write a log file for your jobs.

If -total is not specified,condoruserlogwill first display a record for each workstation allocation,
which includes the following information:

Job The cluster/process id of the Condor job.

Host The host where the job ran. By default, the host’s IP address is displayed. If-hostnameis
specified, the host name will be displayed instead.

Start Time The time (month/day hour:minute) when the job began runningon the host.

Evict Time The time (month/day hour:minute) when the job was evicted from the host.

Wall Time The time (days+hours:minutes) for which this workstation was allocated to the job.

Good Time The allocated time (days+hours:min) which contributed to the completion of this job.
If the job exited during the allocation, then this value willequal “Wall Time.” If the job
performed a checkpoint, then the value equals the work savedin the checkpoint during this
allocation. If the job did not exit or perform a checkpoint during this allocation, the value
will be 0+00:00. This value can be greater than 0 and less than“Wall Time” if the application
completed a periodic checkpoint during the allocation but failed to checkpoint when evicted.

CPU UsageThe CPU time (days+hours:min) which contributed to the completion of this job.

condoruserlogwill then display summary statistics per host:

Host/Job The IP address or host name for the host.

Wall Time The workstation time (days+hours:minutes) allocated by this host to the jobs specified
in the query. By default, all jobs in the log are included in the query.

Condor Version 7.2.3, Command Reference

condoruserlog(1) 836

Good Time The time (days+hours:minutes) allocated on this host whichcontributed to the comple-
tion of the jobs specified in the query.

CPU UsageThe CPU time (days+hours:minutes) obtained from this host which contributed to the
completion of the jobs specified in the query.

Avg Alloc The average length of an allocation on this host (days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when ajob was evicted from this
host without successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

condoruserlogwill then display summary statistics per job:

Host/Job The cluster/process id of the Condor job.

Wall Time The total workstation time (days+hours:minutes) allocated to this job.

Good Time The total time (days+hours:minutes) allocated to this job which contributed to the job’s
completion.

CPU UsageThe total CPU time (days+hours:minutes) which contributedto this job’s completion.

Avg Alloc The average length of a workstation allocation obtained by this job in minutes
(days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when this job was evicted from a
host without successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

Finally, condoruserlogwill display a summary for all hosts and jobs.

Options

-help Get a brief description of the supported options

-total Only display job totals

-raw Display raw data only

Condor Version 7.2.3, Command Reference

condoruserlog(1) 837

-debug Debug mode

-j Select a specific cluster or cluster.proc

-evict Select only allocations which ended due to eviction

-all Select all clusters and all allocations

-hostname Display host name instead of IP address

General Remarks

Since the Condor job log file format does not contain a year field in the timestamp, all entries are
assumed to occur in the current year. Allocations which begin in one year and end in the next will
be silently ignored.

Exit Status

condoruserlogwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condoruserprio(1) 838

condor userprio

Manage user priorities

Synopsis

condor userprio [-pool centralmanagerhostname[:portnumber]] [-all] [-usage]
[-setprio username value] [-setfactor username value] [-setaccum username value]
[-setbegin username value] [-setlast username value] [-resetusageusername] [-resetall]
[-delete username] [-getreslist username] [-allusers] [-activefrom month day year] [-l]

Description

condoruserpriowith no arguments, lists the active users (see below) along with their priorities, in
increasing priority order. The -all option can be used to display more detailed information about
each user, which includes the following columns:

Effective Priority The effective priority value of the user, which is used to calculate the user’s
share when allocating resources. A lower value means a higher priority, and the minimum
value (highest priority) is 0.5. The effective priority is calculated by multiplying the real
priority by the priority factor.

Real Priority The value of the real priority of the user. This value followsthe user’s resource usage.

Priority Factor The system administrator can set this value for each user, thus controlling a user’s
effective priority relative to other users. This can be usedto create different classes of users.

Res UsedThe number of resources currently used (e.g. the number of running jobs for that user).

Accumulated UsageThe accumulated number of resource-hours used by the user since the usage
start time.

Usage Start Time The time since when usage has been recorded for the user. Thistime is set when
a user job runs for the first time. It is reset to the present time when the usage for the user is
reset (with the -resetusage or -resetall options).

Last Usage Time The most recent time a resource usage has been recorded for the user.

The -usage option displays the username, accumulated usage, usage start time and last usage time
for each user, sorted on accumulated usage.

The -setprio, -setfactor options are used to change a user’sreal priority and priority factor. The
-setaccum option sets a user’s accumulated usage. The -setbegin, -setlast options are used to change
a user’s begin usage time and last usage time. The -setaccum option sets a user’s accumulated usage.

Condor Version 7.2.3, Command Reference

condoruserprio(1) 839

The -resetusage and -resetall options are used to reset the accumulated usage for users. The usage
start time is set to the current time when the accumulated usage is reset. These options require
administrator privileges.

By default only users for whom usage was recorded in the last 24 hours or whose priority is greater
than the minimum are listed. The -activefrom and -allusers options can be used to display users who
had some usage since a specified date, or ever. The summary line for last usage time will show this
date.

The -getreslist option is used to display the resources currently used by a user. The output includes
the start time (the time the resource was allocated to the user), and the match time (how long has the
resource been allocated to the user).

Note that when specifying user names on the command line, thename must include the UID domain
(e.g. user@uid-domain - exactly the same way user names are listed by the userprio command).

The -pool option can be used to contact a different central-manager instead of the local one (the
default).

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. See section 3.6.1 on page 282 for further explanation.

Options

-pool centralmanagerhostname[:portnumber]Contact specifiedcentralmanagerhostnamewith
an optional port number instead of the local central manager. This can be used to check
other pools. NOTE: The host name (and optionally port) specified refer to the host name
(and port) of thecondornegotiatorto query for user priorities. This is slightly different than
most Condor tools that support -pool, which expect the host name (and optionally port) of the
condorcollector, instead.

-all Display detailed information about each user.

-usage Display usage information for each user.

-setprio username valueSet the real priority of the specified user to the specified value.

-setfactorusername valueSet the priority factor of the specified user to the specified value.

-setaccumusername valueSet the accumulated usage of the specified user to the specified floating
point value.

Condor Version 7.2.3, Command Reference

condoruserprio(1) 840

-setbeginusername valueSet the begin usage time of the specified user to the specified value.

-setlastusername valueSet the last usage time of the specified user to the specified value.

-resetusageusernameReset the accumulated usage of the specified user to zero.

-resetall Reset the accumulated usage of all the users to zero.

-deleteusernameRemove the specifiedusernamefrom Condor’s accounting.

-getreslistusernameDisplay all the resources currently allocated to the specified user.

-allusers Display information for all the users who have some recordedaccumulated usage.

-activefrom month day yearDisplay information for users who have some recorded accumulated
usage since the specified date.

-l Show the class-ad which was received from the central-manager in long format.

Exit Status

condoruserpriowill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorvacate(1) 841

condor vacate

Vacate jobs that are running on the specified hosts

Synopsis

condor vacate [-help | -version]

condor vacate [-graceful | -fast] [-debug] [-pool centralmanagerhostname[:portnumber]|
-namename]| [-addr ” <a.b.c.d:port>”] . . . [| -all]

Description

condorvacatecauses Condor to checkpoint any running jobs on a set of machines and force the
jobs to vacate the machine. The job(s) remains in the submitting machine’s job queue.

Given the (default)-graceful option, a job running under the standard universe will first produce a
checkpoint and then the job will be killed. Condor will then restart the job somewhere else, using
the checkpoint to continue from where it left off. A job running under the vanilla universe is killed,
and Condor restarts the job from the beginning somewhere else. condorvacatehas no effect on a
machine with no Condor job currently running.

There is generally no need for the user or administrator to explicitly run condorvacate. Condor
takes care of jobs in this way automatically following the policies given in configuration files.

Options

-help Display usage information

-version Display version information

-graceful Inform the job to checkpoint, then soft-kill it.

-fast Hard-kill jobs instead of checkpointing them

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOLDEBUG

Condor Version 7.2.3, Command Reference

condorvacate(1) 842

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namename Send the command to a machine identified byname

name Send the command to a machine identified byname

-addr ” <a.b.c.d:port>” Send the command to a machine’s master located at” <a.b.c.d:port>”

” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

-all Send the command to all machines in the pool

Exit Status

condorvacatewill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Examples

To send acondorvacatecommand to two named machines:

% condor_vacate robin cardinal

To send thecondorvacatecommand to a machine within a pool of machines other than the local
pool, use the-pool option. The argument is the name of the central manager for the pool. Note
that one or more machines within the pool must be specified as the targets for the command. This
command sends the command to a the single machine namedcae17within the pool of machines that
hascondor.cae.wisc.eduas its central manager:

% condor_vacate -pool condor.cae.wisc.edu -name cae17

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

condorvacate(1) 843

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorvacatejob (1) 844

condor vacatejob

vacate jobs in the Condor queue from the hosts where they are running

Synopsis

condor vacatejob [-help | -version]

condor vacatejob [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] [-fast] cluster. . .| cluster.process. . .| user. . . | -constraint expression
. . .

condor vacatejob [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr ” <a.b.c.d:port>”] [-fast] -all

Description

condorvacatejob finds one or more jobs from the Condor job queue and vacates them from the
host(s) where they are currently running. The jobs remain inthe job queue and return to the idle
state.

A job running under the standard universe will first produce acheckpoint and then the job will
be killed. Condor will then restart the job somewhere else, using the checkpoint to continue from
where it left off. A job running under any other universe willbe sent a soft kill signal (SIGTERM by
default, or whatever is defined as theSoftKillSig in the job ClassAd), and Condor will restart
the job from the beginning somewhere else.

If the -fast option is used, the job(s) will be immediately killed, meaning that standard universe jobs
will not be allowed to checkpoint, and the job will have to revert to the last checkpoint or start over
from the beginning.

If the -nameoption is specified, the namedcondorscheddis targeted for processing. If the-addr
option is used, thecondorscheddat the given address is targeted for processing. Otherwise,the
localcondorscheddis targeted. The jobs to be vacated are identified by one or more job identifiers,
as described below. For any given job, only the owner of the job or one of the queue super users
(defined by theQUEUESUPERUSERSmacro) can vacate the job.

Usingcondorvacatejob on jobs which are not currently running has no effect.

Options

-help Display usage information

Condor Version 7.2.3, Command Reference

condorvacatejob (1) 845

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr ” <a.b.c.d:port>” Send the command to a machine located at” <a.b.c.d:port>”

cluster Vacate all jobs in the specified cluster

cluster.processVacate the specific job in the cluster

user Vacate jobs belonging to specified user

-constraint expressionVacate all jobs which match the job ClassAd expression constraint

-all Vacate all the jobs in the queue

-fast Perform a fast vacate and hard kill the jobs

General Remarks

Do not confusecondorvacatejob with condorvacate. condorvacateis given a list of hosts to
vacate, regardless of what jobs happen to be running on them.Only machine owners and adminis-
trators have permission to usecondorvacateto evict jobs from a given host.condorvacatejob is
given a list of job to vacate, regardless of which hosts they happen to be running on. Only the owner
of the jobs or queue super users have permission to usecondorvacatejob.

Examples

To vacate job 23.0:

% condor_vacate_job 23.0

To vacate all jobs of a user named Mary:

Condor Version 7.2.3, Command Reference

condorvacatejob (1) 846

% condor_vacate_job mary

To vacate all standard universe jobs owned by Mary:

% condor_vacate_job -constraint 'JobUniverse == 1 && Owner == "mary"'

Note that the entire constraint, including the quotation marks, must be enclosed in single quote
marks for most shells.

Exit Status

condorvacatejob will exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorversion(1) 847

condor version

print Condor version and platform information

Synopsis

condor version[-help]

condor version[-arch] [-opsys] [-syscall]

Description

With no arguments,condorversionprints the currently installed Condor version number and plat-
form information. The version number includes a build identification number, as well as the date
built.

Options

help Print usage information

arch Print this machine’s ClassAd value forArch

opsys Print this machine’s ClassAd value forOpSys

syscall Get any requested version and/or platform information fromthelibcondorsyscall.a
that this Condor pool is configured to use, instead of using the values that are compiled into
the tool itself. This option may be used in combination with any other options to modify
where the information is coming from.

Exit Status

condorversionwill exit with a status value of 0 (zero) upon success, and it should never exit with a
failing value.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

condorversion(1) 848

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

condorwait (1) 849

condor wait

Wait for jobs to finish

Synopsis

condor wait [-help | -version]

condor wait [-debug] [-wait seconds] [-num number-of-jobs] log-file [job ID]

Description

condorwait watches a user log file (created with thelog command within a submit description file)
and returns when one or more jobs from the log have completed or aborted.

Becausecondorwait expects to find at least one job submitted event in the log file,at least one job
must have been successfully submitted withcondorsubmitbeforecondorwait is executed.

condorwait will wait forever for jobs to finish, unless a shorter wait time is specified.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-wait secondsWait no more than the integer number ofseconds. The default is unlimited time.

-num number-of-jobsWait for the integernumber-of-jobsjobs to end. The default is all jobs in the
log file.

log file The name of the log file to watch for information about the job.

job ID A specific job or set of jobs to watch. If thejob ID is only the job ClassAd attribute
ClusterId , thencondorwait waits for all jobs with the givenClusterId . If the job ID
is a pair of the job ClassAd attributes, given byClusterId .ProcId , thencondorwait
waits for the specific job with thisjob ID . If this option is not specified, all jobs that exist in

Condor Version 7.2.3, Command Reference

condorwait (1) 850

the log file whencondorwait is invoked will be watched.

General Remarks

condorwait is an inexpensive way to test or wait for the completion of a job or a whole cluster, if
you are trying to get a process outside of Condor to synchronize with a job or set of jobs.

It can also be used to wait for the completion of a limited subset of jobs, via the-num option.

Examples

condor_wait logfile

This command waits for all jobs that exist inlogfile to complete.

condor_wait logfile 40

This command waits for all jobs that exist inlogfile with a job ClassAd attributeClusterId
of 40 to complete.

condor_wait -num 2 logfile

This command waits for any two jobs that exist inlogfile to complete.

condor_wait logfile 40.1

This command waits for job 40.1 that exists inlogfile to complete.

condor_wait -wait 3600 logfile 40.1

This waits for job 40.1 to complete by watchinglogfile , but it will not wait more than one hour
(3600 seconds).

Exit Status

condorwait exits with 0 if and only if the specified job or jobs have completed or aborted.con-
dor wait returns 1 if unrecoverable errors occur, such as a missing log file, if the job does not exist
in the log file, or the user-specified waiting time has expired.

Condor Version 7.2.3, Command Reference

condorwait (1) 851

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

filelock midwife(1) 852

filelock midwife

create an artifact of the creation of a process

Synopsis

filelock midwife -help

filelock midwife [–file filename] program[programargs]

Description

filelock midwifestarts a givenprogram, while creating an artifact of the program’s birth. At a later
time thefilelock undertakercan examine the artifact to determine whether the program isstill run-
ning, or whether the program has exited.filelock midwifeaccomplishes this by obtaining a file lock
on the given artifact file before starting the program.

Warning:filelock midwifewill not work on NFS unless the separate file lock server is running.

Options

–file filename Thefilenameto use for the artifact file. The filelock.file is the default file used
when this option is not specified.

program[programargs] Forks a process and executesprogramwith programargsas command-line
arguments (when specified).

Exit Status

filelock midwifewill exit with a status of 0 (zero) upon success, and non-zerootherwise.

See Also

uniq pid midwife(on page 874),filelock undertaker(on page 854).

Condor Version 7.2.3, Command Reference

filelock midwife(1) 853

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

filelock undertaker(1) 854

filelock undertaker

determine whether a process has exited

Synopsis

filelock undertaker-help

filelock undertaker[–file filename] [–block]

Description

filelock undertakercan examine an artifact file created byfilelock midwifeand determine whether
the program started by themidwifehas exited. It does this by attempting to acquire a file lock.

Be warned that this will not work on NFS unless the separate file lock server is running.

Options

–block If the process has not exited, block until it does.

–file filename The name of the artifact file. created byfilelock midwife. The file lock.file is
the default file used when this option is not specified.

Exit Status

filelock undertakerwill exit with a status of 0 (zero) if the monitored process has exited, with a
status of 1 (one) if the monitored process has definitely not exited, with a status of 2 if it is uncertain
whether the process has exited (this is generally due to a failure by thefilelock midwife), or with any
other value for program failure.

See Also

uniq pid undertaker(on page 876),filelock midwife(on page 852).

Condor Version 7.2.3, Command Reference

filelock undertaker(1) 855

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

install release(1) 856

install release

install an arbitrary software release into a named directory

Synopsis

install release[-help]

install release [-f] [-basedir directory] [-log filename] [-wget] [-globuslocation directory]
[-o otherfile1. . .] package

Description

install releaseinstalls an arbitrary software release into a named directory. In addition it creates a
log of the installed files for easy uninstallation. This program can install packages of type tar, gzip,
or gzip’ed tar. The installation package can be located on a mounted file system, an http server, an
ftp server, or a grid ftp server.

Options

-basedirdirectory The directory where the package should be installed. When not specified, the
directory defaults to the current working directory.

-f Forcefully overwrite files if they exist.

-globuslocationdirectory This program does not come prepackaged withglobus-url-copyor the
supporting libraries. If globus is not installed in the/opt/globus directory, the user must
specify the installation location of globus using this option.

-help Display brief usage information and exit.

-log filename The file name for the installation log.

-o otherfile1. . . A space-separated list of files that will be installed along with the installation
package. The files will only be copied. No extraction or decompression will be performed on
these files. These files will be logged in the installation log.

Condor Version 7.2.3, Command Reference

install release(1) 857

packageThe full path to the installation package. Locations on file systems can be specified
without the file: prefix, but other locations must prefix with the appropriate protocol
(http: , ftp: , or gsiftp:).

-wget This program defaults to usingglobus-url-copyto fetch the installation package. This option
specifies that this program should usewgetfor http and ftp requests and Perl’s copy function
for file system requests.wgetmust be installed on the machine and must be in the user’s path.

Exit Status

install releasewill exit with a status value of 0 (zero) upon success, and non-zero otherwise.

See Also

cleanuprelease(on page 673)

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

stork q (1) 858

stork q

Query active Stork data placement jobs.

Synopsis

stork q [-help | -version]

stork q [-debug] [-name serverspecification]

Description

stork q prints the entire queue of active Stork jobs. Output is provided in the syntax of the ClassAd
language. See http://www.cs.wisc.edu/condor/classad for information on the ClassAd language.
Completed jobs are not printed. If the-nameoption is specified, the namedstork serveris targeted
for processing. Otherwise, the localstork serveris targeted.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-nameserverspecification Specification of stork server using machinename:port or
<a.b.c.d:port>.

Exit Status

stork q will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/classad

stork q (1) 859

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

stork list cred (1) 860

stork list cred

list all credentials of a user stored on thestork credddaemon on behalf of Stork

Synopsis

stork list cred [-help | -version]

stork list cred [-debug] -n hostname:portnumber

Description

stork list cred lists all credentials stored on thestork credd daemon of the user issuing the
stork list cred command. Two fields appear for each item listed: the unique name for the cre-
dential, and the string ”X.509”. As more credential types are handled by thestork credddaemon,
this second field with identify the credential type.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-n hostname:portnumberIdentify thestork credddaemon by host name and port number.

Exit Status

stork list credwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

stork list cred (1) 861

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

stork rm (1) 862

stork rm

remove a Stork job

Synopsis

stork rm [-help | -version]

stork rm [-debug] [-name serverspecification] job-id

Description

stork rm removes a Stork job from the queue, using the required command-line argument to identify
the Stork job. stork rm removes a single job from the Stork job queue. If the-name option is
specified, the namedstork server is targeted for processing. Otherwise, the localstork server is
targeted. The job to be removed is identified by the job id returned bystork submit.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-nameservername Name ofstork server.

-nameserverspecification Specification of stork server using machinename:port or
<a.b.c.d:port>.

Exit Status

stork rm will exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

Condor Version 7.2.3, Command Reference

stork rm (1) 863

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

stork rm cred (1) 864

stork rm cred

cause thestork credddaemon to remove a credential

Synopsis

stork rm cred [-help | -version]

stork rm cred [-debug] [-N credential-name] -n hostname:portnumber

Description

stork rm cred removes a credential from thestork credddaemon.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-n hostname:portnumberIdentify thestork credddaemon by host name and port number.

-N credential-nameThe unique name of the credential to be removed. When not specified, the
stork credddaemon uses the string ”DEFAULT” as the unique name.

Exit Status

stork rm credwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

stork rm cred (1) 865

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

stork store cred (1) 866

stork storecred

store a credential on thestork credddaemon for use by Stork

Synopsis

stork store cred [-help | -version]

stork store cred [-debug] [-N credential-name] [-m [user@]hostname[:portnumber]]
[-D proxy-server-name] [-S] -n hostname:portnumber-f filename-t x509

Description

stork store credstores a credential to astork credddaemon.

The required-t option identifies that the credential is an X.509 certificate.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-n hostname:portnumberIdentify thestork credddaemon by host name and port number.

-f filename A full path and file name where the credential is stored.

-N credential-nameA unique name used by thestork credd daemon to identify the credential.
When not specified, thestork credddaemon uses the string ”DEFAULT” as the unique name.

-m [user@]hostname[:portnumber]An identification of theMyProxyserver.

-D proxy-server-nameThe distinguished name of theMyProxyserver.

-S Read theMyProxypassword from standard input.

Condor Version 7.2.3, Command Reference

stork store cred (1) 867

Exit Status

stork store credwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

stork status(1) 868

stork status

print a Stork job’s status

Synopsis

stork status [-help | -version]

stork status[-debug] [-name serverspecification] job-id

Description

stork statusprints information about a Stork job. Jobs may be current or completed. If the-nameop-
tion is specified, the namedstork serveris targeted for processing. Otherwise, the localstork server
is targeted. The job to be removed is identified by the job id (as returned bystork submit). The
information is printed as a ClassAd. See http://www.cs.wisc.edu/condor/classad for information on
the ClassAd language.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-nameservername Name ofstork server.

-nameserverspecification Specification of stork server using machinename:port or
<a.b.c.d:port>.

Exit Status

stork statuswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/classad

stork status(1) 869

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

stork submit(1) 870

stork submit

submit a Stork job

Synopsis

stork submit [-help | -version]

stork submit [-debug] [-stdin] [-name serverspecification] [-lognotes ”prose”]
submit-descpription-file

Description

stork submitis used to submit a Stork data placement job. Upon job submission, an integer identifier
is assigned to the submission, and it is printed to standard output. This job identifier is required by
other commands that manage Stork jobs.

The name of the Stork submit description file is the single, required, command-line argument. Stork
places no constraints on the submit description file name. See section 2.13, for a more complete
description of Stork.

STORK SUBMIT DESCRIPTION FILE COMMANDSStork submit description files use ClassAd
syntax, different from Condor submit file syntax. See http://www.cs.wisc.edu/condor/classad/.

dap type = transfer; Required command identifying that there will be a transfer from source to
destination.

arguments = ”<argument list>”; List of arguments to be supplied to the module on the command
line. Arguments are delimited (separated) by space characters.

input = ” <pathname>”; Stork assumes that its jobs are long-running, and that the user will not
wait at the terminal for their completion. Because of this, the standard files which normally
access the terminal, (stdin , stdout , andstderr), must refer to files. Thus, the file name
specified withinput should contain any keyboard input the program requires (that is, this file
becomesstdin). If not specified, the default value of/dev/null is used for submission
to a Unix machine.

stork submit will prepend the current working directory if the pathname is relative (does
not start with a / character). This implies that the submit directory must be shared between
stork submitand the Stork server host, when using relative paths. All local file paths passed
to Stork must be valid on the Stork server host.

Note that this command doesnot refer to the command-line arguments of the program. The
command-line arguments are specified by theargumentscommand.

Condor Version 7.2.3, Command Reference

http://www.cs.wisc.edu/condor/classad/

stork submit(1) 871

output = ” <pathname>”; Theoutput file name will capture any information the program would
normally write to the screen (that is, this file becomesstdout). If not specified, the default
value of /dev/null is used for submission to a Unix machine. Multiple jobs should not
use the same output file, since this will cause one job to overwrite the output of another. The
output file and the error file should not be the same file as the outputs will overwrite each other
or be lost.

Note that if your program explicitly opens and writes to a file, that file shouldnotbe specified
as the output file.

stork submit will prepend the current working directory if the pathname is relative (does
not start with a / character). This implies that the submit directory must be shared between
stork submitand the Stork server host, when using relative paths. All local file paths passed
to Stork must be valid on the Stork server host.

err = ” <pathname>”; Theerr file name will capture any error messages the program would nor-
mally write to the screen (that is, this file becomesstderr). If not specified, the default
value of/dev/null is used for submission to a Unix machine. More than one job should
not use the same error file, since this will cause one job to overwrite the errors of another.
The error file and the output file should not be the same file as the outputs will overwrite each
other or be lost.

stork submit will prepend the current working directory if the pathname is relative (does
not start with a / character). This implies that the submit directory must be shared between
stork submitand the Stork server host, when using relative paths. All local file paths passed
to Stork must be valid on the Stork server host.

log = ”<pathname>”; Use log to specify a file name where Stork will write a log file of what is
happening with this job cluster. For example, Stork will loginto this file when and where the
job begins running, when the job is checkpointed and/or migrated, when the job completes,
etc. Most users find specifying alog file to be very handy; its use is recommended. If nolog
entry is specified, Stork does not create a log for this job.

stork submit will prepend the current working directory if the pathname is relative (does
not start with a / character). This implies that the submit directory must be shared between
stork submitand the Stork server host, when using relative paths. All local file paths passed
to Stork must be valid on the Stork server host.log file paths should not use NFS file systems.

log xml = ”True”; | ”False”; If log xml is true, then the log file will be written in ClassAd XML.
If it isn’t specified, XML is not used. Note that it’s an XML fragment, and is missing the file
header and footer. Also note that you should never mix XML andnon-XML in a single file:
if multiple jobs write to a single log file, it is up to you to make sure that all of them specify
(or don’t specify) this option in the same way.

src url = <protocol-name:URL> A (required) URL to identify the data source, as well as the
protocol to be used at the source.file:/// URLs must refer to valid paths on the Stork
server host.

dest url = <protocol-name:URL> A (required) URL to identify the data destination, as well as
the protocol to be used at the destination.file:/// URLs must refer to valid paths on the
Stork server host.

Condor Version 7.2.3, Command Reference

stork submit(1) 872

x509proxy =<path-to-proxy> The path to and file name of an X.509 proxy when needed for GSI
authentication. A value of”default” directs Stork to search in the standard Globus GSI proxy
locations.

cred name =<credential-handle> Alternatively, a X.509 proxy may be managed via the Stork
credential manager. Thecred namespecifies the name by which the credential was stored in
the credential manager. See thestork store credmanual on page 866.

alt protocols =<sourceprotocol-desinationprotocol, sourceprotocol-desinationprotocol, ...>
A comma separated list of alternative protocol pairings to be used when a data transfer fails.
For each pair, the protocol to use at the source of the transfer is followed by a- (dash) and
the protocol to be used at the destination of the transfer. The list is used (together with the
originalsrc url anddest url protocols) in a round robin fashion. The source and destination
URLs are unchanged; only the protocols to be used are changed.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-stdin Read commands fromstdin instead of from a file.

-nameserverspecification Specification of stork server using machinename:port or
<a.b.c.d:port>.

-lognotes”prose” The string given within quote marks is appended to the data placement ClassAd
before the job is submitted.

Exit Status

stork submitwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.2.3, Command Reference

stork submit(1) 873

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

uniq pid midwife(1) 874

uniq pid midwife

create an artifact of the creation of a process

Synopsis

uniq pid midwife [- -noblock] [- -file filename] [- -precision seconds] program[programargs]

Description

uniq pid midwife starts a given program, while creating an artifact of the program’s birth. At a
later time theuniq pid undertakercan examine the artifact to determine whether the program is
still running or whether it has exited.uniq pid midwifeaccomplishes this by recording an enforced
unique process identifier to the artifact.

Options

- -file filename Thefilenameto use for the artifact file. Defaults topid.file .

- -precisionsecondsThe precision the operating system is expected to have in regards to process
creation times. Defaults to an operating system specific value. The default is the best choice
in most cases.

- -noblock Exit after the program has been confirmed, typically 3 times the precision. Defaults to
block until the program exits.

program[programargs] Forks a process and executesprogramwith programargsas command-line
arguments (when specified).

Exit Status

uniq pid midwifewill exit with a status of 0 (zero) upon success, and non-zerootherwise.

See Also

uniq pid undertaker(on page 876),filelock midwife(on page 852).

Condor Version 7.2.3, Command Reference

uniq pid midwife(1) 875

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3, Command Reference

http://www.condorproject.org/license

uniq pid undertaker(1) 876

uniq pid undertaker

determine whether a process has exited

Synopsis

uniq pid undertaker[- -block] [- -file file] [- -precision seconds]

Description

uniq pid undertakercan examine an artifact file created byuniq pid midwifeand determine whether
the program started by themidwifehas exited.

Options

- -block If the process has not exited, block until it does.

- -file file The name of theuniq pid midwifecreated artifact file. Defaults topid.file .

- -precisionsecondsUsessecondsas the precision range within which the operating system will
provide a process’s birthday. Defaults to an operating system specific value. Only use this
option if the samesecondsvalue was provided touniq pid midwife.

Exit Status

uniq pid undertakerwill exit with a status of 0 (zero) if the monitored process has exited, with a
status of 1 (one) if the monitored process has definitely not exited, with a status of 2 if it is uncertain
whether the process has exited (this is generally due to a failure by theuniq pid midwife), or with
any other value for program failure.

See Also

uniq pid midwife(on page 874),filelock undertaker(on page 854).

Condor Version 7.2.3, Command Reference

877

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2009 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.2.3 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.2.3 Reference Manual

http://www.condorproject.org/license

Appendix A: ClassAd Attributes

ClassAd Types

ClassAd attributes vary, depending on the entity producingthe ClassAd. Therefore, each ClassAd
has an attribute namedMyType, which describes the type of ClassAd. In addition, thecon-
dor collector appends attributes to any daemon’s ClassAd, whenever thecondorcollector is
queried. These additional attributes are listed in the unnumbered subsection labeled ClassAd At-
tributes Added by thecondorcollectoron page 894.

Here is a list of defined values forMyType, as well as a reference to a list attributes relevant to
that type.

Job Each submitted job describes its state, for use by thecondornegotiatordaemon in finding a
machine upon which to run the job. ClassAd attributes that appear in a job ClassAd are listed
and described in the unnumbered subsection labeled Job ClassAd Attributes on page 879.

Machine Each machine in the pool (and hence, thecondorstartd daemon running on that ma-
chine) describes its state. ClassAd attributes that appearin a machine ClassAd are listed and
described in the unnumbered subsection labeled Machine ClassAd Attributes on page 886.

DaemonMaster Eachcondormasterdaemon describes its state. ClassAd attributes that appear
in a DaemonMaster ClassAd are listed and described in the unnumbered subsection labeled
DaemonMaster ClassAd Attributes on page 892.

Scheduler Eachcondorschedddaemon describes its state. ClassAd attributes that appearin a
Scheduler ClassAd are listed and described in the unnumbered subsection labeled Scheduler
ClassAd Attributes on page 893.

Negotiator Eachcondornegotiatordaemon describes its state. ClassAd attributes that appear
in a Negotiator ClassAd are listed and described in the unnumbered subsection labeled Nego-
tiator ClassAd Attributes on page 894.

Query This section has not yet been written

878

879

Job ClassAd Attributes

AllRemoteHosts: String containing a comma-separated list of all the remote machines running
a parallel or mpi universe job.

Args: String representing the arguments passed to the job.

CkptArch: String describing the architecture of the machine this job executed on at the time
it last produced a checkpoint. If the job has never produced acheckpoint, this attribute is
undefined .

CkptOpSys: String describing the operating system of the machine this job executed on at the
time it last produced a checkpoint. If the job has never produced a checkpoint, this attribute is
undefined .

ClusterId: Integer cluster identifier for this job. A cluster is a group of jobs that were submitted
together. Each job has its own unique job identifier within the cluster, but shares a common
cluster identifier. The value changes each time a job or set ofjobs are queued for execution
under Condor.

Cmd: The path to and the file name of the job to be executed.

ConcurrencyLimits: A string list, delimited by commas and space characters. Theitems in
the list identify named resources that the job requires.

CommittedTime: The number of seconds of wall clock time that the job has been allocated a
machine, excluding the time spent on run attempts that were evicted without a checkpoint.
Like RemoteWallClockTime , this includes time the job spent in a suspended state. In
the case ofRemoteWallClockTime , one can disregard suspended time by subtracting out
CumulativeSuspensionTime . However, no analogous attribute representing commit-
ted suspension time exists, so it is not possible to compute how much ofCommittedTime
was actual time spent running.

CompletionDate: The time when the job completed, or the value 0 if the job has not yet com-
pleted. Measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

CumulativeSuspensionTime: A running total of the number of seconds the job has spent in
suspension for the life of the job.

CurrentHosts: The number of hosts in the claimed state, due to this job.

DiskUsage: Amount of disk space (Kbytes) in the Condor execute directory on the execute ma-
chine that this job has used. The initial estimate may be specified in the job submit file.

EmailAttributes: A string containing a comma-separated list of job ClassAd attributes. For
each attribute name in the list, its value will be included inthe e-mail notification upon job
completion.

EnteredCurrentStatus: An integer containing the epoch time of when the job entered into
its current status So for example, if the job is on hold, the ClassAd expression

Condor Version 7.2.3 Reference Manual

880

CurrentTime - EnteredCurrentStatus

will equal the number of seconds that the job has been on hold.

ExecutableSize: Size of the executable in Kbytes.

ExitBySignal: An attribute that isTrue when a user job exits via a signal andFalse oth-
erwise. For some grid universe jobs, how the job exited is unavailable. In this case,
ExitBySignal is set toFalse .

ExitCode: When a user job exits by means other than a signal, this is the exit return code of
the user job. For some grid universe jobs, how the job exited is unavailable. In this case,
ExitCode is set to 0.

ExitSignal: When a user job exits by means of an unhandled signal, this attribute takes on the
numeric value of the signal. For some grid universe jobs, howthe job exited is unavailable. In
this case,ExitSignal will be undefined.

ExitStatus: The way that Condor previously dealt with a job’s exit status. This attribute should
no longer be used. It is not always accurate in heterogeneouspools, or if the job exited with a
signal. Instead, see the attributes:ExitBySignal , ExitCode , andExitSignal .

GridJobStatus: A string containing the job’s status as reported by the remote job management
system.

GridResource: A string defined by the right hand side of the the submit description file com-
mandgrid resource. It specifies the target grid type, plus additional parameters specific to
the grid type.

HoldKillSig: Currently only for scheduler and local universe jobs, a string containing a name
of a signal to be sent to the job if the job is put on hold.

HoldReasonCode: An integer value that represents the reason that a job was puton hold.

HoldReasonSubCode: An integer value that represents further information to go along with the
HoldReasonCode , for some values ofHoldReasonCode . SeeHoldReasonCode for
the values.

HoldReason: A string containing a human-readable message about why a jobis on hold. This is
the message that will be displayed in response to the commandcondor_q -hold . It can
be used to determine if a job should be released or not.

HookKeyword: A string that uniquely identifies a set of job hooks, and addedto the ClassAd once
a job is fetched.

Condor Version 7.2.3 Reference Manual

881

Integer Code Reason for Hold HoldReasonSubCode

1 The user put the job on hold withcondorhold.
2 Globus middleware reported an error. The GRAM error number.
3 ThePERIODIC HOLDexpression evaluated toTrue .
4 The credentials for the job are invalid.
5 A job policy expression evaluated toUndefined .
6 Thecondorstarter failed to start the executable. The Unix error number.
7 The standard output file for the job could not be opened. The Unix error number.
8 The standard input file for the job could not be opened. The Unix error number.
9 The standard output stream for the job could not be opened. The Unix error number.
10 The standard input stream for the job could not be opened. The Unix error number.
11 An internal Condor protocol error was encountered when trans-

ferring files.
12 Thecondorstarter failed to download input files. The Unix error number.
13 Thecondorstarter failed to upload output files. The Unix error number.
14 The initial working directory of the job cannot be accessed. The Unix error number.
15 The user requested the job be submitted on hold.
16 Input files are being spooled.
17 A standard universe job is not compatible with thecon-

dor shadowversion available on the submitting machine.
18 An internal Condor protocol error was encountered when trans-

ferring files.
19 HOOKPREPAREJOB was defined but couldn’t be executed or

returned failure.
18 The job missed its deferred execution time and therefore failed

to run.

ImageSize: Estimate of the memory image size of the job in Kbytes. The initial estimate may
be specified in the job submit file. Otherwise, the initial value is equal to the size of the
executable. When the job checkpoints, theImageSize attribute is set to the size of the
checkpoint file (since the checkpoint file contains the job’smemory image). A vanilla universe
job’s ImageSize is recomputed internally every 15 seconds.

JobLeaseDuration: The number of seconds set for a job lease, the amount of time that a job
may continue running on a remote resource, despite its submitting machine’s lack of response.
See section 2.15.4 for details on job leases.

JobPrio: Integer priority for this job, set bycondorsubmitor condorprio. The default value is
0. The higher the number, the greater (better) the priority.

JobRunCount: This attribute is retained for backwards compatibility. Itmay go away in the
future. It is equivalent toNumShadowStarts for all universes exceptscheduler. For the
scheduleruniverse, this attribute is equivalent toNumJobStarts .

JobStartDate: Time at which the job first began running. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

Condor Version 7.2.3 Reference Manual

882

JobStatus: Integer which indicates the current status of the job.

Value Status

0 Unexpanded (the job has never run)
1 Idle
2 Running
3 Removed
4 Completed
5 Held

JobUniverse: Integer which indicates the job universe.

Value Universe

1 standard
5 vanilla
7 scheduler
8 MPI
9 grid
10 java
11 parallel
12 local
13 vm

LastCheckpointPlatform: An opaque string which is theCheckpointPlatform iden-
tifier from the last machine where this standard universe jobhad successfully produced a
checkpoint.

LastCkptServer: Host name of the last checkpoint server used by this job. Whena pool is
using multiple checkpoint servers, this tells the job whereto find its checkpoint file.

LastCkptTime: Time at which the job last performed a successful checkpoint. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

LastMatchTime: An integer containing the epoch time when the job was last successfully
matched with a resource (gatekeeper) Ad.

LastRejMatchReason: If, at any point in the past, this job failed to match with a resource ad,
this attribute will contain a string with a human-readable message about why the match failed.

LastRejMatchTime: An integer containing the epoch time when Condor-G last tried to find a
match for the job, but failed to do so.

Condor Version 7.2.3 Reference Manual

883

LastSuspensionTime: Time at which the job last performed a successful suspension. Mea-
sured in the number of seconds since the epoch (00:00:00 UTC,Jan 1, 1970).

LastVacateTime: Time at which the job was last evicted from a remote workstation. Measured
in the number of seconds since the epoch (00:00:00 UTC, Jan 1,1970).

LocalSysCpu: An accumulated number of seconds of system CPU time that the job caused to
the machine upon which the job was submitted.

LocalUserCpu: An accumulated number of seconds of user CPU time that the jobcaused to the
machine upon which the job was submitted.

MaxHosts: The maximum number of hosts that this job would like to claim.As long as
CurrentHosts is the same asMaxHosts , no more hosts are negotiated for.

MaxJobRetirementTime: Maximum time in seconds to let this job run uninterrupted before
kicking it off when it is being preempted. This can only decrease the amount of time from
what the corresponding startd expression allows.

MinHosts: The minimum number of hosts that must be in the claimed state for this job, before
the job may enter the running state.

NextJobStartDelay: An integer number of seconds delay time after this job startsun-
til the next job is started. The value is limited by the configuration variable
MAXNEXTJOB STARTDELAY.

NiceUser: Boolean value which indicates whether

NTDomain: A string that identifies the NT domain under which a job’s owner authenticates on a
platform running Windows.

NumCkpts: A count of the number of checkpoints written by this job during its lifetime.

NumGlobusSubmits: An integer that is incremented each time thecondorgridmanagerreceives
confirmation of a successful job submission into Globus.

NumJobMatches: An integer that is incremented by thecondorscheddeach time the job is
matched with a resource ad by the negotiator.

NumJobStarts: An integer count of the number of times the job started executing. This is not
(yet) defined forstandard universe jobs.

NumJobReconnects: An integer count of the number of times a job successfully reconnected
after being disconnected. This occurs when thecondorshadowandcondorstarter lose con-
tact, for example because of transient network failures or acondorshadowor condorschedd
restart. This attribute is only defined for jobs that can reconnected: those in thevanilla and
java universes.

NumRestarts: A count of the number of restarts from a checkpoint attemptedby this job during
its lifetime.

Condor Version 7.2.3 Reference Manual

884

NumShadowExceptions: An integer count of the number of times thecondorshadowdaemon
had a fatal error for a given job.

NumShadowStarts: An integer count of the number of times acondorshadowdaemon was
started for a given job. This attribute is not defined forscheduleruniverse jobs, since they do
not have acondorshadowdaemon associated with them. Forlocaluniverse jobs, this attribute
is defined, even though the process that manages the job is technically acondorstarterrather
than acondorshadow. This keeps the management of the local universe and other universes
as similar as possible.

NumSystemHolds: An integer that is incremented each time Condor-G places a job on hold due
to some sort of error condition. This counter is useful, since Condor-G will always place a job
on hold when it gives up on some error condition. Note that if the user places the job on hold
using thecondorhold command, this attribute is not incremented.

Owner: String describing the user who submitted this job.

ParallelShutdownPolicy: A string that is only relevant to parallel universe jobs. Without
this attribute defined, the default policy applied to parallel universe jobs is to consider the
whole job completed when the first node exits, killing processes running on all remaining
nodes. If defined to the following strings, Condor’s behavior changes:

"WAIT FOR ALL" Condor will wait until every node in the parallel job has completed to
consider the job finished.

ProcId: Integer process identifier for this job. Within a cluster of many jobs, each job has the same
ClusterId , but will have a uniqueProcId . Within a cluster, assignment of aProcId
value will start with the value 0. The job (process) identifier described here is unrelated to
operating system PIDs.

QDate: Time at which the job was submitted to the job queue. Measuredin the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

ReleaseReason: A string containing a human-readable message about why the job was released
from hold.

RemoteIwd: The path to the directory in which a job is to be executed on a remote machine.

RemoteSysCpu: The total number of seconds of system CPU time (the time spentat system calls)
the job used on remote machines. This does not count time spent on run attempts that were
evicted without a checkpoint.

RemoteUserCpu: The total number of seconds of user CPU time the job used on remote ma-
chines. This does not count time spent on run attempts that were evicted without a checkpoint.

RemoteWallClockTime: Cumulative number of seconds the job has been allocated a machine.
This also includes time spent in suspension (if any), so the total real time spent running is

RemoteWallClockTime - CumulativeSuspensionTime

Condor Version 7.2.3 Reference Manual

885

Note that this number does not get reset to zero when a job is forced to migrate from one
machine to another.

RemoveKillSig: Currently only for scheduler universe jobs, a string containing a name of a
signal to be sent to the job if the job is removed.

StreamErr: An attribute utilized only for grid universe jobs. The default value is True . If
True , andTransferErr is True , then standard error is streamed back to the submit ma-
chine, instead of doing the transfer (as a whole) after the job completes. IfFalse , then
standard error is transferred back to the submit machine (asa whole) after the job completes.
If TransferErr is False , then this job attribute is ignored.

StreamOut: An attribute utilized only for grid universe jobs. The default value isTrue . If True ,
andTransferOut is True , then job output is streamed back to the submit machine, instead
of doing the transfer (as a whole) after the job completes. IfFalse , then job output is trans-
ferred back to the submit machine (as a whole) after the job completes. IfTransferOut is
False , then this job attribute is ignored.

TotalSuspensions: A count of the number of times this job has been suspended during its
lifetime.

TransferErr: An attribute utilized only for grid universe jobs. The default value isTrue . If
True , then the error output from the job is transferred from the remote machine back to the
submit machine. The name of the file after transfer is the file referred to by job attributeErr .
If False , no transfer takes place (remote to submit machine), and thename of the file is the
file referred to by job attributeErr .

TransferExecutable: An attribute utilized only for grid universe jobs. The default value is
True . If True , then the job executable is transferred from the submit machine to the remote
machine. The name of the file (on the submit machine) that is transferred is given by the job
attributeCmd. If False , no transfer takes place, and the name of the file used (on the remote
machine) will be as given in the job attributeCmd.

TransferIn: An attribute utilized only for grid universe jobs. The default value isTrue . If
True , then the job input is transferred from the submit machine tothe remote machine. The
name of the file that is transferred is given by the job attribute In . If False , then the job’s
input is taken from a file on the remote machine (pre-staged),and the name of the file is given
by the job attributeIn .

TransferOut: An attribute utilized only for grid universe jobs. The default value isTrue . If
True , then the output from the job is transferred from the remote machine back to the submit
machine. The name of the file after transfer is the file referred to by job attributeOut . If
False , no transfer takes place (remote to submit machine), and thename of the file is the file
referred to by job attributeOut .

WindowsBuildNumber: An integer, extracted from the platform type of the machine upon
which this job is submitted, representing a build number fora Windows operating system.
This attribute only exists for jobs submitted from Windows machines.

Condor Version 7.2.3 Reference Manual

886

WindowsMajorVersion: An integer, extracted from the platform type of the machine upon
which this job is submitted, representing a major version number (currently 5 or 6) for a Win-
dows operating system. This attribute only exists for jobs submitted from Windows machines.

WindowsMinorVersion: An integer, extracted from the platform type of the machine upon
which this job is submitted, representing a minor version number (currently 0, 1, or 2) for
a Windows operating system. This attribute only exists for jobs submitted from Windows
machines.

The following job ClassAd attributes are relevant only forvm universe jobs.

VM MACAddr: The MAC address of the virtual machine’s network interface,in the standard format
of six groups of two hexadecimal digits separated by colons.This attribute is currently limited
to apply only to Xen virtual machines.

Machine ClassAd Attributes

Activity: String which describes Condor job activity on the machine. Can have one of the
following values:

"Idle": There is no job activity

"Busy": A job is busy running

"Suspended": A job is currently suspended

"Vacating": A job is currently checkpointing

"Killing": A job is currently being killed

"Benchmarking": The startd is running benchmarks

Arch: String with the architecture of the machine. Typically one of the following:

"ALPHA": Digital Alpha CPU

"HPPA1": Hewlett Packard PA-RISC 1.x CPU (i.e. PA-RISC 7000 series CPU) based work-
station

"HPPA2": Hewlett Packard PA-RISC 2.x CPU (i.e. PA-RISC 8000 series CPU) based work-
station

"IA64": Intel Itanium

"INTEL": Intel x86 CPU (Pentium, Xeon, etc).

"SGI": Silicon Graphics MIPS CPU

"SUN4u": Sun UltraSparc CPU

"SUN4x": A Sun Sparc CPU other than an UltraSparc, i.e. sun4m or sun4c CPU found in
older Sparc workstations such as the Sparc 10, Sparc 20, IPC,IPX, etc.

"PPC": Power Macintosh

Condor Version 7.2.3 Reference Manual

887

"PPC64": 64-bit Power Macintosh

"X86 64": AMD/Intel 64-bit X86

CheckpointPlatform: A string which opaquely encodes various aspects about a machine’s
operating system, hardware, and kernel attributes. It is used to identify systems where previ-
ously taken checkpoints for the standard universe may resume.

ClockDay: The day of the week, where 0 = Sunday, 1 = Monday,. . ., 6 = Saturday.

ClockMin: The number of minutes passed since midnight.

CondorLoadAvg: The portion of the load average generated by Condor (either from remote jobs
or running benchmarks).

ConsoleIdle: The number of seconds since activity on the system console keyboard or console
mouse has last been detected.

Cpus: Number of CPUs in this machine, i.e. 1 = single CPU machine, 2 =dual CPUs, etc.

CurrentRank: A float which represents this machine owner’s affinity for running the Condor job
which it is currently hosting. If not currently hosting a Condor job,CurrentRank is 0.0.
When a machine is claimed, the attribute’s value is computedby evaluating the machine’s
Rank expression with respect to the current job’s ClassAd.

Disk: The amount of disk space on this machine available for the jobin Kbytes (e.g. 23000 = 23
megabytes). Specifically, this is the amount of disk space available in the directory specified
in the Condor configuration files by theEXECUTEmacro, minus any space reserved with the
RESERVEDDISK macro.

DynamicSlot: For SMP machines that allow dynamic partitioning of a slot, this boolean value
identifies that this dynamic slot may be partitioned.

EnteredCurrentActivity: Time at which the machine entered the current Activity (see
Activity entry above). On all platforms (including NT), this is measured in the number of
integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

FileSystemDomain: A “domain” name configured by the Condor administrator whichde-
scribes a cluster of machines which all access the same, uniformly-mounted, networked file
systems usually via NFS or AFS. This is useful for Vanilla universe jobs which require remote
file access.

KeyboardIdle: The number of seconds since activity on any keyboard or mouseassociated
with this machine has last been detected. UnlikeConsoleIdle , KeyboardIdle also
takes activity on pseudo-terminals into account (i.e. virtual “keyboard” activity from telnet
and rlogin sessions as well). Note thatKeyboardIdle will always be equal to or less than
ConsoleIdle .

KFlops: Relative floating point performance as determined via a Linpack benchmark.

Condor Version 7.2.3 Reference Manual

888

LastHeardFrom: Time when the Condor central manager last received a status update from this
machine. Expressed as the number of integer seconds since the Unix epoch (00:00:00 UTC,
Jan 1, 1970). Note: This attribute is only inserted by the central manager once it receives the
ClassAd. It is not present in thecondorstartdcopy of the ClassAd. Therefore, you could not
use this attribute in definingcondorstartdexpressions (and you would not want to).

LoadAvg: A floating point number with the machine’s current load average.

Machine: A string with the machine’s fully qualified host name.

Memory: The amount of RAM in megabytes.

Mips: Relative integer performance as determined via a Dhrystonebenchmark.

MyType: The ClassAd type; always set to the literal string"Machine" .

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condorstartd will divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form “slot#@full.hostname”, for example, “slot1@vulture.cs.wisc.edu”, which signifies slot
number 1 from vulture.cs.wisc.edu.

OpSys: String describing the operating system running on this machine. For Condor Version 7.2.3
typically one of the following:

"HPUX10": for HPUX 10.20

"HPUX11": for HPUX B.11.00

"LINUX": for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, or LINUX 2.6.x kernel systems

"OSF1": for Digital Unix 4.x

"OSX": for Darwin

"OSX10 2": for Darwin 6.4

"SOLARIS25": for Solaris 2.4 or 5.5

"SOLARIS251": for Solaris 2.5.1 or 5.5.1

"SOLARIS26": for Solaris 2.6 or 5.6

"SOLARIS27": for Solaris 2.7 or 5.7

"SOLARIS28": for Solaris 2.8 or 5.8

"SOLARIS29": for Solaris 2.9 or 5.9

"WINNT50": for Windows 2000

"WINNT51": for Windows XP

"WINNT52": for Windows Server 2003

"WINNT60": for Windows Vista

Requirements: A boolean, which when evaluated within the context of the machine ClassAd
and a job ClassAd, must evaluate to TRUE before Condor will allow the job to use this ma-
chine.

Condor Version 7.2.3 Reference Manual

889

MaxJobRetirementTime: An expression giving the maximum time in seconds that the startd
will wait for the job to finish before kicking it off if it needsto do so. This is evaluated in the
context of the job ClassAd, so it may refer to job attributes as well as machine attributes.

PartitionableSlot: For SMP machines, a boolean value identifying that this slotmay be
partitioned.

SlotID: For SMP machines, the integer that identifies the slot. The value will be X for the slot
with

name="slotX@full.hostname"

For non-SMP machines with one slot, the value will be 1. NOTE: This attribute was added in
Condor version 6.9.3. For older versions of Condor, seeVirtualMachineID below.

StartdIpAddr: String with the IP and port address of thecondorstartd daemon which is pub-
lishing this machine ClassAd.

State: String which publishes the machine’s Condor state. Can be:

"Owner": The machine owner is using the machine, and it is unavailableto Condor.

"Unclaimed": The machine is available to run Condor jobs, but a good match is either not
available or not yet found.

"Matched": The Condor central manager has found a good match for this resource, but a
Condor scheduler has not yet claimed it.

"Claimed": The machine is claimed by a remotecondorscheddand is probably running a
job.

"Preempting": A Condor job is being preempted (possibly via checkpointing) in order to
clear the machine for either a higher priority job or becausethe machine owner wants
the machine back.

TargetType: Describes what type of ClassAd to match with. Always set to the string literal
"Job" , because machine ClassAds always want to be matched with jobs, and vice-versa.

TotalTimeBackfillBusy: The number of seconds that this machine (slot) has accumulated
within the backfill busy state and activity pair since thecondorstartd began executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeBackfillIdle: The number of seconds that this machine (slot) has accumulated
within the backfill idle state and activity pair since thecondorstartd began executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeBackfillKilling: The number of seconds that this machine (slot) has accumu-
lated within the backfill killing state and activity pair since thecondorstartdbegan executing.
This attribute will only be defined if it has a value greater than 0.

TotalTimeClaimedBusy: The number of seconds that this machine (slot) has accumulated
within the claimed busy state and activity pair since thecondorstartdbegan executing. This
attribute will only be defined if it has a value greater than 0.

Condor Version 7.2.3 Reference Manual

890

TotalTimeClaimedIdle: The number of seconds that this machine (slot) has accumulated
within the claimed idle state and activity pair since thecondorstartd began executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeClaimedRetiring: The number of seconds that this machine (slot) has accumu-
lated within the claimed retiring state and activity pair since thecondorstartdbegan execut-
ing. This attribute will only be defined if it has a value greater than 0.

TotalTimeClaimedSuspended: The number of seconds that this machine (slot) has accu-
mulated within the claimed suspended state and activity pair since thecondorstartd began
executing. This attribute will only be defined if it has a value greater than 0.

TotalTimeMatchedIdle: The number of seconds that this machine (slot) has accumulated
within the matched idle state and activity pair since thecondorstartd began executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeOwnerIdle: The number of seconds that this machine (slot) has accumulated within
the owner idle state and activity pair since thecondorstartd began executing. This attribute
will only be defined if it has a value greater than 0.

TotalTimePreemptingKilling: The number of seconds that this machine (slot) has accu-
mulated within the preempting killing state and activity pair since thecondorstartd began
executing. This attribute will only be defined if it has a value greater than 0.

TotalTimePreemptingVacating: The number of seconds that this machine (slot) has accu-
mulated within the preempting vacating state and activity pair since thecondorstartd began
executing. This attribute will only be defined if it has a value greater than 0.

TotalTimeUnclaimedBenchmarking: The number of seconds that this machine (slot) has
accumulated within the unclaimed benchmarking state and activity pair since thecon-
dor startdbegan executing. This attribute will only be defined if it hasa value greater than 0.

TotalTimeUnclaimedIdle: The number of seconds that this machine (slot) has accumulated
within the unclaimed idle state and activity pair since thecondorstartdbegan executing. This
attribute will only be defined if it has a value greater than 0.

UidDomain: a domain name configured by the Condor administrator which describes a cluster of
machines which all have the samepasswd file entries, and therefore all have the same logins.

VirtualMachineID: Starting with Condor version 6.9.3, this attribute is now longer used. In-
stead, useSlotID , as described above. This will only be present ifALLOWVMCRUFT is
TRUE.

VirtualMemory: The amount of currently available virtual memory (swap space) expressed in
Kbytes.

WindowsBuildNumber: An integer, extracted from the platform type, representinga build num-
ber for a Windows operating system. This attribute only exists on Windows machines.

Condor Version 7.2.3 Reference Manual

891

WindowsMajorVersion: An integer, extracted from the platform type, representinga major
version number (currently 5 or 6) for a Windows operating system. This attribute only exists
on Windows machines.

WindowsMinorVersion: An integer, extracted from the platform type, representinga minor
version number (currently 0, 1, or 2) for a Windows operatingsystem. This attribute only
exists on Windows machines.

In addition, there are a few attributes that are automatically inserted into the machine ClassAd
whenever a resource is in the Claimed state:

ClientMachine: The host name of the machine that has claimed this resource

RemoteOwner: The name of the user who originally claimed this resource.

RemoteUser: The name of the user who is currently using this resource. In general, this will al-
ways be the same as theRemoteOwner , but in some cases, a resource can be claimed by one
entity that hands off the resource to another entity which uses it. In that case,RemoteUser
would hold the name of the entity currently using the resource, whileRemoteOwner would
hold the name of the entity that claimed the resource.

PreemptingOwner: The name of the user who is preempting the job that is currently running on
this resource.

PreemptingUser: The name of the user who is preempting the job that is currently running on
this resource. The relationship betweenPreemptingUser andPreemptingOwner is
the same as the relationship betweenRemoteUser andRemoteOwner .

PreemptingRank: A float which represents this machine owner’s affinity for running the Condor
job which is waiting for the current job to finish or be preempted. If not currently hosting
a Condor job,PreemptingRank is undefined. When a machine is claimed and there is
already a job running, the attribute’s value is computed by evaluating the machine’sRank
expression with respect to the preempting job’s ClassAd.

TotalClaimRunTime: A running total of the amount of time (in seconds) that all jobs (under
the same claim) ran (have spent in the Claimed/Busy state).

TotalClaimSuspendTime: A running total of the amount of time (in seconds) that all jobs
(under the same claim) have been suspended (in the Claimed/Suspended state).

TotalJobRunTime: A running total of the amount of time (in seconds) that a single job ran (has
spent in the Claimed/Busy state).

TotalJobSuspendTime: A running total of the amount of time (in seconds) that a single job
has been suspended (in the Claimed/Suspended state).

There are a few attributes that are only inserted into the machine ClassAd if a job is currently
executing. If the resource is claimed but no job are running,none of these attributes will be defined.

Condor Version 7.2.3 Reference Manual

892

JobId: The job’s identifier (for example,152.3), as seen fromcondorq on the submitting ma-
chine.

JobStart: The time stamp in integer seconds of when the job began executing, since the Unix
epoch (00:00:00 UTC, Jan 1, 1970). For idle machines, the value is UNDEFINED.

LastPeriodicCheckpoint: If the job has performed a periodic checkpoint, this attribute
will be defined and will hold the time stamp of when the last periodic checkpoint was be-
gun. If the job has yet to perform a periodic checkpoint, or cannot checkpoint at all, the
LastPeriodicCheckpoint attribute will not be defined.

Finally, the single attribute,CurrentTime , is defined by the ClassAd environment.

CurrentTime: Evaluates to the the number of integer seconds since the Unixepoch (00:00:00
UTC, Jan 1, 1970).

DaemonMaster ClassAd Attributes

CkptServer: A string with with the fully qualified host name of the machinerunning a check-
point server.

DaemonStartTime: The time that this daemon was started, represented as the number of second
elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

Machine: A string with the machine’s fully qualified host name.

MasterIpAddr: String with the IP and port address of thecondormasterdaemon which is pub-
lishing this DaemonMaster ClassAd.

MyAddress: Description is not yet written.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which thecondormasterdaemon last sent a ClassAd update
to thecondorcollector.

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condorstartd will divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form “slot#@full.hostname”, for example, “slot1@vulture.cs.wisc.edu”, which signifies slot
number 1 from vulture.cs.wisc.edu.

PublicNetworkIpAddr: Description is not yet written.

RealUid: The UID under which thecondormasteris started.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd
update sent to thecondorcollector. The condorcollector uses this value to sequence the
updates it receives.

Condor Version 7.2.3 Reference Manual

893

Scheduler ClassAd Attributes

DaemonStartTime: The time that this daemon was started, represented as the number of second
elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

JobQueueBirthdate: Description is not yet written.

Machine: A string with the machine’s fully qualified host name.

MaxJobsRunning: The same integer value as set in the configuration variable
MAXJOBS RUNNING. See the definition at section 3.3.11 on page 195.

MyAddress: Description is not yet written.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which thecondorschedddaemon last sent a ClassAd update
to thecondorcollector.

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condorstartd will divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form “slot#@full.hostname”, for example, “slot1@vulture.cs.wisc.edu”, which signifies slot
number 1 from vulture.cs.wisc.edu.

NumUsers: The integer number of distinct users with jobs in thiscondorschedd’s queue.

PublicNetworkIpAddr: Description is not yet written.

QuillEnabled: The same boolean value as set in the configuration variableQUILL ENABLED
. See the definition at section 3.3.30 on page 240.

ScheddIpAddr: String with the IP and port address of thecondorschedddaemon which is pub-
lishing this Scheduler ClassAd.

ServerTime: Description is not yet written.

StartLocalUniverse: The same boolean value as set in the configuration variable
STARTLOCALUNIVERSE. See the definition at section 3.3.11 on page 195.

StartSchedulerUniverse: The same boolean value as set in the configuration variable
STARTSCHEDULERUNIVERSE. See the definition at section 3.3.11 on page 195.

TotalFlockedJobs: The total number of jobs from thiscondorschedddaemon that are cur-
rently flocked to other pools.

TotalHeldJobs: The total number of jobs from thiscondorschedddaemon that are currently
on hold.

TotalIdleJobs: The total number of jobs from thiscondorschedddaemon that are currently
idle.

TotalJobAds: The total number of all jobs (in all states) from thiscondorschedddaemon.

Condor Version 7.2.3 Reference Manual

894

TotalRemovedJobs: The current number of all running jobs from thiscondorschedddaemon
that have remove requests.

TotalRunningJobs: The total number of jobs from thiscondorschedddaemon that are cur-
rently running.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd
update sent to thecondorcollector. The condorcollector uses this value to sequence the
updates it receives.

VirtualMemory: Description is not yet written.

WantResAd: A boolean value that whenTrue causes thecondornegotiatordaemon to send to
thiscondorschedddaemon a full machine ClassAd corresponding to a matched job.

Negotiator ClassAd Attributes

DaemonStartTime: The time that this daemon was started, represented as the number of second
elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

Machine: A string with the machine’s fully qualified host name.

MyAddress: Description is not yet written.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which thecondorschedddaemon last sent a ClassAd update
to thecondorcollector.

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condorstartd will divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form “slot#@full.hostname”, for example, “slot1@vulture.cs.wisc.edu”, which signifies slot
number 1 from vulture.cs.wisc.edu.

NegotiatorIpAddr: String with the IP and port address of thecondornegotiator daemon
which is publishing this Negotiator ClassAd.

PublicNetworkIpAddr: Description is not yet written.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd
update sent to thecondorcollector. The condorcollector uses this value to sequence the
updates it receives.

ClassAd Attributes Added by thecondor collector

These attributes are only added ifCOLLECTORDAEMONSTATS is True. See page 210 for more
information on this setting.

Condor Version 7.2.3 Reference Manual

895

LastHeardFrom: The time inserted into a daemon’s ClassAd representing the time that thiscon-
dor collector last received a message from the daemon. Time is representedas the number of
second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

UpdatesHistory: A bitmap representing the status of the most recent updates received from the
daemon. This attribute is only added ifCOLLECTORDAEMONHISTORYSIZE is non-zero.
See page 210 for more information on this setting.

UpdatesLost: An integer count of the number of updates from the daemon thatwere lost since
thecondorcollectorstarted running.

UpdatesSequenced: An integer count of the number of updates received from the daemon for
which thecondorcollector can tell how many were lost, since thecondorcollector started
running.

UpdatesTotal: An integer count started when thecondorcollector started running, represent-
ing the sum of the number of updates actually received from the daemon plus the number of
updates that thecondorcollectordetermined were lost.

Condor Version 7.2.3 Reference Manual

Appendix B: Magic Numbers

condor shadowExit Codes

Value Error Name

4 JOB EXCEPTION
44 DPRINTF ERROR
100 JOB EXITED
101 JOB CKPTED
102 JOB KILLED
103 JOB COREDUMPED
105 JOB NO MEM
106 JOB SHADOW USAGE
107 JOB NOT CKPTED
107 JOB SHOULD REQUEUE same number as JOBNOT CKPTED, to achieve the same behavior. Howe
108 JOB NOT STARTED
109 JOB BAD STATUS
110 JOB EXEC FAILED
111 JOB NO CKPT FILE
112 JOB SHOULD HOLD
113 JOB SHOULD REMOVE
114 JOB MISSED DEFERRAL TIME
115 JOB EXITED AND CLAIM CLOSING

User Log Event Codes

896

897

Event Code Description

0 Submit
1 Execute
2 Executable error
3 Checkpointed
4 Job evicted
5 Job terminated
6 Image size
7 Shadow exception
8 Generic
9 Job aborted
10 Job suspended
11 Job unsuspended
12 Job held
13 Job released
14 Node execute
15 Node terminated
16 Post script terminated
17 Globus submit (no longer used)
18 Globus submit failed
19 Globus resource up (no longer used)
20 Globus resource down (no longer used)
21 Remote error
22 Job disconnected
23 Job reconnected
24 Job reconnect failed
25 Grid resource up
26 Grid resource down
27 Grid submit
28 Job ClassAd attribute values added to event log

Well-Known Ports

Server Port Number

condornegotiator 9614 (obsolete, now dynamically allocated)
condorcollector 9618
GT2 gatekeeper 2119
gridftp 2811
GT4 web services 8443

Condor Version 7.2.3 Reference Manual

898

DaemonCore Commands and Signals

Number Name

60000 DC RAISESIGNAL
60001 DC PROCESSEXIT
60002 DC CONFIG PERSIST
60003 DC CONFIG RUNTIME
60004 DC RECONFIG
60005 DC OFF GRACEFUL
60006 DC OFF FAST
60007 DC CONFIG VAL
60008 DC CHILDALIVE
60009 DC SERVICEWAITPIDS
60010 DC AUTHENTICATE
60011 DC NOP
60012 DC RECONFIGFULL
60013 DC FETCH LOG
60014 DC INVALIDATE KEY
60015 DC OFF PEACEFUL
60016 DC SET PEACEFULSHUTDOWN
60017 DC TIME OFFSET

DaemonCore Daemon Exit Codes

Exit Code Description

0 Normal exit of daemon
99 DAEMONSHUTDOWNevaluated toTrue

Condor Version 7.2.3 Reference Manual

INDEX

<SUBSYS>ADDRESSFILE macro, 646
<SUBSYS>DAEMONAD FILE macro, 633,

646
$

as a literal character in a submit description
file, 818

$ENV
in configuration file, 149
in submit description file, 819

$RANDOM CHOICE()
in configuration, 149
in submit description file, 820

$RANDOM INTEGER()
in configuration, 149, 555

$$
as literal characters in a submit description

file, 819
CONDORSCRATCH DIR, 34
CONDORSLOT, 34

ABORTONEXCEPTIONmacro, 156
ACCOUNTANTLOCALDOMAINmacro, 212
accounting

by group, 249
ActivationTimer macro, 272
activities and state figure, 261
activity

of a machine, 260
transitions, 261–271
transitions summary, 270

ActivityTimer macro, 272
ADDWINDOWSFIREWALLEXCEPTION

macro, 178
administrator’s manual, 112–429

AFS
interaction with, 108

AfterHours macro, 277
agents

condorshadow, 16
ALIVE INTERVAL macro, 181, 197, 259
ALL DEBUGmacro, 160
ALLOW* macro, 575
ALLOW* macros macro, 305
ALLOWADMINCOMMANDSmacro, 178
ALLOWADMINISTRATORmacro, 302
ALLOWADVERTISEMASTERmacro, 303
ALLOWADVERTISESCHEDDmacro, 303
ALLOWADVERTISESTARTDmacro, 303
ALLOWCLIENT macro, 229
ALLOWCLIENT macro, 303
ALLOWCONFIGmacro, 533
ALLOWCONFIGmacro, 302
ALLOWDAEMONmacro, 653
ALLOWDAEMONmacro, 302
ALLOWFORCERMmacro, 664
ALLOWNEGOTIATORmacro, 302
ALLOWOWNERmacro, 302
ALLOWREADmacro, 302
ALLOWSOAPmacro, 302
ALLOWVMCRUFTmacro, 34, 186, 890
ALLOWWRITEmacro, 302
AllRemoteHosts

job ClassAd attribute, 879
ALWAYSVMUNIV USENOBODYmacro, 234
Amazon EC2, 512
AMAZONEC2 URLmacro, 219, 513
AMAZONGAHPmacro, 219
AMAZONGAHPWORKERMAXNUMmacro, 598

899

INDEX 900

AMAZONHTTP PROXYmacro, 219, 513
API

Command line, 482
Condor GAHP, 482
DRMAA, 480
Perl module, 482
Web Service, 468

APPENDPREFSTANDARDmacro, 206
APPENDPREFVANILLA macro, 206
APPENDRANKmacro, 206
APPENDRANKSTANDARDmacro, 206, 351
APPENDRANKVANILLA macro, 206
APPENDREQSTANDARDmacro, 206, 351
APPENDREQVANILLA macro, 206
APPENDREQUIREMENTSmacro, 206
ARCHmacro, 148, 392
Args

job ClassAd attribute, 879
argv[0]

Condor use of, 111
AUTHSSL CLIENT CADIRmacro, 231, 294
AUTHSSL CLIENT CAFILE macro, 231, 294
AUTHSSL CLIENT CERTFILE macro, 231,

294
AUTHSSL CLIENT KEYFILE macro, 231,

294
AUTHSSL SERVERCADIRmacro, 231, 294
AUTHSSL SERVERCAFILE macro, 231, 294
AUTHSSL SERVERCERTFILE macro, 231,

294
AUTHSSL SERVERKEYFILE macro, 231,

294
authentication, 287–298

GSI, 290
Kerberos, 294
Kerberos principal, 294
SSL, 293
using a file system, 297
using a remote file system, 297
Windows, 297

authorization
for security, 302

available platforms, 5

Backfill, 412
BOINC Configuration in Condor, 416

BOINC Installation, 415
BOINC Overview, 414
Defining Condor policy, 413
Overview, 413

backfill state, 257, 269
BACKFILL SYSTEMmacro, 183, 413
BackgroundLoad macro, 272
batch system, 11
BIN macro, 151
BIND ALL INTERFACES macro, 165, 339,

601
BOINC Arguments macro, 417, 419
BOINC Environment macro, 417
BOINC Error macro, 417
BOINC Executable macro, 415, 416, 419
BOINC InitialDir macro, 415, 416, 418,

419
BOINC Output macro, 417
BOINC Owner macro, 415, 416, 419
BOINC Universe macro, 416

C GAHPLOGmacro, 219, 495
C GAHPWORKERTHREADLOGmacro, 219
central manager, 112, 113

installation issues, 119
certificate

X.509, 290
CERTIFICATE MAPFILE macro, 231, 298
checkpoint, 2, 3, 16, 443

compression, 444
implementation, 443
library interface, 446
periodic, 3, 443, 555
stand alone, 444

checkpoint image, 16
checkpoint server, 113

configuration of, 347
installation, 346–351
multiple servers, 348

Chirp, 53
Chirp.jar, 54
ChirpClient, 53
ChirpInputStream, 53
ChirpOutputStream, 53

CKPTPROBEmacro, 156, 618

Condor Version 7.2.3 Reference Manual

INDEX 901

CKPTSERVERCHECKPARENTINTERVAL
macro, 173

CKPTSERVERDEBUGmacro, 348
CKPTSERVERDIR macro, 172, 348
CKPTSERVERHOSTmacro, 172, 332, 344,

348, 349
CKPTSERVERLOGmacro, 348
CkptArch

job ClassAd attribute, 879
CkptOpSys

job ClassAd attribute, 879
claim lease, 259
CLAIM WORKLIFEmacro, 180, 270, 280
claimed state, 257, 265
ClassAd, 2, 4, 12, 430–442

attributes, 12, 432
attributes added by thecondorcollector,

894
DaemonMaster attributes, 892
expression functions, 432
expression operators, 432, 440
expression syntax, 431
job, 12
job attributes, 879
machine, 12
machine attributes, 886
machine example, 13
Negotiator attributes, 894
Scheduler attributes, 893
scope of evaluation, MY., 439
scope of evaluation, TARGET., 439

ClassAd attribute
CurrentTime, 892
rank, 22, 441
rank examples, 23
requirements, 22, 441

ClassAd attribute added by thecondorcollector
LastHeardFrom, 894
UpdatesHistory, 210, 895
UpdatesLost, 210, 895
UpdatesSequenced, 210, 895
UpdatesTotal, 210, 895

ClassAd DaemonMaster attribute
CkptServer, 892
DaemonStartTime, 892
Machine, 892

MasterIpAddr, 892
MyAddress, 892
MyCurrentTime, 892
Name, 892
PublicNetworkIpAddr, 892
RealUid, 892
UpdateSequenceNumber, 892

ClassAd functions, 432
ceiling(), 434
floor(), 434
formatTime(), 436
ifThenElse(), 433
int(), 433
interval(), 437
isBoolean(), 433
isError(), 433
isInteger(), 433
isReal(), 433
isString(), 433
isUndefined(), 433
random(), 434
real(), 434
regexp(), 438
regexps(), 438
round(), 434
size(), 435
strcat(), 435
strcmp(), 435
stricmp(), 435
string(), 434
stringListAve(), 437
stringListIMember(), 438
stringListMax(), 437
stringListMember(), 438
stringListMin(), 437
stringListRegexpMember(), 438
stringListSize(), 437
stringListSum(), 437
substr(), 435
time(), 436
toLower(), 435
toUpper(), 435

ClassAd job attribute
AccountingGroup, 249
AllRemoteHosts, 879
Args, 879

Condor Version 7.2.3 Reference Manual

INDEX 902

CkptArch, 879
CkptOpSys, 879
ClusterId, 818, 879
Cmd, 879
CommittedTime, 879
CompletionDate, 879
ConcurrencyLimits, 879
CumulativeSuspensionTime, 879
CurrentHosts, 879
DeferralPrepTime, 96
DeferralTime, 95
DeferralWindow, 96
DiskUsage, 879
EmailAttributes, 879
EnteredCurrentStatus, 879
ExecutableSize, 880
ExitBySignal, 880
ExitCode, 880
ExitSignal, 880
ExitStatus, 880
GridJobStatus, 880
GridResource, 880
HoldKillSig, 880
HoldReason, 880
HoldReasonCode, 880
HoldReasonSubCode, 880
ImageSize, 880
JobLeaseDuration, 110, 881
JobPrio, 881
JobRunCount, 881
JobStartDate, 881
JobStatus, 881
JobUniverse, 882
LastCheckpointPlatform, 882
LastCkptServer, 882
LastCkptTime, 882
LastMatchTime, 882
LastRejMatchReason, 882
LastRejMatchTime, 882
LastSuspensionTime, 882
LastVacateTime, 883
LocalSysCpu, 883
LocalUserCpu, 883
MaxHosts, 883
MaxJobRetirementTime, 883
MinHosts, 883

NextJobStartDelay, 883
NiceUser, 883
NTDomain, 883
NumCkpts, 883
NumGlobusSubmits, 883
NumJobMatches, 883
NumJobReconnects, 883
NumJobStarts, 883
NumRestarts, 883
NumShadowExceptions, 883
NumShadowStarts, 884
NumSystemHolds, 884
Owner, 884
ParallelShutdownPolicy, 884
ProcId, 884
QDate, 884
ReleaseReason, 884
RemoteIwd, 884
RemoteSysCpu, 884
RemoteUserCpu, 884
RemoteWallClockTime, 884
RemoveKillSig, 885
StreamErr, 885
StreamOut, 885
TotalSuspensions, 885
TransferErr, 885
TransferExecutable, 885
TransferIn, 885
TransferOut, 885
VM MACAddr, 886
WindowsBuildNumber, 885
WindowsMajorVersion, 885
WindowsMinorVersion, 886

ClassAd machine attribute
Activity, 886
Arch, 886
AvailSince, 192
AvailTime, 192
AvailTimeEstimate, 192
CheckpointPlatform, 887
ClockDay, 887
ClockMin, 887
CondorLoadAvg, 887
ConsoleIdle, 887
Cpus, 887
CurrentRank, 887

Condor Version 7.2.3 Reference Manual

INDEX 903

Disk, 887
DynamicSlot, 887
EnteredCurrentActivity, 887
FileSystemDomain, 887
HookKeyword, 880
KeyboardIdle, 887
KFlops, 887
LastAvailInterval, 192
LastHeardFrom, 887
LoadAvg, 888
Machine, 888
MaxJobRetirementTime, 888
Memory, 888
Mips, 888
MyType, 888
Name, 888
OpSys, 888
PartitionableSlot, 889
Requirements, 888
SlotID, 889
StartdIpAddr, 889
State, 889
TargetType, 889
TotalTimeBackfillBusy, 889
TotalTimeBackfillIdle, 889
TotalTimeBackfillKilling, 889
TotalTimeClaimedBusy, 889
TotalTimeClaimedIdle, 889
TotalTimeClaimedRetiring, 890
TotalTimeClaimedSuspended, 890
TotalTimeMatchedIdle, 890
TotalTimeOwnerIdle, 890
TotalTimePreemptingKilling, 890
TotalTimePreemptingVacating, 890
TotalTimeUnclaimedBenchmarking, 890
TotalTimeUnclaimedIdle, 890
UidDomain, 890
VirtualMachineID, 890
VirtualMemory, 890
WindowsBuildNumber, 890
WindowsMajorVersion, 890
WindowsMinorVersion, 891

ClassAd machine attribute (in Claimed State)
ClientMachine, 891
PreemptingOwner, 891
PreemptingRank, 891

PreemptingUser, 891
RemoteOwner, 891
RemoteUser, 891
TotalClaimRunTime, 891
TotalClaimSuspendTime, 891
TotalJobRunTime, 891
TotalJobSuspendTime, 891

ClassAd machine attribute (when running)
JobId, 891
JobStart, 892
LastPeriodicCheckpoint, 892

ClassAd Negotiator attribute
DaemonStartTime, 894
Machine, 894
MyAddress, 894
MyCurrentTime, 894
Name, 894
NegotiatorIpAddr, 894
PublicNetworkIpAddr, 894
UpdateSequenceNumber, 894

ClassAd Scheduler attribute
DaemonStartTime, 893
JobQueueBirthdate, 893
Machine, 893
MaxJobsRunning, 893
MyAddress, 893
MyCurrentTime, 893
Name, 893
NumUsers, 893
PublicNetworkIpAddr, 893
QuillEnabled, 893
ScheddIpAddr, 893
ServerTime, 893
StartLocalUniverse, 893
StartSchedulerUniverse, 893
TotalFlockedJobs, 893
TotalHeldJobs, 893
TotalIdleJobs, 893
TotalJobAds, 893
TotalRemovedJobs, 893
TotalRunningJobs, 894
UpdateSequenceNumber, 894
VirtualMemory, 894
WantResAd, 894

CLASSADLIFETIME macro, 208
cleanuprelease, 673

Condor Version 7.2.3 Reference Manual

INDEX 904

CLIENT TIMEOUTmacro, 208
clipped platform

availability, 5
definition of, 5

clock skew, 564
cluster

definition, 879
Cluster macro, 818
ClusterId

job ClassAd attribute, 818, 879
CMIP ADDRmacro, 155
Cmd

job ClassAd attribute, 879
COD

attributes, 449
ClusterId, 451
ProcID, 451

authorizing users, 448
condorcod tool, 452
condorcod activate command, 451, 455
condorcod deactivate command, 458
condorcod delegateproxy command, 459
condorcod release command, 458
condorcod renew command, 457
condorcod request command, 453
condorcod resume command, 457
condorcod suspend command, 456
defining an application, 448
defining applications

Job ID, 451
defining attributes by configuration, 451
introduction, 447
limitations, 459
managing claims, 452
optional attributes, 449

Args, 450
Env, 450
Err, 450
In, 449
IWD, 449
JarFiles, 450
JobUniverse, 450
KillSig, 450
Out, 450
StarterUserLog, 450
StarterUserLogUseXML, 450

overview, 448
required attributes, 449

Cmd, 449
Owner, 449

COD (Computing on Demand), 447–460
COLLECTORADDRESSFILE macro, 327
COLLECTORADDRESSFILE macro, 163
COLLECTORCLASSHISTORYSIZE macro,

211
COLLECTORDAEMONHISTORYSIZE

macro, 210, 211, 677, 832, 895
COLLECTORDAEMONSTATS macro, 210,

211, 894
COLLECTORDEBUGmacro, 211
COLLECTORHOSTmacro, 150, 178, 327, 344,

565, 637, 640, 753
COLLECTORNAMEmacro, 209
COLLECTORQUERYWORKERSmacro, 211
COLLECTORREQUIREMENTSmacro, 208
COLLECTORSOCKETBUFSIZE macro, 209
COLLECTORSOCKETCACHESIZE macro,

167, 209, 345
COLLECTORSTATSSWEEPmacro, 210, 619
COLLECTORTCP SOCKETBUFSIZE macro,

209, 659
CommittedTime

job ClassAd attribute, 879
compilers

supported with condorcompile, 7
CompletionDate

job ClassAd attribute, 879
COMPRESSPERIODIC CKPTmacro, 203
COMPRESSVACATECKPTmacro, 203
Computing On Demand

Defining Applications
Job ID, 451
Optional attributes, 449
Required attributes, 449

Computing on Demand (see COD), 447
concurrency limits, 420
CONCURRENCYLIMIT DEFAULTmacro, 421
ConcurrencyLimits

job ClassAd attribute, 879
Condor

binaries, 547
configuration, 142

Condor Version 7.2.3 Reference Manual

INDEX 905

contact information, 9, 578
contributions, 8
default policy, 272
distribution, 547
downloading, 547
FAQ, 547–578
flocking, 492
Frequently Asked Questions, 547–578
getting, 547
limitations, under UNIX, 4
mailing lists, 9, 578
new versions, notification of, 578
overview, 1–4
Personal, 550
platforms available, 5
pool, 112
resource allocation, 12
resource management, 2
shared functionality in daemons, 351
source code, 548
universe, 15
Unix administrator, 119
user manual, 11–111

Condor commands
condoradvertise, 675
condorcheckuserlogs, 679
condorcheckpoint, 680
condorchirp, 683
condorcod, 686
condorcold start, 140, 689
condorcold stop, 140, 692
condorcompile, 48, 695

list of supported compilers, 7
condorconfig bind, 698
condorconfig val, 700
condorconfigure, 704
condorconverthistory, 709
condordagman, 711
condorfetchlog, 715
condorfindhost, 718
condorglidein, 519, 720
condorhistory, 727
condorhold, 40, 730
condorinstall, 704
condorload history, 733
condormaster, 735

condormasteroff, 737
condoroff, 738
condoron, 741
condorpower, 744
condorpreen, 746
condorprio, 41, 47, 748
condorq, 15, 38, 41, 750
condorqedit, 758
condorreconfig, 760
condorreconfigschedd, 763
condorrelease, 40, 764
condorreschedule, 766
condorrestart, 769
condorrm, 15, 40, 772
condorrun, 777
condorset shutdown, 781
condorstats, 783
condorstatus, 13, 15, 22, 38, 39, 787
condorstorecred, 793
condorsubmit, 15, 19, 109, 795
condorsubmitdag, 825
condortransferdata, 830
condorupdatesstats, 832
condoruserprio, 47, 838
condorvacate, 841
condorvacatejob, 844
condorversion, 847
condorwait, 849
really slow; why?, 565
stork list cred, 860
stork q, 858
stork rm, 862
stork rm cred, 864
stork status, 868
stork storecred, 866
stork submit, 870

Condor daemon
condorhad, 357
condormastermanual page, 735
command line arguments, 352
condorckpt server, 115
condorcollector, 115
condorcredd, 116, 216, 533
condordbmsd, 115
condorgridmanager, 115
condorhad, 116

Condor Version 7.2.3 Reference Manual

INDEX 906

condor job router, 116, 521
condorkbdd, 115
condor leasemanager, 106, 116
condormaster, 114
condornegotiator, 115
condorprocd, 116
condorquill, 115
condorreplication, 116
condorschedd, 114
condorshadow, 16, 109
condorshadow, 114
condorstartd, 114, 253
condorstarter, 114
descriptions, 114
stork server, 116

Condor GAHP, 494
Condor-C, 494–498

configuration, 494
job submission, 495
limitations, 498

Condor-G, 498–509
GASS, 499
GRAM, 499
GSI, 498
job submission, 500
limitations, 509
proxy, 500
X.509 certificate, 500

CONDORADMINmacro, 154
condoradvertise command, 675
condorcheckuserlogs command, 679
condorcheckpoint command, 680
condorchirp command, 683
condorckpt server daemon, 115
condorcod command, 686
condorcold start, 689
condorcold stop, 692
condorcollector, 345
condorcollector daemon, 115
condorcompile, 559
condorcompile command, 695

list of supported compilers, 7
CONDORCONFIGmacro, 137, 638
condorconfig bind command, 698
condorconfig val command, 700
condorconfigure, 123

condorconfigure command, 704
condorconverthistory command, 709
condorcredd daemon, 116, 216, 533
condordagman command, 711
condordbmsd daemon, 115
CONDORDEVELOPERSmacro, 10, 208
CONDORDEVELOPERSCOLLECTOR macro,

10, 209
condorfetchlog command, 715
condorfindhost command, 718
CONDORGAHPmacro, 219, 495
condorglidein command, 720
condorgridmanager daemon, 115
condorhad daemon, 116
condorhistory command, 727
condorhold command, 730
CONDORHOSTmacro, 150, 331
CONDORIDS

environment variable, 120, 154
CONDORIDS macro, 120, 153, 316, 613, 642
condorinstall command, 704
CONDORJOB POLL INTERVAL macro, 217
condorjob router daemon, 116, 521
condorkbdd daemon, 115
condorleasemanager daemon, 106, 116
condorload history command, 733
condormaster command, 735
condormaster daemon, 114
condormasteroff command, 737
condornegotiator daemon, 115
condoroff command, 738
condoron command, 741
condorpower command, 744
condorpreen command, 746
condorprio command, 748
condorprocd daemon, 116
condorq command, 750
condorqedit command, 758
condorquill daemon, 115
condorreconfig command, 760
condorreconfigschedd command, 763
condorrelease command, 764
condorreplication daemon, 116
condorreschedule command, 766
condorrestart command, 769
condorrm command, 772

Condor Version 7.2.3 Reference Manual

INDEX 907

condorrouter history, 775
condorrun command, 777
condorschedd daemon, 114

receiving signal 25, 576
condorset shutdown command, 781
condorshadow, 16, 39
condorshadow daemon, 114
CONDORSSHKEYGENmacro, 59
CONDORSSHDmacro, 59
condorstartd daemon, 114
condorstartddaemon, 253
condorstarter daemon, 114
condorstats command, 783
condorstatus command, 787
condorstorecred command, 793
condorsubmit command, 795
condorsubmitdag command, 825
CONDORSUPPORTEMAIL macro, 154
condortransferdata command, 830
condorupdatesstats command, 832
condoruserprio command, 838
condorvacate command, 841
condorvacatejob command, 844
condorversion command, 847
CONDORVIEW HOSTmacro, 150, 617
CONDORVM, 34
condorwait command, 849
CondorView

Client, 138
Client installation, 139
configuration, 396
Server, 396
use ofcrontabprogram, 140

configuration, 142
checkpoint server configuration variables,

172
Condor-wide configuration variables, 150
condorcollector configuration variables,

208
condorcredd configuration variables, 216
condorgridmanager configuration vari-

ables, 216
condorjob router configuration variables,

220
condorleasemanager configuration vari-

ables, 221

condormaster configuration variables, 173
condornegotiator configuration variables,

211
condorpreen configuration variables, 207
condorschedd configuration variables, 195
condorshadow configuration variables,

202
condorstartd configuration variables, 179
condorstarter configuration variables, 203
condorsubmit configuration variables, 205
daemon logging configuration variables,

157
DaemonCore configuration variables, 162
DAGMan configuration variables, 223
example, 255
for flocking, 492
for glidein, 519
grid and glidein configuration variables,

223
grid monitor configuration variables, 222
high availability configuration variables,

235
network-related configuration variables,

165
of machines, to implement a given policy,

252
pre-defined macros, 147
PrivSep configuration variables, 232
Quill configuration variables, 239
security configuration variables, 229
shared file system configuration variables,

168
SMP machines, 403
startd policy, 252
virtual machine configuration variables,

233
configuration file

$ENV definition, 149
evaluation order, 143
macro definitions, 143
macros, 148
pre-defined macros, 147
subsystem names, 147

configuration files
location, 121

configuration macro

Condor Version 7.2.3 Reference Manual

INDEX 908

<SUBSYS><LEVEL> LOG, 160
<SUBSYS>ADDRESSFILE , 163, 326,

646
<SUBSYS>ARGS, 174
<SUBSYS>ATTRS, 163
<SUBSYS>DAEMONAD FILE , 163, 633,

646
<SUBSYS>DEBUG, 158
<SUBSYS>ENABLESOAPSSL, 242
<SUBSYS>EXPRS, 163
<SUBSYS>LOCK, 158
<SUBSYS>LOG, 157
<SUBSYS>NOTRESPONDINGTIMEOUT,

164
<SUBSYS>SOAPSSL PORT, 243
<SUBSYS>TIMEOUTMULTIPLIER ,

167
<SUBSYS>, 173
ABORTONEXCEPTION, 156
ACCOUNTANTLOCALDOMAIN, 212
ADDWINDOWSFIREWALLEXCEPTION,

178
ALIVE INTERVAL, 181, 197, 259
ALLOW* macros , 305
ALLOW* , 575
ALLOWADMINCOMMANDS, 178
ALLOWCLIENT, 229
ALLOWCONFIG, 533
ALLOWDAEMON, 653
ALLOWFORCERM, 664
ALLOWVMCRUFT, 34, 186, 890
ALL DEBUG, 160
ALWAYSVMUNIV USENOBODY, 234
AMAZONEC2 URL, 219, 513
AMAZONGAHPWORKERMAXNUM, 598
AMAZONGAHP, 219
AMAZONHTTP PROXY, 219, 513
APPENDPREFSTANDARD, 206
APPENDPREFVANILLA , 206
APPENDRANKSTANDARD, 206, 351
APPENDRANKVANILLA , 206
APPENDRANK, 206
APPENDREQUIREMENTS, 206
APPENDREQSTANDARD, 206, 351
APPENDREQVANILLA , 206
ARCH, 148, 392

AUTHSSL CLIENT CADIR, 231, 294
AUTHSSL CLIENT CAFILE , 231, 294
AUTHSSL CLIENT CERTFILE, 231,

294
AUTHSSL CLIENT KEYFILE , 231, 294
AUTHSSL SERVERCADIR, 231, 294
AUTHSSL SERVERCAFILE , 231, 294
AUTHSSL SERVERCERTFILE, 231,

294
AUTHSSL SERVERKEYFILE , 231, 294
ActivationTimer , 272
ActivityTimer , 272
AfterHours , 277
BACKFILL SYSTEM, 183, 413
BIND ALL INTERFACES, 165, 339, 601
BIN , 151
BOINC Arguments , 417, 419
BOINC Environment , 417
BOINC Error , 417
BOINC Executable , 415, 416, 419
BOINC InitialDir , 415, 416, 418, 419
BOINC Output , 417
BOINC Owner, 415, 416, 419
BOINC Universe , 416
BackgroundLoad , 272
CERTIFICATE MAPFILE, 231, 298
CKPTPROBE, 156, 618
CKPTSERVERCHECKPARENTINTERVAL,

173
CKPTSERVERDEBUG, 348
CKPTSERVERDIR, 172, 348
CKPTSERVERHOST, 172, 332, 344, 348,

349
CKPTSERVERLOG, 348
CLAIM WORKLIFE, 180, 270, 280
CLASSADLIFETIME , 208
CLIENT TIMEOUT, 208
CMIP ADDR, 155
COLLECTORADDRESSFILE , 327
COLLECTORCLASSHISTORYSIZE ,

211
COLLECTORDAEMONHISTORYSIZE ,

210, 211, 677, 832, 895
COLLECTORDAEMONSTATS, 210, 211,

894
COLLECTORDEBUG, 211

Condor Version 7.2.3 Reference Manual

INDEX 909

COLLECTORHOST, 150, 178, 327, 344,
565, 637, 640, 753

COLLECTORNAME, 209
COLLECTORQUERYWORKERS, 211
COLLECTORREQUIREMENTS, 208
COLLECTORSOCKETBUFSIZE, 209
COLLECTORSOCKETCACHESIZE ,

167, 209, 345
COLLECTORSTATSSWEEP, 210, 619
COLLECTORTCP SOCKETBUFSIZE,

209, 659
COMPRESSPERIODIC CKPT, 203
COMPRESSVACATECKPT, 203
CONCURRENCYLIMIT DEFAULT, 421
CONDORADMIN, 154
CONDORCONFIG, 137, 638
CONDORDEVELOPERSCOLLECTOR,

10, 209
CONDORDEVELOPERS, 10, 208
CONDORGAHP, 219, 495
CONDORHOST, 150, 331
CONDORIDS , 120, 153, 316, 613, 642
CONDORJOB POLL INTERVAL, 217
CONDORSSHD, 59
CONDORSSHKEYGEN, 59
CONDORSUPPORTEMAIL, 154
CONDORVIEW HOST, 150, 617
CONSOLEDEVICES, 125, 181, 393
CONTINUE, 179, 270
COUNTHYPERTHREADCPUS, 183
CPUBusyTime, 273
CPUBusy, 272
CPUIdle , 272
CPUIsBusy , 272
CREATECOREFILES , 156
CREDDCACHELOCALLY, 216
CREDDHOST, 216, 655, 666
CREDCHECKINTERVAL, 244
CREDINDEX FILE , 244
CREDSTOREDIR, 244
CREDSUPERUSERS, 244
C GAHPLOG, 219, 495
C GAHPWORKERTHREADLOG, 219
Cluster , 818
ContinueIdleTime , 272
DAEMONNAMEENVIRONMENT, 174

DAEMONLIST , 173, 348, 393, 633, 642,
657, 735

DAEMONSHUTDOWNFAST, 164, 638
DAEMONSHUTDOWN, 164, 638, 898
DAGMANABORTDUPLICATES, 227, 647
DAGMANABORTONSCARYSUBMIT,

227, 638, 640
DAGMANALLOWEVENTS, 225
DAGMANAUTORESCUE, 89, 228, 605
DAGMANCONDORRMEXE, 226
DAGMANCONDORSUBMIT EXE, 226
DAGMANCOPYTO SPOOL, 228, 587
DAGMANDEBUGCACHEENABLE, 224
DAGMANDEBUGCACHESIZE , 224
DAGMANDEBUG, 226
DAGMANIGNOREDUPLICATEJOB EXECUTION,

225
DAGMANINSERT SUBFILE , 228, 604,

605
DAGMANLOGONNFS IS ERROR, 227
DAGMANMAXJOBS IDLE , 225
DAGMANMAXJOBS SUBMITTED, 225
DAGMANMAXRESCUENUM, 228, 605
DAGMANMAXSUBMITSPERINTERVAL,

224
DAGMANMAXSUBMIT ATTEMPTS, 224
DAGMANMUNGENODENAMES, 78, 225
DAGMANOLDRESCUE, 89, 228, 605
DAGMANONEXIT REMOVE, 227, 643
DAGMANPENDINGREPORTINTERVAL,

228
DAGMANPROHIBIT MULTI JOBS, 226
DAGMANRETRYNODEFIRST , 224, 227
DAGMANRETRYSUBMIT FIRST , 224
DAGMANSTARTUPCYCLEDETECT,

224
DAGMANSTORKRMEXE, 226
DAGMANSTORKSUBMIT EXE, 226
DAGMANSUBMIT DELAY, 224
DAGMANSUBMIT DEPTHFIRST , 227,

645
DATABASEPURGEINTERVAL, 240, 366
DATABASEREINDEXINTERVAL, 241,

367
DBMSDARGS, 242, 634
DBMSDLOG, 242, 634

Condor Version 7.2.3 Reference Manual

INDEX 910

DBMSDNOTRESPONDINGTIMEOUT,
242

DBMSD, 241, 634
DCDAEMONLIST , 173, 633
DEADCOLLECTORMAXAVOIDANCETIME,

156, 621, 622
DEDICATEDEXECUTEACCOUNTREGEXP,

169, 319, 420, 639, 641
DEDICATEDSCHEDULERUSEFIFO ,

202, 643
DEFAULTCREDEXPIRE THRESHOLD,

244
DEFAULTDOMAINNAME, 155, 331, 569
DEFAULTIO BUFFERBLOCKSIZE ,

206
DEFAULTIO BUFFERSIZE , 206
DEFAULTPRIO FACTOR, 212
DEFAULTRANKSTANDARD, 206
DEFAULTRANKVANILLA , 206
DEFAULTRANK, 206
DEFAULTUNIVERSE, 205, 589, 800
DELEGATEJOB GSI CREDENTIALS,

230, 654
DENY* , 575
DENYCLIENT, 229
DEPLOYMENTRECOMMENDEDDIRS,

141
DEPLOYMENTRECOMMENDEDEXECS,

141
DEPLOYMENTRELEASEDIR, 141
DEPLOYMENTREQUIREDDIRS, 141
DEPLOYMENTREQUIREDEXECS, 141
DISCONNECTEDKEYBOARDIDLE BOOST,

184, 403
D COMMAND, 306
D SECURITY, 306, 597
DedicatedScheduler , 183, 409
EMAIL DOMAIN, 155
ENABLEBACKFILL, 183, 413, 416
ENABLEGRID MONITOR, 223, 509
ENABLEHISTORYROTATION, 154, 663
ENABLEPERSISTENTCONFIG, 162
ENABLERUNTIMECONFIG, 162
ENABLESOAPSSL, 243
ENABLESOAP, 242
ENABLEUSERLOGLOCKING, 158

ENABLEWEBSERVER, 242
ENCRYPTEXECUTEDIRECTORY, 230
ENV, 149
EVENTLOGFSYNC, 161, 583
EVENTLOGJOB AD INFORMATIONATTRS,

45, 161, 634
EVENTLOGLOCKING, 161, 583
EVENTLOGMAXROTATIONS, 161
EVENTLOGMAXSIZE , 161
EVENTLOGROTATIONLOCK, 161
EVENTLOGUSEXML, 161, 634
EVENTLOG, 161, 634
EVICT BACKFILL, 184, 271, 414
EXECUTELOGIN IS DEDICATED, 170,

639, 641, 645
EXECUTE, 152, 322, 401, 425, 566, 613,

887
EXECTRANSFERATTEMPTS, 204
FILESYSTEMDOMAIN, 149, 170, 331
FILE LOCKVIA MUTEX, 158
FLOCKCOLLECTORHOSTS, 199, 492
FLOCKFROM, 493
FLOCKNEGOTIATORHOSTS, 199, 493
FLOCKTO, 492
FS REMOTEDIR, 230, 297
FULL HOSTNAME, 147
FetchWorkDelay , 193, 461, 465
GAHPARGS, 218
GAHP, 218
GLEXECJOB, 223, 324, 595, 598
GLEXECSTARTER, 325, 595, 598, 616,

641, 645
GLEXEC, 223, 324
GLIDEIN SERVERURLS, 223, 519
GLITE LOCATION, 219, 511, 512
GLOBUSGATEKEEPERTIMEOUT, 218
GRIDFTP URL BASE, 219, 506
GRIDMANAGERCHECKPROXYINTERVAL,

217
GRIDMANAGERCONNECTFAILURE RETRYCOUNT,

218
GRIDMANAGERCONTACTSCHEDDDELAY,

217
GRIDMANAGERDEBUG, 609
GRIDMANAGEREMPTYRESOURCEDELAY,

217

Condor Version 7.2.3 Reference Manual

INDEX 911

GRIDMANAGERGAHPCALL TIMEOUT,
218, 613

GRIDMANAGERGLOBUSCOMMITTIMEOUT,
218

GRIDMANAGERJOB PROBEINTERVAL,
217

GRIDMANAGERLOG, 217, 631
GRIDMANAGERMAXJOBMANAGERSPERRESOURCE,

218
GRIDMANAGERMAXPENDINGREQUESTS,

218
GRIDMANAGERMAXPENDINGSUBMITSPERRESOURCE,

218, 616
GRIDMANAGERMAXPENDINGSUBMITS,

218
GRIDMANAGERMAXSUBMITTEDJOBS PERRESOURCE,

217, 616
GRIDMANAGERMAXWSDESTROYSPERRESOURCE,

218, 614
GRIDMANAGERMINIMUMPROXYTIME,

217
GRIDMANAGERRESOURCEPROBEDELAY,

217
GRIDMANAGERRESOURCEPROBEINTERVAL,

217
GRIDMAP, 230, 292, 299
GRID MONITORHEARTBEATTIMEOUT,

223
GRID MONITORNOSTATUSTIMEOUT,

223, 654
GRID MONITORRETRYDURATION,

223
GRID MONITOR, 223, 509
GROUPAUTOREGROUP<groupname> ,

215
GROUPAUTOREGROUPchemistry ,

251
GROUPAUTOREGROUP, 215, 251
GROUPNAMES, 215, 251
GROUPPRIO FACTOR<groupname> ,

215, 251
GROUPQUOTA<groupname> , 215
GSI DAEMONCERT, 229, 291
GSI DAEMONDIRECTORY, 229, 291, 292
GSI DAEMONKEY, 229, 291
GSI DAEMONNAME, 229, 605, 654

GSI DAEMONPROXY, 230, 291
GSI DAEMONTRUSTEDCA DIR, 229,

291
GT2 GAHP, 219
GT4 GAHP, 219
HADARGS, 238
HADCONNECTIONTIMEOUT, 237
HADDEBUG, 238
HADLIST , 237
HADLOG, 238
HADUPDATEINTERVAL, 238
HADUSEPRIMARY, 237
HADUSEREPLICATION, 238, 358
HAD, 238
HA <SUBSYS>LOCKHOLDTIME, 237
HA <SUBSYS>LOCKURL, 236
HA <SUBSYS>POLL PERIOD, 237
HA LOCKHOLDTIME, 236
HA LOCKURL, 236
HA POLL PERIOD, 237
HIBERNATECHECKINTERVAL, 193,

426, 601
HIBERNATE, 193, 426, 601
HIGHPORT, 166, 327
HISTORY, 154
HOLDJOB IF CREDENTIALEXPIRES,

217
HOOKEVICT CLAIM, 193, 462
HOOKFETCHWORK, 193, 461, 462, 464
HOOKJOB CLEANUP, 468
HOOKJOB EXIT , 463
HOOKJOB FINALIZE , 468
HOOKPREPAREJOB, 462, 881
HOOKREPLYCLAIM, 193
HOOKREPLYFETCH, 462
HOOKTRANSLATE, 467
HOOKUPDATEJOB INFO, 462, 464, 468,

585
HOSTALLOW. . ., 162
HOSTALLOW* , 575
HOSTALLOWADMINISTRATOR, 133,

343
HOSTALLOWCONFIG, 343
HOSTALLOWDAEMON, 653
HOSTALLOWNEGOTIATORSCHEDD,

493

Condor Version 7.2.3 Reference Manual

INDEX 912

HOSTALLOWNEGOTIATOR, 343
HOSTALLOWREAD, 133, 313
HOSTALLOWWRITE, 119, 133, 137, 520,

668
HOSTALLOW, 162
HOSTDENY* , 575
HOSTDENY, 162
HOSTNAME, 147
HighLoad , 272
IGNORENFS LOCKERRORS, 171
INCLUDE, 151
INVALID LOGFILES , 208, 746
IN HIGHPORT, 166, 327
IN LOWPORT, 166, 327
IP ADDRESS, 147
IS OWNER, 180, 261
IS VALID CHECKPOINTPLATFORM,

179, 254
JAVA CLASSPATHARGUMENT, 192
JAVA CLASSPATHDEFAULT, 192
JAVA CLASSPATHSEPARATOR, 192
JAVA EXTRAARGUMENTS, 192, 423
JAVA MAXHEAPARGUMENT, 192, 423,

587
JAVA, 192, 422, 506
JOB INHERITS STARTERENVIRONMENT,

205, 599, 616, 658
JOB IS FINISHED INTERVAL, 197
JOB PROXYOVERRIDEFILE , 665
JOB RENICE INCREMENT, 204, 254
JOB ROUTERDEFAULTS, 220
JOB ROUTERENTRIES CMD, 220, 528
JOB ROUTERENTRIES FILE , 220
JOB ROUTERENTRIES REFRESH, 220
JOB ROUTERENTRIES, 220, 528
JOB ROUTERMAXJOBS, 221
JOB ROUTERNAME, 221
JOB ROUTERPOLLING PERIOD, 221,

468
JOB ROUTERSOURCEJOB CONSTRAINT,

221
JOB STARTCOUNT, 196, 197
JOB STARTDELAY, 196, 197, 627
KEEPPOOLHISTORY, 210, 396
KERBEROSCLIENT KEYTAB, 232
KERBEROSMAPFILE , 294, 299

KERBEROSSERVERKEYTAB, 232
KERBEROSSERVERPRINCIPAL , 232,

294
KERBEROSSERVERSERVICE, 232
KERBEROSSERVERUSER, 232
KILLING TIMEOUT, 268, 271
KILL , 179, 271
KeyboardBusy , 272
LIBEXEC, 151, 201
LIB , 151
LINUX HIBERNATIONMETHOD, 194
LOCALCONFIGDIR, 153
LOCALCONFIGFILE , 122, 147, 152,

391–393, 555
LOCALCREDD, 533
LOCALDIR, 120, 123, 151, 322
LOCALQUEUEBACKUPDIR, 595
LOCALXACTBACKUPFILTER , 595
LOCKFILE UPDATEINTERVAL, 165,

611
LOCK, 121, 154
LOGSUSETIMESTAMP, 158, 633
LOGONNFS IS ERROR, 207, 633
LOG, 152, 156, 182, 353
LOWPORT, 166, 327
LSF GAHP, 219, 511
LastCkpt , 272
LeaseManager.CLASSAD LOG, 222
LeaseManager.DEBUG ADS, 222
LeaseManager.DEFAULT MAXLEASEDURATION,

222
LeaseManager.GETADS INTERVAL,

221
LeaseManager.MAX LEASEDURATION,

222
LeaseManager.MAX TOTALLEASEDURATION,

222
LeaseManager.PRUNE INTERVAL,

222
LeaseManager.QUERY ADTYPE, 222
LeaseManager.QUERY CONSTRAINTS,

222
LeaseManager.UPDATE INTERVAL,

222
MAIL, 154, 392
MASTER<SUBSYS>CONTROLLER, 237

Condor Version 7.2.3 Reference Manual

INDEX 913

MASTER<name> BACKOFFCEILING ,
176, 642

MASTER<name> BACKOFFCONSTANT,
175, 642

MASTER<name> BACKOFFFACTOR,
176

MASTER<name> RECOVERFACTOR,
176

MASTERADDRESSFILE , 178
MASTERATTRS, 178
MASTERBACKOFFCEILING , 176, 642
MASTERBACKOFFCONSTANT, 175, 642
MASTERBACKOFFFACTOR, 176
MASTERCHECKINTERVAL, 208
MASTERCHECKNEWEXECINTERVAL,

175
MASTERDEBUG, 178
MASTERHADBACKOFFCONSTANT,

358
MASTERHA LIST , 236, 355, 633
MASTERINSTANCELOCK, 178
MASTERNAME, 177, 735
MASTERNEWBINARY DELAY, 175, 642
MASTERRECOVERFACTOR, 176, 642
MASTERSHUTDOWN<Name>, 175
MASTERUPDATEINTERVAL, 175, 642
MASTERWAITS FORGCBBROKER,

168, 638, 643
MATCHTIMEOUT, 258, 265, 270
MAXJOBRETIREMENTTIME, 180, 271
MAX<SUBSYS><LEVEL> LOG, 160
MAX<SUBSYS>LOG, 157, 160, 665
MAXACCOUNTANTDATABASESIZE ,

212
MAXCKPTSERVERLOG, 348
MAXCLAIM ALIVES MISSED, 181, 197
MAXCONCURRENTDOWNLOADS, 196,

622, 627
MAXCONCURRENTUPLOADS, 196, 622,

627
MAXC GAHPLOG, 219
MAXDAGMANLOG, 71, 226
MAXDISCARDEDRUNTIME, 172, 346
MAXEVENTLOG, 161, 596, 634
MAXHADLOG, 238
MAXHISTORYLOG, 155

MAXHISTORYROTATIONS, 155, 663
MAXJOBS RUNNING, 39, 195, 328, 893
MAXJOBS SUBMITTED, 196
MAXJOB MIRRORUPDATELAG, 221
MAXJOB QUEUELOGROTATIONS, 155
MAXNEXTJOB STARTDELAY, 197,

627, 806, 883
MAXNUMCPUS, 182
MAXPENDINGSTARTDCONTACTS,

196, 598
MAXREPLICATION LOG, 239
MAXSCHEDDLOG, 315
MAXSHADOWEXCEPTIONS, 196
MAXSLOT TYPES, 185
MAXTRACKINGGID, 420, 628
MAXTRANSFERERLIFETIME , 238
MAXTRANSFERERLOG, 239
MAXVMGAHPLOG, 233
MEMORY, 183
MIN TRACKINGGID, 420, 628
MPI CONDORRSHPATH, 201
MYPROXYGETDELEGATION, 242, 508
MachineBusy , 272
MaxSuspendTime , 272
MaxVacateTime , 272
NEGOTIATEALL JOBS IN CLUSTER,

199, 248
NEGOTIATORADDRESSFILE , 326
NEGOTIATORCONSIDERPREEMPTION,

215, 280, 608
NEGOTIATORCYCLEDELAY, 211
NEGOTIATORDEBUG, 214
NEGOTIATORDISCOUNTSUSPENDEDRESOURCES,

212
NEGOTIATORHOST, 150
NEGOTIATORIGNOREUSERPRIORITIES ,

517
NEGOTIATORINFORMSTARTD, 212,

627
NEGOTIATORINTERVAL, 211
NEGOTIATORMATCHLISTCACHING,

517, 665
NEGOTIATORMATCHEXPRS, 214, 639,

640
NEGOTIATORMAXTIME PERPIESPIN ,

214

Condor Version 7.2.3 Reference Manual

INDEX 914

NEGOTIATORMAXTIME PERSUBMITTER,
214

NEGOTIATORPOSTJOB RANK, 213
NEGOTIATORPREJOB RANK, 213
NEGOTIATORSOCKETCACHESIZE ,

212, 328
NEGOTIATORTIMEOUT, 212
NEGOTIATORUSENONBLOCKINGSTARTDCONTACT,

167
NETWORKINTERFACE, 165, 330, 332
NETWORKMAXPENDINGCONNECTS,

157
NET REMAPENABLE, 167
NET REMAPINAGENT, 167, 643
NET REMAPROUTE, 168
NET REMAPSERVICE, 167
NICE USERPRIO FACTOR, 212, 245
NODE, 56, 61
NONBLOCKINGCOLLECTORUPDATE,

167
NORDUGRIDGAHP, 220
NOTRESPONDINGTIMEOUT, 164
NOTRESPONDINGWANTCORE, 165,

589
NODNS, 155
NUMCPUS, 182, 186, 402
NUMSLOTSTYPE <N>, 186, 402
NUMSLOTS, 186, 402
Node, 818
NonCondorLoadAvg , 272
OBITUARYLOGLENGTH, 174
OFFLINE EXPIRE ADSAFTER, 194,

428, 584
OFFLINE LOG, 194, 428, 584
OPSYS, 148, 392
OUTHIGHPORT, 167, 327
OUTLOWPORT, 166, 327
PASSWDCACHEREFRESH, 156
PBS GAHP, 219, 511
PERIODIC CHECKPOINT, 179, 443, 555
PERIODIC EXPRINTERVAL, 200, 637
PERIODIC EXPRTIMESLICE , 200, 640
PERIODIC MEMORYSYNC, 203
PERSISTENTCONFIGDIR, 162
PERJOB HISTORYDIR, 202, 647
PID , 148

POLLING INTERVAL, 180, 266
POOLHISTORYDIR, 210, 396
POOLHISTORYMAXSTORAGE, 210,

396
POOLHISTORYSAMPLINGINTERVAL,

210
PPID, 149
PREEMPTIONRANKSTABLE, 214, 246,

584, 618
PREEMPTIONRANK, 214, 618
PREEMPTIONREQUIREMENTSSTABLE,

213, 246, 584, 618
PREEMPTIONREQUIREMENTS, 47, 213,

215, 246, 618, 753
PREEMPT, 179, 270, 463
PREENADMIN, 207, 746
PREENARGS, 174
PREENINTERVAL, 174, 641, 642, 644
PREEN, 174
PRIORITY HALFLIFE , 47, 212, 245, 247
PRIVATE NETWORKINTERFACE, 166,

634
PRIVATE NETWORKNAME, 165, 634
PRIVSEP ENABLED, 232, 323, 628
PRIVSEP SWITCHBOARD, 232, 323, 628
PROCDADDRESS, 216, 611
PROCDLOG, 216
PROCDMAXSNAPSHOTINTERVAL,

216
PUBLISH OBITUARIES, 174
ParallelSchedulingGroup , 202,

411, 412
Process , 818
QUERYTIMEOUT, 208
QUEUEALL USERSTRUSTED, 198
QUEUECLEANINTERVAL, 198
QUEUESUPERUSERS, 198
QUILL ADDRESSFILE , 241, 367
QUILL ARGS, 239
QUILL DBSIZE LIMIT , 241, 367
QUILL DB IP ADDR, 240, 364, 366
QUILL DB NAME, 240, 366
QUILL DB QUERYPASSWORD, 241, 367
QUILL DB TYPE, 240
QUILL DB USER, 240, 366
QUILL ENABLED, 240, 893

Condor Version 7.2.3 Reference Manual

INDEX 915

QUILL IS REMOTELYQUERYABLE,
241, 367

QUILL JOB HISTORYDURATION, 241,
366

QUILL LOG, 240
QUILL MAINTAIN DB CONN, 240, 367
QUILL MANAGEVACUUM, 241, 367
QUILL NAME, 240, 366
QUILL NOTRESPONDINGTIMEOUT,

240
QUILL POLLING PERIOD, 240, 366
QUILL RESOURCEHISTORYDURATION,

241, 366
QUILL RUNHISTORYDURATION, 241,

366
QUILL SHOULDREINDEX, 241, 656
QUILL USESQL LOG, 240
QUILL , 239
Q QUERYTIMEOUT, 156
RANDOMCHOICE() , 149
RANDOMINTEGER() , 149, 555
RANKFACTOR, 411
RANK, 179, 255, 271, 410, 411
RELEASEDIR, 122, 151, 392
REMOTEPRIO FACTOR, 212, 245
REPLICATION ARGS, 239
REPLICATION DEBUG, 239
REPLICATION INTERVAL, 238
REPLICATION LIST , 238
REPLICATION LOG, 239
REPLICATION, 239
REQUESTCLAIM TIMEOUT, 197
REQUIRELOCALCONFIGFILE , 153
RESERVEDDISK, 154, 887
RESERVEDMEMORY, 183
RESERVEDSWAP, 154, 558
RESERVEAFS CACHE, 170
RUNBENCHMARKS, 183, 264, 270
Requirements , 195
SBIN, 151
SCHEDDADDRESSFILE , 199
SCHEDDASSUMENEGOTIATORGONE,

201
SCHEDDATTRS, 199
SCHEDDBACKUPSPOOL, 201

SCHEDDCLUSTERINCREMENTVALUE,
202, 581

SCHEDDCLUSTERINITIAL VALUE,
202, 581

SCHEDDDAEMONAD FILE , 163, 633
SCHEDDDEBUG, 199
SCHEDDEXECUTE, 199
SCHEDDHOST, 151
SCHEDDINTERVAL TIMESLICE , 196,

640
SCHEDDINTERVAL, 101, 196
SCHEDDLOCK, 198
SCHEDDLOG, 558
SCHEDDMIN INTERVAL, 196
SCHEDDNAME, 177, 199, 356, 610
SCHEDDPREEMPTIONRANK, 202, 412
SCHEDDPREEMPTIONREQUIREMENTS,

201, 411
SCHEDDQUERYWORKERS, 196
SCHEDDROUNDATTR <xxxx> , 201
SCHEDDROUNDATTR, 662
SCHEDDSENDVACATEVIA TCP, 202
SCHEDUNIV RENICE INCREMENT,

198
SECONDARYCOLLECTORLIST , 178,

637, 640
SEC* AUTHENTICATIONMETHODS,

229
SEC* AUTHENTICATION, 229
SEC* CRYPTOMETHODS, 229
SEC* ENCRYPTION, 229
SEC* INTEGRITY, 229
SEC* NEGOTIATION, 229
SECCLAIMTOBEINCLUDE DOMAIN,

668
SECDEFAULTAUTHENTICATIONMETHODS,

345
SECDEFAULTAUTHENTICATIONTIMEOUT,

230, 602
SECDEFAULTSESSIONDURATION,

230, 611
SECENABLEMATCHPASSWORDAUTHENTICATION,

231, 598
SECINVALIDATE SESSIONSVIA TCP,

230, 598
SECPASSWORDFILE , 231, 295

Condor Version 7.2.3 Reference Manual

INDEX 916

SECTCP SESSIONDEADLINE, 230,
581

SECTCP SESSIONTIMEOUT, 230
SETTABLEATTRS. . ., 162
SETTABLEATTRSPERMISSION-LEVEL,

314
SETTABLEATTRS, 162, 314
SHADOWDEBUG, 202
SHADOWJOB CLEANUPRETRYDELAY,

203
SHADOWLAZY QUEUEUPDATE, 203,

627
SHADOWLOCK, 202
SHADOWLOG, 42
SHADOWMAXJOB CLEANUPRETRIES,

203
SHADOWQUEUEUPDATEINTERVAL,

202
SHADOWRENICE INCREMENT, 198
SHADOWSIZE ESTIMATE, 197
SHADOW, 195
SHELL, 779
SHUTDOWNFAST TIMEOUT, 175, 642
SHUTDOWNGRACEFULTIMEOUT, 162,

642
SIGNIFICANT ATTRIBUTES, 248
SLOTNJOB HOOKKEYWORD, 193, 464
SLOTSCONNECTEDTO CONSOLE, 184,

403
SLOTSCONNECTEDTO KEYBOARD,

184, 403
SLOT TYPE <N> PARTITIONABLE,

185, 407
SLOT TYPE <N>, 185, 400
SLOTx EXECUTE, 152, 401
SLOTx USER, 169, 319
SLOWCKPTSPEED, 203
SOAPLEAVEIN QUEUE, 242, 471
SOAPSSL CA DIR, 243
SOAPSSL CA FILE , 243
SOAPSSL DHFILE , 243
SOAPSSL SERVERKEYFILE PASSWORD,

243
SOAPSSL SERVERKEYFILE , 243
SOFTUID DOMAIN, 169, 316
SPOOL, 152, 595

STARTDADDRESSFILE , 182
STARTDAD REEVALEXPR, 609
STARTDATTRS, 163, 181, 315, 350, 406,

412
STARTDAVAIL CONFIDENCE, 192
STARTDCLAIM ID FILE , 182
STARTDCOMPUTEAVAIL STATS, 191
STARTDCRON<ModuleName> ARGS,

189
STARTDCRON<ModuleName> CWD,

189
STARTDCRON<ModuleName> ENV,

189
STARTDCRON<ModuleName> EXECUTABLE,

187
STARTDCRON<ModuleName> KILL ,

188
STARTDCRON<ModuleName> MODE,

188
STARTDCRON<ModuleName> OPTIONS,

189
STARTDCRON<ModuleName> PERIOD,

188
STARTDCRON<ModuleName> PREFIX,

187
STARTDCRON<ModuleName> RECONFIG,

188
STARTDCRONAUTOPUBLISH, 187
STARTDCRONCONFIGVAL, 186
STARTDCRONJOBLIST , 187
STARTDCRONJOBS, 190
STARTDCRONNAME, 186
STARTDDEBUG, 181, 315, 644
STARTDEXPRS, 163
STARTDHASBADUTMP, 181
STARTDJOB EXPRS, 181, 213
STARTDJOB HOOKKEYWORD, 193, 464
STARTDMAXAVAIL PERIODSAMPLES,

192
STARTDNAME, 183
STARTDNOCLAIMSHUTDOWN, 183
STARTDRESOURCEPREFIX, 184, 629,

636
STARTDSENDSALIVES , 182
STARTDSHOULDWRITECLAIM ID FILE ,

182

Condor Version 7.2.3 Reference Manual

INDEX 917

STARTDSLOT ATTRS, 185
STARTDVMATTRS, 185
STARTDVMEXPRS, 185
STARTERALLOWRUNASOWNER, 169,

318, 419, 639, 641
STARTERCHOOSESCKPTSERVER,

172, 349
STARTERDEBUG, 204
STARTERINITIAL UPDATEINTERVAL,

463
STARTERJOB ENVIRONMENT, 205
STARTERJOB HOOKKEYWORD, 464
STARTERLOCALLOGGING, 204
STARTERLOCAL, 195
STARTERUPDATEINTERVAL TIMESLICE ,

204, 602
STARTERUPDATEINTERVAL, 204,

463, 627
STARTERUPLOADTIMEOUT, 205, 618,

638, 640
STARTER, 180
STARTBACKFILL, 184, 265, 271, 413,

416
STARTDAEMONS, 175
STARTLOCALUNIVERSE, 195, 637,

640, 893
STARTMASTER, 175
STARTSCHEDULERUNIVERSE, 195,

637, 640, 893
START, 179, 184, 253, 270, 410
STATEFILE , 238
STORKMAXDELAYINMINUTES, 243
STORKMAXNUMJOBS, 243
STORKMAXRETRY, 104, 243
STORKMODULEDIR, 243
STORKTMPCREDDIR, 243
SUBMIT DEBUG, 160
SUBMIT EXPRS, 207
SUBMIT MAXPROCSIN CLUSTER, 207
SUBMIT SENDRESCHEDULE, 207
SUBMIT SKIP FILECHECKS, 207
SUBSYSTEM, 147
SUSPEND, 179, 270, 561
SYSAPI GETLOADAVG, 157
SYSTEMPERIODIC HOLD, 200, 620
SYSTEMPERIODIC RELEASE, 200, 620

SYSTEMPERIODIC REMOVE, 200, 620
StartIdleTime , 272
StateTimer , 272
TCP UPDATECOLLECTORS, 167
TILDE , 147
TOOLDEBUG, 160
TOUCHLOGINTERVAL, 158
TRANSFERERDEBUG, 239
TRANSFERERLOG, 239
TRANSFERER, 239, 583
TRUNC<SUBSYS><LEVEL> LOGONOPEN,

161
TRUNC<SUBSYS>LOGONOPEN, 158,

161
TRUSTUID DOMAIN, 169
UID DOMAIN, 149, 168, 316, 317, 331,

799
UNAMEARCH, 148
UNAMEOPSYS, 148
UNICOREGAHP, 220
UPDATECOLLECTORWITH TCP, 167,

209, 345
UPDATEINTERVAL, 180, 187, 263
USERNAME, 149
USERJOB WRAPPER, 204, 569
USEAFS, 171
USECKPTSERVER, 172, 348, 349
USECLONETO CREATEPROCESSES,

164, 631, 637, 640
USEGID PROCESSTRACKING, 420,

628
USENFS, 171
USEPROCD, 216, 232, 323, 420, 639, 641
USEPROCESSGROUPS, 178, 645
USEVISIBLE DESKTOP, 205, 535, 595,

596
VALID CODUSERS, 448
VALID SPOOLFILES , 207, 236, 355,

601, 612, 746
VMPHOSTMACHINE, 235, 398
VMPVMLIST , 235, 398
VMWAREBRIDGENETWORKINGTYPE,

234
VMWARELOCALSETTINGS FILE , 235
VMWARENAT NETWORKINGTYPE, 234
VMWARENETWORKINGTYPE, 234

Condor Version 7.2.3 Reference Manual

INDEX 918

VMWAREPERL, 234
VMWARESCRIPT, 234
VMGAHPLOG, 233, 592
VMGAHPREQTIMEOUT, 233
VMGAHPSERVER, 233
VMMAXNUMBER, 233
VMMEMORY, 233
VMNETWORKINGDEFAULTTYPE, 234
VMNETWORKINGTYPE, 234
VMNETWORKING, 234
VMRECHECKINTERVAL, 233
VMSOFTSUSPEND, 233
VMSTATUSINTERVAL, 233
VMTYPE, 233
VMUNIV NOBODYUSER, 233
VMVERSION, 233
WALLCLOCKCKPTINTERVAL, 198
WANTSUSPEND, 180, 270
WANTUDPCOMMANDSOCKET, 157, 212,

627
WANTVACATE, 180, 271
WARNONUNUSEDSUBMIT FILE MACROS,

207, 627, 820
WEBROOTDIR, 242
WINDOWSFIREWALLFAILURE RETRY,

178
WorkHours , 277
XENBOOTLOADER, 235
XENBRIDGESCRIPT, 235
XENDEFAULTINITRD , 235, 425
XENDEFAULTKERNEL, 235, 425
XENLOCALSETTINGS FILE , 235
XENSCRIPT, 235
https://ec2.amazonaws.com/ ,

513
ALLOWADMINISTRATOR, 302
ALLOWADVERTISEMASTER, 303
ALLOWADVERTISESCHEDD, 303
ALLOWADVERTISESTARTD, 303
ALLOWCLIENT, 303
ALLOWCONFIG, 302
ALLOWDAEMON, 302
ALLOWNEGOTIATOR, 302
ALLOWOWNER, 302
ALLOWREAD, 302
ALLOWSOAP, 302

ALLOWWRITE, 302
COLLECTORADDRESSFILE , 163
DENYADMINISTRATOR, 302
DENYADVERTISEMASTER, 303
DENYADVERTISESCHEDD, 303
DENYADVERTISESTARTD, 303
DENYCLIENT, 303
DENYCONFIG, 302
DENYDAEMON, 302
DENYNEGOTIATOR, 302
DENYOWNER, 302
DENYREAD, 302
DENYSOAP, 302
DENYWRITE, 302
MAXJOBRETIREMENTTIME, 279
NEGOTIATORADDRESSFILE , 163
SECADMINISTRATORAUTHENTICATIONMETHODS,

288
SECADMINISTRATORAUTHENTICATION,

288
SECADMINISTRATORCRYPTOMETHODS,

300
SECADMINISTRATORENCRYPTION,

299
SECADMINISTRATORINTEGRITY,

301
SECADVERTISEMASTERAUTHENTICATIONMETHODS,

288
SECADVERTISEMASTERAUTHENTICATION,

288
SECADVERTISEMASTERCRYPTOMETHODS,

300
SECADVERTISEMASTERENCRYPTION,

299
SECADVERTISEMASTERINTEGRITY,

301
SECADVERTISESCHEDDAUTHENTICATIONMETHODS,

288
SECADVERTISESCHEDDAUTHENTICATION,

288
SECADVERTISESCHEDDCRYPTOMETHODS,

300
SECADVERTISESCHEDDENCRYPTION,

299
SECADVERTISESCHEDDINTEGRITY,

301

Condor Version 7.2.3 Reference Manual

INDEX 919

SECADVERTISESTARTDAUTHENTICATIONMETHODS,
288

SECADVERTISESTARTDAUTHENTICATION,
288

SECADVERTISESTARTDCRYPTOMETHODS,
300

SECADVERTISESTARTDENCRYPTION,
299

SECADVERTISESTARTDINTEGRITY,
301

SECCLIENT AUTHENTICATIONMETHODS,
288

SECCLIENT AUTHENTICATION, 287
SECCLIENT CRYPTOMETHODS, 300
SECCLIENT ENCRYPTION, 299
SECCLIENT INTEGRITY, 301
SECCONFIGAUTHENTICATIONMETHODS,

288
SECCONFIGAUTHENTICATION, 288
SECCONFIGCRYPTOMETHODS, 300
SECCONFIGENCRYPTION, 299
SECCONFIGINTEGRITY, 301
SECDAEMONAUTHENTICATIONMETHODS,

288
SECDAEMONAUTHENTICATION, 288
SECDAEMONCRYPTOMETHODS, 300
SECDAEMONENCRYPTION, 299
SECDAEMONINTEGRITY, 301
SECDEFAULTAUTHENTICATIONMETHODS,

288
SECDEFAULTAUTHENTICATION, 287,

288
SECDEFAULTCRYPTOMETHODS, 300
SECDEFAULTENCRYPTION, 299
SECDEFAULTINTEGRITY, 301
SECNEGOTIATORAUTHENTICATIONMETHODS,

288
SECNEGOTIATORAUTHENTICATION,

288
SECNEGOTIATORCRYPTOMETHODS,

300
SECNEGOTIATORINTEGRITY, 301
SECOWNERAUTHENTICATIONMETHODS,

288
SECOWNERAUTHENTICATION, 288
SECOWNERCRYPTOMETHODS, 300

SECOWNERENCRYPTION, 299
SECOWNERINTEGRITY, 301
SECREADAUTHENTICATIONMETHODS,

288
SECREADAUTHENTICATION, 288
SECREADCRYPTOMETHODS, 300
SECREADENCRYPTION, 299
SECREADINTEGRITY, 301
SECWRITEAUTHENTICATIONMETHODS,

288
SECWRITEAUTHENTICATION, 288
SECWRITECRYPTOMETHODS, 300
SECWRITEENCRYPTION, 299
SECWRITEINTEGRITY, 301

Console activity, 131
CONSOLEDEVICESmacro, 125, 181, 393
CONTINUEmacro, 179, 270
ContinueIdleTime macro, 272
contrib module

CondorView client, 138
COUNTHYPERTHREADCPUSmacro, 183
CPU activity, 131
CPUBusymacro, 272
CPUBusyTime macro, 273
CPUIdle macro, 272
CPUIsBusy macro, 272
crashes, 575
CREATECOREFILES macro, 156
CREDCHECKINTERVAL macro, 244
CREDINDEX FILE macro, 244
CREDSTOREDIR macro, 244
CREDSUPERUSERSmacro, 244
CREDDCACHELOCALLYmacro, 216
CREDDHOSTmacro, 216, 655, 666
CronTab job scheduling, 98
crontab program, 140
CumulativeSuspensionTime

job ClassAd attribute, 879
current working directory, 320
CurrentHosts

job ClassAd attribute, 879
cwd

of jobs, 320

D COMMANDmacro, 306
D SECURITYmacro, 306, 597

Condor Version 7.2.3 Reference Manual

INDEX 920

daemon
condorhad, 357
condorckpt server, 115
condorcollector, 115
condorcredd, 116, 216, 533
condordbmsd, 115
condorgridmanager, 115
condorhad, 116
condor job router, 116, 521
condorkbdd, 115
condor leasemanager, 106, 116
condormaster, 114
condornegotiator, 115
condorprocd, 116
condorquill, 115
condorreplication, 116
condorschedd, 114
condorshadow, 114
condorstartd, 114, 252, 253
condorstarter, 114
running as root, 109
stork server, 116

DAEMONLIST macro, 173, 348, 393, 633, 642,
657, 735

DAEMONSHUTDOWNmacro, 164, 638, 898
DAEMONSHUTDOWNFASTmacro, 164, 638
daemoncore, 351–354

command line arguments, 352
Unix signals, 352

DAEMONNAMEENVIRONMENTmacro, 174
daemons

descriptions, 114
DAGMan, 64–91

ABORT-DAG-ON, 72
CONFIG, 76
DAG input file, 65
DAGs within DAGs, 78
describing dependencies, 69
dot, 90
example submit description file, 70
File Paths in DAGs, 89
job submission, 70
POST script, 67
PRE and POST scripts, 67
PRE script, 67
Rescue DAG, 86

RETRY of failed nodes, 72
Single submission of multiple, independent

DAGs, 77
Splicing DAGs, 80
submit description file with, 69
VARS (macro for submit description file),

73
visualizing DAGs, 90

DAGMan input file
ABORT-DAG-ON key word, 72
CATEGORY key word, 76
CONFIG key word, 76
DATA key word, 67
JOB key word, 66
MAXJOBS key word, 76
PARENT. . .CHILD key word, 69
PRIORITY key word, 75
RETRY key word, 72
SCRIPT key word, 67
SPLICE key word, 80
SUBDAG key word, 78
VARS key word, 73

DAGMANABORTDUPLICATES macro, 227,
647

DAGMANABORTONSCARYSUBMIT macro,
227, 638, 640

DAGMANALLOWEVENTSmacro, 225
DAGMANAUTORESCUEmacro, 89, 228, 605
DAGMANCONDORRMEXEmacro, 226
DAGMANCONDORSUBMIT EXEmacro, 226
DAGMANCOPYTO SPOOLmacro, 228, 587
DAGMANDEBUGmacro, 226
DAGMANDEBUGCACHEENABLEmacro, 224
DAGMANDEBUGCACHESIZE macro, 224
DAGMANIGNOREDUPLICATEJOB EXECUTION

macro, 225
DAGMANINSERT SUBFILE macro, 228, 604,

605
DAGMANLOGONNFS IS ERRORmacro, 227
DAGMANMAXJOBS IDLE macro, 225
DAGMANMAXJOBS SUBMITTEDmacro, 225
DAGMANMAXRESCUENUMmacro, 228, 605
DAGMANMAXSUBMIT ATTEMPTS macro,

224
DAGMANMAXSUBMITSPERINTERVAL

macro, 224

Condor Version 7.2.3 Reference Manual

INDEX 921

DAGMANMUNGENODENAMESmacro, 78, 225
DAGMANOLDRESCUEmacro, 89, 228, 605
DAGMANONEXIT REMOVEmacro, 227, 643
DAGMANPENDINGREPORTINTERVAL

macro, 228
DAGMANPROHIBIT MULTI JOBS macro,

226
DAGMANRETRYNODEFIRST macro, 224,

227
DAGMANRETRYSUBMIT FIRST macro, 224
DAGMANSTARTUPCYCLEDETECT macro,

224
DAGMANSTORKRMEXEmacro, 226
DAGMANSTORKSUBMIT EXEmacro, 226
DAGMANSUBMIT DELAYmacro, 224
DAGMANSUBMIT DEPTHFIRST macro, 227,

645
DATABASEPURGEINTERVAL macro, 240,

366
DATABASEREINDEXINTERVAL macro,

241, 367
DBMSDmacro, 241, 634
DBMSDARGSmacro, 242, 634
DBMSDLOGmacro, 242, 634
DBMSDNOTRESPONDINGTIMEOUT macro,

242
DCDAEMONLIST macro, 173, 633
DEADCOLLECTORMAXAVOIDANCETIME

macro, 156, 621, 622
dedicated scheduling, 408
DEDICATEDEXECUTEACCOUNTREGEXP

macro, 169, 319, 420, 639, 641
DEDICATEDSCHEDULERUSEFIFO macro,

202, 643
DedicatedScheduler macro, 183, 409
DEFAULTCREDEXPIRE THRESHOLD

macro, 244
DEFAULTDOMAINNAME macro, 155, 331,

569
DEFAULTIO BUFFERBLOCKSIZE macro,

206
DEFAULTIO BUFFERSIZE macro, 206
DEFAULTPRIO FACTORmacro, 212
DEFAULTRANKmacro, 206
DEFAULTRANKSTANDARDmacro, 206
DEFAULTRANKVANILLA macro, 206

DEFAULTUNIVERSEmacro, 205, 589, 800
deferral time

of a job, 95
DELEGATEJOB GSI CREDENTIALSmacro,

230, 654
DENY* macro, 575
DENYADMINISTRATORmacro, 302
DENYADVERTISEMASTERmacro, 303
DENYADVERTISESCHEDDmacro, 303
DENYADVERTISESTARTDmacro, 303
DENYCLIENT macro, 229
DENYCLIENT macro, 303
DENYCONFIGmacro, 302
DENYDAEMONmacro, 302
DENYNEGOTIATORmacro, 302
DENYOWNERmacro, 302
DENYREADmacro, 302
DENYSOAPmacro, 302
DENYWRITEmacro, 302
Deployment commands

cleanuprelease, 673
condorcold start, 689
condorcold stop, 692
filelock midwife, 852
filelock undertaker, 854
install release, 856
uniq pid midwife, 874
uniq pid undertaker, 876

deployment commands, 140
DEPLOYMENTRECOMMENDEDDIRS macro,

141
DEPLOYMENTRECOMMENDEDEXECSmacro,

141
DEPLOYMENTRELEASEDIR macro, 141
DEPLOYMENTREQUIREDDIRS macro, 141
DEPLOYMENTREQUIREDEXECSmacro, 141
directed acyclic graph (DAG), 64
Directed Acyclic Graph Manager (DAGMan),

64
DISCONNECTEDKEYBOARDIDLE BOOST

macro, 184, 403
disk space requirement

execute directory, 120
log directory, 120
spool directory, 120
all versions, 123

Condor Version 7.2.3 Reference Manual

INDEX 922

Condor files, 121
DiskUsage

job ClassAd attribute, 879
distributed ownership

of machines, 2
Distributed Resource Management Application

API (DRMAA), 480
dot, 90
download, 117
DRMAA (Distributed Resource Management

Application API), 480
dynamiccondorstartdprovisioning, 407
dynamic deployment, 140

configuration, 141
relevance to grid computing, 520

effective user priority (EUP), 245
EMAIL DOMAINmacro, 155
EmailAttributes

job ClassAd attribute, 879
ENABLEBACKFILL macro, 183, 413, 416
ENABLEGRID MONITORmacro, 223, 509
ENABLEHISTORYROTATION macro, 154,

663
ENABLEPERSISTENTCONFIGmacro, 162
ENABLERUNTIMECONFIGmacro, 162
ENABLESOAPmacro, 242
ENABLESOAPSSL macro, 243
ENABLEUSERLOGLOCKINGmacro, 158
ENABLEWEBSERVERmacro, 242
ENCRYPTEXECUTEDIRECTORYmacro, 230
EnteredCurrentStatus

job ClassAd attribute, 879
ENVmacro, 149
environment variables, 33

CONDORSCRATCH DIR, 34
CONDORSLOT, 34

CONDORCONFIG, 574
CONDORIDS , 120, 154
CONDORVM, 34
copying current environment, 798
in submit description file, 819
setting, for a job, 797
X509 USERPROXY, 34

EVENTLOGmacro, 161, 634
EVENTLOGFSYNCmacro, 161, 583

EVENTLOGJOB AD INFORMATIONATTRS
macro, 45, 161, 634

EVENTLOGLOCKINGmacro, 161, 583
EVENTLOGMAXROTATIONSmacro, 161
EVENTLOGMAXSIZE macro, 161
EVENTLOGROTATIONLOCKmacro, 161
EVENTLOGUSEXMLmacro, 161, 634
EVICT BACKFILL macro, 184, 271, 414
EXECTRANSFERATTEMPTSmacro, 204
ExecutableSize

job ClassAd attribute, 880
execute machine, 113
EXECUTEmacro, 152, 322, 401, 425, 566, 613,

887
EXECUTELOGIN IS DEDICATED macro,

170, 639, 641, 645
execution environment, 33
ExitBySignal

job ClassAd attribute, 880
ExitCode

job ClassAd attribute, 880
ExitSignal

job ClassAd attribute, 880
ExitStatus

job ClassAd attribute, 880

FAQ, 547–578
Condor on Windows machines, 566
installing Condor, 547

FetchWorkDelay macro, 193, 461, 465
file

locking, 4, 17
memory-mapped, 4, 17
read only, 4, 17
submit description, 19
write only, 4, 17

file system
AFS, 108
NFS, 109

file transfer
large files (¿2Gbytes), 7

file transfer mechanism, 26, 801
missing files, 565

FILE LOCKVIA MUTEXmacro, 158
filelock midwife, 852
filelock undertaker, 854

Condor Version 7.2.3 Reference Manual

INDEX 923

FILESYSTEMDOMAINmacro, 149, 170, 331
FLOCKCOLLECTORHOSTSmacro, 199, 492
FLOCKFROMmacro, 493
FLOCKNEGOTIATORHOSTSmacro, 199, 493
FLOCKTOmacro, 492
flocking, 492
Frequently Asked Questions, 547–578
FS REMOTEDIR macro, 230, 297
FULL HOSTNAMEmacro, 147

GAHP (Grid ASCII Helper Protocol), 494
GAHPmacro, 218
GAHPARGSmacro, 218
GASS (Global Access to Secondary Storage),

499
GCB (Generic Connection Brokering), 332

broker, 334
Condor client configuration, 339
GCB routing table configuration, 340
GCB routing table syntax and examples,

341
inagent, 334
security implications, 342

GCB broker
configuration, 335
how to spawn the broker, 337
ports 65432 and 65430, 335

GLEXECmacro, 223, 324
GLEXECJOBmacro, 223, 324, 595, 598
GLEXECSTARTERmacro, 325, 595, 598, 616,

641, 645
glidein, 519, 573

configuration, 519
GLIDEIN SERVERURLSmacro, 223, 519
GLITE LOCATIONmacro, 219, 511, 512
Globus

gatekeeper errors, 574
GLOBUSGATEKEEPERTIMEOUTmacro, 218
GRAM (Grid Resource Allocation and Manage-

ment), 499
green computing, 426–429
grid computing

Condor-C, 494
FAQs, 573
glidein, 519
Grid Monitor, 508

matchmaking, 513
submitting jobs to Amazon EC2, 512
submitting jobs to gt2, 500
submitting jobs to gt4, 505
submitting jobs to NorduGrid, 510
submitting jobs to PBS, 511
submitting jobs to Platform LSF, 511
submitting jobs to Unicore, 510

GRID MONITORmacro, 223, 509
GRID MONITORHEARTBEATTIMEOUT

macro, 223
GRID MONITORNOSTATUSTIMEOUT

macro, 223, 654
GRID MONITORRETRYDURATION macro,

223
GRIDFTP URL BASEmacro, 219, 506
GridJobStatus

job ClassAd attribute, 880
GRIDMANAGERCHECKPROXYINTERVAL

macro, 217
GRIDMANAGERCONNECTFAILURE RETRYCOUNT

macro, 218
GRIDMANAGERCONTACTSCHEDDDELAY

macro, 217
GRIDMANAGERDEBUGmacro, 609
GRIDMANAGEREMPTYRESOURCEDELAY

macro, 217
GRIDMANAGERGAHPCALL TIMEOUT

macro, 218, 613
GRIDMANAGERGLOBUSCOMMITTIMEOUT

macro, 218
GRIDMANAGERJOB PROBEINTERVAL

macro, 217
GRIDMANAGERLOGmacro, 217, 631
GRIDMANAGERMAXJOBMANAGERSPERRESOURCE

macro, 218
GRIDMANAGERMAXPENDINGREQUESTS

macro, 218
GRIDMANAGERMAXPENDINGSUBMITS

macro, 218
GRIDMANAGERMAXPENDINGSUBMITSPERRESOURCE

macro, 218, 616
GRIDMANAGERMAXSUBMITTEDJOBS PERRESOURCE

macro, 217, 616
GRIDMANAGERMAXWSDESTROYSPERRESOURCE

macro, 218, 614

Condor Version 7.2.3 Reference Manual

INDEX 924

GRIDMANAGERMINIMUMPROXYTIME
macro, 217

GRIDMANAGERRESOURCEPROBEDELAY
macro, 217

GRIDMANAGERRESOURCEPROBEINTERVAL
macro, 217

GRIDMAPmacro, 230, 292, 299
GridResource

job ClassAd attribute, 880
GROUPAUTOREGROUPmacro, 215, 251
GROUPAUTOREGROUP<groupname>

macro, 215
GROUPAUTOREGROUPchemistry macro,

251
GROUPNAMESmacro, 215, 251
GROUPPRIO FACTOR<groupname>

macro, 215, 251
GROUPQUOTA<groupname> macro, 215
groups

accounting, 249
quotas, 250

GSI (Grid Security Infrastructure), 498
GSI DAEMONCERTmacro, 229, 291
GSI DAEMONDIRECTORYmacro, 229, 291,

292
GSI DAEMONKEYmacro, 229, 291
GSI DAEMONNAMEmacro, 229, 605, 654
GSI DAEMONPROXYmacro, 230, 291
GSI DAEMONTRUSTEDCA DIR macro, 229,

291
GT2 GAHPmacro, 219
GT4 GAHPmacro, 219

HA <SUBSYS>LOCKHOLDTIME macro, 237
HA <SUBSYS>LOCKURLmacro, 236
HA <SUBSYS>POLL PERIODmacro, 237
HA LOCKHOLDTIME macro, 236
HA LOCKURLmacro, 236
HA POLL PERIODmacro, 237
HADmacro, 238
HADARGSmacro, 238
HADCONNECTIONTIMEOUTmacro, 237
HADDEBUGmacro, 238
HADLIST macro, 237
HADLOGmacro, 238
HADUPDATEINTERVAL macro, 238

HADUSEPRIMARYmacro, 237
HADUSEREPLICATION macro, 238, 358
heterogeneous pool

submitting a job to, 34
HIBERNATEmacro, 193, 426, 601
HIBERNATECHECKINTERVAL macro, 193,

426, 601
High Availability, 354

of central manager, 356
of job queue, 354
of job queue, with remote job submission,

355
sample configuration, 359

High-Performance Computing (HPC), 1
High-Throughput Computing (HTC), 1
HighLoad macro, 272
HIGHPORTmacro, 166, 327
HISTORYmacro, 154
HOLDJOB IF CREDENTIALEXPIRES

macro, 217
HoldKillSig

job ClassAd attribute, 880
HoldReason

job ClassAd attribute, 880
HoldReasonCode

job ClassAd attribute, 880
HoldReasonSubCode

job ClassAd attribute, 880
HOOKEVICT CLAIM macro, 193, 462
HOOKFETCHWORKmacro, 193, 461, 462, 464
HOOKJOB CLEANUPmacro, 468
HOOKJOB EXIT macro, 463
HOOKJOB FINALIZE macro, 468
HOOKPREPAREJOBmacro, 462, 881
HOOKREPLYCLAIM macro, 193
HOOKREPLYFETCHmacro, 462
HOOKTRANSLATEmacro, 467
HOOKUPDATEJOB INFO macro, 462, 464,

468, 585
host certificate, 290
HOSTALLOWmacro, 162
HOSTALLOW. . . macro, 162
HOSTALLOW* macro, 575
HOSTALLOWADMINISTRATORmacro, 133,

343
HOSTALLOWCONFIGmacro, 343

Condor Version 7.2.3 Reference Manual

INDEX 925

HOSTALLOWDAEMONmacro, 653
HOSTALLOWNEGOTIATORmacro, 343
HOSTALLOWNEGOTIATORSCHEDD macro,

493
HOSTALLOWREADmacro, 133, 313
HOSTALLOWWRITE macro, 119, 133, 137,

520, 668
HOSTDENYmacro, 162
HOSTDENY* macro, 575
HOSTNAMEmacro, 147
HPC (High-Performance Computing), 1
HTC (High-Throughput Computing), 1
https://ec2.amazonaws.com/ macro,

513

IGNORENFS LOCKERRORSmacro, 171
ImageSize, 563

job ClassAd attribute, 880
IN HIGHPORTmacro, 166, 327
IN LOWPORTmacro, 166, 327
INCLUDEmacro, 151
install release, 856
installation

checkpoint server, 346
CondorView Client, 139
download, 117
Java, 422
running as root, 119
using Linux RPMs, 137
vm universe, 424
Windows, 127–136
with condorconfigure, 123

INVALID LOGFILES macro, 208, 746
IP ADDRESSmacro, 147
IS OWNERmacro, 180, 261
IS VALID CHECKPOINTPLATFORMmacro,

179, 254

Java, 16, 48, 422
job example, 49
multiple class files, 51
using JAR files, 51
using packages, 52

JAVA macro, 192, 422, 506
Java Virtual Machine, 16, 48, 422
JAVA CLASSPATHARGUMENTmacro, 192

JAVA CLASSPATHDEFAULTmacro, 192
JAVA CLASSPATHSEPARATORmacro, 192
JAVA EXTRAARGUMENTSmacro, 192, 423
JAVA MAXHEAPARGUMENTmacro, 192, 423,

587
job

analysis, 41
batch ready, 14
completion, 45
credential error on Windows, 567
dependencies within, 64
exiting with signal 9Unix, 557
exiting with status 128NT , 568
heterogeneous submit, 34
image size, 563
lease, 110
log events, 42
multiple data sets, 2
not running, 41
not running, why?, 557
preparation, 14
priority, 41, 47
state, 39, 40, 881
submission using a shared file system, 24
submission without a shared file system, 26
submitting, 19
universe, 882

job deferral time, 95
job execution

at a specific time, 95
Job hooks, 460–468

Fetch Hooks
Job exit, 463
Update job info, 462
Evict a claim, 462
Fetch work, 461
Prepare job, 462
Reply to fetched work, 461

FetchWorkDelay, 465
Hooks, 461
Hooks invoked by Condor, 461
introduction, 460
Java Example, 466
Job Router, 467
Job Router Hooks

Job Cleanup, 468

Condor Version 7.2.3 Reference Manual

INDEX 926

Job Finalize, 468
Translate, 467
Update Job Info, 467

keywords, 464
overview, 460

job ID
cluster identifier, 818, 879
process identifier, 884
use incondorwait, 849

Job monitor, 107
Job Router, 521
Job Router commands

condorrouter history, 775
Job Router Routing Table ClassAd attribute

Copy ¡ATTR¿, 527
Delete¡ATTR¿, 527
Eval Set ¡ATTR¿, 527
FailureRateThreshold, 526
GridResource, 526
JobFailureTest, 526
JobShouldBeSandboxed, 527
MaxIdleJobs, 526
MaxJobs, 526
Name, 526
OverrideRoutingEntry, 527
Requirements, 526
Set ¡ATTR¿, 527
SharedX509UserProxy, 527
TargetUniverse, 527
UseSharedX509UserProxy, 527

job scheduling
periodic, 98

JOB INHERITS STARTERENVIRONMENT
macro, 205, 599, 616, 658

JOB IS FINISHED INTERVAL macro, 197
JOB PROXYOVERRIDEFILE macro, 665
JOB RENICE INCREMENTmacro, 204, 254
JOB ROUTERDEFAULTSmacro, 220
JOB ROUTERENTRIESmacro, 220, 528
JOB ROUTERENTRIES CMDmacro, 220, 528
JOB ROUTERENTRIES FILE macro, 220
JOB ROUTERENTRIES REFRESH macro,

220
JOB ROUTERMAXJOBSmacro, 221
JOB ROUTERNAMEmacro, 221

JOB ROUTERPOLLING PERIODmacro, 221,
468

JOB ROUTERSOURCEJOB CONSTRAINT
macro, 221

JOB STARTCOUNTmacro, 196, 197
JOB STARTDELAYmacro, 196, 197, 627
JobLeaseDuration

job ClassAd attribute, 110, 881
JobPrio

job ClassAd attribute, 881
JobRunCount

job ClassAd attribute, 881
JobStartDate

job ClassAd attribute, 881
JobStatus

job ClassAd attribute, 881
JobUniverse

job ClassAd attribute, 882
JVM, 16, 48, 422

KEEPPOOLHISTORYmacro, 210, 396
Kerberos authentication, 294
KERBEROSCLIENT KEYTABmacro, 232
KERBEROSMAPFILE macro, 294, 299
KERBEROSSERVERKEYTABmacro, 232
KERBEROSSERVERPRINCIPAL macro,

232, 294
KERBEROSSERVERSERVICEmacro, 232
KERBEROSSERVERUSERmacro, 232
KeyboardBusy macro, 272
KILL macro, 179, 271
KILLING TIMEOUTmacro, 268, 271

large file transfer support, 7
LastCheckpointPlatform

job ClassAd attribute, 882
LastCkpt macro, 272
LastCkptServer

job ClassAd attribute, 882
LastCkptTime

job ClassAd attribute, 882
LastMatchTime

job ClassAd attribute, 882
LastRejMatchReason

job ClassAd attribute, 882
LastRejMatchTime

Condor Version 7.2.3 Reference Manual

INDEX 927

job ClassAd attribute, 882
LastSuspensionTime

job ClassAd attribute, 882
LastVacateTime

job ClassAd attribute, 883
LeaseManager.CLASSAD LOGmacro, 222
LeaseManager.DEBUG ADSmacro, 222
LeaseManager.DEFAULT MAXLEASEDURATION

macro, 222
LeaseManager.GETADS INTERVAL

macro, 221
LeaseManager.MAX LEASEDURATION

macro, 222
LeaseManager.MAX TOTALLEASEDURATION

macro, 222
LeaseManager.PRUNE INTERVAL macro,

222
LeaseManager.QUERY ADTYPE macro,

222
LeaseManager.QUERY CONSTRAINTS

macro, 222
LeaseManager.UPDATE INTERVAL

macro, 222
LIB macro, 151
LIBEXEC macro, 151, 201
linking

dynamic, 5, 17
static, 5, 17

Linux
keyboard and mouse activity, 530, 562

LINUX HIBERNATIONMETHODmacro, 194
local universe, 19
LOCALCONFIGDIR macro, 153
LOCALCONFIGFILE macro, 122, 147, 152,

391–393, 555
LOCALCREDDmacro, 533
LOCALDIR macro, 120, 123, 151, 322
LOCALQUEUEBACKUPDIR macro, 595
LOCALXACTBACKUPFILTER macro, 595
LocalSysCpu

job ClassAd attribute, 883
LocalUserCpu

job ClassAd attribute, 883
LOCKmacro, 121, 154
LOCKFILE UPDATEINTERVAL macro, 165,

611

log files
event descriptions, 42

LOGmacro, 152, 156, 182, 353
LOGONNFS IS ERRORmacro, 207, 633
LOGSUSETIMESTAMPmacro, 158, 633
LOWPORTmacro, 166, 327
LSF, 511
LSF GAHPmacro, 219, 511

machine
central manager, 113
checkpoint server, 113
execute, 113
owner, 112
submit, 113

machine activity, 260
Backfill, 261
Benchmarking, 260
Busy, 260
Idle, 260
Killing, 261
Retiring, 260
Suspended, 260
transitions, 261–271
transitions summary, 270
Unclaimed, 260
Vacating, 261

machine ClassAd, 13
machine state, 256

Backfill, 257, 269
Claimed, 257, 265
claimed, the claim lease, 259
Matched, 257, 265
Owner, 256, 261
Preempting, 257, 268
transitions, 261–271
transitions summary, 270
Unclaimed, 256, 264

machine state and activities figure, 261
MachineBusy macro, 272
macro

in configuration file, 143
in submit description file, 818
predefined, 56, 61
subsystem names, 147

MAIL macro, 154, 392

Condor Version 7.2.3 Reference Manual

INDEX 928

mailing lists, 9, 578
MASTER<name> BACKOFFCEILING

macro, 176, 642
MASTER<name> BACKOFFCONSTANT

macro, 175, 642
MASTER<name> BACKOFFFACTORmacro,

176
MASTER<name> RECOVERFACTORmacro,

176
MASTER<SUBSYS>CONTROLLER macro,

237
MASTERADDRESSFILE macro, 178
MASTERATTRSmacro, 178
MASTERBACKOFFCEILING macro, 176, 642
MASTERBACKOFFCONSTANTmacro, 175,

642
MASTERBACKOFFFACTORmacro, 176
MASTERCHECKINTERVAL macro, 208
MASTERCHECKNEWEXECINTERVAL

macro, 175
MASTERDEBUGmacro, 178
MASTERHA LIST macro, 236, 355, 633
MASTERHADBACKOFFCONSTANT macro,

358
MASTERINSTANCELOCKmacro, 178
MASTERNAMEmacro, 177, 735
MASTERNEWBINARY DELAY macro, 175,

642
MASTERRECOVERFACTORmacro, 176, 642
MASTERSHUTDOWN<Name> macro, 175
MASTERUPDATEINTERVALmacro, 175, 642
MASTERWAITS FORGCBBROKER macro,

168, 638, 643
MATCHTIMEOUTmacro, 258, 265, 270
matched state, 257, 265
matchmaking, 2

negotiation algorithm, 247
on the Grid, 513

MAX<SUBSYS><LEVEL> LOGmacro, 160
MAX<SUBSYS>LOGmacro, 157, 160, 665
MAXACCOUNTANTDATABASESIZE macro,

212
MAXC GAHPLOGmacro, 219
MAXCKPTSERVERLOGmacro, 348
MAXCLAIM ALIVES MISSED macro, 181,

197

MAXCONCURRENTDOWNLOADSmacro, 196,
622, 627

MAXCONCURRENTUPLOADS macro, 196,
622, 627

MAXDAGMANLOGmacro, 71, 226
MAXDISCARDEDRUNTIME macro, 172, 346
MAXEVENTLOGmacro, 161, 596, 634
MAXHADLOGmacro, 238
MAXHISTORYLOGmacro, 155
MAXHISTORYROTATIONSmacro, 155, 663
MAXJOB MIRRORUPDATELAGmacro, 221
MAXJOB QUEUELOGROTATIONS macro,

155
max job retirementtime, 817
MAXJOBS RUNNINGmacro, 39, 195, 328, 893
MAXJOBS SUBMITTEDmacro, 196
MAXNEXTJOB STARTDELAY macro, 197,

627, 806, 883
MAXNUMCPUSmacro, 182
MAXPENDINGSTARTDCONTACTS macro,

196, 598
MAXREPLICATION LOGmacro, 239
MAXSCHEDDLOGmacro, 315
MAXSHADOWEXCEPTIONSmacro, 196
MAXSLOT TYPESmacro, 185
MAXTRACKINGGID macro, 420, 628
MAXTRANSFERERLIFETIME macro, 238
MAXTRANSFERERLOGmacro, 239
MAXVMGAHPLOGmacro, 233
MaxHosts

job ClassAd attribute, 883
MaxJobRetirementTime

job ClassAd attribute, 883
MAXJOBRETIREMENTTIMEmacro, 180, 271
MAXJOBRETIREMENTTIMEmacro, 279
MaxSuspendTime macro, 272
MaxVacateTime macro, 272
MEMORYmacro, 183
migration, 2, 3
MIN TRACKINGGID macro, 420, 628
MinHosts

job ClassAd attribute, 883
MPI application

under the dedicated scheduler, 58, 408
MPI universe, 59–64
MPI CONDORRSHPATHmacro, 201

Condor Version 7.2.3 Reference Manual

INDEX 929

multiple network interfaces, 329
MY., ClassAd scope resolution prefix, 439
MYPROXYGETDELEGATIONmacro, 242, 508

NEGOTIATEALL JOBS IN CLUSTER
macro, 199, 248

negotiation, 247
by group, 250

NEGOTIATORADDRESSFILE macro, 326
NEGOTIATORADDRESSFILE macro, 163
NEGOTIATORCONSIDERPREEMPTION

macro, 215, 280, 608
NEGOTIATORCYCLEDELAYmacro, 211
NEGOTIATORDEBUGmacro, 214
NEGOTIATORDISCOUNTSUSPENDEDRESOURCES

macro, 212
NEGOTIATORHOSTmacro, 150
NEGOTIATORIGNOREUSERPRIORITIES

macro, 517
NEGOTIATORINFORMSTARTDmacro, 212,

627
NEGOTIATORINTERVAL macro, 211
NEGOTIATORMATCHEXPRS macro, 214,

639, 640
NEGOTIATORMATCHLISTCACHINGmacro,

517, 665
NEGOTIATORMAXTIME PERPIESPIN

macro, 214
NEGOTIATORMAXTIME PERSUBMITTER

macro, 214
NEGOTIATORPOSTJOB RANKmacro, 213
NEGOTIATORPREJOB RANKmacro, 213
NEGOTIATORSOCKETCACHESIZE macro,

212, 328
NEGOTIATORTIMEOUTmacro, 212
NEGOTIATORUSENONBLOCKINGSTARTDCONTACT

macro, 167
NET REMAPENABLEmacro, 167
NET REMAPINAGENTmacro, 167, 643
NET REMAPROUTEmacro, 168
NET REMAPSERVICEmacro, 167
network, 4, 17, 325
network interfaces

multiple, 329
NETWORKINTERFACEmacro, 165, 330, 332

NETWORKMAXPENDINGCONNECTSmacro,
157

NextJobStartDelay
job ClassAd attribute, 883

NFS
interaction with, 109

nice job, 48
NICE USERPRIO FACTORmacro, 212, 245
NiceUser

job ClassAd attribute, 883
NICs, 329
NIS

Condor must be dynamically linked, 564
NODNSmacro, 155
NODEmacro, 56, 61
Node macro, 818
NONBLOCKINGCOLLECTORUPDATEmacro,

167
NonCondorLoadAvg macro, 272
NorduGrid, 510
NORDUGRIDGAHPmacro, 220
NOTRESPONDINGTIMEOUTmacro, 164
NOTRESPONDINGWANTCOREmacro, 165,

589
NTDomain

job ClassAd attribute, 883
NUMCPUSmacro, 182, 186, 402
NUMSLOTSmacro, 186, 402
NUMSLOTSTYPE <N> macro, 186, 402
NumCkpts

job ClassAd attribute, 883
NumGlobusSubmits

job ClassAd attribute, 883
NumJobMatches

job ClassAd attribute, 883
NumJobReconnects

job ClassAd attribute, 883
NumJobStarts

job ClassAd attribute, 883
NumRestarts

job ClassAd attribute, 883
NumShadowExceptions

job ClassAd attribute, 883
NumShadowStarts

job ClassAd attribute, 884
NumSystemHolds

Condor Version 7.2.3 Reference Manual

INDEX 930

job ClassAd attribute, 884

OBITUARYLOGLENGTHmacro, 174
OFFLINE EXPIRE ADSAFTER macro, 194,

428, 584
OFFLINE LOGmacro, 194, 428, 584
opportunistic scheduling, 408
OPSYSmacro, 148, 392
OUTHIGHPORTmacro, 167, 327
OUTLOWPORTmacro, 166, 327
overview, 1–4
Owner

job ClassAd attribute, 884
owner

of directories, 120
owner state, 256, 261

parallel universe, 19, 55–64
running MPI applications, 58

ParallelSchedulingGroup macro, 202,
411, 412

ParallelShutdownPolicy
job ClassAd attribute, 884

PASSWDCACHEREFRESHmacro, 156
PBS (Portable Batch System), 511
PBS GAHPmacro, 219, 511
PERJOB HISTORYDIR macro, 202, 647
PERIODIC CHECKPOINTmacro, 179, 443,

555
PERIODIC EXPRINTERVALmacro, 200, 637
PERIODIC EXPRTIMESLICE macro, 200,

640
PERIODIC MEMORYSYNCmacro, 203
Perl module, 482

examples, 485
permission denied, 575
PERSISTENTCONFIGDIR macro, 162
Personal Condor, 129, 550
PID macro, 148
pie slice, 248
pie spin, 248
platform-specific information

AIX, 545
AIX 5.1L, 545
AIX 5.2L, 545
Linux, 529

Linux keyboard and mouse activity, 530
Macintosh OS X, 545
Red Hat 9.x, 530
Red Hat Fedora 1, 2, and 3, 530
Windows, 531–544

platforms supported, 5
policy

at UW-Madison, 274
default with Condor, 272
desktop/non-desktop, 277
disabling preemption, 279
suspending jobs instead of evicting them,

280
time of day, 276

POLLING INTERVAL macro, 180, 266
pool of machines, 112
POOLHISTORYDIR macro, 210, 396
POOLHISTORYMAXSTORAGEmacro, 210,

396
POOLHISTORYSAMPLINGINTERVAL

macro, 210
port usage, 325

conflicts, 329
FAQ on communication errors, 551
firewalls, 327
multiple collectors, 328
nonstandard ports for central managers, 326

power management, 426–429
entering a low power state, 426
leaving a low power state, 427
Linux platform details, 428
Windows platform troubleshooting, 428

PPID macro, 149
PREEMPTmacro, 179, 270, 463
preempting state, 257, 268
preemption

desktop/non-desktop, 277
disabling, 279
priority, 47, 245
vacate, 48

PREEMPTIONRANKmacro, 214, 618
PREEMPTIONRANKSTABLE macro, 214,

246, 584, 618
PREEMPTIONREQUIREMENTSmacro, 47,

213, 215, 246, 618, 753

Condor Version 7.2.3 Reference Manual

INDEX 931

PREEMPTIONREQUIREMENTSSTABLE
macro, 213, 246, 584, 618

PREENmacro, 174
PREENADMINmacro, 207, 746
PREENARGSmacro, 174
PREENINTERVAL macro, 174, 641, 642, 644
priority

by group, 249
in machine allocation, 244
nice job, 48
of a job, 41, 47
of a user, 47

PRIORITY HALFLIFE macro, 47, 212, 245,
247

PRIVATE NETWORKINTERFACE macro,
166, 634

PRIVATE NETWORKNAMEmacro, 165, 634
privilege separation, 320
PrivSep (privilege separation), 320
PRIVSEP ENABLEDmacro, 232, 323, 628
PRIVSEP SWITCHBOARDmacro, 232, 323,

628
PROCDADDRESSmacro, 216, 611
PROCDLOGmacro, 216
PROCDMAXSNAPSHOTINTERVAL macro,

216
process

definition for a submitted job, 884
Process macro, 818
ProcId

job ClassAd attribute, 884
proxy, 500

renewal withMyProxy, 506
PUBLISH OBITUARIES macro, 174

Q QUERYTIMEOUTmacro, 156
QDate

job ClassAd attribute, 884
QUERYTIMEOUTmacro, 208
QUEUEALL USERSTRUSTEDmacro, 198
QUEUECLEANINTERVAL macro, 198
QUEUESUPERUSERSmacro, 198
Quill, 362
QUILL macro, 239
QUILL ADDRESSFILE macro, 241, 367
QUILL ARGSmacro, 239

QUILL DB IP ADDRmacro, 240, 364, 366
QUILL DB NAMEmacro, 240, 366
QUILL DB QUERYPASSWORDmacro, 241,

367
QUILL DB TYPEmacro, 240
QUILL DB USERmacro, 240, 366
QUILL DBSIZE LIMIT macro, 241, 367
QUILL ENABLEDmacro, 240, 893
QUILL IS REMOTELYQUERYABLE macro,

241, 367
QUILL JOB HISTORYDURATION macro,

241, 366
QUILL LOGmacro, 240
QUILL MAINTAIN DB CONNmacro, 240, 367
QUILL MANAGEVACUUMmacro, 241, 367
QUILL NAMEmacro, 240, 366
QUILL NOTRESPONDINGTIMEOUT macro,

240
QUILL POLLING PERIODmacro, 240, 366
QUILL RESOURCEHISTORYDURATION

macro, 241, 366
QUILL RUNHISTORYDURATION macro,

241, 366
QUILL SHOULDREINDEXmacro, 241, 656
QUILL USESQL LOGmacro, 240
quotas

for a group, 250

RANDOM CHOICE() macro
use in submit description file, 820

RANDOMCHOICE() macro, 149
RANDOMINTEGER() macro, 149, 555
rank attribute, 22

examples, 23, 441
RANKmacro, 179, 255, 271, 410, 411
RANKFACTORmacro, 411
real user priority (RUP), 244
recovery from crashes, 575
RELEASEDIR macro, 122, 151, 392
ReleaseReason

job ClassAd attribute, 884
remote system call, 2, 3, 16

condorshadow, 16, 39, 109
REMOTEPRIO FACTORmacro, 212, 245
RemoteIwd

job ClassAd attribute, 884

Condor Version 7.2.3 Reference Manual

INDEX 932

RemoteSysCpu
job ClassAd attribute, 884

RemoteUserCpu
job ClassAd attribute, 884

RemoteWallClockTime
job ClassAd attribute, 884

RemoveKillSig
job ClassAd attribute, 885

REPLICATION macro, 239
REPLICATION ARGSmacro, 239
REPLICATION DEBUGmacro, 239
REPLICATION INTERVAL macro, 238
REPLICATION LIST macro, 238
REPLICATION LOGmacro, 239
REQUESTCLAIM TIMEOUTmacro, 197
REQUIRELOCALCONFIGFILE macro, 153
requirements attribute, 22, 441

automatic extensions, 558
Requirements macro, 195
RESERVEAFS CACHEmacro, 170
RESERVEDDISK macro, 154, 887
RESERVEDMEMORYmacro, 183
RESERVEDSWAPmacro, 154, 558
resource

management, 2
offer, 3
owner, 112
request, 3

RPM installation on Linux, 137
RUNBENCHMARKSmacro, 183, 264, 270
running a job

at certain times of day, 555
on a different architecture, 34
on only certain machines, 553
only at night, 555

running multiple programs, 21

SBIN macro, 151
scalability

using the Grid Monitor, 508
SCHEDUNIV RENICE INCREMENT macro,

198
SCHEDDADDRESSFILE macro, 199
SCHEDDASSUMENEGOTIATORGONE

macro, 201
SCHEDDATTRSmacro, 199

SCHEDDBACKUPSPOOLmacro, 201
SCHEDDCLUSTERINCREMENTVALUE

macro, 202, 581
SCHEDDCLUSTERINITIAL VALUE macro,

202, 581
SCHEDDDAEMONAD FILE macro, 163, 633
SCHEDDDEBUGmacro, 199
SCHEDDEXECUTEmacro, 199
SCHEDDHOSTmacro, 151
SCHEDDINTERVAL macro, 101, 196
SCHEDDINTERVAL TIMESLICE macro,

196, 640
SCHEDDLOCKmacro, 198
SCHEDDLOGmacro, 558
SCHEDDMIN INTERVAL macro, 196
SCHEDDNAMEmacro, 177, 199, 356, 610
SCHEDDPREEMPTIONRANKmacro, 202, 412
SCHEDDPREEMPTIONREQUIREMENTS

macro, 201, 411
SCHEDDQUERYWORKERSmacro, 196
SCHEDDROUNDATTRmacro, 662
SCHEDDROUNDATTR <xxxx> macro, 201
SCHEDDSENDVACATEVIA TCPmacro, 202
scheduler universe, 18
scheduling

dedicated, 55, 60, 408
opportunistic, 408
pie slice, 248
pie spin, 248

scheduling jobs
to execute at a specific time, 95
to execute periodically, 98

SDK
Chirp, 53

SEC* AUTHENTICATIONmacro, 229
SEC* AUTHENTICATIONMETHODSmacro,

229
SEC* CRYPTOMETHODSmacro, 229
SEC* ENCRYPTIONmacro, 229
SEC* INTEGRITY macro, 229
SEC* NEGOTIATIONmacro, 229
SECADMINISTRATORAUTHENTICATION

macro, 288
SECADMINISTRATORAUTHENTICATIONMETHODS

macro, 288

Condor Version 7.2.3 Reference Manual

INDEX 933

SECADMINISTRATORCRYPTOMETHODS
macro, 300

SECADMINISTRATORENCRYPTIONmacro,
299

SECADMINISTRATORINTEGRITY macro,
301

SECADVERTISEMASTERAUTHENTICATION
macro, 288

SECADVERTISEMASTERAUTHENTICATIONMETHODS
macro, 288

SECADVERTISEMASTERCRYPTOMETHODS
macro, 300

SECADVERTISEMASTERENCRYPTION
macro, 299

SECADVERTISEMASTERINTEGRITY
macro, 301

SECADVERTISESCHEDDAUTHENTICATION
macro, 288

SECADVERTISESCHEDDAUTHENTICATIONMETHODS
macro, 288

SECADVERTISESCHEDDCRYPTOMETHODS
macro, 300

SECADVERTISESCHEDDENCRYPTION
macro, 299

SECADVERTISESCHEDDINTEGRITY
macro, 301

SECADVERTISESTARTDAUTHENTICATION
macro, 288

SECADVERTISESTARTDAUTHENTICATIONMETHODS
macro, 288

SECADVERTISESTARTDCRYPTOMETHODS
macro, 300

SECADVERTISESTARTDENCRYPTION
macro, 299

SECADVERTISESTARTDINTEGRITY
macro, 301

SECCLAIMTOBEINCLUDE DOMAINmacro,
668

SECCLIENT AUTHENTICATIONmacro, 287
SECCLIENT AUTHENTICATIONMETHODS

macro, 288
SECCLIENT CRYPTOMETHODSmacro, 300
SECCLIENT ENCRYPTIONmacro, 299
SECCLIENT INTEGRITY macro, 301
SECCONFIGAUTHENTICATIONmacro, 288

SECCONFIGAUTHENTICATIONMETHODS
macro, 288

SECCONFIGCRYPTOMETHODSmacro, 300
SECCONFIGENCRYPTIONmacro, 299
SECCONFIGINTEGRITY macro, 301
SECDAEMONAUTHENTICATIONmacro, 288
SECDAEMONAUTHENTICATIONMETHODS

macro, 288
SECDAEMONCRYPTOMETHODSmacro, 300
SECDAEMONENCRYPTIONmacro, 299
SECDAEMONINTEGRITY macro, 301
SECDEFAULTAUTHENTICATION macro,

287, 288
SECDEFAULTAUTHENTICATIONMETHODS

macro, 345
SECDEFAULTAUTHENTICATIONMETHODS

macro, 288
SECDEFAULTAUTHENTICATIONTIMEOUT

macro, 230, 602
SECDEFAULTCRYPTOMETHODS macro,

300
SECDEFAULTENCRYPTIONmacro, 299
SECDEFAULTINTEGRITY macro, 301
SECDEFAULTSESSIONDURATIONmacro,

230, 611
SECENABLEMATCHPASSWORDAUTHENTICATION

macro, 231, 598
SECINVALIDATE SESSIONSVIA TCP

macro, 230, 598
SECNEGOTIATORAUTHENTICATION

macro, 288
SECNEGOTIATORAUTHENTICATIONMETHODS

macro, 288
SECNEGOTIATORCRYPTOMETHODS

macro, 300
SECNEGOTIATORENCRYPTIONmacro, 299
SECNEGOTIATORINTEGRITY macro, 301
SECOWNERAUTHENTICATIONmacro, 288
SECOWNERAUTHENTICATIONMETHODS

macro, 288
SECOWNERCRYPTOMETHODSmacro, 300
SECOWNERENCRYPTIONmacro, 299
SECOWNERINTEGRITY macro, 301
SECPASSWORDFILE macro, 231, 295
SECREADAUTHENTICATIONmacro, 288

Condor Version 7.2.3 Reference Manual

INDEX 934

SECREADAUTHENTICATIONMETHODS
macro, 288

SECREADCRYPTOMETHODSmacro, 300
SECREADENCRYPTIONmacro, 299
SECREADINTEGRITY macro, 301
SECTCP SESSIONDEADLINE macro, 230,

581
SECTCP SESSIONTIMEOUTmacro, 230
SECWRITEAUTHENTICATIONmacro, 288
SECWRITEAUTHENTICATIONMETHODS

macro, 288
SECWRITECRYPTOMETHODSmacro, 300
SECWRITEENCRYPTIONmacro, 299
SECWRITEINTEGRITY macro, 301
SECONDARYCOLLECTORLIST macro, 178,

637, 640
security

in Condor, 281–325
access levels, 283
authentication, 287
authorization, 302
based on user authorization, 302
encryption, 299
host-based, 307
integrity, 301
running jobs as user nobody, 318
sample configuration using pool password,

296
sample configuration using pool password

for startd advertisement, 297
sessions, 306
unified map file, 298

sessions, 306
SETTABLEATTRSmacro, 162, 314
SETTABLEATTRS. . . macro, 162
SETTABLEATTRSPERMISSION-LEVEL

macro, 314
shadow, 16
SHADOWmacro, 195
SHADOWDEBUGmacro, 202
SHADOWJOB CLEANUPRETRYDELAY

macro, 203
SHADOWLAZY QUEUEUPDATEmacro, 203,

627
SHADOWLOCKmacro, 202
SHADOWLOGmacro, 42

SHADOWMAXJOB CLEANUPRETRIES
macro, 203

SHADOWQUEUEUPDATEINTERVAL macro,
202

SHADOWRENICE INCREMENTmacro, 198
SHADOWSIZE ESTIMATEmacro, 197
shared file system

submission of jobs, 24
submission of jobs without one, 26

SHELLmacro, 779
SHUTDOWNFAST TIMEOUTmacro, 175, 642
SHUTDOWNGRACEFULTIMEOUT macro,

162, 642
signal, 4, 17

SIGTSTP, 4, 17
SIGUSR2, 4, 17

SIGNIFICANT ATTRIBUTESmacro, 248
Simple Object Access Protocol(SOAP), 468
skew in timing information, 564
SLOT TYPE <N> macro, 185, 400
SLOT TYPE <N> PARTITIONABLE macro,

185, 407
SLOTNJOB HOOKKEYWORDmacro, 193, 464
slots

dynamiccondorstartdprovisioning, 407
subdividing slots, 407

SLOTSCONNECTEDTO CONSOLE macro,
184, 403

SLOTSCONNECTEDTO KEYBOARD macro,
184, 403

SLOTx EXECUTEmacro, 152, 401
SLOTx USERmacro, 169, 319
SLOWCKPTSPEEDmacro, 203
SMP machines

configuration, 399–408
SOAP

Web Service API, 468
SOAPLEAVEIN QUEUEmacro, 242, 471
SOAPSSL CA DIR macro, 243
SOAPSSL CA FILE macro, 243
SOAPSSL DHFILE macro, 243
SOAPSSL SERVERKEYFILE macro, 243
SOAPSSL SERVERKEYFILE PASSWORD

macro, 243
SOFTUID DOMAINmacro, 169, 316
Software Developer’s Kit

Condor Version 7.2.3 Reference Manual

INDEX 935

Chirp, 53
Solaris26, 559
Solaris27, 559
SPOOLmacro, 152, 595
STARTmacro, 179, 184, 253, 270, 410
STARTBACKFILL macro, 184, 265, 271, 413,

416
STARTDAEMONSmacro, 175
STARTLOCALUNIVERSE macro, 195, 637,

640, 893
STARTMASTERmacro, 175
STARTSCHEDULERUNIVERSEmacro, 195,

637, 640, 893
startd

configuration, 252
STARTDAD REEVALEXPRmacro, 609
STARTDADDRESSFILE macro, 182
STARTDATTRS macro, 163, 181, 315, 350,

406, 412
STARTDAVAIL CONFIDENCEmacro, 192
STARTDCLAIM ID FILE macro, 182
STARTDCOMPUTEAVAIL STATS macro,

191
STARTDCRON<ModuleName> ARGS

macro, 189
STARTDCRON<ModuleName> CWDmacro,

189
STARTDCRON<ModuleName> ENV macro,

189
STARTDCRON<ModuleName> EXECUTABLE

macro, 187
STARTDCRON<ModuleName> KILL

macro, 188
STARTDCRON<ModuleName> MODE

macro, 188
STARTDCRON<ModuleName> OPTIONS

macro, 189
STARTDCRON<ModuleName> PERIOD

macro, 188
STARTDCRON<ModuleName> PREFIX

macro, 187
STARTDCRON<ModuleName> RECONFIG

macro, 188
STARTDCRONAUTOPUBLISHmacro, 187
STARTDCRONCONFIGVAL macro, 186
STARTDCRONJOBLIST macro, 187

STARTDCRONJOBSmacro, 190
STARTDCRONNAMEmacro, 186
STARTDDEBUGmacro, 181, 315, 644
STARTDEXPRSmacro, 163
STARTDHASBADUTMPmacro, 181
STARTDJOB EXPRSmacro, 181, 213
STARTDJOB HOOKKEYWORDmacro, 193,

464
STARTDMAXAVAIL PERIODSAMPLES

macro, 192
STARTDNAMEmacro, 183
STARTDNOCLAIMSHUTDOWNmacro, 183
STARTDRESOURCEPREFIX macro, 184,

629, 636
STARTDSENDSALIVES macro, 182
STARTDSHOULDWRITECLAIM ID FILE

macro, 182
STARTDSLOT ATTRSmacro, 185
STARTDVMATTRSmacro, 185
STARTDVMEXPRSmacro, 185
STARTERmacro, 180
STARTERALLOWRUNASOWNERmacro, 169,

318, 419, 639, 641
STARTERCHOOSESCKPTSERVER macro,

172, 349
STARTERDEBUGmacro, 204
STARTERINITIAL UPDATEINTERVAL

macro, 463
STARTERJOB ENVIRONMENTmacro, 205
STARTERJOB HOOKKEYWORDmacro, 464
STARTERLOCALmacro, 195
STARTERLOCALLOGGINGmacro, 204
STARTERUPDATEINTERVAL macro, 204,

463, 627
STARTERUPDATEINTERVAL TIMESLICE

macro, 204, 602
STARTERUPLOADTIMEOUT macro, 205,

618, 638, 640
StartIdleTime macro, 272
state

of a machine, 256
transitions, 261–271
transitions summary, 270

state and activities figure, 261
STATEFILE macro, 238
StateTimer macro, 272

Condor Version 7.2.3 Reference Manual

INDEX 936

status
of queued jobs, 39

Stork, 102–106
condor leasemanager, 106
jobs under DAGMan, 106
submit description file, 102

Stork commands
stork list cred, 860
stork q, 858
stork rm, 862
stork rm cred, 864
stork status, 868
stork storecred, 866
stork submit, 870

Stork submit commands
alt protocols, 872
cred name, 872
dap type, 870
desturl, 871
src url, 871
x509proxy, 872

stork list cred command, 860
STORKMAXNUMJOBSmacro, 243
STORKMAXRETRYmacro, 104, 243
STORKMAXDELAYINMINUTESmacro, 243
STORKMODULEDIR macro, 243
stork q command, 858
stork rm command, 862
stork rm cred command, 864
stork server daemon, 116
stork status command, 868
stork storecred command, 866
stork submit command, 870
STORKTMPCREDDIR macro, 243
StreamErr

job ClassAd attribute, 885
StreamOut

job ClassAd attribute, 885
submit commands

$ENV macro, 819
$RANDOM CHOICE() macro, 820
allow startupscript, 806
amazonami id, 809
amazoninstancetype, 809
amazonkeypairfile, 809
amazonprivatekey, 809

amazonpublic key, 809
amazonsecuritygroups, 809
amazonuserdata, 809
amazonuserdatafile, 809
appendfiles, 806
arguments, 796
buffer block size, 806
buffer files, 806
buffer size, 806
compressfiles, 807
concurrencylimits, 814
copy to spool, 814
coresize, 814
cron day of month, 814
cron day of week, 814
cron hour, 814
cron minute, 814
cron month, 815
cron prep time, 815
cron window, 815
deferralprep time, 815
deferraltime, 815
deferralwindow, 815
email attributes, 815
environment, 797
error, 798
executable, 798
fetch files, 807
file remaps, 807
getenv, 798
globusrematch, 809
globusresubmit, 809
globusrsl, 809
globusxml, 810
grid resource, 501, 505, 810
hold, 803
hold kill sig, 812
imagesize, 815
initialdir, 815
input, 799
jar files, 812
java vm args, 812
job leaseduration, 816
keystorealias, 810
keystorefile, 810
keystorepassphrasefile, 810

Condor Version 7.2.3 Reference Manual

INDEX 937

kill sig, 816
leavein queue, 803
load profile, 816
local files, 808
log, 799, 871
log xml, 799
machinecount, 812
matchlist length, 816
max job retirementtime, 817
MyProxyCredentialName, 810
MyProxyHost, 810
MyProxyNewProxyLifetime, 811
MyProxyPassword, 811
MyProxyRefreshThreshold, 811
MyProxyServerDN, 811
next job start delay, 805
nice user, 817
noop job, 817
noop job exit code, 817
noop job exit signal, 817
nordugridrsl, 811
notification, 799
notify user, 799
on exit hold, 803
on exit remove, 804
output, 799
periodichold, 805
periodic release, 805
periodic remove, 805
priority, 800
queue, 800
rank, 23, 33, 800
remoteinitialdir, 817
removekill sig, 812
rendezvousdir, 818
requestcpus, 818
requestdisk, 818
requestmemory, 818
requirements, 22, 32, 800
shouldtransferfiles, 26, 801
streamerror, 802
streaminput, 802
streamoutput, 802
transfererror, 811
transferexecutable, 802
transferinput, 811

transferinput files, 802
transferoutput, 811
transferoutputfiles, 802
transferoutput remaps, 803
universe, 800
vm cdromfiles, 812
vm checkpoint, 812
vm macaddr, 812
vm memory, 813
vm networking, 813
vm networkingtype, 813
vm no outputvm, 813
vm shouldtransfercdromfiles, 813
vm type, 813
vmwaredir, 813
vmwareshouldtransferfiles, 813
vmwaresnapshotdisk, 813
want remoteio, 808
whento transferoutput, 26, 565, 803
x509userproxy, 811
xen cdromdevice, 813
xen disk, 813
xen initrd, 814
xen kernel, 814
xen kernelparams, 814
xen root, 814
xen transferfiles, 814

submit description file, 19
contents of, 19
examples, 20–22
grid universe, 501

submit machine, 113
SUBMIT DEBUGmacro, 160
SUBMIT EXPRSmacro, 207
SUBMIT MAXPROCSIN CLUSTER macro,

207
SUBMIT SENDRESCHEDULEmacro, 207
SUBMIT SKIP FILECHECKSmacro, 207
substitution macro

in submit description file, 818
<SUBSYS>macro, 173
<SUBSYS>ADDRESSFILE macro, 163
<SUBSYS>ARGSmacro, 174
<SUBSYS>ATTRSmacro, 163
<SUBSYS>DAEMONAD FILE macro, 163
<SUBSYS>DEBUGmacro, 158

Condor Version 7.2.3 Reference Manual

INDEX 938

<SUBSYS>DEBUGmacro levels
D ACCOUNTANT, 160
D ALL, 158
D CKPT, 159
D COMMAND, 159
D DAEMONCORE, 159
D FDS, 160
D FULLDEBUG, 158
D HOSTNAME, 159
D JOB, 159
D KEYBOARD, 159
D LOAD, 159
D MACHINE, 159
D MATCH, 159
D NETWORK, 159
D PID , 160
D PRIV, 159
D PROCFAMILY, 160
D PROTOCOL, 160
D SECURITY, 160
D SYSCALLS, 159

<SUBSYS>ENABLESOAPSSL macro, 242
<SUBSYS>EXPRSmacro, 163
<SUBSYS><LEVEL> LOGmacro, 160
<SUBSYS>LOCKmacro, 158
<SUBSYS>LOGmacro, 157
<SUBSYS>SOAPSSL PORTmacro, 243
<SUBSYS>TIMEOUTMULTIPLIER macro,

167
SUBSYSTEMmacro, 147
subsystem names, 147
supported platforms, 5
SUSPENDmacro, 179, 270, 561
SYSAPI GETLOADAVGmacro, 157
SYSTEMPERIODIC HOLDmacro, 200, 620
SYSTEMPERIODIC RELEASE macro, 200,

620
SYSTEMPERIODIC REMOVEmacro, 200, 620

TARGET., ClassAd scope resolution prefix, 439
TCP, 345

sending updates, 345
TCP UPDATECOLLECTORSmacro, 167
thread

kernel-level, 4, 17
user-level, 4, 17

TILDE macro, 147
timing information

incorrect, 564
TOOLDEBUGmacro, 160
TotalSuspensions

job ClassAd attribute, 885
TOUCHLOGINTERVAL macro, 158
TRANSFERERmacro, 239, 583
TRANSFERERDEBUGmacro, 239
TRANSFERERLOGmacro, 239
TransferErr

job ClassAd attribute, 885
TransferExecutable

job ClassAd attribute, 885
TransferIn

job ClassAd attribute, 885
TransferOut

job ClassAd attribute, 885
transferring files, 26, 565
TRUNC<SUBSYS><LEVEL> LOGONOPEN

macro, 161
TRUNC<SUBSYS>LOGONOPEN macro,

158, 161
TRUSTUID DOMAINmacro, 169

UDP, 345
lost datagrams, 345

UID
effective, 315
potential risk running jobs as user nobody,

318
real, 315

UID DOMAINmacro, 149, 168, 316, 317, 331,
799

UIDs in Condor, 315–320
UNAMEARCHmacro, 148
UNAMEOPSYSmacro, 148
unclaimed state, 256, 264
Unicore, 510
UNICOREGAHPmacro, 220
uniq pid midwife, 874
uniq pid undertaker, 876
universe, 15

Grid, 16, 18
grid, 495, 519
grid, grid type gt2, 500

Condor Version 7.2.3 Reference Manual

INDEX 939

grid, grid type gt4, 505
Java, 18
java, 16
job attribute definitions, 882
local, 19
MPI, 16
parallel, 16, 19
scheduler, 18
standard, 16
vanilla, 16, 18
vm, 16, 19, 91

Unix
alarm, 4, 17
exec, 4, 17
flock, 4, 17
fork, 4, 17
large files, 5, 18
lockf, 4, 17
mmap, 4, 17
pipe, 4, 17
semaphore, 4, 17
shared memory, 4, 17
sleep, 4, 17
socket, 4, 17
system, 4, 17
timer, 4, 17

Unix administrator, 119
Unix daemon

running as root, 109
Unix directory

execute , 120
lock , 121
log , 120
spool , 120

Unix installation
download, 117

Unix user
condor, 120
root, 119

UPDATECOLLECTORWITH TCPmacro, 167,
209, 345

UPDATEINTERVAL macro, 180, 187, 263
upgrade

version 6.4.x to version 6.6.x, 548
upgrading

items to be aware of, 580

USEAFSmacro, 171
USECKPTSERVERmacro, 172, 348, 349
USECLONETO CREATEPROCESSES

macro, 164, 631, 637, 640
USEGID PROCESSTRACKING macro, 420,

628
USENFSmacro, 171
USEPROCDmacro, 216, 232, 323, 420, 639,

641
USEPROCESSGROUPSmacro, 178, 645
USEVISIBLE DESKTOPmacro, 205, 535,

595, 596
user

priority, 47
user condor

home directory not found, 564
user manual, 11–111
user nobody

potential security risk with jobs, 318
user priority, 244

effective (EUP), 245
real (RUP), 244

USERJOB WRAPPERmacro, 204, 569
USERNAMEmacro, 149

vacate, 48
VALID CODUSERSmacro, 448
VALID SPOOLFILES macro, 207, 236, 355,

601, 612, 746
vanilla jobs

cycling between suspended and unsus-
pended, 560

VARS, 73
viewing

log files, 107
virtual machine

configuration, 398
running Condor jobs under, 398

virtual machine universe, 91–95
virtual machines, 424
vm universe, 19, 91

submit commands specific to VMware, 93
VMGAHPLOGmacro, 233, 592
VMGAHPREQTIMEOUTmacro, 233
VMGAHPSERVERmacro, 233
VMMAXNUMBERmacro, 233

Condor Version 7.2.3 Reference Manual

INDEX 940

VMMEMORYmacro, 233
VMNETWORKINGmacro, 234
VMNETWORKINGDEFAULTTYPE macro,

234
VMNETWORKINGTYPEmacro, 234
VMRECHECKINTERVAL macro, 233
VMSOFTSUSPENDmacro, 233
VMSTATUSINTERVAL macro, 233
VMTYPEmacro, 233
VMUNIV NOBODYUSERmacro, 233
VMVERSIONmacro, 233
VMPHOSTMACHINEmacro, 235, 398
VMPVMLIST macro, 235, 398
VMWAREBRIDGENETWORKINGTYPE

macro, 234
VMWARELOCALSETTINGS FILE macro,

235
VMWARENAT NETWORKINGTYPE macro,

234
VMWARENETWORKINGTYPEmacro, 234
VMWAREPERLmacro, 234
VMWARESCRIPT macro, 234

WALLCLOCKCKPTINTERVAL macro, 198
WANTSUSPENDmacro, 180, 270
WANTUDPCOMMANDSOCKET macro, 157,

212, 627
WANTVACATEmacro, 180, 271
WARNONUNUSEDSUBMIT FILE MACROS

macro, 207, 627, 820
Web Service API, 468

condorschedddaemon command port, 471
file transfer, 470
job submission, 469
transactions, 469

WEBROOTDIR macro, 242
Windows

Condor daemon names, 136
installation, 127–136

initial file size, 127
location of files, 130
Personal Condor, 129
preparation, 128
required disk space, 128
unattended install, 132

loading account profile, 534

manual install, 135
out of desktop heap, 570
release notes, 531
starting the Condor service, 136

WINDOWSFIREWALLFAILURE RETRY
macro, 178

WorkHours macro, 277

X509 USERPROXY, 34
XENBOOTLOADERmacro, 235
XENBRIDGESCRIPT macro, 235
XENDEFAULTINITRD macro, 235, 425
XENDEFAULTKERNELmacro, 235, 425
XENLOCALSETTINGS FILE macro, 235
XENSCRIPT macro, 235

Condor Version 7.2.3 Reference Manual

	1 Overview
	1.1 High-Throughput Computing (HTC) and its Requirements
	1.2 Condor's Power
	1.3 Exceptional Features
	1.4 Current Limitations
	1.5 Availability
	1.6 Contributions to Condor
	1.7 Contact Information
	1.8 Privacy Notice

	2 Users' Manual
	2.1 Welcome to Condor
	2.2 Introduction
	2.3 Matchmaking with ClassAds
	2.3.1 Inspecting Machine ClassAds with condor_status

	2.4 Road-map for Running Jobs
	2.4.1 Choosing a Condor Universe

	2.5 Submitting a Job
	2.5.1 Sample submit description files
	2.5.2 About Requirements and Rank
	2.5.3 Submitting Jobs Using a Shared File System
	2.5.4 Submitting Jobs Without a Shared File System: Condor's File Transfer Mechanism
	2.5.5 Environment Variables
	2.5.6 Heterogeneous Submit: Execution on Differing Architectures

	2.6 Managing a Job
	2.6.1 Checking on the progress of jobs
	2.6.2 Removing a job from the queue
	2.6.3 Placing a job on hold
	2.6.4 Changing the priority of jobs
	2.6.5 Why does the job not run?
	2.6.6 In the log file
	2.6.7 Job Completion

	2.7 Priorities and Preemption
	2.7.1 Job Priority
	2.7.2 User priority
	2.7.3 Details About How Condor Jobs Vacate Machines

	2.8 Java Applications
	2.8.1 A Simple Example Java Application
	2.8.2 Less Simple Java Specifications
	2.8.3 Chirp I/O

	2.9 Parallel Applications (Including MPI Applications)
	2.9.1 Prerequisites to Running Parallel Jobs
	2.9.2 Parallel Job Submission
	2.9.3 Parallel Jobs with Separate Requirements
	2.9.4 MPI Applications Within Condor's Parallel Universe
	2.9.5 Outdated Documentation of the MPI Universe

	2.10 DAGMan Applications
	2.10.1 DAGMan Terminology
	2.10.2 Input File Describing the DAG
	2.10.3 Submit Description File
	2.10.4 Job Submission
	2.10.5 Job Monitoring, Job Failure, and Job Removal
	2.10.6 Advanced Features of DAGMan
	2.10.7 Job Recovery: The Rescue DAG
	2.10.8 File Paths in DAGs
	2.10.9 Visualizing DAGs with dot

	2.11 Virtual Machine Applications
	2.11.1 The Submit Description File
	2.11.2 Checkpoints
	2.11.3 Disk Images
	2.11.4 Job Completion in the vm Universe

	2.12 Time Scheduling for Job Execution
	2.12.1 Job Deferral
	2.12.2 CronTab Scheduling

	2.13 Stork Applications
	2.13.1 Submitting Stork Jobs
	2.13.2 Managing Stork Jobs
	2.13.3 Fault Tolerance
	2.13.4 Running Stork Jobs Under DAGMan
	2.13.5 The Lease Manager

	2.14 Job Monitor
	2.14.1 Transition States
	2.14.2 Events
	2.14.3 Selecting Jobs
	2.14.4 Zooming
	2.14.5 Keyboard and Mouse Shortcuts

	2.15 Special Environment Considerations
	2.15.1 AFS
	2.15.2 NFS Automounter
	2.15.3 Condor Daemons That Do Not Run as root
	2.15.4 Job Leases

	2.16 Potential Problems
	2.16.1 Renaming of argv[0]

	3 Administrators' Manual
	3.1 Introduction
	3.1.1 The Different Roles a Machine Can Play
	3.1.2 The Condor Daemons

	3.2 Installation
	3.2.1 Obtaining Condor
	3.2.2 Preparation
	3.2.3 Newer Unix Installation Procedure
	3.2.4 Condor is installed Under Unix ... now what?
	3.2.5 Installation on Windows
	3.2.6 RPMs
	3.2.7 Upgrading - Installing a Newer Version of Condor
	3.2.8 Installing the CondorView Client Contrib Module
	3.2.9 Dynamic Deployment

	3.3 Configuration
	3.3.1 Introduction to Configuration Files
	3.3.2 The Special Configuration Macros $ENV(), $RANDOM_CHOICE(), and $RANDOM_INTEGER()
	3.3.3 Condor-wide Configuration File Entries
	3.3.4 Daemon Logging Configuration File Entries
	3.3.5 DaemonCore Configuration File Entries
	3.3.6 Network-Related Configuration File Entries
	3.3.7 Shared File System Configuration File Macros
	3.3.8 Checkpoint Server Configuration File Macros
	3.3.9 condor_master Configuration File Macros
	3.3.10 condor_startd Configuration File Macros
	3.3.11 condor_schedd Configuration File Entries
	3.3.12 condor_shadow Configuration File Entries
	3.3.13 condor_starter Configuration File Entries
	3.3.14 condor_submit Configuration File Entries
	3.3.15 condor_preen Configuration File Entries
	3.3.16 condor_collector Configuration File Entries
	3.3.17 condor_negotiator Configuration File Entries
	3.3.18 condor_procd Configuration File Macros
	3.3.19 condor_credd Configuration File Macros
	3.3.20 condor_gridmanager Configuration File Entries
	3.3.21 condor_job_router Configuration File Entries
	3.3.22 condor_lease_manager Configuration File Entries
	3.3.23 grid_monitor Configuration File Entries
	3.3.24 Configuration File Entries Relating to Grid Usage and Glidein
	3.3.25 Configuration File Entries for DAGMan
	3.3.26 Configuration File Entries Relating to Security
	3.3.27 Configuration File Entries Relating to PrivSep
	3.3.28 Configuration File Entries Relating to Virtual Machines
	3.3.29 Configuration File Entries Relating to High Availability
	3.3.30 Configuration File Entries Relating to Quill
	3.3.31 MyProxy Configuration File Macros
	3.3.32 Configuration File Macros Affecting APIs
	3.3.33 Stork Configuration File Macros

	3.4 User Priorities and Negotiation
	3.4.1 Real User Priority (RUP)
	3.4.2 Effective User Priority (EUP)
	3.4.3 Priorities and Preemption
	3.4.4 Priority Calculation
	3.4.5 Negotiation
	3.4.6 The Layperson's Description of the Pie Spin and Pie Slice
	3.4.7 Group Accounting
	3.4.8 Group Quotas

	3.5 Policy Configuration for the condor_startd
	3.5.1 Startd ClassAd Attributes
	3.5.2 The START expression
	3.5.3 The IS_VALID_CHECKPOINT_PLATFORM expression
	3.5.4 The RANK expression
	3.5.5 Machine States
	3.5.6 Machine Activities
	3.5.7 State and Activity Transitions
	3.5.8 State/Activity Transition Expression Summary
	3.5.9 Policy Settings

	3.6 Security
	3.6.1 Condor's Security Model
	3.6.2 Security Negotiation
	3.6.3 Authentication
	3.6.4 The Unified Map File for Authentication
	3.6.5 Encryption
	3.6.6 Integrity
	3.6.7 Authorization
	3.6.8 Security Sessions
	3.6.9 Host-Based Security in Condor
	3.6.10 Using Condor w/ Firewalls, Private Networks, and NATs
	3.6.11 User Accounts in Condor
	3.6.12 Privilege Separation
	3.6.13 Support for glexec

	3.7 Networking (includes sections on Port Usage and GCB)
	3.7.1 Port Usage in Condor
	3.7.2 Configuring Condor for Machines With Multiple Network Interfaces
	3.7.3 Generic Connection Brokering (GCB)
	3.7.4 Using TCP to Send Updates to the condor_collector

	3.8 The Checkpoint Server
	3.8.1 Preparing to Install a Checkpoint Server
	3.8.2 Installing the Checkpoint Server Module
	3.8.3 Configuring your Pool to Use Multiple Checkpoint Servers
	3.8.4 Checkpoint Server Domains

	3.9 DaemonCore
	3.9.1 DaemonCore and Unix signals
	3.9.2 DaemonCore and Command-line Arguments

	3.10 The High Availability of Daemons
	3.10.1 High Availability of the Job Queue
	3.10.2 High Availability of the Central Manager

	3.11 Quill
	3.11.1 Installation and Configuration
	3.11.2 Four Usage Examples
	3.11.3 Quill and Security
	3.11.4 Quill and Its RDBMS Schema

	3.12 Setting Up for Special Environments
	3.12.1 Using Condor with AFS
	3.12.2 Configuring Condor for Multiple Platforms
	3.12.3 Full Installation of condor_compile
	3.12.4 The condor_kbdd
	3.12.5 Configuring The CondorView Server
	3.12.6 Running Condor Jobs within a VMware or Xen Virtual Machine Environment
	3.12.7 Configuring The Startd for SMP Machines
	3.12.8 Condor's Dedicated Scheduling
	3.12.9 Configuring Condor for Running Backfill Jobs
	3.12.10 Group ID-Based Process Tracking
	3.12.11 Concurrency Limits

	3.13 Java Support Installation
	3.14 Virtual Machines
	3.14.1 Configuration Parameters

	3.15 Power Management
	3.15.1 Entering a Low Power State
	3.15.2 Returning From a Low Power State
	3.15.3 Keeping a ClassAd for a Hibernating Machine
	3.15.4 Linux Platform Details
	3.15.5 Windows Platform Details

	4 Miscellaneous Concepts
	4.1 Condor's ClassAd Mechanism
	4.1.1 Syntax
	4.1.2 Evaluation Semantics
	4.1.3 ClassAds in the Condor System

	4.2 Condor's Checkpoint Mechanism
	4.2.1 Standalone Checkpointing
	4.2.2 Checkpoint Safety
	4.2.3 Checkpoint Warnings
	4.2.4 Checkpoint Library Interface

	4.3 Computing On Demand (COD)
	4.3.1 Overview of How COD Works
	4.3.2 Authorizing Users to Create and Manage COD Claims
	4.3.3 Defining a COD Application
	4.3.4 Managing COD Resource Claims
	4.3.5 Limitations of COD Support in Condor

	4.4 Job Hooks
	4.4.1 Hooks that Fetch Work
	4.4.2 Hooks for a Job Router

	4.5 Application Program Interfaces
	4.5.1 Web Service
	4.5.2 The DRMAA API
	4.5.3 The Command Line Interface
	4.5.4 The Condor GAHP
	4.5.5 The Condor Perl Module

	5 Grid Computing
	5.1 Introduction
	5.2 Connecting Condor Pools with Flocking
	5.2.1 Flocking Configuration
	5.2.2 Job Considerations

	5.3 The Grid Universe
	5.3.1 Condor-C, The condor Grid Type
	5.3.2 Condor-G, the gt2 and gt4 Grid Types
	5.3.3 The nordugrid Grid Type
	5.3.4 The unicore Grid Type
	5.3.5 The pbs Grid Type
	5.3.6 The lsf Grid Type
	5.3.7 The amazon Grid Type
	5.3.8 Matchmaking in the Grid Universe

	5.4 Glidein
	5.4.1 What condor_glidein Does
	5.4.2 Configuration Requirements in the Local Pool
	5.4.3 Running Jobs on the Remote Grid Resource After Glidein

	5.5 Dynamic Deployment
	5.6 The Condor Job Router
	5.6.1 Routing Mechanism
	5.6.2 Job Submission with Job Routing Capability
	5.6.3 An Example Configuration
	5.6.4 Routing Table Entry ClassAd Attributes
	5.6.5 Example: constructing the routing table from ReSS

	6 Platform-Specific Information
	6.1 Linux
	6.1.1 Linux Kernel-specific Information
	6.1.2 Red Hat Version 9.x
	6.1.3 Red Hat Fedora 1, 2, and 3

	6.2 Microsoft Windows
	6.2.1 Limitations under Windows
	6.2.2 Supported Features under Windows
	6.2.3 Secure Password Storage
	6.2.4 Executing Jobs as the Submitting User
	6.2.5 Executing Jobs with the User's Profile Loaded
	6.2.6 Details on how Condor for Windows starts/stops a job
	6.2.7 Security Considerations in Condor for Windows
	6.2.8 Network files and Condor
	6.2.9 Interoperability between Condor for Unix and Condor for Windows
	6.2.10 Some differences between Condor for Unix -vs- Condor for Windows

	6.3 Macintosh OS X
	6.4 AIX
	6.4.1 AIX 5.2L
	6.4.2 AIX 5.1L

	7 Frequently Asked Questions (FAQ)
	7.1 Obtaining & Installing Condor
	7.2 Setting up Condor
	7.3 Running Condor Jobs
	7.4 Condor on Windows
	7.5 Grid Computing
	7.6 Troubleshooting
	7.7 Other questions

	8 Version History and Release Notes
	8.1 Introduction to Condor Versions
	8.1.1 Condor Version Number Scheme
	8.1.2 The Stable Release Series
	8.1.3 The Development Release Series

	8.2 Upgrade Surprises
	8.3 Stable Release Series 7.2
	8.4 Development Release Series 7.1
	8.5 Stable Release Series 7.0
	8.6 Development Release Series 6.9
	8.7 Stable Release Series 6.8

	9 Command Reference Manual (man pages)
	cleanup_release
	condor_advertise
	condor_check_userlogs
	condor_checkpoint
	condor_chirp
	condor_cod
	condor_cold_start
	condor_cold_stop
	condor_compile
	condor_config_bind
	condor_config_val
	condor_configure
	condor_convert_history
	condor_dagman
	condor_fetchlog
	condor_findhost
	condor_glidein
	condor_history
	condor_hold
	condor_load_history
	condor_master
	condor_master_off
	condor_off
	condor_on
	condor_power
	condor_preen
	condor_prio
	condor_q
	condor_qedit
	condor_reconfig
	condor_reconfig_schedd
	condor_release
	condor_reschedule
	condor_restart
	condor_rm
	condor_router_history
	condor_run
	condor_set_shutdown
	condor_stats
	condor_status
	condor_store_cred
	condor_submit
	condor_submit_dag
	condor_transfer_data
	condor_updates_stats
	condor_userlog
	condor_userprio
	condor_vacate
	condor_vacate_job
	condor_version
	condor_wait
	filelock_midwife
	filelock_undertaker
	install_release
	stork_q
	stork_list_cred
	stork_rm
	stork_rm_cred
	stork_store_cred
	stork_status
	stork_submit
	uniq_pid_midwife
	uniq_pid_undertaker

