Condof Version 7.2.3 Manual

Condor Team, University of Wisconsin—Madison

May 28, 2009

CONTENTS

1
1.1 High-Throughput Computing (HTC) and its Requirements 1
1.2 CONAOPSPOWET o vt o oo e 2
1.3 Exceptional FEatUreSo viv i 3
1.4 CurrentLimitationso 4
1.5 Availability 5
1.6 Contributions to Condor 8
1.7 Contact INformationo i 9
1.8 PrivaCy NOtCE . . . o . v o vt e e e e e 10

2 Users’ Manual 11
2.1 Welcometo CONdOr v v vt i 11
2.2 INtrodUCtion 11
2.3 Matchmakingwith ClassAds 12

2.3.1 Inspecting Machine ClassAds with condtaitus 13
2.4 Road-map for Running JObS . . 14

2.4.1 Choosinga CondorUniverse 15
2.5 SUBMItINGAJOD 19

2.5.1 Sample submit descriptionfiles 20

CONTENTS

2.5.2 AboutRequirementsand Rank 22
2.5.3 Submitting Jobs Using a Shared File System 24
2.5.4 Submitting Jobs Without a Shared File System: Cosdle Transfer Mechanism 26
255 EnvironmentVariables 33
2.5.6 Heterogeneous Submit: Execution on Differing Arettitres 34
2.6 ManagingaJdob 38
2.6.1 Checking on the progressofjobs. 38
2.6.2 Removing ajob fromthequeue 40
2.6.3 Placingajobonhold 40
2.6.4 Changing the priority ofjobs, 41
2.6.5 Why doesthe jobnotrun? 41
2.6.6 Inthelogfile 42
2.6.7 Job Completion 54
2.7 Priorities and Preemption 47
270 JODPHOMY . . o oo e e e 74
2.7.2 USEIPHOMLY . . o o oot e e 74
2.7.3 Details About How Condor Jobs Vacate Machines 48
2.8 Java Applications 48
2.8.1 A Simple ExampIeJavaAppIication - 1o
2.8.2 Less Simple Java Specificati\ons 51
283 ChiplO . . . o 53
2.9 Parallel Applications (Including MPI Applications) 55
2.9.1 Prerequisites to Running ParallelJobs 55
2.9.2 Parallel Job Submission 55
2.9.3 Parallel Jobs with Separate Requirements 57
2.9.4 MPI Applications Within Condor’s Parallel Universe. 58
2.9.5 Outdated Documentation of the MPI Universe 59
2.10 DAGMan Applications 64

Condor Version 7.2.3 Manual

CONTENTS iii
2.10.1 DAGMan Terminology o oo v 64
2.10.2 Input File Describingthe DAG 65
2.10.3 Submit Description File 69
2.10.4 JODSUBMISSION o oot 70
2.10.5 Job Monitoring, Job Failure, and Job Removal 71
2.10.6 Advanced Features of DAGMaN oo i i 72
2.10.7 Job Recovery: The Rescue DAG . . o i 86
2.10.8 FilePathSiNDAGS o o o oot 89
2.10.9 Visualizing DAGSWItllot o o o 90

2.11 Virtual Machine Applications 91
2.11.1 The Submit DescriptionFile, 91
2.11.2 CheckpointS . . . o oo oo 49
2113 DISKIMAGES .« .« o v oo 94
2.11.4 Job Completion in the vm universe 94

2.12 Time Scheduling for Job Execution. 95
2121 JobDeferral. 95
2.12.2 CronTabSchedulingo 98

2.13 Stork Applications 102
2.13.1 Submitting Stork JobS 102
2.13.2 Managing StorkJobs 104
2.13.3 Fault TOIErante oo vt 104
2.13.4 Running Stork Jobs Under DAGMaN 106
2.135 Thelease Manager. oo v 106

2.14 JODMONIOF . . . o oo et e 107
2.14.1 Transition StateSo i 107
2142 EVENMS . . o o ot 710
2.14.3 SelectingJobs 107
2144 ZOOMING . . o o oo e 108

Condor Version 7.2.3 Manual

CONTENTS iv

2.14.5 Keyboard and Mouse ShOMCUtSot i 108
2.15 Special Environment Considerations oo 108
2051 AFS . . 108
2.15.2 NFSAUOMOUNIET o o oo oot e e 091
2.15.3 Condor Daemons That Do Not Runasroot 109
2154 JODLEASES oot 011
2.16 Potential Problems 111
2.16.1 Renamingofargv[0] 111
3 Administrators’ Manual| 112
B INtrodUCHON o ot e 112
3.1.1 The Different Roles a Machine Can Play 113
3.1.2 TheCondorDaemOnSouuuininioo... 411
3.2 Installation e, 116
3.2.1 Obtaining Condor 171
3.2.2 Preparation 181
3.2.3 Newer Unix Installation Procedtre 123
3.2.4 Condor is installed Under Unix ... nowwhat? 125
3.2.5 Installation on WINdOWS o o vi 127
326 RPMS . .. oiii i 137
3.2.7 Upgrading - Installing a Newer Version of Condor 137
3.2.8 _Installing the CondorView Client Contrib Module 138
3.2.9 Dynamic Deployment 401
3.3 Configuration 142
3.3.1 Introduction to Configuration Files 142

3.3.2 The Special Configuration Macros $ENV(), SRANDGNHOICE(), and SRANDOMNTEGER() 149

3.3.3 Condor-wide Configuration File ENtfieso o ov o ... 150

3.3.4 Daemon Logging Configuration File Entries 157

Condor Version 7.2.3 Manual

CONTENTS

3.3.5 DaemonCore Configuration File Entries 162
3.3.6 Network-Related Configuration File Entries 165
3.3.7 _Shared File System Configuration File Macros 168
3.3.8 Checkpoint Server Configuration File Macros 172
3.3.9 condamaster Configuration File Macros 173
3.3.10 condastartd Configuration File Macros 179
3.3.11 condaschedd Configuration File Entries 195
3.3.12 condashadow Configuration File Entries 202
3.3.13 condastarter Configuration File Entries 203
3.3.14 condasubmit Configuration File ENtries 205
3.3.15 condapreen Configuration File Entries 207
3.3.16 condacollector Configuration File Entries &0
3.3.17 condanegotiator Configuration File Entries 121
3.3.18 condaprocd Configuration File Macros 216
3.3.19 condacredd Configuration FileMacros 216
3.3.20 condagridmanager Configuration File Entries 621
3.3.21 condajob_router Configuration File Entries 220
3.3.22 condateasemanager Configuration File Entries 221
3.3.23 gridmonitor Configuration File Entries 22
3.3.24 Configuration File Entries Relating to Grid Usage &tidein 223
3.3.25 Configuration File Entries for DAGMan 223
3.3.26 Configuration File Entries Relating to Security 229
3.3.27 Configuration File Entries Relating to PrivSep 232
3.3.28 Configuration File Entries Relating to Virtual Magbs 233
3.3.29 Configuration File Entries Relating to High Availéli 235
3.3.30 Configuration File Entries Relating to Quill 239
3.3.31 MyProxy Configuration File Macros oo 242
3.3.32 Configuration File Macros Affecting APIS 242

Condor Version 7.2.3 Manual

CONTENTS

Vi

3.3.33 Stork Configuration File Mactos 243
3.4 User Priorities and Negotiation 244
3.4.1 RealUserPriofity (RUP) o oo 244
3.4.2 Effective User Priority (EUP) oo oo oo e 245
3.4.3 Priorities and Preemption. 245
3.4.4 Priority Calculation 247
345 Negotiation oo 472
3.4.6 The Layperson’s Description of the Pie Spinand PieeSli 248
347 GrOUPACCOUNLING . . o o o v ot e e e 492
348 GrOUPQUOLAS . . « o o o e e e e e 025
35 Policy Configuration for theondotstartd 252
3.5.1 Startd ClassAd Attributes 253
3.5.2 TheSTARTEXPIESSION . . o o oo v oot e e e 253
3.5.3 TheS _VALID_CH ECKPOINTPLATFORMXpression 254
35.4 TheRANKEXPIESSION . . o o oot e e e 255
355 MachineStateS oo i 56 2
3.5.6 MachineActivities 260
3.5.7 State and Activity Transitions 261
3.5.8 State/Activity Transition Expression Sumrﬁary e e e ... 270
3.5.9 Policy Settings 272
3.6 SECUMY .« . o v oo e e e e e e 281
3.6.1 Condor’s Security Model 282
3.6.2 Security Negotiation 284
3.6.3 Authentication 287
3.6.4 The Unified Map File for Authentication 298
3.6.5 Encryption L 929
3.6.6 Integrity. e 0B
3.6.7 AUthONZAtON vt 302

Condor Version 7.2.3 Manual

CONTENTS

vii

3.6.8 SECUIitYy SESSIONS . . . o o v o e e e e 306
3.6.9 Host-Based Security in Condor 307
3.6.10 Using Condor w/ Firewalls, Private Networks, and NAT. 315
3.6.11 User Accountsin Condor. oo v e 315
3.6.12 Privilege Separation 320
3.6.13 SUPPOITOQIEXEC o o oo e 324
3.7 Networking (includes sections on Port Usageand GCB) 325
3.7.1 Port UsageinCondor. 325
3.7.2 Configuring Condor for Machines With Multiple Netwdrkterfaces 329
3.7.3 Generic Connection Brokering(GCB) u.u... 332
3.7.4 Using TCP to Send Updates to tundorcollector 345
3.8 The CheckpointServer e 346
3.8.1 Preparing to Install a Checkpoint Server 347
3.8.2 Installing the Checkpoint Server Module 347
3.8.3 Configuring your Pool to Use Multiple Checkpoint Sesve. 348
3.8.4 CheckpointServerDomains 349
3.9 DAEMONCOE . . . v v vt it e e 513
3.9.1 DaemonCore and Unix signals o 352
3.9.2 DaemonCore and Command-line Argurﬁents 352
3.10 The High Availability of DA@MONS o v oot e 354
3.10.1 High Availability of the Job Quele 354
3.10.2 High Availability of the Central Manatj;er 356
BAL QUIll . oo 362
3.11.1 Installation and Configuration 362
3.11.2 Four UsageExamples 367
3.11.3 QUIllaNd SECUMtY o o o oo 368
3.11.4 Quilland Its RDBMS Schemaot 369
3.12 Setting Up for Special ENVIONMeNts oo 389

Condor Version 7.2.3 Manual

CONTENTS viii

3.12.1 Using Condorwith AFES 389
3.12.2 Configuring Condor for Multiple Platforms 391
3.12.3 Full Installation of condotompile 394
3.12.4 Thecondorkbddo 395
3.12.5 Configuring The CondorViewServer 396

3.12.6 Running Condor Jobs within a VMware or Xen Virtual Mae Environment398

3.12.7 Configuring The Startd for SMP Machines 399
3.12.8 Condor's Dedicated Scheduling 408
3.12.9 Configuring Condor for Running Backfill Jobs 412
3.12.10 Group ID-Based Process Tracking 420
3.12.11Concurrency LIMits o vt 420
3.13 Java Support Installation 422
3.14 Virtual Machingso 424
3.14.1 Configuration Parameters 424
3.15 Power Managemént 426
3.15.1 Enteringalow PowerState 426
3.15.2 Returning From a Low Power State 427
3.15.3 Keeping a ClassAd for a Hibernating Machine 428
3.15.4 LinuxPlatformDetails 428
3.15.5 Windows PlatformDetails 428
4 Miscellaneous Concepts 430
4.1 Condor's ClassAd MechaniSm oo v oo 430
B11 SYMAX o o oe e e 431
4.1.2 Evaluation Semanticso 439
4.1.3 ClassAds inthe Condor System 441
4.2 Condor's Checkpoint Mechanism 443
4.2.1 Standalone Checkpointingo 444

Condor Version 7.2.3 Manual

CONTENTS (¢
4.2.2 CheckpointSafety oo 445
4.2.3 Checkpoint Warnings oo vvv oo 445
4.2.4 Checkpoint Library Interface 446

4.3 ComputingOnDemand (COD) o v oo et 447
4.3.1 Overview of HOWCOD WOIKS o oo a4
4.3.2 Authorizing Users to Create and Manage COD Claims 448
4.3.3 Defininga COD Application 448
4.3.4 Managing COD Resource Claims oo 452
4.3.5 Limitations of COD SupportinCondor, 459

4.4 JODHOOKS . . o o oo 604
441 Hooksthat FetchWork 604
4.42 HooksforaJobRouter 674

45 Application Program Interfaces a. . 468
451 WebService 468
452 TheDRMAAAPIot 480
453 TheCommandLinelInterface 482
454 TheCondorGAHP 482
455 TheCondorPerlModule 824

5 Grid Computing| 491

5.1 INrOdUCHON . . . o v o e e e e e e 491

5.2 Connecting Condor Pools with Flock\ing 492
5.2.1 Flocking Configuration 492
5.2.2 JOb CONSIderations v oot it 494

5.3 TheGHAUNVEISE o oottt e e e e e 494
5.3.1 Condor-C, Thecondor Grid Type oo vt 494
5.3.2 Condor-G, the g2 and gt4 Grid Types 498
5.3.3 Thenordugrid Grd Type ovvive e 510

Condor Version 7.2.3 Manual

CONTENTS

5.3.4

The unicore Grid Type

5.3.5

The pbs Grid Type

5.3.6

The Isf Grid Type

5.3.7

The amazon Grid Type

5.3.8

Matchmaking in the Grid Universe

5.4 Glidein

5.4.1

Whatcondorglidein Does

5.4.2

Configuration Requirements in the LocalPool

5.4.3

Running Jobs on the Remote Grid Resource After Glidein.

5.5 Dynamic Deployment

5.6 The Condor Job Router

5.6.1

Routing Mechanism

5.6.2

Job Submission with Job Routing Capability

5.6.3

An Example Configuration

5.6.4

Routing Table Entry ClassAd Attributes

5.6.5

Example: constructing the routing table fromReSS

6 Platform-Specific Information

6.1 Linux

6.1.1

Linux Kernel-specific Information

6.1.2

Red Hat Version 9.x

6.1.3

Red Hat Fedora 1, 2, and 3

6.2 Microsoft Windows

6.2.1

Limitations under Windows

6.2.2

Supported Features under Windows

6.2.3

Secure Password Storbge

6.2.4

Executing Jobs as the SubmittingUser w.. ...

6.2.5

Executing Jobs with the User’s Profile Loaded

Condor Version 7.2.3 Manual

CONTENTS

Xi

6.2.6 Details on how Condor for Windows starts/stooshjob e

6.2.7 Security Considerations in Condor for Windows

6.2.8 Network filesand Condor v oo

6.2.9 Interoperability between Condor for Unix and CondorWindows

6.2.10 Some differences between Condor for Unix -vs- Cofmowindows . . .

6.3 Macintosh OS X . . . o v e

6.4.1 AIXS52L
6.4.2 AIXSIL

7 Frequently Asked Questions (FAQ)

7.1 Obtaining & Installing Condor v v v v

7.2 Setingup CondOr . . . o v v e

7.3 RUNNINGCONAOrJODS . .« « v o o e e e

7.4 CondoronWindoWS . . .« v v v

7.5 Grid ComDutinb

7.6 Troubleshooting

7.7 Otherquestions v v v

8 \Version History and Release Notes

8.1 Introduction to Condor VErsions« v i

8.1.1 Condor Version Number Scheme v v i it

8.1.2 The Stable Release Series o oo v v

8.1.3 The Development Release SEHES . o i

8.2 Upgrade SUIPHSES . . .« o v v v e e e,

8.3 Stable Release Seres 7.2 . . . v v v v v e e

8.4 DevelopmentRelease SerieS 7.1o

8.5 Stable Release Seres7.0 . . o v o v v oo

8.6 DevelopmentRelease Series6.9

Condor Version 7.2.3 Manual

CONTENTS Xi
8.7 Stable Release SEeres 6.8o v 648

9 Command Reference Manual (man pages) 672
CIEANURAIEIEASE . © o o o o e e e e 673
CONAOLAOVEIISE\ e 675
\condoncheckuserlogs 679
€oNdOLCheckPOINt o o v o 680
CONOLCRID .« o o o e e 683
CONOLCOT . . . o ot 686
CONOLCOISIAM\ oo oo 689
CONOLCOISIOP - .« « © o o e e et e e e 692
CONAOLCOMPIIE . .« . o o et e e e e e e 695
condorconfighind 698
condorconfigval 700
CONOLCONAIGUIE . .+« o o o e e oo e e e e e e 704
CONOLCONVEINISIONY o o o e e e e 709

condondaéman 711
condonfetchloé] 715

condOLfiNANOSE . .« .« . o o o e 718
.. 720
CONAOLNISIONY. . . . o o o oo e e e e e e e 727
CondOrhold oL 730
condorload NiStONY . « .« . v e e 733
CONAOLMASIEN. . . . o o o e oo e e e 735
condormasteroffl 737
CONAOLOM .« . . o o et e e e e 738
.. 741
.. 744

Condor Version 7.2.3 Manual

CONTENTS Xiii

condoqireen .. 746
condoqirio ... 748

CONAOLGEdt. « .« o o o e 758
CONAOLIECONTIG .« + o o o e e e e e e e e 760
\condonreconfigschedd 763
CONAOLIBIASE\ oo oo e e e e e e e e 764
condotreschedule 766
CONAOLIESIArt et 769
CONAOLIM . . . o o oo 772
CONdOLrOUtEr NIStONY o o 775
CONAOLIUN . . o oo oo e e e e e e 777
condorsetshutdown 781
CONAOLSIALS oo 783
CONAOLSIAtUS ettt e e e e e e 787
CONAOESIONECIET . . .« o o v e e 793
CONAOLSUBIMIL. o oo oo e e e e 795
condorsubmitdag 825
condortransferdata 830
ccondoru pdatesstaté 832
CONAOLUSEIIOG . © o o o e e e e e e e e e 835
CONAOLUSEIPHO . © « o o o o oo e e e e e 838
CONAOLVACAIE.\ ottt et e e e e 841
\condonvacatejob 844
....................................... 847
... 849
filelockMidWife 852
filelockundertaker 854

Condor Version 7.2.3 Manual

CONTENTS

Xiv

.. 858
SOTKESLCIEA .« . o o v o o e e 860
SOTKIM .« .« oo 862
SOTKIMLCIEd . . . o o oo 864
SOTKSIOrECEd . . . o o v oot e e 866
SIOTKSIAIUS .« . o o o oo e e e 868
SOTKSUDMIt. © . o o oo o 870
UNIGPIAMIGWITE © . o o o o e 874
\uniorpid_undertaker 876

LICENSING AND COPYRIGHT

Condor is released under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

Copyright © 1990-2009 Condor Team, Computer Sciences Daeat, University of Wisconsin-Madison,
WI.

Licensed under the Apache License, Version 2.0 (the "LieBngou may not use this file except in com-
pliance with the License. You may obtain a copy of the Liceatse

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writinghware distributed under the License is dis-
tributed on an "AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIRS OF ANY KIND, either express

or implied. See the License for the specific language gomgrpermissions and limitations under the License.

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUDN

1. Definitions.
"License” shall mean the terms and conditions for use, répction, and distribution as defined by
Sections 1 through 9 of this document.
"Licensor” shall mean the copyright owner or entity autlzed by the copyright owner that is granting
the License.
"Legal Entity” shall mean the union of the acting entity anidother entities that control, are controlled
by, or are under common control with that entity. For the jpsgs of this definition, "control” means (i)
the power, direct or indirect, to cause the direction or nggmaent of such entity, whether by contract or

Condor Version 7.2.3 Manual

http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0

CONTENTS XV

otherwise, or (ii) ownership of fifty percent (50outstargishares, or (iii) beneficial ownership of such
entity.
"You” (or "Your”) shall mean an individual or Legal Entity excising permissions granted by this Li-
cense.

"Source” form shall mean the preferred form for making maiifions, including but not limited to
software source code, documentation source, and configurfdes.

"Object” form shall mean any form resulting from mechanitrahsformation or translation of a Source
form, including but not limited to compiled object code, geasted documentation, and conversions to
other media types.

"Work” shall mean the work of authorship, whether in Sourc®bject form, made available under the
License, as indicated by a copyright notice that is inclushedr attached to the work (an example is
provided in the Appendix below).

"Derivative Works” shall mean any work, whether in Sourceliject form, that is based on (or derived
from) the Work and for which the editorial revisions, annitas, elaborations, or other modifications
represent, as a whole, an original work of authorship. Feptlrposes of this License, Derivative Works
shall not include works that remain separable from, or nyeliek (or bind by name) to the interfaces

of, the Work and Derivative Works thereof.

"Contribution” shall mean any work of authorship, inclugdithe original version of the Work and any
modifications or additions to that Work or Derivative Worketeof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner grdn individual or Legal Entity authorized

to submit on behalf of the copyright owner. For the purpodetis definition, "submitted” means any
form of electronic, verbal, or written communication semtlie Licensor or its representatives, includ-
ing but not limited to communication on electronic mailingt$, source code control systems, and issue
tracking systems that are managed by, or on behalf of, thenisiar for the purpose of discussing and im-
proving the Work, but excluding communication that is caospusly marked or otherwise designated
in writing by the copyright owner as "Not a Contribution.”

"Contributor” shall mean Licensor and any individual or laégntity on behalf of whom a Contribution
has been received by Licensor and subsequently incorgowatbin the Work.

2. Grant of Copyright License. Subject to the terms and dam of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, nargh, royalty-free, irrevocable copyright li-
cense to reproduce, prepare Derivative Works of, publiégpldy, publicly perform, sublicense, and
distribute the Work and such Derivative Works in Source oje@bform.

3. Grant of Patent License. Subject to the terms and conditid this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, nargh, royalty-free, irrevocable (except as
stated in this section) patent license to make, have made pffer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to thasent claims licensable by such Contributor
that are necessarily infringed by their Contribution(g)red or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submittefdvdu institute patent litigation against any
entity (including a cross-claim or counterclaim in a lavtsaileging that the Work or a Contribution
incorporated within the Work constitutes direct or conttidry patent infringement, then any patent
licenses granted to You under this License for that Worklgbahinate as of the date such litigation is
filed.

4. Redistribution. You may reproduce and distribute copiethe Work or Derivative Works thereof in
any medium, with or without modifications, and in Source ojjg@bform, provided that You meet the
following conditions:

(a) You must give any other recipients of the Work or DerivatiVorks a copy of this License; and
(b) You must cause any modified files to carry prominent netitating that You changed the files; and

Condor Version 7.2.3 Manual

CONTENTS XVi

(c) You must retain, in the Source form of any Derivative Wothat You distribute, all copyright, patent,
trademark, and attribution notices from the Source fornhefWork, excluding those notices that do not
pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE” text file as part of its diktution, then any Derivative Works that
You distribute must include a readable copy of the attrifoutiotices contained within such NOTICE
file, excluding those notices that do not pertain to any pathe Derivative Works, in at least one of
the following places: within a NOTICE text file distributed part of the Derivative Works; within the
Source form or documentation, if provided along with theiizaive Works; or, within a display gener-
ated by the Derivative Works, if and wherever such thirdypaotices normally appear. The contents of
the NOTICE file are for informational purposes only and domaoidify the License. You may add Your
own attribution notices within Derivative Works that Yousttibute, alongside or as an addendum to the
NOTICE text from the Work, provided that such additionatiatition notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modificasi@amd may provide additional or dif-
ferent license terms and conditions for use, reproductordistribution of Your modifications, or for
any such Derivative Works as a whole, provided Your use,adypetion, and distribution of the Work
otherwise complies with the conditions stated in this Li®n

5. Submission of Contributions. Unless You explicitly statherwise, any Contribution intentionally sub-
mitted for inclusion in the Work by You to the Licensor shadl bnder the terms and conditions of this
License, without any additional terms or conditions. Nahstanding the above, nothing herein shall
supersede or modify the terms of any separate license agrégmu may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission toheseade names, trademarks, service marks,
or product names of the Licensor, except as required foorestde and customary use in describing the
origin of the Work and reproducing the content of the NOTIQE. fi

7. Disclaimer of Warranty. Unless required by applicable & agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributioos)an "AS IS” BASIS, WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND, either express or impligdcluding, without limitation,
any warranties or conditions of TITLE, NON-INFRINGEMENT,BRCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible fored®ining the appropriateness of
using or redistributing the Work and assume any risks aasatiwith Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal trg, whether in tort (including negligence),
contract, or otherwise, unless required by applicable kwelf as deliberate and grossly negligent acts)
or agreed to in writing, shall any Contributor be liable taiMor damages, including any direct, indirect,
special, incidental, or consequential damages of any cterarising as a result of this License or out
of the use or inability to use the Work (including but not lted to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and &dleotommercial damages or losses), even if
such Contributor has been advised of the possibility of slazthages.

9. Accepting Warranty or Additional Liability. While redigbuting the Work or Derivative Works thereof,
You may choose to offer, and charge a fee for, acceptancepgfosty warranty, indemnity, or other
liability obligations and/or rights consistent with thiscense. However, in accepting such obligations,
You may act only on Your own behalf and on Your sole respotigibinot on behalf of any other
Contributor, and only if You agree to indemnify, defend, drald each Contributor harmless for any
liability incurred by, or claims asserted against, such t@buator by reason of your accepting any such
warranty or additional liability.

END OF TERMS AND CONDITIONS

Condor Version 7.2.3 Manual

CHAPTER

ONE

Overview

1.1 High-Throughput Computing (HTC) and its Requirements

For many research and engineering projects, the qualithefrésearch or the product is heavily
dependent upon the quantity of computing cycles availablis not uncommon to find problems
that require weeks or months of computation to solve. Sisisnand engineers engaged in this
sort of work need a computing environment that deliversdasignounts of computational power
over a long period of time. Such an environment is called ahHigroughput Computing (HTC)
environment. In contrast, High Performance Computing (HE@vironments deliver a tremendous
amount of compute power over a short period of time. HPC enwirents are often measured in
terms of FLoating point Operations Per Second (FLOPS). Avigrg community is not concerned
about operations per second, but operations per month orgaer Their problems are of a much
larger scale. They are more interested in how many jobs thaycomplete over a long period of
time instead of how fast an individual job can complete.

The key to HTC is to efficiently harness the use of all avadaigisources. Years ago, the en-
gineering and scientific community relied on a large, cdizied mainframe or a supercomputer to
do computational work. A large number of individuals andugrs needed to pool their financial re-
sources to afford such a machine. Users had to wait for thairan the mainframe, and they had a
limited amount of time allocated. While this environmensiconvenient for users, the utilization
of the mainframe was high; it was busy nearly all the time.

As computers became smaller, faster, and cheaper, usemsdnasay from centralized main-
frames and purchased personal desktop workstations andAtdadividual or small group could
afford a computing resource that was available whenevegriraated it. The personal computer is
slower than the large centralized machine, but it providetussive access. Now, instead of one giant
computer for a large institution, there may be hundreds ousands of personal computers. This

1.2. Condor’s Power

is an environment of distributed ownership, where indig$tthroughout an organization own their
own resources. The total computational power of the iniituas a whole may rise dramatically as
the result of such a change, but because of distributed @higgrindividuals have not been able to
capitalize on the institutional growth of computing pow&nd, while distributed ownership is more

convenient for the users, the utilization of the computiogver is lower. Many personal desktop
machines sit idle for very long periods of time while theirrmevs are busy doing other things (such
as being away at lunch, in meetings, or at home sleeping).

1.2 Condor’s Power

Condor is a software system that creates a High-Throughpuotpoiting (HTC) environment. It
effectively utilizes the computing power of workstatiohst communicate over a network. Condor
can manage a dedicated cluster of workstations. Its powsesdrom the ability to effectively
harness non-dedicated, preexisting resources undebdistl ownership.

A user submits the job to Condor. Condor finds an availablehingon the network and begins
running the job on that machine. Condor has the capabilityiai@ct that a machine running a
Condor job is no longer available (perhaps because the avfrtiee machine came back from lunch
and started typing on the keyboard). It can checkpoint theajod move (migrate) the jobs to a
different machine which would otherwise be idle. Condortoares job on the new machine from
precisely where it left off.

In those cases where Condor can checkpoint and migrate £¢igjor makes it easy to maxi-
mize the number of machines which can run a job. In this cAseetis no requirement for machines
to share file systems (for example, with NFS or AFS), so thathimes across an entire enterprise
can run a job, including machines in different administ@tiomains.

Condor can be a real time saver when a job must be run many (@dsidf) different times,
perhaps with hundreds of different data sets. With one conginall of the hundreds of jobs are
submitted to Condor. Depending upon the number of machim#sei Condor pool, dozens or even
hundreds of otherwise idle machines can be running the jabygiven moment.

Condor does not require an account (login) on machines wiheoas a job. Condor can do
this because of iteemote system catechnology, which traps library calls for such operatioss a
reading or writing from disk files. The calls are transmitmer the network to be performed on the
machine where the job was submitted.

Condor provides powerful resource management by matchingaksource owners with re-
source consumers. This is the cornerstone of a successflilddVironment. Other compute cluster
resource management systems attach properties to the ¢alegthemselves, resulting in user con-
fusion over which queue to use as well as administrativelbassconstantly adding and editing
gueue properties to satisfy user demands. Condor implesfidedsAdsa clean design that simpli-
fies the user’s submission of jobs.

ClassAds work in a fashion similar to the newspaper clask#idvertising want-ads. All ma-
chines in the Condor pool advertise their resource proggriboth static and dynamic, such as

Condor Version 7.2.3 Manual

1.3. Exceptional Features

available RAM memory, CPU type, CPU speed, virtual memozg,sphysical location, and cur-
rent load average, in @source offelad. A user specifies @source requesid when submitting a
job. The request defines both the required and a desired pebpérties of the resource to run the
job. Condor acts as a broker by matching and ranking resaffeeads with resource request ads,
making certain that all requirements in both ads are satisfizuring this match-making process,
Condor also considers several layers of priority values:ptiority the user assigned to the resource
request ad, the priority of the user which submitted the ad, @esire of machines in the pool to
accept certain types of ads over others.

1.3 Exceptional Features

Checkpoint and Migration. Where programs can be linked with Condor libraries, usefafdor
may be assured that their jobs will eventually completenéw¢he ever changing environment
that Condor utilizes. As a machine running a job submitte@aeoador becomes unavailable,
the job can be check pointed. The job may continue after riigyao another machine.
Condor’s periodic checkpoint feature periodically cheaikps a job even in lieu of migration
in order to safeguard the accumulated computation time ob &@m being lost in the event
of a system failure such as the machine being shutdown osacra

Remote System Calls.Despite running jobs on remote machines, the Condor stdna@verse
execution mode preserves the local execution environmamemote system calls. Users do
not have to worry about making data files available to remaigkatations or even obtaining
a login account on remote workstations before Condor ersctlteir programs there. The
program behaves under Condor as if it were running as thethiaesubmitted the job on the
workstation where it was originally submitted, no mattervamich machine it really ends up
executing on.

No Changes Necessary to User's Source CodBo special programming is required to use Con-
dor. Condor is able to run non-interactive programs. Theckpeint and migration of pro-
grams by Condor is transparent and automatic, as is the usenafte system calls. If these
facilities are desired, the user only re-links the progrdie code is neither recompiled nor
changed.

Pools of Machines can be Hooked Togetherlocking is a feature of Condor that allows jobs sub-
mitted within a first pool of Condor machines to execute ona@sd pool. The mechanism
is flexible, following requests from the job submission, lgtdllowing the second pool, or a
subset of machines within the second pool to set policiestbeeconditions under which jobs
are executed.

Jobs can be Ordered. The ordering of job execution required by dependencies gjabs in a set
is easily handled. The set of jobs is specified using a didegtyclic graph, where each job
is a node in the graph. Jobs are submitted to Condor follotvieglependencies given by the
graph.

Condor Enables Grid Computing. As grid computing becomes a reality, Condor is already there
The technique of glidein allows jobs submitted to Condor ¢oeliecuted on grid machines

Condor Version 7.2.3 Manual

1.4. Current Limitations

in various locations worldwide. As the details of grid cortipg evolve, so does Condor’s
ability, starting with Globus-controlled resources.

Sensitive to the Desires of Machine OwnersThe owner of a machine has complete priority over
the use of the machine. An owner is generally happy to letretbempute on the machine
while it is idle, but wants it back promptly upon returninghéd owner does not want to take
special action to regain control. Condor handles this aatarally.

ClassAds. The ClassAd mechanism in Condor provides an extremely fiexdxpressive frame-
work for matchmaking resource requests with resource sffeisers can easily request both
job requirements and job desires. For example, a user cailiredat a job run on a machine
with 64 Mbytes of RAM, but state a preference for 128 Mbytésyvailable. A workstation
owner can state a preference that the workstation runs jobs & specified set of users. The
owner can also require that there be no interactive workstatctivity detectable at certain
hours before Condor could start a job. Job requirement@pmaces and resource availability
constraints can be described in terms of powerful exprassiesulting in Condor’s adapta-
tion to nearly any desired policy.

1.4 Current Limitations

Limitations on Jobs which can Checkpointed Although Condor can schedule and run any type
of process, Condor does have some limitations on jobs thanittransparently checkpoint

and migrate:
1. Multi-process jobs are not allowed. This includes systatis such adork()
exec() ,andsystem()
2. Interprocess communication is not allowed. This inciiipes, semaphores, and shared
memory.
3. Network communication must be brief. A jobay make network connections using

system calls such aocket() , but a network connection left open for long periods
will delay checkpointing and migration.

. Sending or receiving the SIGUSR2 or SIGTSTP signals ishoed. Condor reserves

these signals for its own use. Sending or receiving all atfgaralsis allowed.

. Alarms, timers, and sleeping are not allowed. This inekidystem calls such as

alarm() , getitimer() , andsleep()

. Multiple kernel-level threads are not allowed. Howewveultiple user-level threadsre

allowed.

. Memory mapped files are not allowed. This includes systaiis such asnmap() and

munmap() .

. File locks are allowed, but not retained between checkpoi

Condor Version 7.2.3 Manual

1.5. Availability

9. All files must be opened read-only or write-only. A file opérfor both reading and
writing will cause trouble if a job must be rolled back to am @heckpoint image. For
compatibility reasons, a file opened for both reading andirgriwill result in a warning
but not an error.

10. A fair amount of disk space must be available on the sulmitnachine for storing
a job’s checkpoint images. A checkpoint image is approxatyatqual to the virtual
memory consumed by a job while it runs. If disk space is shodpecialcheckpoint
servercan be designated for storing all the checkpointimages farcd.

11. On Linux, your job must be statically linkedcondorcompiledoes this by default.
Dynamic linking is allowed on Solaris.

12. Reading to or writing from files larger than 2 GB is not sogted.

Note: these limitation®nly apply to jobs which Condor has been asked to transparently
checkpoint. If job checkpointing is not desired, the lirtidas above do not apply.

Security Implications. Condor does a significant amount of work to prevent secuazands, but
loopholes are known to exist. Condor can be instructed tas@n programs only as the UNIX
user nobody, a user login which traditionally has very iet#d access. But even with access
solely as user nobody, a sufficiently malicious individualilel do such things as fill ufpmp
(which is world writable) and/or gain read access to worlad@ble files. Furthermore, where
the security of machines in the pool is a high concern, onlghitees where the UNIX user
root on that machine can be trusted should be admitted imtgtiol. Condor provides the
administrator with extensive security mechanisms to exfalesired policies.

Jobs Need to be Re-linked to get Checkpointing and Remote Sgen Calls Although typically
no source code changes are required, Condor requires thittih be re-linked with the Con-
dor libraries to take advantage of checkpointing and rersgdéem calls. This often precludes
commercial software binaries from taking advantage ofdhgrvices because commercial
packages rarely make their object code available. Conadinsr services are still available
for these commercial packages.

1.5 Availability

Condor is currently available as a free download from thermét via the World Wide Web at URL
http://www.cs.wisc.edu/condor/downloads-v2. Binargtdbutions of Condor are available for the
platforms detailed in Table 1.1. A platform is an architeefoperating system combination. Condor
binaries are available for most major versions of Unix, a§ agWindows.

In the tableclippedmeans that Condor does not support checkpointing or renystera calls
on the given platform. This means thetandardjobs are not supported, onbanilla jobs. See
section 2.4.1 on page 15 for more details on job universesinvitondor and their abilities and
limitations.

For 7.0.0 and later releases, the Condor source code igblsafor public download alongside
the binary distributions.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/downloads-v2

1.5. Availability

| Architecture Operating System
Hewlett Packard PA-RISC (both PA7000- HPUX 11.00 (clipped)
and PA800O series)

Sun SPARC Sun4m, Sun4c, Sun Ultra- Solaris 8, 9 (clipped)

SPARC
- Solaris 10 (clipped) (Using the Solaris 9 binp-
ries)

Intel x86 - Red Hat Linux 9

- RedHat Enterprise Linux 3
- RedHat Enterprise Linux 4 (Using RHEL3 binga:
ries)
- RedHat Enterprise Linux 5
-FedoraCore 1, 2, 3, 4,5 (Using RHELS3 binaries)
- Debian Linux 3.1 (sarge) (Using RHELS3 bina
ries)
- Debian Linux 4.0 (etch)
- Debian Linux 5.0 (lenny)
- Windows 2000 Professional and Server (Win NT
5.0) (clipped)
- Windows 2003 Server (Win NT 5.2) (clipped)
- Windows 2008 Server (Win NT 6.0) (clipped)
- Windows XP Professional (Win NT 5.1)
(clipped)
- Windows Vista (Win NT 6.0) (clipped)
- Macintosh OS X 10.4 (clipped)
PowerPC - Macintosh OS X 10.4 (clipped)
- AIX 5.2, 5.3 (clipped)
- Yellowdog Linux 5.0 (clipped)
- SUSE Linux Enterprise Server 9 (clipped)
[tanium 1A64 - Red Hat Enterprise Linux 3 (clipped)
Opteron x8664 - Red Hat Enterprise Linux 3
- Red Hat Enterprise Linux 5
- Debian Linux 5.0 (lenny)

Table 1.1: Condor Version 7.2.3 supported platforms

NOTE: Other Linux distributions likely work, but are not testedsupported.

Condor is also available, but is not currently distributedessted binaries for the platforms shown

in Table'L.2.

For more platform-specific information about Condor’s sotifor various operating systems,

Condor Version 7.2.3 Manual

1.5. Availability 7

| Platform Notes
FreeBSD 6, 7 (clipped) on Intel x86 Known to compile
FreeBSD 7 (clipped) on Itanium 1A64 Known to compile

Table 1.2: Other Condor Version 7.2.3 available platforms

see Chaptérl6 on page 529.

Jobs submitted to the standard universe utii@aadorcompileto relink programs with libraries
provided by Condor. Table 1.3 lists supported compilers lagf@rm. Other compilers may work,
but are not supported.

| Platform Compiler | Notes |
Red Hat Enterprise Linux 3, 4, 5 on x86 gce, g++,and g77 as shipped
Red Hat Debian Linux 3.1 (sarge) on x86 gcc up to version 3.4.1
Red Hat Debian Linux 5.0 (lenny) on x86 and x86 gcc, g++, gfortran as shipped
FedoraCore 1, 2, 3,4,5,6, 7 on x86 gce, g++, and g77 as shipped

Table 1.3: Supported compilers under Condor Version 7.2.3

The following table, Table 114, identifies which platformspport the transfer of large files
(greater than 2 Gbyte in length). For vanilla universe jobd those platforms where large file
transfer is supported, the support is automatic.

| Platform Large File Transfer Supported
Hewlett Packard PA-RISC with HPUX 11.00 Yes
Sun SPARC Sun4m,Sun4c, Sun UltraSPARC with Solaris 8, 9 Yes
Intel x86 with Red Hat Enterprise Linux 3, 4, 5, Debian Linug 34.0, 5.0 Yes
Intel x86 with Fedora Core 1, 2, 3,4,5,6, 7 Yes
Intel x86 with Windows 2000 Professional and Server Yes
Intel x86 with 2003 Server (Win NT 5.0) Yes
Intel x86 with Windows XP Professional (Win NT 5.1) Yes
Intel x86 with Windows Vista Yes
PowerPC with Macintosh OS X No
PowerPC with AIX 5.2 Yes
PowerPC with Yellowdog Linux 5.0 Yes
Itanium with Red Hat Enterprise Linux 3 Yes
Opteron x8664 with Red Hat Enterprise Linux 3, 4, 5, Debian Linux 5.0 Yes

Table 1.4: Supported platforms for large file transfer ofiltamuniverse job files

Condor Version 7.2.3 Manual

1.6. Contributions to Condor

1.6 Contributions to Condor

The quality of the Condor project is enhanced by the contidms of external organizations. We
gratefully acknowledge the following contributions.

* The Globus Alliance (http://www.globus.org), for codedemssistance in developing Condor-
G and the Grid Security Infrastructure (GSI) for autherttmaand authorization.

* The GOZAL Project from the Computer Science Departmenheffiechnion Israel Institute
of Technology (http://www.technion.ac.il/), for their lemncements for Condor’s High Avail-
ability. Thecondorhad daemon allows one of multiple machines to function as thérakn
manager for a Condor pool. Therefore, if an acting centralager fails, another can take its
place.

« Micron Corporation | (http://www.micron.com/) for the M®kased installer for Condor on
Windows.

« Paradyn Project (http://www.paradyn.org/) and the Ursitat Autbnoma de Barcelona
(http://www.caos.uab.es/) for work on the Tool Daemon &cot (TDP).

Our Web Services APl acknowledges the use of gSOAP with tkgirested wording:

« Part of the software embedded in this product is gSOAP so&wPortions created by gSOAP
are Copyright (C) 2001-2004 Robert A. van Engelen, Geniwia All Rights Reserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY GENIVIANC
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT WMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS R A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, ORGHRTS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORYFO
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OFHIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

e« Some distributions of Condor include the Google Coredumpdbrary
(http://goog-coredumper.sourceforge.net/). The Godgeedumper library is released
under these terms:

Copyright (c) 2005, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with ahait modification, are permitted
provided that the following conditions are met:

Condor Version 7.2.3 Manual

http://www.globus.org
http://www.technion.ac.il/
http://www.micron.com/
http://www.paradyn.org/
http://www.caos.uab.es/
http://goog-coredumper.sourceforge.net/

1.7. Contact Information

— Redistributions of source code must retain the above cghyriotice, this list of condi-
tions and the following disclaimer.

— Redistributions in binary form must reproduce the aboveydgpt notice, this list of
conditions and the following disclaimer in the documemtatand/or other materials
provided with the distribution.

— Neither the name of Google Inc. nor the names of its contitsuhay be used to endorse
or promote products derived from this software without sfi@prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTBU-
TORS "AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDINKs, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHA
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECTN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAIDAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INRERTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD\GED
OF THE POSSIBILITY OF SUCH DAMAGE.

1.7 Contact Information

The latest software releases, publications/papers ragardCondor and other High-
Throughput Computing research can be found at the officiab vete for Condor at
http://www.cs.wisc.edu/condor.

In addition, there is an e-mail list at condor-world@csaésiu. The Condor Team
uses this e-mail list to announce new releases of Condor dher anajor Condor-related
news items. To subscribe or unsubscribe from the the listlovio the instructions at
http://www.cs.wisc.edu/condor/mail-lists/. Becausengnaf us receive too much e-mail as it is,
you will be happy to know that the Condor World e-mail list gmis moderated, and only major
announcements of wide interest are distributed.

Our users support each other by belonging to an unmoderaadohgnlist targeted at solving
problems with Condor. Condor team members attempt to moinétiic to Condor Users, respond-
ing as they can. Follow the instructions at http://www.dscaedu/condor/mail-lists/.

Finally, you can reach the Condor Team directly. The Con@anT is comprised of the develop-
ers and administrators of Condor at the University of WisinsMadison. Condor questions, com-
ments, pleas for help, and requests for commercial contmactultation or support are all welcome;
send Internet e-mail to mailto:condor-admin@cs.wisc.&lease include your name, organization,
and telephone number in your message. If you are havinglegouth Condor, please help us trou-
bleshoot by including as much pertinent information as yamw, éncluding snippets of Condor log
files.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor/mail-lists/
http://www.cs.wisc.edu/condor/mail-lists/
mailto:condor-admin@cs.wisc.edu

1.8. Privacy Notice 10

1.8 Privacy Notice

The Condor software periodically sends short messageset@tdndor Project developers at the
University of Wisconsin, reporting totals of machines anlg in each running Condor system. An
example of such a message is given below.

The Condor Project uses these collected reports to puhlishmery figures and tables, such
as the total of Condor systems worldwide, or the geograpisiciloution of Condor systems. This
information helps the Condor Project to understand theesamadl composition of Condor in the real
world and improve the software accordingly.

The Condor Project will not use these reports to publiclyniifg any Condor system or user
without permission. The Condor software does not colleceport any personal information about
individual users.

We hope that you will contribute to the development of Conttwough this reporting fea-
ture. However, you are free to disable it at any time by chagmghe configuration variables
CONDOBREVELOPERSand CONDOBREVELOPEREOLLECTOR both described in section
[3.3.16 of this manual.

Example of data reported:

This is an automated email from the Condor system
on machine "your.condor.pool.com”. Do not reply.

This Collector has the following IDs:
CondorVersion: 6.6.0 Nov 12 2003
CondorPlatform: INTEL-LINUX-GLIBC22

Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 810 52 716 37 0 5
INTEL/WINNT50 120 5 115 0 0 0
SUN4u/SOLARIS28 114 12 92 9 0 1
SUN4x/SOLARIS28 5 1 0 4 0 0
Total 1049 70 923 50 0 6
RunningJobs IdleJobs
920 3868

Condor Version 7.2.3 Manual

CHAPTER

TWO

Users’ Manual

2.1 Welcome to Condor

Presenting Condor Version 7.2.3! Condor is developed byQbedor Team at the University of
Wisconsin-Madison (UW-Madison), and was first installedaaproduction system in the UW-
Madison Computer Sciences department more than 10 year3 hgoCondor pool has since served
as a major source of computing cycles to UW faculty and sttgddfor many, it has revolutionized
the role computing plays in their research. An increase &, amd sometimes even two, orders of
magnitude in the computing throughput of a research orgéiniz can have a profound impact on its
size, complexity, and scope. Over the years, the Condor Teenestablished collaborations with
scientists from around the world, and it has provided thethatccess to surplus cycles (one scien-
tist has consumed 100 CPU years!). Today, our departmentisgonsists of more than 700 desktop
Unix workstations and more than 100 Windows 2000 machinesa @pical day, our pool delivers
more than 500 CPU days to UW researchers. Additional Condolsphave been established over
the years across our campus and the world. Groups of resFar@ngineers, and scientists have
used Condor to establish compute pools ranging in size froanaful to hundreds of workstations.
We hope that Condor will help revolutionize your computeisstvment as well.

2.2 Introduction

In a nutshell, Condor is a specialized batch system for miagagpmpute-intensive jobs. Like
most batch systems, Condor provides a queuing mechanisradgling policy, priority scheme,
and resource classifications. Users submit their compbtetm Condor, Condor puts the jobs in a
gueue, runs them, and then informs the user as to the result.

11

2.3. Matchmaking with ClassAds 12

Batch systems normally operate only with dedicated machiféten termed compute servers,
these dedicated machines are typically owned by one orgimivand dedicated to the sole purpose
of running compute jobs. Condor can schedule jobs on dedtigatichines. But unlike traditional
batch systems, Condor is also designed to effectivelyzatilion-dedicated machines to run jobs. By
being told to only run compute jobs on machines which areeruly not being used (no keyboard
activity, no load average, no active telnet users, etc),doonan effectively harness otherwise idle
machines throughout a pool of machines. This is importastbse often times the amount of
compute power represented by the aggregate total of all dimededicated desktop workstations
sitting on people’s desks throughout the organization igfeater than the compute power of a
dedicated central resource.

Condor has several unique capabilities at its disposallndiie geared toward effectively utiliz-
ing non-dedicated resources that are not owned or manageddmtralized resource. These include
transparent process checkpoint and migration, remotersysalls, and ClassAds. Read section 1.2
for a general discussion of these features before readinfuather.

2.3 Matchmaking with ClassAds

Before you learn about how to submit a job, it is important tmerstand how Condor allocates
resources. Understanding the unique framework by whichdGomatches submitted jobs with
machines is the key to getting the most from Condor’s schieduallgorithm.

Condor simplifies job submission by acting as a matchmak&@agsAds. Condor’s ClassAds
are analogous to the classified advertising section of thespaper. Sellers advertise specifics about
what they have to sell, hoping to attract a buyer. Buyers nipedise specifics about what they
wish to purchase. Both buyers and sellers list constraivdsrieed to be satisfied. For instance, a
buyer has a maximum spending limit, and a seller requireswémaim purchase price. Furthermore,
both want to rank requests to their own advantage. Certairggller would rank one offer of $50
dollars higher than a different offer of $25. In Condor, @ssubmitting jobs can be thought of as
buyers of compute resources and machine owners are sellers.

All machines in a Condor pool advertise their attributeghsas available RAM memory, CPU
type and speed, virtual memory size, current load averadgagavith other static and dynamic
properties. This machine ClassAd also advertises undereamalitions it is willing to run a Condor
job and what type of job it would prefer. These policy atttidsican reflect the individual terms and
preferences by which all the different owners have gradjoakowed their machine to be part of
the Condor pool. You may advertise that your machine is orillyng to run jobs at night and when
there is no keyboard activity on your machine. In additioon ynay advertise a preference (rank)
for running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd witlugrequirements and preferences.
The ClassAd includes the type of machine you wish to use. iistance, perhaps you are looking
for the fastest floating point performance available. Yoww@ondor to rank available machines
based upon floating point performance. Or, perhaps you cdyettwat the machine has a minimum
of 128 Mbytes of RAM. Or, perhaps you will take any machine yam get! These job attributes

Condor Version 7.2.3 Manual

2.3. Matchmaking with ClassAds 13

and requirements are bundled up into a job ClassAd.

Condor plays the role of a matchmaker by continuously repdihthe job ClassAds and all the
machine ClassAds, matching and ranking job ads with maddise Condor makes certain that all
requirements in both ClassAds are satisfied.

2.3.1 Inspecting Machine ClassAds with condastatus

Once Condor is installed, you will get a feel for what a maeh@lassAd does by trying theon-
dor_statuscommand. Try theondorstatuscommand to get a summary of information from Class-
Ads about the resources available in your pool. Tgpadorstatusand hit enter to see a summary
similar to the following:

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

adriana.cs INTEL SOLARIS251 Claimed Busy 1.000 64 0+01:10: 00
alfred.cs. INTEL SOLARIS251 Claimed Busy 1.000 64 0+00:40: 00
amul.cs.wi SUN4u SOLARIS251 Owner Idle 1.000 128 0+06:20:0 4
anfrom.cs. SUN4x SOLARIS251 Claimed Busy 1.000 32 0+05:16: 22
anthrax.cs INTEL SOLARIS251 Claimed Busy 0.285 64 0+00:00: 00
astro.cs.w INTEL SOLARIS251 Claimed Busy 0.949 64 0+05:30: 00
aura.cs.wi SUN4u SOLARIS251 Owner Idle 1.043 128 0+14:40:1 5

Thecondorstatuscommand has options that summarize machine ads in a vafietstys. For
example,

condor.status -availableshows only machines which are willing to run jobs now.
condor.status -run shows only machines which are currently running jobs.

condor.status -1 lists the machine ClassAds for all machines in the pool.

Refer to thecondor statuscommand reference page located on page 787 for a completeémes
tion of thecondorstatuscommand.

Figurel 2.1 shows the complete machine ClassAd for a singt&station: alfred.cs.wisc.edu.
Some of the listed attributes are used by Condor for schegluther attributes are for information
purposes. An important point is thahy of the attributes in a machine ad can be utilized at job
submission time as part of a request or preference on whatimato use. Additional attributes can
be easily added. For example, your site administrator caregghysical location attribute to your
machine ClassAds.

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs

MyType = "Machine"

TargetType = "Job"

Name = "alfred.cs.wisc.edu"
Machine = "alfred.cs.wisc.edu"
StartdlpAddr = "<128.105.83.11:32780>"
Arch = "INTEL"

OpSys = "SOLARIS251"
UidDomain = "cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
State = "Unclaimed"
EnteredCurrentState = 892191963
Activity = "ldle"
EnteredCurrentActivity = 892191062
VirtualMemory = 185264

Disk = 35259
KFlops = 19992
Mips = 201

LoadAvg = 0.019531
CondorLoadAvg = 0.000000
Keyboardidle = 5124
Consoleldle = 27592

Cpus = 1

Memory = 64

AFSCell = "cs.wisc.edu"

START = LoadAvg - CondorLoadAvg <= 0.300000 && Keyboardldle > 15 * 60
Requirements = TRUE

Rank = Owner == "johndoe" || Owner == "friendofjohn"

CurrentRank = - 1.000000

LastHeardFrom = 892191963

Figure 2.1: Sample output frosondorstatus -l alfred

2.4 Road-map for Running Jobs

The road to using Condor effectively is a short one. The Isemie quickly and easily learned.

Here are all the steps needed to run a job using Condor.

Code Preparation. A job run under Condor must be able to run as a background f@tciCondor
runs the program unattended and in the background. A progratruns in the background
will not be able to do interactive input and output. Condar oedirect console output (stdout
and stderr) and keyboard input (stdin) to and from files fan.yGreate any needed files that
contain the proper keystrokes needed for program input. eMagtain the program will run
correctly with the files.

The Condor Universe. Condor has several runtime environments (callach&versg from which
to choose. Of the universes, two are likely choices whemlagrto submit a job to Condor:
the standard universe and the vanilla universe. The stdngdaverse allows a job running

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs

15

under Condor to handle system calls by returning them to thehme where the job was

submitted. The standard universe also provides the mesinamiecessary to take a checkpoint

and migrate a partially completed job, should the machinevbith the job is executing
become unavailable. To use the standard universe, it isseaneto relink the program with
the Condor library using theondorcompilecommand. The manual page fmndorcompile
on page 695 has details.

The vanilla universe provides a way to run jobs that cannatbeked. There is no way to

take a checkpoint or migrate a job executed under the vamilaerse. For access to input
and output files, jobs must either use a shared file systems®mQondor’s File Transfer

mechanism.

Choose a universe under which to run the Condor program,extidk the program if neces-
sary.

Submit description file. Controlling the details of a job submission is a submit digsicm file.
The file contains information about the job such as what etadde to run, the files to use for
keyboard and screen data, the platform type required tolremptogram, and where to send
e-mail when the job completes. You can also tell Condor howyntanes to run a program;
it is simple to run the same program multiple times with nplétidata sets.

Write a submit description file to go with the job, using thamples provided in section 2.5.1
for guidance.

Submit the Job. Submit the program to Condor with tltendorsubmitcommand.

Once submitted, Condor does the rest toward running theNtinitor the job’s progress with
the condorq and condorstatuscommands. You may modify the order in which Condor will run
your jobs withcondorprio. If desired, Condor can even inform you in a log file every tiyoer job
is checkpointed and/or migrated to a different machine.

When your program completes, Condor will tell you (by e-méiipreferred) the exit status of
your program and various statistics about its performarinehiding time used and I/O performed.
If you are using a log file for the job (which is recommended) &xit status will be recorded in the
log file. You can remove a job from the queue prematurely withdorrm.

2.4.1 Choosing a Condor Universe

A universein Condor defines an execution environment. Condor Versi@mB&upports several
different universes for user jobs:

Standard

* Vanilla
« MPI
e Grid

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs 16

e Java

Scheduler

* Local

Parallel

* VM

Theuniverse under which a job runs is specified in the submit descriptilen ff a universe is
not specified, the default is standard.

The standard universe provides migration and reliabibityt, has some restrictions on the pro-
grams that can be run. The vanilla universe provides fewmics, but has very few restrictions.
The MPI universe is for programs written to the MPICH intedaSee sectidn 2.9.5 for more about
MPI and Condor. The MPI Universe has been superseded by thégbaniverse. The grid universe
allows users to submit jobs using Condor’s interface. Thealsgare submitted for execution on grid
resources. The java universe allows users to run jobs wiitiethe Java Virtual Machine (JVM).
The scheduler universe allows users to submit lightweigihs fo be spawned by tltendorschedd
daemon on the submit host itself. The parallel universeiigpfograms that require multiple ma-
chines for one job. See section 2.9 for more about the Phtaileerse. The vm universe allows
users to run jobs where the job is no longer a simple execaitdbk a disk image, facilitating the
execution of a virtual machine.

Standard Universe

In the standard universe, Condor providieckpointingandremote system callsThese features
make a job more reliable and allow it uniform access to resesifrom anywhere in the pool. To
prepare a program as a standard universe job, it must be&eeliwith condorcompile Most pro-
grams can be prepared as a standard universe job, but tkeead@w restrictions.

Condor checkpoints a job at regular intervals.clheckpoint imagés essentially a snapshot of
the current state of a job. If a job must be migrated from onehime to another, Condor makes a
checkpointimage, copies the image to the new machine, atattethe job continuing the job from
where it left off. If a machine should crash or fail while itisnning a job, Condor can restart the
job on a new machine using the most recent checkpoint imagtid way, jobs can run for months
or years even in the face of occasional computer failures.

Remote system calls make a job perceive that it is executiritsdhome machine, even though
the job may execute on many different machines over itgrifet When a job runs on a remote ma-
chine, a second process, calledandorshadowuns on the machine where the job was submitted.

When the job attempts a system call, dt@ndorshadowperforms the system call instead and
sends the results to the remote machine. For example, if atjempts to open a file that is stored
on the submitting machine, tremndorshadowwill find the file, and send the data to the machine
where the job is running.

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs 17

To convert your program into a standard universe job, youtmmascondorcompileto relink
it with the Condor libraries. Putondorcompilein front of your usual link command. You do not
need to modify the program’s source code, but you do needsadoethe unlinked object files. A
commercial program that is packaged as a single executébtafinot be converted into a standard
universe job.

For example, if you would have linked the job by executing:
% cc main.o tools.0 -0 program

Then, relink the job for Condor with:
% condor_compile cc main.o tools.0 -0 program

There are a few restrictions on standard universe jobs:

1. Multi-process jobs are not allowed. This includes systafis such afork() , exec() ,
andsystem()

2. Interprocess communication is not allowed. This incligges, semaphores, and shared
memory.

3. Network communication must be brief. A jobaymake network connections using system
calls such asocket() , but a network connection left open for long periods will alel
checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals isthatved. Condor reserves these
signals for its own use. Sending or receiving all other sigitaallowed.

5. Alarms, timers, and sleeping are not allowed. This inetuglystem calls such atarm() ,
getitimer() , andsleep()

6. Multiple kernel-level threads are not allowed. Howevagltiple user-level threadare al-
lowed.

7. Memory mapped files are not allowed. This includes systalis such asnmap() and
munmap() .

8. File locks are allowed, but not retained between checkpoi

9. All files must be opened read-only or write-only. A file opeérfor both reading and writing
will cause trouble if a job must be rolled back to an old chesikpimage. For compatibility
reasons, a file opened for both reading and writing will reisud warning but not an error.

10. A fair amount of disk space must be available on the sulmgitmachine for storing a job’s
checkpoint images. A checkpoint image is approximatelyaétuthe virtual memory con-
sumed by a job while it runs. If disk space is short, a spetiatkpoint servecan be desig-
nated for storing all the checkpoint images for a pool.

Condor Version 7.2.3 Manual

2.4. Road-map for Running Jobs 18

11. On Linux, your job must be statically linkedondorcompiledoes this by default. Dynamic
linking is allowed on Solaris.

12. Reading to or writing from files larger than 2 GB is not soried.

Vanilla Universe

The vanilla universe in Condor is intended for programs Wwhiennot be successfully re-linked.
Shell scripts are another case where the vanilla univenssaful. Unfortunately, jobs run under the
vanilla universe cannot checkpoint or use remote systets. cihis has unfortunate consequences
for a job that is partially completed when the remote machimsing a job must be returned to its
owner. Condor has only two choices. It can suspend the jgtingdo complete it at a later time, or
it can give up and restart the jdimm the beginningn another machine in the pool.

Since Condor’s remote system call features cannot be ugadhg vanilla universe, access to
the job’s input and output files becomes a concern. One ofgtifim Condor to rely on a shared file
system, such as NFS or AFS. Alternatively, Condor has a nmesimefor transferring files on behalf
of the user. In this case, Condor will transfer any files neldulea job to the execution site, run the
job, and transfer the output back to the submitting machine.

Under Unix, the Condor presumes a shared file system forlagpibs. However, if a shared
file system is unavailable, a user can enable the Condor Fiester mechanism. On Windows
platforms, the default is to use the File Transfer mechanibor details on running a job with a
shared file system, see section 2.5.3 on pade 24. For detailsing the Condor File Transfer
mechanism, see section 2J5.4 on page 26.

Grid Universe

The Grid universe in Condor is intended to provide the stesh@@ndor interface to users who wish
to start jobs intended for remote management systems.ocBEeB8 on page 494 has details on using
the Grid universe. The manual page éamdorsubmiton pagé 795 has detailed descriptions of the
grid-related attributes.

Java Universe

A program submitted to the Java universe may run on any senaahine with a JVM regardless of
its location, owner, or JVM version. Condor will take careadlfthe details such as finding the JVM
binary and setting the classpath.

Scheduler Universe

The scheduler universe allows users to submit lightweighsjto be run immediately, alongside
the condorschedddaemon on the submit host itself. Scheduler universe jabsetr matched with

Condor Version 7.2.3 Manual

2.5. Submitting a Job 19

a remote machine, and will never be preempted. The job’sirenpents expression is evaluated
against theondorschedd ClassAd.

Originally intended for meta-schedulers sucltasdordagmanthe scheduler universe can also
be used to manage jobs of any sort that must run on the substit ho

However, unlike the local universe, the scheduler univdoss not use eondorstarterdaemon
to manage the job, and thus offers limited features and pslipport. The local universe is a better
choice for most jobs which must run on the submit host, asfé@rsfa richer set of job management
features, and is more consistent with other universes ssitheavanilla universe. The scheduler
universe may be retired in the future, in favor of the newerlainiverse.

Local Universe

The local universe allows a Condor job to be submitted andwgeel with different assumptions for
the execution conditions of the job. The job does not waitedartatched with a machine. It instead
executes right away, on the machine where the job is sulinifthe job will never be preempted.
The job’s requirements expression is evaluated againstdhdorschedd ClassAd.

Parallel Universe

The parallel universe allows parallel programs, such as jglfd, to be run within the opportunistic
Condor environment. Please see sectioh 2.9 for more details

VM Universe

Condor facilitates the execution of VMware and Xen virtuaahines with the vm universe.

Please see sectipn 2.11 for details.

2.5 Submitting a Job

A job is submitted for execution to Condor using ttendorsubmitcommand condorsubmittakes
as an argument the name of a file called a submit descriptien firhis file contains commands
and keywords to direct the queuing of jobs. In the submit deson file, Condor finds everything
it needs to know about the job. Items such as the name of tleutde to run, the initial working
directory, and command-line arguments to the program alhtgthe submit description filecon-
dor_submitcreates a job ClassAd based upon the information, and Camoldes toward running
the job.

The contents of a submit file can save time for Condor useiseHsy to submit multiple runs of
a program to Condor. To run the same program 500 times on Sf#etit input data sets, arrange

Condor Version 7.2.3 Manual

2.5. Submitting a Job 20

your data files accordingly so that each run reads its owntjrgnd each run writes its own output.
Each individual run may have its own initial working direptpstdin, stdout, stderr, command-line
arguments, and shell environment. A program that diregtlgrs its own files will read the file
names to use either from stdin or from the command line. A nogthat opens a static filename
every time will need to use a separate subdirectory for thpuiwf each run.

Thecondorsubmitmanual page is on pape 795 and contains a complete and faligtésn of
how to usecondorsubmit

2.5.1 Sample submit description files

In addition to the examples of submit description files giwethe condorsubmitmanual page, here
are a few more.

Example 1

Example 1 is the simplest submit description file possibtequieues up one copy of the program
foo (which had been created mpndorcompilg for execution by Condor. Since no platform is
specified, Condor will use its default, which is to run the @ba machine which has the same ar-
chitecture and operating system as the machine from whighstsubmitted. Naput , output
anderror commands are given in the submit description file, so the §ildsn , stdout , and
stderr will all refer to /dev/null . The program may produce output by explicitly opening a
file and writing to it. A log file,foo.log , will also be produced that contains events the job had
during its lifetime inside of Condor. When the job finishds,exit conditions will be noted in the
log file. Itis recommended that you always have a log file sokraw what happened to your jobs.

HHAHHH AR
#
Example 1
Simple condor job description file
#
HHAHHH AR
Executable = foo
Log = foo.log
Queue
Example 2

Example 2 queues two copies of the progravathematica The first copy will run in directory
run _1, and the second will run in directomun 2. For both queued copiestdin will be
test.data , stdout will be loop.out , andstderr will be loop.error . There will be
two sets of files written, as the files are each written to tbein directories. This is a convenient

Condor Version 7.2.3 Manual

2.5. Submitting a Job

21

way to organize data if you have a large group of Condor jobsito The example file shows
program submission ahathematicas a vanilla universe job. This may be necessary if the source
and/or object code to programathematicas not available.

HHAHHH AR

#

Example 2: demonstrate use of multiple
directories for data organization.

#
HHAHHH AR
Executable = mathematica
Universe = vanilla
input = test.data
output = loop.out
error = loop.error
Log = loop.log
Initialdir = run_1
Queue
Initialdir = run_2
Queue

Example 3

The submit description file for Example 3 queues 150 runs eamfoo which has been compiled
and linked for Sun workstations running Solaris 8. This jequires Condor to run the program on
machines which have greater than 32 megabytes of physicabnyeand expresses a preference to
run the program on machines with more than 64 megabytesciif swachines are available. It also
advises Condor that it will use up to 28 megabytes of memorgnadanning. Each of the 150 runs
of the program is given its own process number, starting wititess number 0. So, filesdin
stdout , andstderr will refer toin.0 , out.0 , anderr.0 for the first run of the program,
in.1 ,out.l ,anderr.l forthe second run of the program, and so forth. A log file ciomitay
entries about when and where Condor runs, checkpoints, &grdtes processes for the 150 queued
programs will be written into filéoo.log

HHAHHH AR

#

Example 3: Show off some fancy features including
use of pre-defined macros and logging.

#

HHAHHH AR

Condor Version 7.2.3 Manual

2.5. Submitting a Job 22

Executable = foo

Requirements = Memory >= 32 && OpSys == "SOLARIS28" && Arch == "SUN4u"
Rank = Memory >= 64

Image_Size = 28 Meg

Error = err.$(Process)

Input = in.$(Process)

Output = out.$(Process)

Log = foo.log

Queue 150

2.5.2 About Requirements and Rank

Therequirements andrank commands in the submit description file are powerful and lfilexi
Using them effectively requires care, and this sectiongutssthose details.

Bothrequirements andrank need to be specified as valid Condor ClassAd expressions,
however, default values are set by ttendorsubmitprogram if these are not defined in the submit
description file. From theondorsubmitmanual page and the above examples, you see that writing
ClassAd expressions is intuitive, especially if you areifemwith the programming language C.
There are some pretty nifty expressions you can write withs€Ads. A complete description of
ClassAds and their expressions can be found in section 4phge 430.

All of the commands in the submit description file are casemsgive,exceptfor the ClassAd
attribute string values. ClassAds attribute names areioasasitive, but ClassAd string values are
case preserving

Note that the comparison operatoss ¢, <=, >=, and==) compare strings case insensitively.
The special comparison operatet®= and=!= compare strings case sensitively.

A requirements or rank command in the submit description file may utilize attritsutbat
appear in a machine or a job ClassAd. Within the submit deson file (for a job) the prefix
MY. (on a ClassAd attribute name) causes a reference to the pds@&d attribute, and the prefix
TARGET. causes a reference to a potential machine or matched mackisgAd attribute.

The condorstatuscommand displays statistics about machines within the.pobé -l option
displays the machine ClassAd attributes for all machinghénCondor pool. The job ClassAds, if
there are jobs in the queue, can be seen withctirelorq -| command. This shows all the defined
attributes for current jobs in the queue.

A list of defined ClassAd attributes for job ClassAds is giwerthe unnumbered Appendix on
page 870. A list of defined ClassAd attributes for machines§als is given in the unnumbered
Appendix on page 886.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 23

Rank Expression Examples

When considering the match between a job and a machine, samgedd to choose a match from
among all machines that satisfy the job’s requirements amdwailable to the user, after accounting
for the user’s priority and the machine’s rank of the job. Taek expressions, simple or complex,
define a numerical value that expresses preferences.

The job’srank expression evaluates to one of three values. It can be UNDEDB| ERROR, or
a floating point value. Ifank evaluates to a floating point value, the best match will betiewith
the largest, positive value. If mank is given in the submit description file, then Condor substiu
a default value of 0.0 when considering machines to matcthelfob’srank of a given machine
evaluates to UNDEFINED or ERROR, this same value of 0.0 id uSherefore, the machine is still
considered for a match, but has no rank above any other.

A boolean expression evaluates to the numerical value df firige, and 0.0 if false.
The followingrank expressions provide examples to follow.

For a job that desires the machine with the most available angm
Rank = memory
For a job that prefers to run on a friend’s machine on Satuws@end Sundays:

Rank = ((clockday == 0) || (clockday == 6))
&& (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friendl.cs.wisc.edu") ||
(machine == "friend2.cs.wisc.edu") ||
(machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating poirfop@mance (on Linpack bench-
marks):

Rank = kflops

This particular example highlights a difficulty with rankpgmession evaluation as currently defined.
While all machines have floating point processing abilityt all machines will have thkflops
attribute defined. For machines where this attribute is efindd,Rank will evaluate to the value
UNDEFINED, and Condor will use a default rank of the machif®.6. Therank attribute will
only rank machines where the attribute is defined. Theretbeemachine with the highest floating
point performance may not be the one given the highest rank.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 24

So, it is wise when writing aank expression to check if the expression’s evaluation wiltllea
to the expected resulting ranking of machines. This can beraplished using theondorstatus
command with theconstraintargument. This allows the user to see a list of machines that fi
constraint. To see which machines in the pool hefl@ps defined, use

condor_status -constraint kflops
Alternatively, to see a list of machines whésfdops is not defined, use
condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friendl.cs.wisc.edu") *3) +
((machine == "friend2.cs.wisc.edu") *2) +
(machine == "friend3.cs.wisc.edu")
If the machine being ranked tfriend1.cs.wisc.edu” , then the expression
(machine == "friendl.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")
and

(machine == "friend3.cs.wisc.edu")
are false, and give the value O0.0. Thereforeank evaluates to the value 3.0.
In this way, machine "friendl.cs.wisc.edu” is ranked higher than machine
"friend2.cs.wisc.edu” , machine"friend2.cs.wisc.edu" is ranked higher than
machine"friend3.cs.wisc.edu" , and all three of these machines are ranked higher than
others.

2.5.3 Submitting Jobs Using a Shared File System

If vanilla, java, parallel (or MPI) universe jobs are sulteit without using the File Transfer mech-
anism, Condor must use a shared file system to access inpaugnat files. In this case, the job
mustbe able to access the data files from any machine on which lid pmtentially run.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 25

As an example, suppose a job is submitted from blackbimdiss.edu, and the job requires
a particular data file calledu/p/s/psilord/data.txt . If the job were to run on cardi-
nal.cs.wisc.edu, the filei/p/s/psilord/data.txt must be available through either NFS or
AFS for the job to run correctly.

Condor allows users to ensure their jobs have access to ghe shared files by using the
FileSystemDomain and UidDomain machine ClassAd attributes. These attributes specify
which machines have access to the same shared file systeinsiagtiines that mount the same
shared directories in the same locations are consideredlém@ to the same file system domain.
Similarly, all machines that share the same user informg(iio particular, the same UID, which is
important for file systems like NFS) are considered part efsame UID domain.

The default configuration for Condor places each machins iovin UID domain and file system
domain, using the full host name of the machine as the namieeofldmains. So, if a poaloes
have access to a shared file system, the pool administratstcorrectly configure Condor such
that all the machines mounting the same files have the gélef®ystemDomain configuration.
Similarly, all machines that share common user informatiarst be configured to have the same
UidDomain configuration.

When a job relies on a shared file system, Condor usesetpgirements expression to
ensure that the job runs on a machine in the cottBdDomain andFileSystemDomain . In
this case, the defaulequirements expression specifies that the job must run on a machine with
the saméJidDomain andFileSystemDomain asthe machine from which the job is submitted.
This default is almost always correct. However, in a poohspag multipleUidDomain s and/or
FileSystemDomain s, the user may need to specify a differeequirements expression to
have the job run on the correct machines.

For example, imagine a pool made up of both desktop workstatand a dedicated compute
cluster. Most of the pool, including the compute clusters hacess to a shared file system, but
some of the desktop machines do not. In this case, the adrabois would probably define the
FileSystemDomain to becs.wisc.edu for all the machines that mounted the shared files,
and to the full host name for each machine that did not. An gtaisjimi.cs.wisc.edu

In this example, a user wants to submit vanilla universe foti her own desktop machine
(jimi.cs.wisc.edu) which does not mount the shared fileeys{and is therefore in its own file
system domain, in its own world). But, she wants the jobs talide to run on more than just her
own machine (in particular, the compute cluster), so she fhe program and input files onto the
shared file system. When she submits the jobs, she need$@oiwlor to send them to machines
that have access to that shared data, so she specifies amifiyuirements expression than
the default:

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: Ifthere isnoshared file system, or the Condor pool administrator doesardtgure
theFileSystemDomain setting correctly (the default is that each machine in a poiol its own
file system and UID domain), a user submits a job that canreoteraote system calls (for example,

Condor Version 7.2.3 Manual

2.5. Submitting a Job 26

a vanilla universe job), and the user does not enable CanBide€ Transfer mechanism, the job will
only run on the machine from which it was submitted.

2.5.4 Submitting Jobs Without a Shared File System: Condos File Transfer
Mechanism

Condor works well without a shared file system. The Condottfdasfer mechanism is utilized by
the user when the user submits jobs. Condor will transfeffitgg/needed by a job from the machine
where the job was submitted into a temporary working dimlgctm the machine where the job is
to be executed. Condor executes the job and transfers dudiglatto the submitting machine. The
user specifies which files to transfer, and at what point thpuddiles should be copied back to the
submitting machine. This specification is done within th@gsubmit description file.

The default behavior of the file transfer mechanism variessscthe different Condor universes,
and it differs between UNIX and Windows machines.

Default Behavior across Condor Universes and Platforms

For jobs submitted under the standard universe, the existefa shared file system is not relevant.
Access to files (input and output) is handled through Comsd@mote system call mechanism. The
executable and checkpoint files are transferred autonligtisden needed. Therefore, the user does
not need to change the submit description file if there is raweshfile system.

For the vanilla, java, MPI, and parallel universes, acces§lés (including the executable)
through a shared file system is presumed as a default on UNIehimes. If there is no shared
file system, then Condor’s file transfer mechanism must béicthp enabled. When submitting a
job from a Windows machine, Condor presumes the oppositeicaoess to a shared file system. It
instead enables the file transfer mechanism by default. &simn of a job might need to specify
which files to transfer, and/or when to transfer the outpasfiback.

For the grid universe, jobs are to be executed on remote meashso there would never be a
shared file system between machines. See section 5.3.2 ferdatails.

For the scheduler universe, Condor is only using the madndme which the job is submitted.
Therefore, the existence of a shared file system is not neteva

Specifying If and When to Transfer Files

To enable the file transfer mechanism, two commands aregladke job’s submit description file:
should_transfer_filesandwhen_to_transfer_output. An example is:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

Condor Version 7.2.3 Manual

2.5. Submitting a Job

27

The should.transfer_files command specifies whether Condor should transfer inputffites
the submit machine to the remote machine where the job exgcut also specifies whether the
output files are transferred back to the submit machine. ©hetand takes on one of three possible
values:

1. YES Condor always transfers both input and output files.

2. IF_NEEDED Condor transfers files if the job is matched with (and to becexed on) a
machine in a differenFileSystemDomain than the one the submit machine belongs to.
If the job is matched with a machine in the loddleSystemDomain , Condor will not
transfer files and relies on a shared file system.

3. NQ Condor’s file transfer mechanism is disabled.

The when_to_transfer_output command tells Condor when output files are to be transferred
back to the submit machine after the job has executed on ateamachine. The command takes on
one of two possible values:

1. ON_EXIT: Condor transfers output files back to the submit maching whien the job exits
on its own.

2. ON_EXIT_OR_EVICT: Condor will always do the transfer, whether the job comgsein its
own, is preempted by another job, vacates the machine, diggl kAs the job completes on
its own, files are transferred back to the directory wherejdhenvas submitted, as expected.
For the other casefiJes are transferred back at eviction tim&hese files are placed in the
directory defined by the configuration variat3®O0O0L.not the directory from which the job
was submitted. The transferred files are named usingClsterld ~ and Procld job
ClassAd attributes. The file name takes the form:

cluster<X>.proc<Y>.subproc0O

where<X> is the value ofClusterld , and<Y> is the value ofProcld . As an example,
job 735.0 may produce the file

$(SPOOL)/cluster735.proc0.subprocO

This is only useful if partial runs of the job are valuable. é&xample of valuable partial runs
is when the application produces its own checkpoints.

There is no default value favhen to_transfer_output. If using the file transfer mechanism,
this command must be defined.when_to_transfer_output is specified in the submit description
file, butshould_transfer _filesis not, Condor assumes a valuextiESfor should_transfer files.

NOTE: The combination of:

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

Condor Version 7.2.3 Manual

2.5. Submitting a Job

28

would produce undefined file access semantics. Therefase¢dimbination is prohibited bgon-
dor_submit

When submitting from a Unix platform, the file transfer meaismn is unused by de-
fault. If neitherwhen_to_transfer_output or should transfer files are defined, Condor assumes
should_transfer_files = NO

When submitting from a Windows platform, Condor does notjfite any way to use a shared
file system for jobs. Therefore, if neith@rhen_to_transfer_output or should_transfer_files are
defined, the file transfer mechanism is enabled by defauit thié following values:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

Specifying What Files to Transfer

If the file transfer mechanism is enabled, Condor will transhe following files before the job is
run on a remote machine.

1. the executable
2. the input, as defined with theput command

3. any jar files (for the Java universe)

If the job requires any other input files, the submit deswiptfile should utilize thetrans-
fer_input_files command. This comma-separated list specifies any othertfilgsCondor is to
transfer to a remote site to set up the execution environfioetiie job before it is run. These files
are placed in the same temporary working directory as th's pplecutable. At this time, directories
can not be transferred in this way. For example:

transfer_input_files = filel,file2

As a default, for jobs other than those submitted to the gnigdarse, any files that are modified
or created by the job in the temporary directory at the rersitéeare transferred back to the machine
from which the job was submitted. Most of the time, this is blest option. To restrict the files that
are transferred, specify the exact list of files withnsfer_output_files. Delimit these file names
with a comma. When this list is defined, and any of the files doemest as the job exits, Condor
considers this an error, and re-runs the job.

WARNING: Do not specifitransfer_output_files (for other than grid universe jobs) unless there
is a really good reason — it is best to let Condor figure thingtsby itself based upon what output
the job produces.

For grid universe jobs, files to be transferred (other thandard output and standard error) must
be specified usingransfer_output_filesin the submit description file.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 29

File Paths for File Transfer

The file transfer mechanism specifies file names and/or patlh®ih the file system of the submit
machine and on the file system of the execute machine. Carebmteken to know which machine
(submit or execute) is utilizing the file name and/or path.

Files in thetransfer_input _files command are specified as they are accessed on the submit ma-
chine. The program (as it executes) accesses files as théyuaeon the execute machine.

There are three ways to specify files and pathgrfamsfer_input files:

1. Relative to the submit directory, if the submit commamtaldir is not specified.
2. Relative to the initial directory, if the submit commaindialdir is specified.

3. Absolute.

Before executing the program, Condor copies the execytahlénput file as specified by the
submit commandnput, along with any input files specified byansfer_input _files. All these
files are placed into a temporary directory (on the executehing) in which the program runs.
Therefore, the executing program must access inputfild®utpaths. Because all transferred files
are placed into a single, flat directory, input files must bejuely named to avoid collision when
transferred. A collision causes the last file in the list temvwrite the earlier one.

If the program creates output files during execution, it naretite them within the temporary
working directory. Condor transfers back all files withirettemporary working directory that have
been modified or created. To transfer back only a subset ettfiles, the submit commartichns-
fer_output_files is defined. Transfer of files that exist, but are not within thmporary working
directory is not supported. Condor’s behavior in this ins&is undefined.

Itis okay to create files outside the temporary working divecon the file system of the execute
machine, (in a directory such &sp) if this directory is guaranteed to exist and be accessible o
all possible execute machines. However, transferring aifith back after execution completes may
not be done.

Here are several examples to illustrate the use of file teain¥he program executable is called
my_program and it uses three command-line arguments as it executesnpwt file names and an
output file name. The program executable and the submitigéiserfile for this job are located in
directory/scratch/test

The directory tree for all these examples:

/scratch/test (directory)
my_program.condor (the submit description file)
my_program (the executable)
files (directory)
logs2 (directory)
inl (file)

Condor Version 7.2.3 Manual

2.5. Submitting a Job

in2 (file)
logs (directory)

Example 1 This simple example explicitly transfers input files. Thesput files to be trans-
ferred are specified relative to the directory where the wlsubmitted. The single out-

put file, outl , created when the job is executed will be transferred batk time directory
/scratch/test , hotthefiles directory.

file name: my_program.condor
Condor submit description file for my_program

Executable = my_program
Universe = vanilla

Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/inl, files/in2

Arguments = inl in2 outl
Queue

Example 2 This second example is identical to Example 1, except thealake paths to the input
files are specified, instead of relative paths to the inpu.file

file name: my_program.condor

Condor submit description file for my_program
Executable

= my_program
Universe = vanilla

Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = /scratch/test/files/inl, /scrat ch/test/files/in2
Arguments = inl in2 outl
Queue

Example 3 This third example illustrates the use of the submit commiait@ldir , and its effect
on the paths used for the various files. The expected locafitre executable is not affected
by theinitialdir command. All other files (specified bgput, output, transfer_input _files,
as well as files modified or created by the job and automaitahsferred back) are located
relative to the specifiedhitialdir . Therefore, the output filegutl , will be placed in the
files directory. Note that théogs2 directory exists to make this example work correctly.

file name: my_program.condor

Condor submit description file for my_program
Executable = my_program

Universe = vanilla

Condor Version 7.2.3 Manual

2.5. Submitting a Job 31

Error = logs2/err.$(cluster)
Output = logs2/out.$(cluster)
Log = logs2/log.$(cluster)
initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1, in2

Arguments = inl in2 outl
Queue

Example 4 — lllustrates an Error This example illustrates a job that will fail. The files spfexd
using thetransfer_input _files command work correctly (see Example 1). However, relative
paths to files in thargumentscommand cause the executing program to fail. The file system
on the submission side may utilize relative paths to filesydwer those files are placed into a
single, flat, temporary directory on the execute machine.

Note that this specification and submission will cause thdgdail and re-execute.

file name: my_program.condor
Condor submit description file for my_program
Executable

= my_program
Universe = vanilla

Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/inl, files/in2

Arguments = files/inl files/in2 files/outl
Queue

This example fails with the following error:

err: files/outl: No such file or directory.

Example 5 — lllustrates an Error As with Example 4, this example illustrates a job that will.fa
The executing program'’s use of absolute paths cannot work.

file name: my_program.condor
Condor submit description file for my_program

Executable = my_program
Universe = vanilla

Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

transfer_input_files = /scratch/test/files/inl, /scrat ch/test/files/in2
Arguments = /scratch/test/files/inl /scratch/test/file s/in2 /scratch/test/files/outl
Queue

Condor Version 7.2.3 Manual

2.5. Submitting a Job

32

The job fails with the following error:

err: /scratch/test/files/outl: No such file or directory.

Example 6 — lllustrates an Error This example illustrates a failure case where the execyiog
gram creates an output file in a directory other than withndimgle, flat, temporary directory
that the program executes within. The file creation may or matycause an error, depending
on the existence and permissions of the directories on thetefile system.

Further incorrect usage is seen during the attempt to teartké output file back using the
transfer_output_files command. The behavior of Condor for this case is undefined.

file name: my_program.condor
Condor submit description file for my_program

Executable = my_program
Universe = vanilla

Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/inl, files/in2
transfer_output_files = /tmp/outl

Arguments = inl in2 /tmp/outl
Queue

Requirements and Rank for File Transfer

Therequirements expression for a job must depend on siwuld_transfer_files com-
mand. The job must specify the correct logic to ensure thajdh is matched with a resource that
meets the file transfer needs. If requirements expression is in the submit description file, or
if the expression specified does not refer to the attribusésd belowcondorsubmitadds an appro-
priate clause to theequirements expression for the jobcondorsubmitappends these clauses
with a logical AND, && to ensure that the proper conditions are met. Here are taeiltlelauses
corresponding to the different valuessifould_transfer_files

1. should_transfer_files = YES results in the addition of the clause
(HasFileTransfer) . If the job is always going to transfer files, it is required to
match with a machine that has the capability to transfer.files

2. should_transfer_files = NO results in the addition of
(TARGET.FileSystemDomain == MY.FileSystemDomain) . In addition,

Condor automatically adds ti@leSystemDomain attribute to the job ad, with whatever
string is defined for theondorscheddio which the job is submitted. If the job is not using
the file transfer mechanism, Condor assumes it will need sedHde system, and therefore,
a machine in the sanféleSystemDomain as the submit machine.

3. should_transfer_files = IF_NEEDED results in the addition of

Condor Version 7.2.3 Manual

2.5. Submitting a Job 33

(HasFileTransfer || (TARGET.FileSystemDomain == MY.File SystemDomain))

If Condor will optionally transfer files, it must require théhe machine i®ither capable of
transferring filesor in the same file system domain.

To ensure that the job is matched to a machine with enough thska space to hold all the
transferred files, Condor automatically adds BiskUsage job attribute. This attribute includes
the total size of the job’s executable and all input files totta@sferred. Condor then adds an
additional clause to thRequirements expression that states that the remote machine must have
at least enough available disk space to hold all these files:

&& (Disk >= DiskUsage)

If should_transfer_files = IF_NEEDED and the job prefers to run on a machine in
the local file system domain over transferring files, (but stif willing to allow the job to run
remotely and transfer files), thank expression works well. Use:

rank = (TARGET.FileSystemDomain == MY.FileSystemDomain)

Therank expression is a floating point number, so if other items aresiciered in ranking the
possible machines this job may run on, add the items:

rank = kflops + (TARGET.FileSystemDomain == MY.FileSystem Domain)

The value ofkflops can vary widely among machines, so thisk expression will likely
not do as it intends. To place emphasis on the job runningdrséime file system domain, but still
consider kflops among the machines in the file system domaightithe part of the rank expression
that is matching the file system domains. For example:

rank = kflops + (10000 * (TARGET.FileSystemDomain == MY.FileSystemDomain))

2.5.5 Environment Variables

The environment under which a job executes often contafosiration that is potentially useful to
the job. Condor allows a user to both set and reference envient variables for a job or job cluster.

Within a submit description file, the user may define envirentvariables for the job’s envi-
ronment by using thenvironment command. See theondorsubmitmanual page at section 9 for
more details about this command.

The submittor’s entire environment can be copied into the@iassAd for the job at job sub-
mission. Thegetenvcommand within the submit description file does this. Seetrelorsubmit
manual page at sectibn 9 for more details about this command.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 34

If the environment is set with thenvironment commandand getenvis also set to true, values
specified withenvironment override values in the submittor’s environment (regarsiiefsthe order
of theenvironment andgetenvcommands).

Commands within the submit description file may reference tnvironment vari-
ables of the submitter as a job is submitted. = Submit desonipfile commands use
$ENV(EnvironmentVariableName) to reference the value of an environment variable.
Again, see theondorsubmitmanual page at section 9 for more details about this usage.

Condor sets several additional environment variablesdohexecuting job that may be useful
for the job to reference.

« _CONDOBCRATCHDIR gives the directory where the job may place temporary daga. fil
This directory is unique for every job that is run, and itswents are deleted by Condor when
the job stops running on a machine, no matter how the job cetegl

 CONDOBLOT gives the name of the slot (for SMP machines), on which thegobn. On
machines with only a single slot, the value of this variablé e 1, just like theSlotID
attribute in the machine’s ClassAd. This setting is avadatall universes. See section 3.12.7
for more details about SMP machines and their configuration.

« CONDOR/M equivalent ta CONDORLOTdescribed above, except that it is only available
in the standard universe. NOTE As of Condor version 6.9.3, this environment variable is
deprecated. It will only be defined if theL LOWVMCRUFT configuration setting is set to
TRUE.

* X509_USERPROXYgives the full path to the X509 user proxy file if one is asstadavith
the job. (Typically a user will specifx509userproxyin the submit file.) This setting is
currently available in the local, java, and vanilla univess

2.5.6 Heterogeneous Submit: Execution on Differing Archiectures

If executables are available for the different platformsnwdchines in the Condor pool, Condor
can be allowed the choice of a larger number of machines whecating a machine for a job.
Modifications to the submit description file allow this cheiwf platforms.

A simplified example is a cross submission. An executableadable for one platform, but the
submission is done from a different platform. Given the eotrexecutable, theequirements
command in the submit description file specifies the targefitacture. For example, an exe-
cutable compiled for a Sun 4, submitted from an Intel architee running Linux would add the
requirement

requirements = Arch == "SUN4x" && OpSys == "SOLARIS251"

Without thisrequirement , condorsubmitwill assume that the program is to be executed on a
machine with the same platform as the machine where the jsithmitted.

Condor Version 7.2.3 Manual

2.5. Submitting a Job 35

Cross submission works for all universes excagteduler andlocal . See section 5.3.8 for
how matchmaking works in thgrid universe. The burden is on the user to both obtain and specify
the correct executable for the target architecture. Tatlistarchitecture and operating systems of
the machines in a pool, rimondorstatus

Vanilla Universe Example for Execution on Differing Archit ectures

A more complex example of a heterogeneous submission oetens a job may be executed on
many different architectures to gain full use of a diverseh@ecture and operating system pool.
If the executables are available for the different architegs, then a modification to the submit
description file will allow Condor to choose an executabterdn available machine is chosen.

A special-purpose Machine Ad substitution macro can be usstting attributes in the submit
description file. The macro has the form

$$(MachineAdAttribute)

The $$() informs Condor to substitute the requestathineAdAttribute from the machine
where the job will be executed.

An example of the heterogeneous job submission has exdesit@milable for three platforms:
LINUX Intel, Solaris26 Intel, and Solaris 8 Sun. This exampkegovrayto render images using
a popular free rendering engine.

The substitution macro chooses a specific executable afpdattorm for running the job is
chosen. These executables must therefore be named badezirnadhine attributes that describe a
platform. The executables named

povray.LINUX.INTEL
povray.SOLARIS26.INTEL
povray.SOLARIS28.SUN4u

will work correctly for the macro
povray.$$(0pSys).$$(Arch)

The executables or links to executables with this name aeglinto the initial working direc-
tory so that they may be found by Condor. A submit descripfilenthat queues three jobs for this
example:

HHEHHHHE

#

Example of heterogeneous submission
#

Condor Version 7.2.3 Manual

2.5. Submitting a Job

36

HHAHHH AR

universe = vanilla

Executable = povray.$$(OpSys).$$(Arch)

Log = povray.log

Output = povray.out.$(Process)

Error = povray.err.$(Process)

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "INTEL" && OpSys =="SOLARIS26") || \

(Arch == "SUN4u" && OpSys == "SOLARIS28")

Arguments = +W1024 +H768 +limagel.pov
Queue
Arguments = +W1024 +H768 +limage2.pov
Queue
Arguments = +W1024 +H768 +limage3.pov
Queue

These jobs are submitted to the vanilla universe to assatetite a job is started on a specific
platform, it will finish running on that platform. Switchingatforms in the middle of job execution
cannot work correctly.

There are two common errors made with the substitution mathe first is the use of a non-
existentMachineAdAttribute . If the specifiedMachineAdAttribute does not exist in the
machine’s ClassAd, then Condor will place the job in the lstdde until the problem is resolved.

The second common error occurs due to an incomplete job seFapexample, the submit
description file given above specifies three available exddes. If one is missing, Condor report
back that an executable is missing when it happens to maggblhwith a resource that requires the
missing binary.

Standard Universe Example for Execution on Differing Architectures

Jobs submitted to the standard universe may produce chiet&pé checkpoint can then be used
to start up and continue execution of a partially completdd jFor a partially completed job, the
checkpoint and the job are specific to a platform. If migrated different machine, correct execu-
tion requires that the platform must remain the same.

In previous versions of Condor, the author of the heterogeasubmission file would need to
write extra policy expressions in threquirements expression to force Condor to choose the
same type of platform when continuing a checkpointed jobweéler, since it is needed in the com-
mon case, this additional policy is now automatically adatierequirements expression. The
additional expression is added provided the user does edEkistArch in therequirements

Condor Version 7.2.3 Manual

2.5. Submitting a Job 37

expression. Condor will remain backward compatible forsthasers who have explicitly specified
CkptRequirements —implying use ofCkptArch , in theirrequirements expression.

The expression added when the attribGieotArch is not specified will default to

Added by Condor
CkptRequirements = ((CkptArch == Arch) || (CkptArch =?= UND EFINED)) && \
((CkptOpSys == OpSys) || (CkptOpSys =?= UNDEFINED))

Requirements = (<user specified policy>) && $(CkptRequire ments)

The behavior of th€kptRequirements expressions and its additiontequirements is
as follows. TheCkptRequirements expression guarantees correct operation in the two pessibl
cases for a job. In the first case, the job has not produced ékpbimt. The ClassAd attributes
CkptArch andCkptOpSys will be undefined, and therefore the meta operat®=) evaluates
to true. In the second case, the job has produced a checktiatMachine ClassAd is restricted
to require further execution only on a machine of the saméqyta. The attribute€kptArch and
CkptOpSys will be defined, ensuring that the platform chosen for furtbeecution will be the
same as the one used just before the checkpoint.

Note that this restriction of platforms also applies to fuahs where the executables are binary
compatible.

The complete submit description file for this example:

HHAHHH AR
#
Example of heterogeneous submission
#
HHAHHH AR
universe = standard
Executable = povray.$$(OpSys).$$(Arch)
Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)
Condor automatically adds the correct expressions to insu re that the
checkpointed jobs will restart on the correct platform typ es.
Requirements = ((Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "INTEL" && OpSys =="SOLARIS26") || \

(Arch == "SUN4u" && OpSys == "SOLARIS28"))

Arguments = +W1024 +H768 +limagel.pov
Queue
Arguments = +W1024 +H768 +limage2.pov

Condor Version 7.2.3 Manual

2.6. Managing a Job 38

Queue

Arguments = +W1024 +H768 +limage3.pov
Queue

2.6 Managing a Job

This section provides a brief summary of what can be done gotze are submitted. The basic
mechanisms for monitoring a job are introduced, but the camts are discussed briefly. You are
encouraged to look at the man pages of the commands refer{émtated in Chapter 9 beginning
on pageé 672) for more information.

When jobs are submitted, Condor will attempt to find resositcerun the jobs. A list of all
those with jobs submitted may be obtained throaoghdorstatuswith the -submittersoption. An
example of this would yield output similar to:

% condor_status -submitters

Name Machine Running IdleJobs HeldJobs
ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5
RunningJobs IdleJobs HeldJobs
ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5
nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0
Total 7 516 5

2.6.1 Checking on the progress of jobs

At any time, you can check on the status of your jobs withatedorg command. This command
displays the status of all queued jobs. An example of theudditpm condorq is

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> . froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 | -10 1.2 hello.remote
127.0 raman 4/11 15:35 0+00:00:00 R 0 1.4 hello
128.0 raman 4/11 15:35 0+00:02.33 I 0 1.4 hello

3 jobs; 2 idle, 1 running, O held

Condor Version 7.2.3 Manual

2.6. Managing a Job 39

This output contains many columns of information about thewed jobs. Th&T column (for
status) shows the status of current jobs in the queueR Arthe status column means the the job is
currently running. Anl stands for idle. The job is not running right now, becauss Wwaiting for

a machine to become available. The stdilis the hold state. In the hold state, the job will not be
scheduled to run until it is released (see tbadorhold reference page located on pagel730 and the
condorreleasereference page located on page 764). Older versions of Caiseéd & in the status
column to stand for unexpanded. In this state, a job has qeeduced a checkpoint, and when the
job starts running, it will start running from the beginnirigewer versions of Condor do not use the
U state.

The CPU_USAGEmMme reported for a job is the time that has been committethégab. It is
not updated for a job until the job checkpoints. At that titie job has made guaranteed forward
progress. Depending upon how the site administrator corgfejthe pool, several hours may pass
between checkpoints, so do not worry if you do not observ&ihel_USAGENtry changing by the
hour. Also note that this is actual CPU time as reported byogherating system; it is not time as
measured by a wall clock.

Another useful method of tracking the progress of jobs itigh the user log. If you have
specified dog command in your submit file, the progress of the job may be¥edid by viewing
the log file. Various events such as execution commencertieatkpoint, eviction and termination
are logged in the file. Also logged is the time at which the ¢eecurred.

When your job begins to run, Condor starts upandorshadowprocess on the submit ma-
chine. The shadow process is the mechanism by which the edyretecuting jobs can access the
environment from which it was submitted, such as input angutfiles.

It is normal for a machine which has submitted hundreds of jobhave hundreds of shadows
running on the machine. Since the text segments of all thexmgses is the same, the load on the
submit machine is usually not significant. If, however, yatice degraded performance, you can
limit the number of jobs that can run simultaneously throtiigMAXJOBS RUNNINGconfigura-
tion parameter. Please talk to your system administratah®necessary configuration change.

You can also find all the machines that are running your jobutgh thecondorstatuscommand.
For example, to find all the machines that are running jobsttied by “breach@cs.wisc.edu,” type:

% condor_status -constraint 'RemoteUser == "breach@cs.wi sc.edu™

Name Arch OpSys State Activity LoadAv Mem ActvtyTime
alfred.cs. INTEL SOLARIS251 Claimed Busy 0.980 64 0+07:10: 02
biron.cs.w INTEL SOLARIS251 Claimed Busy 1.000 128 0+01:10 :00
cambridge. INTEL SOLARIS251 Claimed Busy 0.988 64 0+00:15: 00
falcons.cs INTEL SOLARIS251 Claimed Busy 0.996 32 0+02:05: 03
happy.cs.w INTEL SOLARIS251 Claimed Busy 0.988 128 0+03:05 :00
istat03.st INTEL SOLARIS251 Claimed Busy 0.883 64 0+06:45: 01
istat04.st INTEL SOLARIS251 Claimed Busy 0.988 64 0+00:10: 00

istat09.st INTEL SOLARIS251 Claimed Busy 0.301 64 0+03:45: 00

To find all the machines that are running any job at all, type:

Condor Version 7.2.3 Manual

2.6. Managing a Job 40

% condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL SOLARIS251 0.980 hepcon@cs.wisc.edu che vre.cs.wisc.
alfred.cs. INTEL SOLARIS251 0.980 breach@cs.wisc.edu neu fchatel.cs.w
amul.cs.wi SUN4u SOLARIS251 1.000 nice-user.condor@cs. ¢ hevre.cs.wisc.
anfrom.cs. SUN4x SOLARIS251 1.023 ashoks@jules.ncsa.ui j ules.ncsa.uiuc
anthrax.cs INTEL SOLARIS251 0.285 hepcon@cs.wisc.edu che vre.cs.wisc.
astro.cs.w INTEL SOLARIS251 1.000 nice-user.condor@cs. ¢ hevre.cs.wisc.
aura.cs.wi SUN4u SOLARIS251 0.996 nice-user.condor@cs. ¢ hevre.cs.wisc.
balder.cs. INTEL SOLARIS251 1.000 nice-user.condor@cs. ¢ hevre.cs.wisc.
bamba.cs.w INTEL SOLARIS251 1.574 dmarino@cs.wisc.edu ri ola.cs.wisc.e

bardolph.c INTEL SOLARIS251 1.000 nice-user.condor@cs. ¢ hevre.cs.wisc.

2.6.2 Removing a job from the queue

A job can be removed from the queue at any time by usingtimelorrm command. If the job that
is being removed is currently running, the job is killed vath a checkpoint, and its queue entry is
removed. The following example shows the queue of jobs leedad after a job is removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> . froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 | -10 1.2 hello.remote
132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, O held

% condor_rm 132.0
Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> . froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 | -10 1.2 hello.remote

1 jobs; 1 idle, O running, 0 held

2.6.3 Placing a job on hold

A job in the queue may be placed on hold by running the comnesandorhold. A job in the hold
state remains in the hold state until later released forui@t by the commandondotrelease

Use of thecondorhold command causes a hard kill signal to be sent to a currentlyingrjob
(one in the running state). For a standard universe job nii@ans that no checkpoint is generated
before the job stops running and enters the hold state. Wéleagsed, this standard universe job
continues its execution using the most recent checkpodailzble.

Condor Version 7.2.3 Manual

2.6. Managing a Job 41

Jobs in universes other than the standard universe thatianéig when placed on hold will start
over from the beginning when released.

The manual page focondorhold on page 730 and the manual page éondorreleaseon
page 764 contain usage details.

2.6.4 Changing the priority of jobs

In addition to the priorities assigned to each user, Contdorarovides each user with the capability
of assigning priorities to each submitted job. These jobniies are local to each queue and can be
any integer value, with higher values meaning better gsiori

The default priority of a job is 0, but can be changed usingdbedorprio command. For
example, to change the priority of a job to -15,

% condor_g raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> . froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I O 0.3 hello

1 jobs; 1 idle, O running, 0 held
% condor_prio -p -15 126.0

% condor_g raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> . froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, O running, O held

It is important to note that thegeb priorities are completely different from theser priorities
assigned by Condor. Job priorities do not impact user pigsti They are only a mechanism for
the user to identify the relative importance of jobs amonghe jobs submitted by the user to that
specific queue.

2.6.5 Why does the job not run?

Users sometimes find that their jobs do not run. There areaakreasons why a specific job does
not run. These reasons include failed job or machine cansdrebias due to preferences, insuffi-
cient priority, and the preemption throttle that is implerted by thecondornegotiatorto prevent
thrashing. Many of these reasons can be diagnosed by usingrihlyzeoption ofcondorg. For
example, a job (assigned the cluster.process value of #2229) submitted to the local pool at
UW-Madison is not running. Runningpndorg’s analyzer provided the following information:

% condor_q -pool condor -name beak -analyze 331228.2359

Condor Version 7.2.3 Manual

2.6. Managing a Job

42

-- Schedd: beak.cs.wisc.edu : <128.105.146.14:30918>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

331228.2359: Run analysis summary. Of 819 machines,
159 are rejected by your job's requirements
137 reject your job because of their own requirements
488 match but are serving users with a better priority in the p ool
11 match but reject the job for unknown reasons
24 match but will not currently preempt their existing job
0 are available to run your job

A second example shows a job that does not run because th@§sbndt have a high enough
priority to cause other running jobs to be preempted.

% condor_q -pool condor -name beak -analyze 207525.0

-- Schedd: beak.cs.wisc.edu : <128.105.146.14:30918>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

207525.000: Run analysis summary. Of 818 machines,

317 are rejected by your job's requirements

419 reject your job because of their own requirements

79 match but are serving users with a better priority in the po ol
3 match but reject the job for unknown reasons
0 match but will not currently preempt their existing job
0 are available to run your job

While the analyzer can diagnose most common problems, #ieigome situations that it cannot
reliably detect due to the instantaneous and local natutbeinformation it uses to detect the
problem. Thus, it may be that the analyzer reports that ressiare available to service the request,
but the job still does not run. In most of these situations,dblay is transient, and the job will run
during the next negotiation cycle.

If the problem persists and the analyzer is unable to defbecsituation, it may be that the job
begins to run butimmediately terminates due to some probléewing the job’s error and log files
(specified in the submit command file) and Cond&FADOWOG file may assist in tracking down
the problem. If the cause is still unclear, please contaat ggstem administrator.

2.6.6 Inthe log file

In a job’s log file are a log of events (a listing of events inatwlogical order) that occurred during
the life of the job. The formatting of the events is always $slaene, so that they may be machine
readable. Four fields are always present, and they will mitshdoe followed by other fields that
give further information that is specific to the type of event

The first field in an event is the numeric value assigned asvietéype in a 3-digit format. The
second field identifies the job which generated the eventhiWjiarentheses are the ClassAd job
attributes ofClusterld value,Procld value, and the MPI-specific rank for MPI universe jobs

Condor Version 7.2.3 Manual

2.6. Managing a Job 43

or a set of zeros (for jobs run under universes other than Mieparated by periods. The third field
is the date and time of the event logging. The fourth field igiagthat briefly describes the event.
Fields that follow the fourth field give further informatidar the specific event type.

These are all of the events that can show up in a job log file:

Event Number: 000

Event Name: Job submitted

Event Description: This event occurs when a user submits a job. It is the firstteyamn will see
for a job, and it should only occur once.

Event Number: 001
Event Name: Job executing
Event Description: This shows up when a job is running. It might occur more thaceon

Event Number: 002
Event Name: Error in executable
Event Description: The job couldn’t be run because the executable was bad.

Event Number: 003

Event Name: Job was checkpointed

Event Description: The job’s complete state was written to a checkpoint file.sThight happen
without the job being removed from a machine, because thekglnénting can happen periodically.

Event Number: 004

Event Name: Job evicted from machine

Event Description: A job was removed from a machine before it finished, usuallyagolicy
reason: perhaps an interactive user has claimed the computperhaps another job is higher
priority.

Event Number: 005
Event Name: Job terminated
Event Description: The job has completed.

Event Number: 006

Event Name: Image size of job updated

Event Description: This is informational. It is referring to the memory that tjob is using while
running. It does not reflect the state of the job.

Event Number: 007

Event Name: Shadow exception

Event Description: The condorshadow a program on the submit computer that watches over the
job and performs some services for the job, failed for sontasteophic reason. The job will leave
the machine and go back into the queue.

Event Number: 008
Event Name: Generic log event
Event Description: Not used.

Condor Version 7.2.3 Manual

2.6. Managing a Job 44

Event Number: 009
Event Name: Job aborted
Event Description: The user canceled the job.

Event Number: 010

Event Name: Job was suspended

Event Description: The job is still on the computer, but it is no longer executifitis is usually
for a policy reason, like an interactive user using the comapu

Event Number: 011
Event Name: Job was unsuspended
Event Description: The job has resumed execution, after being suspendedrearlie

Event Number: 012

Event Name: Job was held

Event Description: The user has paused the job, perhaps withctiredorhold command. It was
stopped, and will go back into the queue again until it is tdmbor released.

Event Number: 013
Event Name: Job was released
Event Description: The user is requesting that a job on hold be re-run.

Event Number: 014
Event Name: Parallel node executed
Event Description: A parallel (MPI) program is running on a node.

Event Number: 015
Event Name: Parallel node terminated
Event Description: A parallel (MPI) program has completed on a node.

Event Number: 016

Event Name: POST script terminated

Event Description: A node in a DAGMan work flow has a script that should be run atfb. The
script is run on the submit host. This event signals that thet gcript has completed.

Event Number: 017
Event Name: Job submitted to Globus
Event Description: A grid job has been delegated to Globus (version 2, 3, or 4).

Event Number: 018
Event Name: Globus submit failed
Event Description: The attempt to delegate a job to Globus failed.

Event Number: 019

Event Name: Globus resource up

Event Description: The Globus resource that a job wants to run on was unavajlabtes now
available.

Event Number: 020

Condor Version 7.2.3 Manual

2.6. Managing a Job 45

Event Name: Detected Down Globus Resource
Event Description: The Globus resource that a job wants to run on has becomeilaidea

Event Number: 021

Event Name: Remote error

Event Description: The condorstarter (which monitors the job on the execution machine) has
failed.

Event Number: 022

Event Name: Remote system call socket lost

Event Description: The condorshadowand condorstarter (which communicate while the job
runs) have lost contact.

Event Number: 023

Event Name: Remote system call socket reestablished

Event Description: The condorshadowand condorstarter (which communicate while the job
runs) have been able to resume contact before the job lepsedx

Event Number: 024

Event Name: Remote system call reconnect failure

Event Description: The condorshadowand condorstarter (which communicate while the job
runs) were unable to resume contact before the job leasecekpi

Event Number: 025
Event Name: Grid Resource Back Up
Event Description: A grid resource that was previously unavailable is now a@dd.

Event Number: 026
Event Name: Detected Down Grid Resource
Event Description: The grid resource that a job is to run on is unavailable.

Event Number: 027
Event Name: Job submitted to grid resource
Event Description: A job has been submitted, and is under the auspices of theagtdirce.

Event Number: 028

Event Name: Job ad information event triggered.

Event Description: Extra job ad attributes. This event is written as a suppldr@nther events
when the configuration parameteVENTLOGJOB ADINFORMATIONATTRS is set.

2.6.7 Job Completion

When your Condor job completes(either through normal meaadnormal termination by signal),
Condor will remove it from the job queue (i.e., it will no loagappear in the output aondorq)
and insert it into the job history file. You can examine the fogtory file with thecondorhistory
command. If you specified a log file in your submit descripfiike then the job exit status will be
recorded there as well.

Condor Version 7.2.3 Manual

2.6. Managing a Job 46

By default, Condor will send you an email message when yduc@mpletes. You can modify
this behavior with theeondorsubmit“notification” command. The message will include the exit
status of your job (i.e., the argument your job passed to #itesgstem call when it completed)
or notification that your job was killed by a signal. It willsal include the following statistics (as
appropriate) about your job:

Submitted at: when the job was submitted wittondorsubmit
Completed at: when the job completed

Real Time: elapsed time between when the job was submitted and whenmipleted (days
hours:minutes:seconds)

Run Time: total time the job was running (i.e., real time minus queuing)

Committed Time: total run time that contributed to job completion (i.e., time minus the run
time that was lost because the job was evicted without paifay a checkpoint)

Remote User Time: total amount of committed time the job spent executing irr nsede
Remote System Time:total amount of committed time the job spent executing inesyanode
Total Remote Time: total committed CPU time for the job

Local User Time: total amount of time this job’sondorshadow(remote system call server) spent
executing in user mode

Local System Time: total amount of time this job’sondorshadowspent executing in system
mode

Total Local Time: total CPU usage for this jobsondorshadow

Leveraging Factor: the ratio of total remote time to total system time (a factelolv 1.0 indicates
that the job ran inefficiently, spending more CPU time parfimg remote system calls than
actually executing on the remote machine)

Virtual Image Size: memory size of the job, computed when the job checkpoints
Checkpoints written: number of successful checkpoints performed by the job
Checkpoint restarts: number of times the job successfully restarted from a cheicitp
Network: total network usage by the job for checkpointing and rempstesn calls
Buffer Configuration: configuration of remote system call I/O buffers

Total I/O: total file I/O detected by the remote system call library

I/O by File: 1/0O statistics per file produced by the remote system caihtip

Remote System Calls:listing of all remote system calls performed (both Condeessfic and Unix
system calls) with a count of the number of times each wa®pedd

Condor Version 7.2.3 Manual

2.7. Priorities and Preemption

2.7 Priorities and Preemption

Condor has two independent priority contrgisb priorities anduserpriorities.

2.7.1 Job Priority

Job priorities allow the assignment of a priority level taclkasubmitted Condor job in order to
control order of execution. To set a job priority, use twdorprio command — see the example
in section 2.6.4, or the command reference page on [page ©i8pribrities do not impact user
priorities in any fashion. A job priority can be any integeand higher values are “better”.

2.7.2 User priority

Machines are allocated to users based upon a user’s prickitlower numerical value for user
priority means higher priority, so a user with priority 5 Wijjet more resources than a user with
priority 50. User priorities in Condor can be examined witle tondoruserpriocommand (see
page 838). Condor administrators can set and change indiMigser priorities with the same utility.

Condor continuously calculates the share of available imastthat each user should be allo-
cated. This share is inversely related to the ratio betwesen priorities. For example, a user with
a priority of 10 will get twice as many machines as a user witbriarity of 20. The priority of
each individual user changes according to the number ofuiress the individual is using. Each
user starts out with the best possible priority: 0.5. If thientber of machines a user currently has is
greater than the user priority, the user priority will wandgy numerically increasing over time. If
the number of machines is less then the priority, the psiavitl improve by numerically decreasing
over time. The long-term result is fair-share access acatiassers. The speed at which Condor
adjusts the priorities is controlled with the configuratioacroPRIORITY _HALFLIFE , an expo-
nential half-life value. The default is one day. If a usettthas user priority of 100 and is utilizing
100 machines removes all his/her jobs, one day later thaitsysgority will be 50, and two days
later the priority will be 25.

Condor enforces that each user gets his/her fair share diimegaccording to user priority both
when allocating machines which become available and byityrioreemption of currently allocated
machines. For instance, if a low priority user is utilizinly @aailable machines and suddenly a
higher priority user submits jobs, Condor will immediatelyeckpoint and vacate jobs belonging
to the lower priority user. This will free up machines thatrdor will then give over to the higher
priority user. Condor will not starve the lower priority usé will preempt only enough jobs so that
the higher priority user’s fair share can be realized (bagezh the ratio between user priorities). To
prevent thrashing of the system due to priority preemptioa Condor site administrator can define
a PREEMPTIONREQUIREMENTSxpression in Condor’s configuration. The default expmssi
that ships with Condor is configured to only preempt loweopty jobs that have run for at least
one hour. So in the previous example, in the worse case itddakk up to a maximum of one hour
until the higher priority user receives his fair share of imiaes. For a general discussion of limiting

Condor Version 7.2.3 Manual

2.8. Java Applications

preemption, please see section 3.5.9 of the Administsatoanual.

User priorities are keyed on “username@domain”, for exanijghndoe@cs.wisc.edu”. The
domain name to use, if any, is configured by the Condor siteirsidtrator. Thus, user priority and
therefore resource allocation is not impacted by which rireethe user submits from or even if the
user submits jobs from multiple machines.

An extra feature is the ability to submit a job agiaejob (see page 817). Nice jobs artificially
boost the user priority by one million just for the nice jothi3 effectively means that nice jobs will
only run on machines that no other Condor job (that is, n@@ehjob) wants. In a similar fashion,
a Condor administrator could set the user priority of anyc#fizeCondor user very high. If done,
for example, with a guest account, the guest could only uskesynot wanted by other users of the
system.

2.7.3 Details About How Condor Jobs Vacate Machines

When Condor needs a job to vacate a machine for whatevemgiasends the job an asynchronous
signal specified in th&illSig attribute of the job’s ClassAd. The value of this attributade
specified by the user at submit time by placing kilke_sig option in the Condor submit description
file.

If a program wanted to do some special work when required tateaa machine, the program
may set up a signal handler to use a trappable signal as aratimdi to clean up. When submitting
this job, this clean up signal is specified to be used Wiithsig. Note that the clean up work needs
to be quick. If the job takes too long to go away, Condor foBayp with a SIGKILL signal which
immediately terminates the process.

A job that is linked usingcondorcompileand is subsequently submitted into the standard uni-
verse, will checkpoint and exit upon receipt of a SIGTSTRhalg Thus, SIGTSTP is the default
value forKillSig ~ when submitting to the standard universe. The user’s cogestilecheckpoint
itself at any time by calling one of the following functiongported by the Condor libraries:

ckpt()() Performs a checkpoint and then returns.

ckpt _and _exit()() Checkpoints and exits; Condor will then restart the proaassn later,
potentially on a different machine.

For jobs submitted into the vanilla universe, the defaulvgdor KillSig is SIGTERM, the
usual method to nicely terminate a Unix program.

2.8 Java Applications

Condor allows users to access a wide variety of machineshdigtd around the world. The Java
Virtual Machine (JVM) provides a uniform platform on any nhéwe, regardless of the machine’s

Condor Version 7.2.3 Manual

2.8. Java Applications 49

architecture or operating system. The Condor Java uniumiags together these two features to
create a distributed, homogeneous computing environment.

Compiled Java programs can be submitted to Condor, and Coadexecute the programs on
any machine in the pool that will run the Java Virtual Machine

Thecondorstatuscommand can be used to see a list of machines in the pool fahv@ondor
can use the Java Virtual Machine.

% condor_status -java

Name JavaVendor Ver State Activity LoadAv Mem ActvtyTime

coral.cs.wisc Sun Microsy 1.2.2 Unclaimed Idle 0.000 511 0+ 02:28:04
doc.cs.wisc.e Sun Microsy 1.2.2 Unclaimed Idle 0.000 511 0+ 01:05:04
dsonokwa.cs.w Sun Microsy 1.2.2 Unclaimed Idle 0.000 511 0+ 01:05:04

If there is no output from theondorstatuscommand, then Condor does not know the location
details of the Java Virtual Machine on machines in the pooh@machines have Java correctly
installed. In this case, contact your system administrata@ee sectioh 3.13 for more information
on getting Condor to work together with Java.

2.8.1 A Simple Example Java Application

Here is a complete, if simple, example. Start with a simplajaogramHello.java

public class Hello {
public static void main(String [] args) {
System.out.printin("Hello, world!\n");

}

Build this program using your Java compiler. On most platfsrthis is accomplished with the
command

javac Hello.java

Submission to Condor requires a submit description fileultfrsitting where files are accessible
using a shared file system, this simple submit descriptierwfdrks:

HHAHHH AR
#
Example 1

Condor Version 7.2.3 Manual

2.8. Java Applications

Execute a single Java class

#

HHAHHH AR
universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
queue

The Java universe must be explicitly selected.

The main class of the program is given in iweecutablestatement. This is a file name which
contains the entry point of the program. The name of the mkissc(not a file nhame) must be
specified as the first argument to the program.

If submitting the job where a shared file systerma accessible, the submit description file
becomes:

HHAHHH AR

#

Example 1

Execute a single Java class,
not on a shared file system

#

HHAHHHAHH A
universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
queue

For more information about using Condor’s file transfer nadbms, see section 2.5.4.

To submit the job, where the submit description file is nafdetlo.cmd , execute
condor_submit Hello.cmd

To monitor the job, the commandsndorq andcondorrm are used as with all jobs.

Condor Version 7.2.3 Manual

2.8. Java Applications 51

2.8.2 Less Simple Java Specifications

Specifying more than 1 class file.For programs that consist of more than oolass file, iden-
tify the files in the submit description file:

executable = Stooges.class
transfer_input_files = Larry.class,Curly.class,Moe.cl ass

The executablecommand does not change. It still identifies the class file ¢batains the
program’s entry point.

JAR files. If the program consists of a large number of class files, it i@gasier to collect them
all together into a single Java Archive (JAR) file. A JAR carcbeated with:

% jar cvf Library.jar Larry.class Curly.class Moe.class St ooges.class

Condor must then be told where to find the JAR as well as to usdAR. The JAR file that
contains the entry point is specified with teecutablecommand. All JAR files are specified
with thejar _files command. For this example that collected all the class files a single
JAR file, the submit description file contains:

executable = Library.jar
jar_files = Library.jar

Note that the JVM must know whether it is receiving JAR filesctass files. Therefore,
Condor must also be informed, in order to pass the informatio to the JVM. That is why
there is a difference in submit description file commandsgHertwo ways of specifying files
(transfer_input_files andjar _files).

If there are multiple JAR files, thexecutablecommand specifies the JAR file that contains
the program’s entry point. This file is also listed with fae_filescommand:

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar

Using a third-party JAR file. As Condor requires that all JAR files (third-party or not) hai&
able, specification of a third-party JAR file is no differémhh other JAR files. If the sortmerge
example above also relies on version 2.1 from http://jakagache.org/commons/lang/, and
this JAR file has been placed in the same directory with theralAR files, then the submit
description file contains

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar,commons-lang-2 djar

An executable JAR file. When the JAR file is an executable, specify the program’sygraint in
theargumentscommand:

Condor Version 7.2.3 Manual

2.8. Java Applications

52

executable = anexecutable.jar
jar_files = anexecutable.jar
arguments = some.main.ClassFile
Packages.An example of a Java class that is declared in a non-defackigoe is

package hpc;

public class CondorDriver

{
}

/I class definition here

The JVM needs to know the location of this package. It is phase& command-line argument,
implying the use of the naming convention and directoryctrze.

Therefore, the submit description file for this example wihtain
arguments = hpc.CondorDriver

JVM-version specific features. If the program uses Java features found only in certain J\vs)
the Java application submitted to Condor must only run oe¢tmachines within the pool that
run the needed JVM. Inform Condor by addingemjuirements statement to the submit
description file. For example, to require version 3.2, adtheosubmit description file:

requirements = (JavaVersion=="3.2")

Benchmark speeds.Each machine with Java capability in a Condor pool will exxe@benchmark
to determine its speed. The benchmark is taken when Condtarted on the machine, and it
uses the SciMark2 (http://math.nist.gov/scimark2) bemaitk. The result of the benchmark is
held as an attribute within the machine ClassAd. The atilsicalledJavaMFlops . Jobs
that are run under the Java universe (as all other Condoy jphayg prefer or require a machine
of a specific speed by settimgnk or requirements in the submit description file. As an
example, to execute only on machines of a minimum speed:

requirements = (JavaMFlops>4.5)
JVM options. Options to the JVM itself are specified in the submit desipfile:
java_vm_args = -DMyProperty=Value -verbose:gc

These options are those which go after the java commandgiioitdbthe user’s main class. Do
not use this to set the classpath, as Condor handles that 8sedting these options is useful
for setting system properties, system assertions and dglgigertain kinds of problems.

Condor Version 7.2.3 Manual

http://math.nist.gov/scimark2

2.8. Java Applications

2.8.3 Chirpl/O

If a job has more sophisticated 1/O requirements that cab@otet by Condor’s file transfer mecha-
nism, then the Chirp facility may provide a solution. Chirgshtwo advantages over simple, whole-
file transfers. First, it permits the input files to be decid@on at run-time rather than submit time,
and second, it permits partial-file I/O with results than banseen as the program executes. How-
ever, small changes to the program are required in ordek®ddvantage of Chirp. Depending on
the style of the program, use either Chirp I/O streams or WX 1/O functions.

Chirp 1/0 streams are the easiest way to get started. Modiéypgrogram to use the ob-
jects ChirplnputStream and ChirpOutputStream instead offFilelnputStream and
FileOutputStream . These classes are completely documented in the Condava&efDevel-
oper’s Kit (SDK). Here is a simple code example:

import java.io. *;
import edu.wisc.cs.condor.chirp. *;

public class TestChirp {
public static void main(String args[]) {

try {
BufferedReader in = new BufferedReader(

new InputStreamReader(
new ChirplnputStream(“input")));

PrintWriter out = new PrintWriter(
new OutputStreamWriter(
new ChirpOutputStream("output™)));

while(true) {
String line = in.readLine();
if(line==null) break;
out.printin(line);

out.close();

} catch(IOException e) {
System.out.printin(e);

}

To perform UNIX-like I/O with Chirp, create &hirpClient object. This object supports
familiar operations such aspen, read , write , andclose . Exhaustive detail of the methods
may be found in the Condor SDK, but here is a brief example:

Condor Version 7.2.3 Manual

2.8. Java Applications 54

import java.io. *;
import edu.wisc.cs.condor.chirp. *;

public class TestChirp {
public static void main(String args[]) {

try {
ChirpClient client = new ChirpClient();

String message = "Hello, world\n";
byte [] buffer = message.getBytes();

/I Note that we should check that actual==length.
/I However, skip it for clarity.

int fd = client.open("output","wct",0777);

int actual = client.write(fd,buffer,0,buffer.length);
client.close(fd);
client.rename("output","output.new");
client.unlink("output.new");

} catch(IOException e) {
System.out.printin(e);
}

Regardless of which /O style, the Chirp library must be #jet and included with the job.
The Chirp JAR Chirp.jar)isfoundinthdib directory of the Condor installation. Copy it into
your working directory in order to compile the program afteodification to use Chirp I/O.

% condor_config_val LIB
/usr/local/condor/lib
% cp /usr/local/condor/lib/Chirp.jar .

Rebuild the program with the Chirp JAR file in the class path.
% javac -classpath Chirp.jar:. TestChirp.java

The Chirp JAR file must be specified in the submit descriptiten fiere is an example submit
description file that works for both of the given test progsam

universe = java

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 55

executable = TestChirp.class

arguments = TestChirp
jar_files = Chirp.jar
queue

2.9 Parallel Applications (Including MPI Applications)

Condor’s Parallel universe supports a wide variety of par@grogramming environments, and it
encompasses the execution of MPI jobs. It supports jobshwiéed to be co-scheduled. A co-
scheduled job has more than one process that must be ruritivegsame time on different machines
to work correctly. The parallel universe supersedes theunpierse. The mpi universe eventually
will be removed from Condor.

2.9.1 Prerequisites to Running Parallel Jobs

Condor must be configured such that resources (machinesngiparallel jobs are dedicated. Note
thatdedicatedhas a very specific meaning in Condor: dedicated machine= macate their exe-
cuting Condor jobs, should the machine’s interactive owatirn. This is implemented by running
a single dedicated scheduler process on a machine in thewlich becomes the single machine
from which parallel universe jobs are submitted. Once thaicted scheduler claims a dedicated
machine for use, the dedicated scheduler will try to usertathine to satisfy the requirements of
the queue of parallel universe or MPI universe jobs. If théickted scheduler cannot use a machine
for a configurable amount of time, it will release its claimtbe machine, making it available again
for the opportunistic scheduler.

Since Condor does not ordinarily run this way, (Condor uguses opportunistic scheduling),
dedicated machines must be specially configured. Sectibh&of the Administrator’'s Manual
describes the necessary configuration and provides diikemples.

To simplify the scheduling of dedicated resources, a singgehine becomes the scheduler of
dedicated resources. This leads to a further restrictian jitbs submitted to execute under the
parallel universe must be submitted from the machine actinthe dedicated scheduler.

2.9.2 Parallel Job Submission

Given correct configuration, parallel universe jobs may bknsitted from the machine running
the dedicated scheduler. The dedicated scheduler clainchines for the parallel universe job,
and invokes the job when the correct number of machines ofdhect platform (architecture and
operating system) are claimed. Note that the job likely iaof more than one process, each to
be executed on a separate machine. The first process (mptivioked is treated different than the
others. When this first process exits, Condor shuts dowrhellbthers, even if they have not yet
completed their execution.

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications)

56

An overly simplified submit description file for a paralleliuarse job appears as

B R
submit description file for a parallel program
B R
universe = parallel

executable = /bin/sleep

arguments = 30

machine_count = 8

queue

This job specifies theniverse asparallel, letting Condor know that dedicated resources are
required. Thanachine.count command identifies the number of machines required by the job

When submitted, the dedicated scheduler allocates eigbhimes with the same architecture
and operating system as the submit machine. It waits untgight machines are available be-
fore starting the job. When all the machines are ready, ibkes the/bin/sleepcommand, with a
command line argument of 30 on all eight machines more ordiessltaneously.

A more realistic example of a parallel job utilizes othertteas.

HH B
Parallel example submit description file
HHHH B
universe = parallel

executable = /bin/cat

log = logdfile

input = infile.$(NODE)

output = outfile.$(NODE)

error = errfile. $(NODE)

machine_count = 4

queue

The specification of thenput, output, anderror files utilize the predefined mac&NODE).
See thecondorsubmitmanual page on page 795 for further description of predefinacros. The
$(NODE) macro is given a unique value as processes are assigned tonesc The$(NODE)
value is fixed for the entire length of the job. It can therefbe used to identify individual aspects
of the computation. In this example, it is used to utilize arsign unique names to input and output
files.

This example presumes a shared file system across all theimeaatlaimed for the parallel
universe job. Where no shared file system is either availatgeiaranteed, use Condor’s file transfer
mechanism, as described in section 2.5.4 on page 26. Thiga&ases the file transfer mechanism.

BHARHHHHHHHHHHHH AR R AR

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications)

57

Parallel example submit description file
without using a shared file system
HHAHH R R R R R
universe = parallel

executable = /bin/cat

log = logfile

input = infile.$(NODE)

output = outfile.$(NODE)

error = errfile. $(NODE)

machine_count = 4

should_transfer_files = yes
when_to_transfer_output = on_exit

queue

The job requires exactly four machines, and queues fourgss®s. Each of these processes
requires a correctly named input file, and produces an ofitput

2.9.3 Parallel Jobs with Separate Requirements

The different machines executing for a parallel universerjmy specify different machine require-
ments. A common example requires that the head node exegwespecific machine. It may be
also useful for debugging purposes.

Consider the following example.

HHH R
Example submit description file

with multiple procs

HHAHH R AR R R
universe = parallel

executable = example

machine_count = 1

requirements = (machine == "machinel")
queue

requirements = (machine =!= "machinel”)
machine_count = 3

queue

The dedicated scheduler allocates four machines. All freceting jobs have the same value for
$(Cluster) macro. Theb(Process) macro takes on two values; the value O will be assigned
for the single executable that must be executed on machamailthe value 1 will be assigned for
the other three that must be executed anywhere but on mdchine

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 58

Carefully consider the ordering and nature of multiple sdteequirements in the same submit
description file. The scheduler matches jobs to machinesdbas the ordering within the sub-
mit description file. Mutually exclusive requirements dliate the dependence on ordering within
the submit description file. Without mutually exclusive nggments, the scheduler may unable
to schedule the job. The ordering within the submit desienipfile may preclude the scheduler
considering the specific allocation that could satisfy #guirements.

2.9.4 MPI Applications Within Condor’s Parallel Universe

MPI applications utilize a single executable that is inekeorder to execute in parallel on one or
more machines. Condor’s parallel universe provides the@mment within which this executable is
executed in parallel. However, the various implementatioiMPI (for example, LAM or MPICH)
require further framework items within a system-wide eoniment. Condor supports this necessary
framework through user visible and modifiable scripts. AnlNfRplementation-dependent script
becomes the Condor job. The script sets up the extra, negdssmework, and then invokes the
MPI application’s executable.

Condor provides these scripts in tB¢RELEASE_DIR)/etc/examples directory. The
script for the LAM implementation isamscript . The script for the MPICH implementation is
mplscript . Therefore, a Condor submit description file for these immatations would appear
similar to:

HHAHH R R R R R

Example submit description file

for MPICH 1 MPI

works with MPICH 1.2.4, 1.2.5 and 1.2.6
HHAHH R R R R R
universe = parallel

executable = mplscript

arguments = my_mpich_linked_executable argl arg2
machine_count = 4

should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
queue

or

HHHH B HH R R
Example submit description file

for LAM MPI

HHEHHH
universe = parallel

executable = lamscript

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 59

arguments = my_lam_linked_executable argl arg2
machine_count = 4

should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_lam_linked_executable
queue

Theexecutableis the MPI implementation-dependent script. The first argoimo the script is
the MPI application’s executable. Further arguments tosttrgot are the MPI application’s argu-
ments. Condor must transfer this executable; do this wighrdnsfer_input _files command.

For other implementations of MPI, copy and modify one of theeg scripts. Most MPI im-
plementations require two system-wide prerequisites. firseprerequisite is the ability to run a
command on a remote machine without being prompted for aymadssshis commonly used, but
other command may be used. The second prerequisite is anl AigGiontaining the list of ma-
chines that may utilizesh These common prerequisites are implemented in a furtigt salled
sshd.sh . sshd.sh generates ssh keys (to enable password-less remote éxgcatid starts an
sshddaemon. The machine name and MPI rank are given to the sulachine.

The sshd.shscript requires the definition of two Condor configurationmiables. Configura-
tion variableCONDORSSHD is an absolute path to an implementatiorsshd sshd.sthas been
tested withopensstversion 3.9, but should work with more recent versions. Guufition variable
CONDOBSHKEYGENpoints to the correspondirggh-keygeexecutable.

Scriptslamscriptand mpZlscripteach have their own idiosyncrasies. mplscript the PATH
to the MPICH installation must be set. The shell variable NIRihdicates its proper value. This
directory contains the MPIClrhpirunexecutable. For LAM, there is a similar path setting, busit i
calledLAMDIRIn thelamscriptscript. In addition, this path must be part of the path seténuser’s
.cshrc script. As of this writing, the LAM implementation does nobik if the user’s login shell
is the Bourne or compatible shell.

These MPI jobs operate as all parallel universe jobs do. Effeeudt policy is that when the first
node exits, the whole job is considered done, and Condaralilbther running nodes in that parallel
job. Alternatively, a parallel universe job that sets theiladite

+ParallelShutdownPolicy = "WAIT_FOR_ALL"

in its submit description file changes the policy, such thanddr will wait until every node in the
parallel job has completed to consider the job finished.

2.9.5 Outdated Documentation of the MPI Universe

The following sections on implementing MPI applicationiéizing the MPI universe are superseded
by the sections describing MPI applications utilizing tregllel universe. These sections are in-
cluded in the manual as reference, until the time when the Milerse is no longer supported
within Condor.

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 60

MPI stands for Message Passing Interface. It provides aive@maent under which parallel
programs may synchronize, by providing communication supgRunning the MPI-based parallel
programs within Condor eases the programmer’s effort. ©odéddicates machines for running the
programs, and it does so using the same interface used whariting non-MPI jobs.

The MPI universe in Condor currently supports MPICH versidr2.2, 1.2.3, and 1.2.4 using
the chp4 device. The MPI universe does not support MPICH versiarbl These supported imple-
mentations are offered by Argonne National Labs withoutgbdy download. See the web page at
http://www-unix.mcs.anl.gov/mpi/mpich/ for details aadailability. Programs to be submitted for
execution under Condor will have been compiled usimgicc No further compilation or linking is
necessary to run jobs under Condor.

The Parallel universe 2.9 is now the preferred way to run MB$j Support for the MPI universe
will be removed from Condor at a future date.

MPI Details of Set Up

Administratively, Condor must be configured such that resesi(machines) running MPI jobs are
dedicated. Dedicated machines never vacate their runwindar jobs should the machine’s inter-
active owner return. Once the dedicated scheduler claineslecated machine for use, it will try to
use that machine to satisfy the requirements of the queuerdfdibs.

Since Condor is not ordinarily used in this manner (Condesuspportunistic scheduling), ma-
chines that are to be used as dedicated resources must bgucedfas such. Section 3.12.8 of
Administrator's Manual describes the necessary configamand provides detailed examples.

To simplify the dedicated scheduling of resources, a singgehine becomes the scheduler of
dedicated resources. This leads to a further restrictiahjtis submitted to execute under the MPI
universe (with dedicated machines) must be submitted fleemtachine running as the dedicated
scheduler.

MPI Job Submission

Once the programs are written and compiled, and Condor ressware correctly configured, jobs
may be submitted. Each Condor job requires a submit degamifile. The simplest submit descrip-
tion file for an MPI job:

R
submit description file for mpi_program
R
universe = MPI

executable = mpi_program

machine_count = 4

queue

Condor Version 7.2.3 Manual

http://www-unix.mcs.anl.gov/mpi/mpich/

2.9. Parallel Applications (Including MPI Applications) 61

This job specifies theniverse asmpi, letting Condor know that dedicated resources will
be required. Thenachine _count command identifies the number of machines required by the
job. The four machines that run the program will default todb¢he same architecture and oper-
ating system as the machine on which the job is submittedesinplatform is not specified as a
requirement.

The simplest example does not specify an input or outputhingahat the computation com-
pleted is useless, since both input comes from and the og¢@sttddev/null . A more complex
example of a submit description file utilizes other features

HHH R
MPI example submit description file

HHH R
universe = MPI

executable = simplempi

log = logdfile

input = infile. $(NODE)

output = outfile.$(NODE)

error = errfile. $(NODE)

machine_count = 4

queue

The specification of the input, output, and error files utile predefined macro that is only rel-
evant to mpi universe jobs. See tbendorsubmitmanual page on page 795 for further description
of predefined macros. TI#NODE) macro is given a unique value as programs are assigned to ma-
chines. This value is what the MPICH version gt implementation terms the rank of a program.
Note that this term is unrelated and independent of the Qotedim rank. Thes(NODE) value is
fixed for the entire length of the job. It can therefore be useilentify individual aspects of the
computation. In this example, it is used to give unique natm@sput and output files.

If your site does NOT have a shared file system across all theswwhere your MPI computation
will execute, you can use Condor’s file transfer mechanismu &an find out more details about
these settings by reading taendorsubmitman page or section 2.5.4 on page 26. Assuming your
job only reads input from STDIN, here is an example submitffilea site without a shared file
system:

HHH R
MPI example submit description file

without using a shared file system
HHAHH R R R R R
universe = MPI

executable = simplempi

log = logfile

input = infile.$(NODE)

output = outfile.$(NODE)

error = errfile. $(NODE)

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications) 62

machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
queue

Consider the following C program that uses this example sutb@scription file.

/ kkkkkkkkkkkkkk

* simplempi.c
*kkkkkkkkkkkkk /
#include <stdio.h>
#include "mpi.h"

int main(argc,argv)
int argc;
char =*argvl];

{
int myid;
char line[128];
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
fprintf (stdout, "Printing to stdout...%d\n", myid);
fprintf (stderr, "Printing to stderr...%d\n", myid);
fgets (line, 128, stdin);
fprintf (stdout, "From stdin: %s", line);
MPI_Finalize();
return O;

}

Here is a makefile that works with the example. It would bulld MPI executable, using the
MPICH version chp4 implementation.

HHHHHHH T T HHHHHHH
This is a very basic Makefile #Ht
HHAHH R R R R R R R HHAHHHAHH R H

the location of the MPICH compiler

CcC = /Jusr/local/bin/mpicc
CLINKER = $(CC)

CFLAGS =g

EXECS = simplempi

Condor Version 7.2.3 Manual

2.9. Parallel Applications (Including MPI Applications)

63

all: $(EXECS)

simplempi: simplempi.o
$(CLINKER) -0 simplempi simplempi.o -Im

.C.O:
$(CC) $(CFLAGS) ¢ $ *.C

The submission to Condor requires exactly four machined careues four programs. Each of
these programs requires an input file (correctly named) aodyzes an output file.

If input file for §(NODE) = 0 (calledinfile.0) contains
Hello number zero.
and the input file fo(NODE) = 1 (calledinfile.1) contains
Hello number one.

then after the job is submitted to Condor, there will be eiijbs createderrfile.[0-3] and
outfile.[0-3] . outfile.O will contain

Printing to stdout...0
From stdin: Hello number zero.

anderrfile.O will contain
Printing to stderr...0

Different nodes for an MPI job can have different machineursgments. For example, often the
first node, sometimes called the head node, needs to run oecifispnachine. This can be also
useful for debugging. Condor accomodates this by suppprtinltiple queue statements in the
submit file, much like with the other universes. For example:

HH B
MPI example submit description file

with multiple procs

HHHHHHEHHH R
universe = MPI

executable = simplempi

log = logfile

input = infile.$(NODE)

output = outfile.$(NODE)

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 64

error = errfile.$(NODE)

machine_count = 1

should_transfer_files = yes
when_to_transfer_output = on_exit
requirements = (machine == "machinel")
queue

requirements =
machine_count
queue

(machine =!= "machinel")
=3

The dedicated scheduler will allocate four machines (nptial in two procs for this job. The
first proc has one node, (rank 0 in MPI terms) and will run onrtrechine named machinel. The
other three nodes, in the second proc, will run on other nmeshiLike in the other condor universes,
the second requirements command overwrites the first, leubtther commands are inherited from
the first proc.

When submitting jobs with multiple requirements, it is bstrite the requirements to be mu-
tually exclusive, or to have the most selective requirenfiesttin the submit file. This is because
the scheduler tries to match jobs to machine in submit fileord the requirements are not mutu-
ally exclusive, it can happen that the scheduler may unabgetedule the job, even if all needed
resources are available.

2.10 DAGMan Applications

A directed acyclic graph (DAG) can be used to represent afsebmputations where the input,
output, or execution of one or more computations is depetrmtenne or more other computations.
The computations are nodes (vertices) in the graph, anddipesg(arcs) identify the dependencies.
Condor finds machines for the execution of programs, butasdmt schedule programs based on de-
pendencies. The Directed Acyclic Graph Manager (DAGMaa)nseta-scheduler for the execution
of programs (computations). DAGMan submits the progran@dndor in an order represented by a
DAG and processes the results. A DAG input file describes #@ 2nd further submit description
file(s) are used by DAGMan when submitting programs to ruremi@bndor.

DAGMan is itself executed as a scheduler universe job wi@amdor. As DAGMan submits
programs, it monitors log file(s) to enforce the orderinguieed within the DAG. DAGMan is also
responsible for scheduling, recovery, and reporting orsttef programs submitted to Condor.

2.10.1 DAGMan Terminology

To DAGMan, a node in a DAG may encompass more than a singleggrogubmitted to run under
Condor. Figuré 22 illustrates the elements of a node.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

65

[optional]

PRE script

i

Condor job(s)
(with a single
cluster number)

or Stork job

l

[optional]

POST script

Figure 2.2: One Node within a DAG

At one time, the number of Condor jobs per node was restritdeone. This restriction is
now relaxed such that all Condor jobs within a node must shaiagle cluster number. See the
condorsubmitmanual page for a further definition of a cluster. A limitatiexists such that all jobs
within the single cluster must use the same log file.

As DAGMan schedules and submits jobs within nodes to Coritiese jobs are defined to
succeed or fail based on their return values. This succekslore is propagated in well-defined
ways to the level of a node within a DAG. Further progressiboamputation (towards completing
the DAG) may be defined based upon the success or failure adramere nodes.

The failure of a single job within a cluster of multiple jobgithin a single node) causes the entire
cluster of jobs to fail. Any other jobs within the failed ctasof jobs are immediately removed. Each
node within a DAG is further defined to succeed or fail, bageahithe return values of a PRE script,
the job(s) within the cluster, and/or a POST script.

2.10.2 Input File Describing the DAG

The input file used by DAGMan is called a DAG input file. All itsrare optional, but there must be
at least ondOB or DATAitem.

Comments may be placed in the DAG input file. The pound chergg} as the first character
on a line identifies the line as a comment. Comments do notlgpsn

A simple diamond-shaped DAG, as shown in Figure 2.3 is pteseas a starting point for

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 66

examples. This DAG contains 4 nodes.

Figure 2.3: Diamond DAG

A very simple DAG input file for this diamond-shaped DAG is

File name: diamond.dag
#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

A set of basic key words appearing in a DAG input file is desztibelow.

+ JOB

The JOB key word specifies a job to be managed by Condor. The syntakfoseachJOB
entry is

JOB JobName SubmitDescriptionFileNafi2iR directory] [DONE]

A JOBentry maps alobNamedo a Condor submit description file. THebNameuniquely
identifies nodes within the DAGMan input file and in output seges. Note that the name
for each node within the DAG must be unique.

The key wordsJOB and DONE are not case sensitive. TherefoBQNE, Dong anddone
are all equivalent. The values defined dmbNamendSubmitDescriptionFileNamare case
sensitive, as file hames in the Unix file system are case sensitheJobNamecan be any
string that contains no white space, except for the strlP§RENTand CHILD (in upper,
lower, or mixed case).

TheDIR option specifies a working directory for this node, from whibe Condor job will be
submitted, and from whichRREand/orPOSTscript will be run. Note that a DAG containing
DIR specifications cannot be run in conjunction with theedagdicommand-line argument
to condorsubmitdag A rescue DAG generated by a DAG run with thesedagdirargu-
ment will contain DIR specifications, so the rescue DAG mustunwithoutthe -usedagdir
argument.

The optionalDONE identifies a job as being already completed. This is usefslitimtions
where the user wishes to verify results, but does not neqa@irams within the dependency
graph to be executed. THRONE feature is also utilized when an error occurs causing the

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 67

DAG to be aborted without completion. DAGMan generates &Re®OAG, a DAG input file
that can be used to restart and complete a DAG without retgixepcompleted nodes.

* DATA

The DATAkey word specifies a job to be managed by the Stork data pladesaeser. The
syntax used for eaddATAentry is

DATA JobName SubmitDescriptionFileNafi2iR directory] [DONE]

A DATAentry maps alobNameo a Stork submit description file. In all other respects, the
DATAkey word is identical to thdOBkey word.

Here is an example of a simple DAG that stages in data usimy,§tmcesses the data using
Condor, and stages the processed data out using Stork. 8iagerpon the implementation,
multiple data jobs to stage in data or to stage out data mayrbmmparallel.

DATA STAGE_IN1 stage_inl.stork

DATA STAGE_IN2 stage_in2.stork

JOB PROCESS process.condor

DATA STAGE_OUT1 stage_outl.stork

DATA STAGE_OUT?2 stage_out2.stork

PARENT STAGE_IN1 STAGE_IN2 CHILD PROCESS
PARENT PROCESS CHILD STAGE_OUT1 STAGE_OUT2

* SCRIPT

The SCRIPTkey word specifies processing that is done either before avjtitin the DAG
is submitted to Condor or Stork for execution or after a jobhivi the DAG completes its
execution. Processing done before a job is submitted to @oadStork is called PRE
script. Processing done after a job completes its executimter Condor or Stork is called
aPOSTscript. A node in the DAG is comprised of the job together RE and/orPOST
scripts.

PREandPOSTscript lines within the DAG input file use the syntax:
SCRIPT PRE JobName ExecutableNarfaaguments
SCRIPT POST JobName ExecutableNarfggumentk

The SCRIPTkey word identifies the type of line within the DAG input file.h& PRE or
POSTkey word specifies the relative timing of when the script id&run. TheJobName
specifies the node to which the script is attached. EkecutableNamspecifies the script
to be executed, and it may be followed by any command lineraemis to that script. The
ExecutableNamand optionabrgumentsare case sensitive; they have their case preserved.

Scripts are optional for each job, and any scripts are ereloon the machine from which the
DAG is submitted; this is not necessarily the same machirm wghich the node’s Condor

or Stork job is run. Further, a single cluster of Condor jobagynibe spread across several
machines.

A PRE script is commonly used to place files in a staging aretnéocluster of jobs to use. A
POST script is commonly used to clean up or remove files oreeltister of jobs is finished
running. An example uses PRE and POST scripts to stage faesitd stored on tape. The
PRE script reads compressed input files from the tape divkitancompresses them, placing

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 68

the input files in the current directory. The cluster of Conjds reads these input files. and
produces output files. The POST script compresses the ofifgaitwrites them out to the
tape, and then removes both the staged input files and thatdilgs.

DAGMan takes note of the exit value of the scripts as well asjoiv. A script with an exit
value not equal to O fails. If the PRE script fails, then neittine job nor the POST script runs,
and the node fails.

If the PRE script succeeds, the Condor or Stork job is suknhittf the job fails and there
is no POST script, the DAG node is marked as failed. An exiigalot equal to 0 indicates
program failure. It is therefore important that a succelgsfagram return the exit value 0.

If the job fails and there is a POST script, node failure ised®ined by the exit value of the

POST script. A failing value from the POST script marks thel@as failed. A succeeding

value from the POST script (even with a failed job) marks tbdenas successful. Therefore,
the POST script may need to consider the return value frorjothe

By default, the POST script is run regardless of the job'anmetalue.

A node not marked as failed at any point is successful. Tadls2mmarizes the success or
failure of an entire node for all possibilities. Aistands for success, &nstands for failure,
and the dash characte} {dentifies that there is no script.

PRE || - - F s § - - - - S S S S
JoB|S F notrun S F S S F F S F F S
POST| - - notrun - - S F S F S S F F
[node[[S F F S F S F S F S S F F

Table 2.1: Node success or failure definition

Two variables may be used within the DAG input file, and mayeesipt writing. The
variables are often utilized in the arguments passed to a ®#HEDST script. The variable
$JOB evaluates to the (case sensitive) string definedd®Name For use as an argument to
POST scripts, th8RETURNariable evaluates to the return value of the Condor or Stk
A job that dies due to a signal is reported wittSBRETURNvalue representing the negative
signal number. For example, SIGKILL (signal 9) is reported@ A job whose batch system
submission fails is reported as -1001. A job that is extdymaimoved from the batch system
gueue (by something other thaandordagman is reported as -1002.

As an example, consider the diamond-shaped DAG examplepdSepthe PRE script ex-
pands a compressed file needed as input to nodes B and C. Therfdened of the form
JobNane.gz . The DAG input file becomes

File name: diamond.dag
#

JOB A A.condor

JOB B B.condor

JOB C C.condor

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 69

JOB D D.condor

SCRIPT PRE B pre.csh $JOB .gz
SCRIPT PRE C pre.csh $JOB .gz
PARENT A CHILD B C

PARENT B C CHILD D

The scriptpre.csh uses the arguments to form the file name of the compressed file:

#!/bin/csh
gunzip $argv[1]$argv[2]

* PARENT ...CHILD

The PARENTand CHILD key words specify the dependencies within the DAG. Nodes are
parents and/or children within the DAG. A parent node mustdrapleted successfully before
any of its children may be started. A child node may only beesthonce all its parents have
successfully completed.

The syntax of a dependency line within the DAG input file:

PARENT ParentJobName . CHILD ChildJobName..

ThePARENTkey word is followed by one or morearentJobNang TheCHILD key word is
followed by one or mor€hildJobNams. Each child job depends on every parent job within

the line. A single line in the input file can specify the depemcies from one or more parents
to one or more children. As an example, the line

PARENT pl p2 CHILD cl c2

produces four dependencies:

1. pltocl
2. pltoc2
3. p2tocl
4. p2toc2

2.10.3 Submit Description File

Each node in a DAG may use a unique submit description file.kK@pémitation is that each Condor
submit description file must submit jobs described by a sirdjister number. At the present time
DAGMan cannot deal with a submit file producing multiple jdbsters.

At one time, DAGMan required that all jobs within all node®sily the same, single log file.
This is no longer the case. However, if the DAG utilizes adamgmber of separate log files, perfor-
mance may suffer. Therefore, it is better to have fewer, enanly a single log file. Unfortunately,
each Stork job currently requires a separate log file. DAGMaforces the dependencies within a
DAG using the events recorded in the log file(s) produced bysjgbmission to Condor.

Here is a modified version of the DAG input file for the diamastdiped DAG. The modification
has each node use the same submit description file.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 70

File name: diamond.dag

#

JOB A diamond_job.condor
JOB B diamond_job.condor
JOB C diamond_job.condor
JOB D diamond_job.condor
PARENT A CHILD B C
PARENT B C CHILD D

Here is the single Condor submit description file for this DAG

File name: diamond_job.condor

#

executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla

notification = NEVER

gueue

This example uses the same Condor submit description filalfdhe jobs in the DAG. This
implies that each node within the DAG runs the same job. F{wduster) macro produces
unigue file names for each job’s output. As the Condor job wittach node causes a separate job
submission, each has a unique cluster number.

Noatification is set toNEVERIn this example. This tells Condor not to send e-mail aboat th
completion of a job submitted to Condor. For DAGs with manyles, this reduces or eliminates
excessive numbers of e-mails.

2.10.4 Job Submission

A DAG is submitted using the prograoondorsubmitdag See the manual page 825 for complete
details. A simple submission has the syntax

condorsubmitdag DAGInputFileName

The diamond-shaped DAG example may be submitted with
condor_submit_dag diamond.dag

In order to guarantee recoverability, the DAGMan prograselitis run as a Condor job. As such,
it needs a submit description fileondorsubmitdag produces this needed submit description file,
naming it by appendingcondor.sub to the DAGInputFileName This submit description file
may be edited if the DAG is submitted with

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 71

condor_submit_dag -no_submit diamond.dag

causingcondorsubmitdagto generate the submit description file, but not submit DAGN=aCon-
dor. To submit the DAG, once the submit description file igextliuse

condor_submit diamond.dag.condor.sub

An optional argument toondorsubmitdag, -maxjobsis used to specify the maximum number
of batch jobs that DAGMan may submit at one time. It is commarsed when there is a limited
amount of input file staging capacity. As a specific exampdesaer a case where each job will
require 4 Mbytes of input files, and the jobs will run in a di@y with a volume of 100 Mbytes
of free space. Using the argumemiaxjobs 25guarantees that a maximum of 25 jobs, using a
maximum of 100 Mbytes of space, will be submitted to Conda/anStork at one time.

While the-maxjobsargument is used to limit the number of batch system jobs #tdmirat one
time, it may be desirable to limit the number of scripts rumgnat one time. The optionamaxpre
argument limits the number of PRE scripts that may be runaingne time, while the optional
-maxpostargument limits the number of POST scripts that may be rupatrone time.

An optional argument teondorsubmitdag, -maxidle is used to limit the number of idle jobs
within a given DAG. When the number of idle node jobs in the DAgaches the specified value,
condordagmanwill stop submitting jobs, even if there are ready nodes s EAG. Once some of
the idle jobs start to rurgondordagmanwill resume submitting jobs. Note that this parameter only
limits the number of idle jobs submitted by a given instanteandordagman Idle jobs submitted
by other sources (including otheondordagmarruns) are ignored.

2.10.5 Job Monitoring, Job Failure, and Job Removal

After submission, the progress of the DAG can be monitoredooking at the log file(s), ob-
serving the e-mail that job submission to Condor causesyarsingcondorq -dag There is a
large amount of information in an extra file. The name of thisafile is produced by appending
.dagman.out to DAGInputFileNamgfor example, if the DAG file iddiamond.dag , this ex-
tra file is diamond.dag.dagman.out . If this extra file grows too large, limit its size with the
MAXDAGMANLOG configuration macro (see section 3.3.4).

If you have some kind of problem in your DAGMan run, pleaseeséive corresponding
dagman.out file; it is the most important debugging tool for DAGMan. As drsion 6.8.2,
thedagman.out is appended to, rather than overwritten, with each new DAG kliz.

condotsubmitdag attempts to check the DAG input file. If a problem is detectedn-
dor_submitdagprints out an error message and aborts.

To remove an entire DAG, consisting of DAGMan plus any jolsmsitted to Condor or Stork,
remove the DAGMan job running under Condaondorq will list the job number. Use the job
number to remove the job, for example

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

72

% condor_q

-- Submitter: turunmaa.cs.wisc.edu : <128.105.175.125:3 6165> : turunmaa.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
9.0 smoler 10/12 11:47 0+00:01:32 R 0 8.7 condor_dagman -f -
11.0 smoler 10/12 11:48 0+00:00:00 I O 3.6 B.out
12.0 smoler 10/12 11:48 0+00:00:00 I O 3.6 C.out

3 jobs; 2 idle, 1 running, 0 held
% condor_rm 9.0

Before the DAGMan job stops running, it usesndorrm and/orstork rm to remove any jobs
within the DAG that are running.

In the case where a machine is scheduled to go down, DAGMéagcledn up memory and exit.
However, it will leave any submitted jobs in Condor’s queue.

2.10.6 Advanced Features of DAGMan
Retrying Failed Nodes

TheRETRYkey word provides a way to retry failed nodes. The use of ristgptional. The syntax
for retry is
RETRY JobName NumberOfRetrifdNLESS-EXIT valug

whereJobNamaedentifies the nodeNumberOfRetriess an integer number of times to retry the
node after failure. The implied number of retries for any @dsl 0, the same as not having a retry
line in the file. Retry is implemented on nodes, not parts ab@en

The diamond-shaped DAG example may be modified to retry node C

File name: diamond.dag

#

JOB A A.condor
JOB B B.condor
JOB C C.condor

JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3

If node C is marked as failed (for any reason), then it is sthdver as a first retry. The node
will be tried a second and third time, if it continues to faflthe node is marked as successful, then
further retries do not occur.

Retry of a node may be short circuited using the optional keydUNLESS-EXIT(followed
by an integer exit value). If the node exits with the specifiggger exit value, then no further
processing will be done on the node.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

73

The ABORT-DAG-ONkey word provides a way to abort the entire DAG if a given noeteims
a specific exit code. The syntax fABORT-DAG-ONs

ABORT-DAG-ON JobName AbortExitValUlRETURN DAGReturnValue

If the node specified byjobNameeturns the specifiedbortExitValuethe DAG is immediately
aborted. A DAG abort differs from a node failure, in that a DABort causes all nodes within
the DAG to be stopped immediately. This includes removirggjtibs in nodes that are currently

running. A node failure allows the DAG to continue runningtilno more progress can be made
due to dependencies.

An abort overrides node retries. If a node returns the abdtrtalue, the DAG is aborted, even
if the node has retry specified.

When a DAG aborts, by default it exits with the node returnueathat caused the abort.
This can be changed by using the optioREETURNkey word along with specifying the desired
DAGReturnValue The DAG abort return value can be used for DAGs within DAGEvENg an
inner DAG to cause an abort of an outer DAG.

Adding ABORT-DAG-ONor node C in the diamond-shaped DAG

File name: diamond.dag

#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor

PARENT A CHILD B C

PARENT B C CHILD D

Retry C 3

ABORT-DAG-ON C 10 RETURN 1

causes the DAG to be aborted, if node C exits with a returnevaful0. Any other currently

running nodes (only node B is a possibility for this partaoutxample) are stopped and removed. If
this abort occurs, the return value for the DAG is 1.

Variable Values Associated with Nodes
The VARSkey word provides a method for defining a macro that can beaeated in the node’s
submit description file. These macros are defined on a pet-hasis, using the following syntax:

VARS JobNamenacroname="string” [macroname= "string” .. .]

The macro may be used within the submit description file ofrtdevant node. Anacroname
consists of alphanumeric characters (a..Z and 0..9), dsawe¢he underscore character. The space
character delimits macros, when there is more than one nugfioed for a node.

Correct syntax requires that tlsring must be enclosed in double quotes. To use a double quote

insidestring, escape it with the backslash charactey. (To add the backslash character itself, use

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 74

two backslashed\(). The string $(JOB) maybe usedsiring and will expand taJobName If the

VARS line appears in a DAG file used as a splice file, then $(JOB)beilihe fully scoped name of
the node.

Note that macro names cannot begin with the string "queueally combination of upper and
lower case).

If the DAG input file contains

File name: diamond.dag
#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor

VARS A state="Wisconsin"
PARENT A CHILD B C
PARENT B C CHILD D

then fileA.condor may use the macrstate . This example submit description file for the
Condor job in node A passes the value of the macro as a comtirenargument to the job.

file name: A.condor
executable = A.exe

log = Alog
error = Aerr
arguments = $(state)
queue

This Condor job’s command line will be

A.exe Wisconsin

The use of macros may allow a reduction in the necessary nuofibaique submit description files.

A separate example shows an intended use\ARSentry in the DAG input file. This use may
dramatically reduce the number of Condor submit descripfiles needed for a DAG. In the case
where the submit description file for each node varies onfylénaming, the use of a substitution
macro within the submit description file reduces the needsmgle submit description file. Note
that the user log file for a job currently cannot be specifigdgia macro passed from the DAG.

The example uses a single submit description file in the DAgatiffile, and uses theéarsentry
to name output files.

The relevant portion of the DAG input file appears as

JOB A theonefile.sub
JOB B theonefile.sub

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

75

JOB C theonefile.sub

VARS A outfilename="A"
VARS B outfilename="B"
VARS C outfilename="C"

The submit description file appears as

submit description file called: theonefile.sub

executable = progX

universe = standard

output = $(outfilename)
error = error.$(outfilename)
log = progX.log

queue

For a DAG such as this one, but with thousands of nodes, bdilegta write and maintain a
single submit description file and a single, yet more comdeG input file is preferable.

Setting Priorities for Nodes

The PRIORITYkey word assigns a priority to a DAG node. The syntax for PRIDRis
PRIORITY JobName PriorityValue

The node priority affects the order in which nodes that aeslyeat the same time will be sub-
mitted. Note that node priority doe®t override the DAG dependencies.

Node priority is mainly relevant if node submission is thied via the-maxjobsor -maxidle
command-line flags or thBAGMANMAXJOBS SUBMITTEDor DAGMAMAXJOBSIDLE con-
figuration macros. Note that PRE scripts can affect the drdehich jobs run, so DAGs containing

PRE scripts may not run the nodes in exact priority ordemef/doing so would satisfy the DAG
dependencies.

The priority value is an integer (which can be negative). Ayéa numerical priority is better
(will be run before a smaller numerical value). The defauilbity is O.

Adding PRIORITYfor node C in the diamond-shaped DAG

File name: diamond.dag
#

JOB A A.condor

JOB B B.condor

JOB C C.condor

JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3

PRIORITY C 1

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

76

This will cause node C to be submitted before node B (normatige B would be submitted
first).

Limiting the Number of Submitted Job Clusters within a DAG

In order to limit the number of submitted job clusters wittdinDAG, the nodes may be placed
into categories by assignment of a name. Then, a maximum euaflsubmitted clusters may be
specified for each category.

TheCATEGORYey word assigns a category name to a DAG node. The syntaxX¥6EGORY
is

CATEGORY JobName CategoryName
Category names cannot contain white space.

The MAXJOBSkey word limits the number of submitted job clusters on a pEegory basis.
The syntax foMAXJOBSs

MAXJOBS CategoryName MaxJobsValue

If the number of submitted job clusters for a given categ@gches the limit, no further job
clusters in that category will be submitted until other jdbsters within the category terminate.
If MAXJOBS is not set for a defined category, then there is maitliplaced on the number of
submissions within that category.

Note that a single invocation ébndorsubmitresults in one job cluster. The number of Condor
jobs within a cluster may be greater than 1.

The configuration variabl DAGMAMAXJOBS SUBMITTED and the condorsubmitdag
-maxjobscommand-line option are still enforced if theSATEGORYandMAXJOBShrottles are
used.

Configuration Specific to a DAG

The CONFIG keyword specifies a configuration file to be used tocsgtdor dagmanconfiguration
options when running this DAG. The syntax I6ONFIGis

CONFIG ConfigFileName

If the DAG file contains a line like this:

CONFIG dagman.config

the configuration values in the filagman.config will be used for this DAG.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

77

Configuration macros forondordagmancan be specified in several ways, as given within the
ordered list:

1. In a Condor configuration file.
2. With an environment variable. Prepend the stinGONDOR_"to the macro name.

3. In a condordagmanspecific configuration file specified in the DAG file or on then-
dor_submitdagcommand line.

4. For some configuration macros, there is a corresponelimglor submitdag command line
flag (for exampleDAGMAMAXJOBS SUBMITTED-maxjobs.

In the above list, configuration values specified later inltsteoverride ones specified earlier
(e.g., a value specified on tlsendorsubmitdagcommand line overrides corresponding values in
any configuration file; a value specified in a DAGMan-speci6iofgguration file overrides values
specified in a general Condor configuration file).

Non-condordagman non-daemoncore configuration macros icoadordagmanspecific con-
figuration file are ignored.

Only a single configuration file can be specified for a gigendordagmanrun. For example,
if one file is specified in a DAG, and a different file is specifitdthecondorsubmitdagcommand
line, this is a fatal error at submit time. The same is trudffedent configuration files are specified
in multiple DAG files referenced in a singt®ndorsubmitdagcommand.

If multiple DAGs are run in a singleondordagmarnrun, the configuration options specified in
the condordagmanconfiguration file, if any, apply to all DAGs, even if some o&tBbAGs specify
no configuration file.

Configuration variables relating to DAGMan may be found iotem|3.3.25.

Single Submission of Multiple, Independent DAGs

A single use oftondorsubmitdag may execute multiple, independent DAGs. Each independent
DAG has its own DAG input file. These DAG input files are commdind arguments taon-
dor_submitdag(see thecondorsubmitdagmanual page at 9).

Internally, all of the independent DAGs are combined intingle, larger DAG, with no depen-
dencies between the original independent DAGs. As a remwjtgenerated rescue DAG file repre-
sents all of the input DAGSs as a single DAG. The file name ofribésue DAG is based on the DAG
input file listed first within the command-line argumentscmndorsubmitdag (unlike a single-
DAG rescue DAG file, however, the file name will Bevhatever >.dag _multi.rescue or
<whatever >.dag _multirescueNNN ,asopposedtojustwhatever >.dag.rescue or
<whatever >.dag.rescueNNN). Other files such adagman.out and the lock file also have
names based on this first DAG input file.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

78

The success or failure of the independent DAGs is well defindtien multiple, independent
DAGs are submitted with a single command, the success ofdhmasite DAG is defined as the
logical AND of the success of each independent DAG. This iespthat failure is defined as the
logical OR of the failure of any of the independent DAGs.

By default, DAGMan internally renames the nodes to avoidenndme collisions. If all node

names are unique, the renaming of nodes may be disabled tiygsete configuration variable
DAGMANMUNGENODENAMESto False (seel 3.3.25).

A DAG Within a DAG Is a SUBDAG

The organization and dependencies of the jobs within a DAz keys to its utility. There are
cases when a DAG is easier to visualize and construct higcaity, in other words when a node
within a DAG is also a DAG. Condor DAGMan handles this sitaatguite easily. (Note that DAGs
can be nested to any depth.)

Since more than one DAG is being discussed, terminologytieduced to clarify which DAG
is which. Reuse the example diamond-shaped DAG as givemimé2.3. Assume that node B of
this diamond-shaped DAG will itself be a DAG. The DAG of nodésRalled the inner DAG, and
the diamond-shaped DAG is called the outer DAG.

Work on the inner DAG first. Here is a very simple linear DAG iniffile used as an example of
the inner DAG.

File name: inner.dag
#

JOB X X.submit
JOB Y Y.submit
JOB Z Z.submit
PARENT X CHILD Y
PARENT Y CHILD z

The Condor submit file corresponding to this DAG will be narnreter.dag.condor.sub
(The DAGMan submit file is always name&@®AG file name>.condor.sub)

A simple example of a DAG input file for the outer DAG is

File name: diamond.dag
#
JOB A A.submit
SUBDAG EXTERNAL B inner.dag
JOB C C.submit
JOB D D.submit
PARENT A CHILD B C
PARENT B C CHILD D

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 79

This is equivalent, but the version above is now preferred:

File name: diamond.dag

#
JOB
JOB
JOB
JOB

A A.submit
B inner.dag.condor.sub
C C.submit
D D.submit

PARENT A CHILD B C
PARENT B C CHILD D

Within the DAG input file, theSUBDAGkeyword specifies a special case af@B node, where
the job is a DAG.

SUBDAG EXTERNAL JobName DagFileNan®IR directory] [DONE]

A SUBDAG node is essentially the same as a "normal” node, excepthbatésted DAG file
is specified instead of the Condor submit file. ("SUBDAG EXT¥R. A foo.dag” is functionally
equivalent to "JOB A foo.dag.condor.sub”, but SUBDAG EXTEAL is now the preferred syntax
for specifying such a node.) "EXTERNAL"” means that the SUBBJ run in its own instance of
condordagman

« condorsubmitdagrecursion

The outer DAG is then submitted as before, with the command

condor_submit_dag diamond.dag

In Condor 7.1.4 and later, when you reondorsubmitdag on the outer DAG file,con-
dor_submitdag -nasubmit -updatesubmitis automatically run on the inner DAG file before
the outer DAG is actually run. (If you want to disable thistfea, you can do so by passing
the-no_recursecommand-line flag teondorsubmitdag)

The following command-line flags are passed to the lowesllesndorsubmitdag

-verbose
-force
-notification
-dagman
-debug
-usedagdir
-outfile_dir
-oldrescue
-autorescue
-dorescuefrom

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

— -allowversionmismatch

The following command-line flags are preserved in existmgdr-level DAG submit files (if
any exist):

-maxjobs
-maxidle

-maxpre
— -maxpost

Note that the-force option will cause existing DAG submit files to be overwritteithout
preserving any existing values.

Because of the automatic recursiondandorsubmitdag normally you only need to run
condorsubmitdag on your outermost DAG. But you can manually rcondorsubmitdag

on an inner DAG or DAGs to setnaxjobs or other values. For instance, using the example
in the previous section, you could do the following:

condor_submit_dag -no_submit -maxjobs 1 inner.dag
condor_submit_dag diamond.dag

This would set maxjobs to 1 for the inner DAG, and then run thire work flow.

* Interaction with Rescue DAGs

When using nested DAGs, it is strongly recommended that geu'mew-style” rescue DAGS
(this is the default). Using "new-style” rescue DAGs willtamatically run the proper rescue
DAG(s) if there is a failure in your work flow. For example, ifie of the nodes imner.dag

fails, this will produce a rescue DAG for inner.dagrier.dag.rescue.001 ,etc.). Then,
sinceinner.dag failed, node B ofdiamond.dag will fail, producing a rescue DAG for
diamond.dag (diamond.dag.rescue.001 , etc.). If you re-runcondorsubmitdag
diamond.daghe most recent outer rescue DAG will be run, and this wiltua-the inner
DAG, which will actually run the most recent inner rescue DA3/ou use "old-style” rescue
DAGs, you would have to either rename the inner rescue DAGIoitrmanually.

+ File Paths

Remember that, unless you use the DIR keyword in your outeé® [3Ae inner DAG will be
submitted from the directory in which you run the outer DA®€Fefore, all paths in the inner
DAG file (to submit files, etc.) must be specified accordingly.

DAG Splicing

A weakness in scalability exists when submitting a DAG withiDAG. Each executing independent
DAG requires its own invocation afondordagmarnto be running. The scaling issue presents itself
when the same semantic DAG is reused hundreds or thousanidsesfin a larger DAG. Further,
there may be many rescue DAGs created if a problem occurs. ll@dade these concerns, the
DAGMan language introduces the concept of graph splicing.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

81

A splice is a named instance of a subgraph which is specifiad@parate DAG file. The splice is
treated as a whole entity during dependency specificatitimeiimcluding DAG. The same DAG file
may be reused as differently named splices, each one inainpga copy of the dependency graph
(and nodes therein) into the including DAG. Any splice inacliding DAG may have dependencies
between the sets of initial and final nodes. A splice may berpwrated into an including DAG
without any dependencies; it is considered a disjoint DAG@iwithe including DAG. The nodes
within a splice are scoped according to a hierarchy of namssediated with the splices, as the
splices are parsed from the top level DAG file. The scopingattar to describe the inclusion
hierarchy of nodes into the top level dag+s . This character is chosen due to a restriction in the
allowable characters which may be in a file name across thetyanf ports that Condor supports.

In any DAG file, all splices must have unique names, but theesspplice name may be reused in
different DAG files.

Condor does not detect nor support splices that form a cyitlimthe DAG. A DAGMan job
that causes a cyclic inclusion of splices will eventuallhaust available memory and crash.

The SPLICEkeyword in a DAG input file creates a named instance of a DAGpasified in
another file as an entity which may haRARENTandCHILD dependencies associated with other
splice names or node names in the including DAG file. The syioaSPLICEis

SPLICE SpliceName DagFileNani®IR directory]

After parsing incorporates a splice, all nodes within thespecome nodes within the including
DAG.

The following series of examples illustrate potential usksplicing. To simplify the examples,
presume that each and every job uses the same, simple Carmhoit slescription file:

BEGIN SUBMIT FILE submit.condor

executable = /bin/echo
arguments = OK

universe = vanilla

output = $(jobname).out
error = $(jobname).err
log = submit.log
notification = NEVER

queue

END SUBMIT FILE submit.condor

This first simple example splices a diamond-shaped DAG iwéen the two nodes of a top level
DAG. Here is the DAG input file for the diamond-shaped DAG:

BEGIN DAG FILE diamond.dag
JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 82

VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

PARENT A CHILD B C
PARENT B C CHILD D
END DAG FILE diamond.dag

The top level DAG incorporates the diamond-shaped splice:

BEGIN DAG FILE toplevel.dag
JOB X submit.condor
VARS X jobname="$(JOB)"

JOB Y submit.condor
VARS Y jobname="$(JOB)"

This is an instance of diamond.dag, given the symbolic name DIAMOND
SPLICE DIAMOND diamond.dag

Set up a relationship between the nodes in this dag and the sp lice

PARENT X CHILD DIAMOND
PARENT DIAMOND CHILD Y

END DAG FILE toplevel.dag

Figurel 2.4 illustrates the resulting top level DAG and th@eledencies produced. Notice the
naming of nodes scoped with the splice name. This hierarthplite names assures unique names
associated with all nodes.

Figure 2.5 illustrates the starting point for a more com@eample. The DAG input filX.dag
describes this X-shaped DAG. The completed example disptayre of the spatial constructs pro-
vided by splices. Pay particular attention to the notior #zch named splice creates a new graph,
even when the same DAG input file is specified.

BEGIN DAG FILE X.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

DIAMOND+A

DIAMOND+B DIAMOND+C

DIAMOND+D

Figure 2.4: The diamond-shaped DAG spliced between twosiode

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

JOB E submit.condor
VARS E jobname="$(JOB)"

JOB F submit.condor
VARS F jobname="$(JOB)"

JOB G submit.condor
VARS G jobname="$(JOB)"

Make an X-shaped dependency graph
PARENT A B C CHILD D
PARENT D CHILD E F G

END DAG FILE X.dag

Filesl.dag continues the example, presenting the DAG input file thatripeorates two sepa-

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 84

Figure 2.5: The X-shaped DAG.
rate splices of the X-shaped DAG. Figlre 2.6 illustratesésailting DAG.

BEGIN DAG FILE sl.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

name two individual splices of the X-shaped DAG
SPLICE X1 X.dag
SPLICE X2 X.dag

Define dependencies

A must complete before the initial nodes in X1 can start

PARENT A CHILD X1

All final nodes in X1 must finish before the initial nodes in X2 can begin
PARENT X1 CHILD X2

All final nodes in X2 must finish before B may begin.

PARENT X2 CHILD B

END DAG FILE sl.dag

The top level DAG in the hierarchy of this complex exampleasctibed by the DAG input file
toplevel.dag . Figuré 2.7 illustrates the final DAG. Notice that the DAG has disjoint graphs
in it as a result of splice S3 not having any dependenciesisgsd with it in this top level DAG.

BEGIN DAG FILE toplevel.dag

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

85

Figure 2.6: The DAG described tsl.dag .

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

86

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

a diamond-shaped DAG
PARENT A CHILD B C
PARENT B C CHILD D

This splice of the X-shaped DAG can only run after
the diamond dag finishes

SPLICE S2 X.dag

PARENT D CHILD S2

Since there are no dependencies for S3,
the following splice is disjoint
SPLICE S3 sl.dag

END DAG FILE toplevel.dag

TheDIR option specifies a working directory for a splice, from whtble splice will be parsed
and the containing jobs submitted. The directory assatiatith the splicesDIR specification will
be propagated as a prefix to all nodes in the splice and anydadlisplices. If a node already has a
DIR specification, then the splicel3IR specification will be a prefix to the nodes and separated by
a directory separator character. Jobs in included splicgésam absolute path for thedIR specifi-
cation will have theiDIR specification untouched. Note that a DAG containdi& specifications
cannot be run in conjunction with thasedagdirommand-line argument tondorsubmitdag A
rescue DAG generated by a DAG run with thesedagdirargument will contain DIR specifications,
so the rescue DAG must be rwithoutthe -usedagdirargument.

2.10.7 Job Recovery: The Rescue DAG

DAGMan can help with the resubmission of uncompleted posiof a DAG, when one or more
nodes result in failure. If any node in the DAG fails, the rémaer of the DAG is continued until
no more forward progress can be made based on the DAG’s depeied. At this point, DAGMan
produces a file called a Rescue DAG.

The Rescue DAG is a DAG input file, functionally the same awtiginal DAG file. The Rescue
DAG additionally contains an indication of successfullyrqueted nodes by appending tBONE
key word to the node’dOBor DATAlines. If the DAG is resubmitted utilizing the Rescue DAGg th
successfully completed nodes will not be re-executed.

Note that if multiple DAG files are specified on thendorsubmitdagcommand line, a single
rescue DAG encompassing all of the input DAGs is generated.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

Figure 2.7: The complex splice example DAG.

If the Rescue DAG file is generated before all retries of a nadecompleted, then the Res-
cue DAG file will also contairRetryentries. The number of retries will be set to the appropriate
remaining number of retries.

The granularity defining success or failure in the Rescue Be node. For a node that fails,
all parts of the node will be re-run, even if some parts werssasful the first time. For example,
if a node’s PRE script succeeds, but then the node’s Contdarljster fails, the entire node, which
includes the PRE script will be re-run. A job cluster may teguthe submission of multiple Condor
jobs. If one of the multiple jobs fails, the node fails. THere, a the Rescue DAG will re-run the
entire node, implying the submission of the entire clusfgolbs, not just the one(s) that failed.

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 88

Statistics about the failed DAG execution are presentedoamients at the beginning of the
Rescue DAG input file.

The Rescue DAG is automatically generated by DAGMan whende nathin the DAG fails
or whencondordagmanitself is removed withcondorrm. The file name of the Rescue DAG,
and usage of the Rescue DAG changed from explicit specditéti implicit usage beginning with
Condor version 7.1.0.

Current naming of the Rescue DAG appends the striegcue<XXX> to the original DAG
input file. Values foxXXX>start atd01 and continue t®02, 003, and beyond. If a Rescue DAG
exists, the Rescue DAG with the largest magnitude value¥otX>will be used, and its usage is
implied.

Here is an example showing file naming and DAG submissiortctse of a failed DAG. The
initial DAG is submitted with

condor_submit_dag my.dag

A failure of this DAG results in the Rescue DAG calledy.dag.rescue001 . The DAG is
resubmitted using the same command:

condor_submit_dag my.dag

This resubmission of the DAG uses the Rescue DAGifedag.rescue001 , because it exists.
Failure of this Rescue DAG results in another Rescue DAGdafly.dag.rescue002 . If the
DAG is again submitted, using the same command as with théfiocssubmissions, but not repeated
here, then this third submission uses the Rescue DA@fjlelag.rescue002 , because it exists,
and because the val@®2 is larger in magnitude thab01.

To explicitly specify a particular Rescue DAG, use the opéibcommand-line argument
-dorescuefronwith condorsubmitdag Note that this will have the side effect of renaming ex-
isting Rescue DAG files with larger magnitude values<a€XX> Each renamed file has its
existing name appended with the strirggd . For example, assume thaty.dag has failed
4 times, resulting in the Rescue DAGs nanmag.dag.rescue001 , my.dag.rescue002
my.dag.rescue003 , and my.dag.rescue004 . A decision is made to re-run using
my.dag.rescue002 . The submit command is

condor_submit_dag -dorescuefrom 2 my.dag

The DAG specified by the DAG input filey.dag.rescue002 is submitted. And, the exist-
ing Rescue DAGny.dag.rescue003 is renamed to beny.dag.rescue003.0ld , While the
existing Rescue DA@Gy.dag.rescue004 is renamed to beny.dag.rescue004.old

A maximum value foiXXXmay be configured by thBAGMANMAXRESCUBNUMconfigura-
tion macro (see 228).

Condor Version 7.2.3 Manual

2.10. DAGMan Applications 89

Prior to Condor version 7.1.0, the naming of a Rescue DAG agipe the stringrescue to the
existing DAG input file name. And, the Rescue DAG file would kpleitly placed in the command
line that submitted it. For example a first submission is

condor_submit_dag my.dag

Assuming that this DAG failed, the filmy.dag.rescue would be created. To run this Rescue
DAG, the submission command is

condor_submit_dag my.dag.rescue

If this Rescue DAG also failed, a new Rescue DAG namgddag.rescue.rescue would be
created.

The behavior of DAGMan with respect to Rescue DAGs can beefbrto the old be-
havior by setting the configuration variabl@BAGMAMNDLDRESCUE (seel 228) toTrue and
DAGMAMUTQRESCUE(se€ 228) td-alse .

2.10.8 File Paths in DAGs

By default, condordagmanassumes that all relative paths in a DAG input file and the -asso
ciated Condor submit description files are relative to therent working directory whercon-
dor_submitdagis run. Note that relative paths in submit description filas e modified by the
submit commandhitialdir ; see thecondorsubmitmanual page at 9 for more details. The rest of
this discussion ignorasitialdir .

In most cases, path names relative to the current workingcttiry is the desired behavior.
However, if running multiple DAGs with a singleondordagman and each DAG is in its own
directory, this will cause problems. In this case, use-gedagdircommand-line argument to
condorsubmitdag (see thecondorsubmitdagmanual page at|9 for more details). This tels-
dor_dagmanto run each DAG as iEondorsubmitdaghad been run in the directory in which the
relevant DAG file exists.

For example, assume that a directory calledent contains two subdirectories calleigl
anddag2, and thatagl contains the DAG input filene.dag anddag2 contains the DAG input
file two.dag . Further, assume that each DAG is set up to be run from its dvectdry with the
following command:

cd dagl; condor_submit_dag one.dag

This will correctly runone.dag .

The goal is to run the two, independent DAGs located wittdigl anddag2 while the current
working directory isparent . To do so, run the following command:

Condor Version 7.2.3 Manual

2.10. DAGMan Applications

90

condor_submit_dag -usedagdir dagl/one.dag dag2/two.dag

Of course, if all paths in the DAG input file(s) and the relevanbmit description files are
absolute, theusedagdirargument is not needed; however, using absolute paths isg¢@@érally a
good idea.

If you do notuse-usedagdir relative paths can still work for multiple DAGs, if all filegphs
are given relative to the current working directory @ndorsubmitdag is executed. However,
this means that, if the DAGs are in separate directoriey;, th@not be submitted from their own
directories, only from the parent directory the paths ateipdor.

Note that if you use theusedagdirargument, and your run results in a rescue DAG, the rescue
DAG file will be written to the current working directory, arsthould be run from that directory. The
rescue DAG includes all the path information necessaryiceach node job in the proper directory.

2.10.9 Visualizing DAGs withdot

It can be helpful to see a picture of a DAG. DAGMan can assist iyovisualizing a DAG by
creating the input files used by the AT&T Research Lgizphvizpackagedotis a program within
this package, available from http://www.graphviz.orgidat is used to draw pictures of DAGs.

DAGMan produces one or more dot files as the result of an eixteaih a DAGMan input file.
The line appears as

DOT dag.dot

This creates a file callediag.dot . which contains a specification of the DAG before any jobs
within the DAG are submitted to Condor. Thag.dot file is used to create a visualization of the
DAG by using this file as input tdot. This example creates a Postscript file, with a visualiratib
the DAG:

dot -Tps dag.dot -0 dag.ps
Within the DAGMan input file, the DOT command can take sevepdional parameters:

« UPDATE This will update the dot file every time a significant updatpens.

« DONT-UPDATE Creates a single dot file, when the DAGMan begins executifgs i§ the
default if the parametddPDATE is not used.

« OVERWRITE Overwrites the dot file each time it is created. This is theadkf unless
DONT-OVERWRITE is specified.

« DONT-OVERWRITE Used to create multiple dot files, instead of overwritings$hegle one
specified. To create file names, DAGMan uses the name of theofileatenated a period and
an integer. For example, the DAGMan input file line

Condor Version 7.2.3 Manual

http://www.graphviz.org/

2.11. Virtual Machine Applications

91

DOT dag.dot DONT-OVERWRITE

causes fileglag.dot.0 , dag.dot.1 , dag.dot.2 , etc. to be created. This option is
most useful combined with thdPDATE option to visualize the history of the DAG after it
has finished executing.

« INCLUDE path-to-filenaméncludes the contents of a file given pgth-to-flename
in the file produced by thBOT command. The include file contents are always placed after
the line of the formlabel= . This may be useful if further editing of the created files Vdou
be necessary, perhaps because you are automaticallyizisgahe DAG as it progresses.

If conflicting parameters are used in a DOT command, the lastisted is used.

2.11 Virtual Machine Applications

Thevm universe facilitates a Condor job that matches and therslandisk image on an execute
machine within a Condor pool. This disk image is intendedd@lvirtual machine.

This section describes this Condor job. See settion 3.82&dftails of configuration variables.

2.11.1 The Submit Description File

Different than all other universe jobs, then universe job specifies a disk image, not an executable.
Therefore, the submit commanidgut, output, anderror do not apply. If specified;ondorsubmit
rejects the job with an error. Thexecutablecommand changes definition withirven universe job.

It no longer specifies an executable file, but instead prevédgtring that identifies the job for tools
such agondorg.

Use of theargs command creates a file namedndor.arg , which is added to the set of
CD-ROM files. The contents of this file are the arguments $igeci

VMware and Xen virtual machine software are supported. &swo differ from each other, the
submit description file specifies either

vm_type = vmware

or

xen

vm_type

The job specifies its memory needs for the disk image withmemory, which is given in
Mbytes. Condor uses this number to assure a match with a nethat can provide the needed
memory space.

Condor Version 7.2.3 Manual

2.11. Virtual Machine Applications

92

A CD-ROM for the virtual machine is composed of a set of fileke3e files are specified in the
submit description file with a comma-separated list of filees.

vm_cdrom_files = a.txt,b.txt,c.txt

Condor must also be told to transfer these files from the sufmachine to the machine that will run
thevm universe job with

vm_should_transfer_cdrom_files = YES

Creating a checkpoint is straightforward for a virtual maeh as a checkpoint is a set of files
that represent a snapshot of both disk image and memory.Adekpoint is created and all files are
transferred back to th&(SPOOL) directory on the machine from which the job was submitted.
universe jobs can not use a checkpoint server. The submitnzomd to create checkpoints is

vm_checkpoint = true

Without this command, no checkpoints are created (by dgfaul

Virtual machine networking is enabled with the command
vm_networking = true

And, when networking is enabled, a definition wf_networking_type as bridge matches
the job only with a machine that is configured to use bridgenvnsgting. A definition of
vm_networking _type asnat matches the job only with a machine that is configured to us& NA
networking. When no definition afm_networking _type is given, Condor may match the job with
a machine that enables networking, and further, the chditeidge or NAT networking is deter-
mined by the machine’s configuration.

A current limitation restricts the use of networkinguwm universe jobs that do not create check-
points such that the job may migrate to another machine.

When both checkpoints and networking are enabled, the jabduspecifies
when_to_transfer_output = ON_EXIT_OR_EVICT
Modified disk images are transferred back to the machine fngricth the job was submitted
as thevm universe job completes. Job completion fovra universe job occurs when the virtual
machine is shut down, and Condor notices (as the result aiadiecheck on the state of the virtual
machine). Should the job not want any files transferred bancdffied or not), for example because
the job explicitly transferred its own files, the submit coammd to prevent the transfer is

vm_no_output_vm = true

Further commands specify information that is specific tovinial machine type targeted.

Condor Version 7.2.3 Manual

2.11. Virtual Machine Applications

VMware-Specific Submit Commands

Specific to VMware, the submit description file commamaware_dir gives the path and directory
(on the machine from which the job is submitted) where VMwspecific files and applications
reside. Examples of these VMware-specific application/a®K and VMX.

Condor must be told whether or not the contents oftinevare_dir directory must be transferred
to the machine where the job is to be executed. This requiriedmation is given with the submit
command/mware_should_transfer files. With a value ofTrue , Condor does transfer the contents
of the directory. With a value dfalse , Condor does not transfer the contents of the directory, and
instead presumes that access to this directory is availatagh a shared file system.

By default, Condor uses a snapshot disk for new and modifiesl fiThey may also be utilized
for checkpoints. The snapshot disk is initially quite smagitbwing only as new files are created or
files are modified. Whemmware_should transfer_filesis True , a job may specify that a snapshot
disk isnotto be used with the command

vmware_snapshot_disk = False

In this case, Condor will utilize original disk files in procing checkpoints. Note thabndorsubmit
issues an error message and does not submit the job if\otiare_should.transfer _files and
vmware_snapshotdisk areFalse .

Note that if snapshot disks are requested and file transfeotibeing used, themware_dir
setting given in the submit file should not contain any sykfsath components. This is to work
around the issue discussed in the FAQ entry in section 7.3.

Xen-Specific Submit Commands

The required disk image must be identified for a Xen virtuathae. Thisxen.disk command
specifies a list of comma-separated files. Each disk file isipé by 3 colon separated fields. The
first field is the path and file name of the disk file. The secord §ipecifies the device, and the third
field specifies permissions. Here is an example that idestifie files:

xen_disk = /myxen/diskfile.img:sdal:w,/myxen/swap.img :sda2:w

_Ifanyfiles need to be transferred from the submit machine¢ontachine where tham universe
job will execute, Condor must be explicitly told to do so witexen_transfer _files command:

xen_transfer_files = /myxen/diskfile.img,/myxen/swap. img
Any and all needed files on a system without a shared file sy@tetween the submit machine and
the machine where the job will execute) must be listed.

A Xen vm universe job requires specification of the guest kernel. Xdrekernel command
accomplishes this, utilizing one of the following definitm

Condor Version 7.2.3 Manual

2.11. Virtual Machine Applications

94

1. xenkernel = any tells Condor that the kernel is pre-staged, and its locasm@pecified by

configuration of theeondorvm-gahp

2. xenkernel = included implies that the kernel is to be found in disk image given bg th

definition of the single file specified ixen_disk.

3. xenkernel = path-to-kernel gives a full path and file name of the required kernel. If this
kernel must be transferred to machine on whichwheuniverse job will execute, it must also

be included in thexen_transfer_files command.

This form of thexen kernel command also requires further definition of tken root com-

mand.xenroot defines the device containing files neededdxyt .

Transfer of CD-ROM files under Xen requires the definitionhef issociated device in addition

to the specification of the files. The submit description fdatains

vm_cdrom_files = a.txt,b.txt,c.txt
vm_should_transfer_cdrom_files = YES
xen_cdrom_device = device-name

where the last line of this example defines the device.

2.11.2 Checkpoints

| This section has not yet been written

2.11.3 Disk Images
VMware on Windows and Linux

Following the platform-specific guest OS installation inostions
http://pubs.vmware.com/guestnotes, creates a VMwakeinliage.

Xen

‘ This section has not yet been Writtkn

2.11.4 Job Completion in the vm Universe

found at

Job completion for am universe job occurs when the virtual machine is shut dowd, @oandor
notices (as the result of a periodic check on the state ofitteat machine). This is different from

jobs executed under the environment of other universes.

Condor Version 7.2.3 Manual

http://pubs.vmware.com/guestnotes

2.12. Time Scheduling for Job Execution 95

Shut down of a virtual machine occurs from within the virtnahchine environment. Under a
Windows 2000, Windows XP, or Vista virtual machine, an adsimtor issues the command

shutdown -s -t 01
For older versions of Windows operating systems, directiorare given at

http://www.aumha.org/win4/a/shutcut.php.

Under a Linux virtual machine, th®ot user executes
/shin/poweroff

The commandsbin/halt will not completely shut down some Linux distributions, andtead
causes the job to hang.

Since the successful completion of ¥ universe job requires the successful shut down of the
virtual machine, it is good advice to try the shut down pragedoutside of Condor, beforevan
universe job is submitted.

2.12 Time Scheduling for Job Execution

Jobs may be scheduled to begin execution at a specified tithe fature with Condor’s job deferral
functionality. All specifications are in a job’s submit daption file. Job deferral functionality is
expanded to provide for the periodic execution of a job, knas the CronTab scheduling.

2.12.1 Job Deferral

Job deferral allows the specification of the exact date and &t which a job is to begin executing.
Condor attempts to match the job to an execution machindikesany other job, however, the job
will wait until the exact time to begin execution. A user cgesify Condor to allow some flexibility
to execute jobs that miss their execution time.

Deferred Execution Time

A job’s deferral time is the exact time that Condor shoul@mfpt to execute the job. The deferral
time attribute is defined as an expression that evaluatedtixaEpoch timestamp (the number of
seconds elapsed since 00:00:00 on January 1, 1970, Comdidaiversal Time). This is the time

that Condor will begin to execute the job.

After a job is matched and all of its files have been transféwezh execution machine, Condor
checks to see if the job’s ad contains a deferral time. If ksjaCondor calculates the number

Condor Version 7.2.3 Manual

http://www.aumha.org/win4/a/shutcut.php

2.12. Time Scheduling for Job Execution 96

of seconds between the execution machine’s current systeentd the job’s deferral time. If the
deferral time is in the future, the job waits to begin exemati While a job waits, its job ClassAd
attributeJobStatus indicates the job is running. As the deferral time arrivé® job begins to
execute. If a job misses its execution time, that is, if thieal time is in the past, the job is evicted
from the execution machine and put on hold in the queue.

The specification of a deferral time does not interfere wittn@or’s behavior. For example,
if a job is waiting to begin execution whencandorhold command is issued, the job is removed
from the execution machine and is put on hold. If a job is waitto begin execution when a
condorsuspendcommand is issued, the job continues to wait. When the ddféme arrives,
Condor begins execution for the job, but immediately sudpéin

Missed Execution Window

If a job arrives at its execution machine after the defeiraktpasses, the job is evicted from the
machine and put on hold in the job queue. This may occur, farmgte, because the transfer
of needed files took too long due to a slow network connectiardeferral window permits the
execution of a job that misses its deferral time by specgydrwindow of time within which the job
may begin.

The deferral window is the number of seconds after the dafféime, within which the job
may begin. When a job arrives too late, Condor calculategliffierence in seconds between the
execution machine’s current time and the job’s deferraktini this difference is less than or equal
to the deferral window, the job immediately begins exeautits this difference is greater than the
deferral window, the job is evicted from the execution maehand is put on hold in the job queue.

Preparation Time

When a job defines a deferral time far in the future and thendtched to an execution machine,
potential computation cycles are lost because the def@tetias claimed the machine, but is not
actually executing. Other jobs could execute during therirtl when the job waits for its deferral
time. To make use of the wasted time, a job defindsfarral_prep_time with an integer expression
that evaluates to a number of seconds. At this number of sisdoefore the deferral time, the job
may be matched with a machine.

Usage Examples

Here are examples of how the job deferral time, deferral wimcand the preparation time may be
used.

The job’s submit description file specifies that the job is¢gib execution on January 1st, 2006
at 12:00 pm:

deferral_time = 1136138400

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution

97

The Unixdateprogram may be used to calculate a Unix epoch time. The syrfitéve command
to do this appears as

% date --date "MM/DD/YYYY HH:MM:SS" +%s

MMs a 2-digit month numbeBDis a 2-digit day of the month number, a&'YYis a 4-digit
year. HHis the 2-digit hour of the dayyIMs the 2-digit minute of the hour, ar8iS are the 2-digit
seconds within the minute. The characte¥%stell the dateprogram to give the output as a Unix
epoch time.

The job always waits 60 seconds before beginning execution:

deferral_time = (CurrentTime + 60)

In this example, assume that the deferral time is 45 secantleipast as the job is available.

The job begins execution, because 75 seconds remain in theaevindow:

deferral_window = 120

In this example, a job is scheduled to execute far in the &)tom January 1st, 2010 at 12:00 pm.

Thedeferral _prep_time attribute delays the job from being matched until 60 secdmadisre the job
is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Limitations

There are some limitations to Condor’s job deferral feature

 Job deferral is not available for scheduler universe j@bscheduler universe job defining the
deferral _time produces a fatal error when submitted.

» The time that the job begins to execute is based on the égecutichine’s system clock, and
not the submission machine’s system clock. Be mindful ofrdmaifications when the two
clocks show dramatically different times.

e Ajob’s JobStatus attribute is always in the running state when job deferrakied. There
is currently no way to distinguish between a job that is exiegiand a job that is waiting for
its deferral time.

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 98

Submit Command Allowed Values

cron_minute 0-59
cron_hour 0-23
cron_day_of Month 1-31
cron_month 1-12

cron_day_of week 0-7 (Sundayis 0 or7)

Table 2.2: The list of submit commands and their value ranges
2.12.2 CronTab Scheduling

Condor’s CronTab scheduling functionality allows jobs todzheduled to executed periodically. A
job’s execution schedule is defined by commands within thersudescription file. The notation

is much like that used by the Unton daemon. The scheduling of jobs using Condor’s CronTab
feature calculates and utilizes tbeferralTime ClassAd attribute.

Also, unlike the Unixcron daemon, Condor never runs more than one instance of a jole at th
same time.

The capability for repetitive or periodic execution of thebjis enabled by specifying an
on_exit_ removecommand for the job, such that the job does not leave the qurtilelesired.

Semantics for CronTab Specification

A job’s execution schedule is defined by a set specificatiagtismthe submit description file. Con-
dor uses these to calculat®aferralTime for the job.

Table 2.2 lists the submit commands and acceptable valugsdse commands. At least one
of these must be defined in order for Condor to calculaizegerralTime for the job. Once
one CronTab value is defined, the default for all the othees adl the values in the allowed values
ranges.

The day of a job’s execution can be specified by both then_day_of_month and the
cron_day_of weekattributes. The day will be the logical or of both.

The semantics allow more than one value to be specified by tisex operator, ranges, lists,
and steps (strides) within ranges.

The asterisk operator Thex (asterisk) operator specifies that all of the allowed vahresused for
scheduling. For example,

cron_month = *

becomes any and all of the list of possible months: (1,53%4,8,9,10,11,12). Thus, a job
runs any month in the year.

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 99

Ranges A range creates a set of integers from all the allowed valeésden two integers separated

by a hyphen. The specified range is inclusive, and the integire left of the hyphen must
be less than the right hand integer. For example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 400 (0,1,2,3,4).

Lists A list is the union of the values or ranges separated by comMatiple entries of the same
value are ignored. For example,

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

cron_minute represents (15,20,25,30) aoebn_hour represents (0,1,2,3,9,10,11,12,15).

Steps Steps select specific numbers from a range, based on anahtefvstep is specified by

appending a range or the asterisk operator with a slash adear), followed by an integer
value. For example,

cron_minute = 10-30/5
cron_hour = */3

cron_minute specifies every five minutes within the specified range to asgmt

(10,15,20,25,30). cron_hour specifies every three hours of the day to represent
(0,3,6,9,12,15,18,21).

Preparation Time and Execution Window

Thecron_prep_time command is analogous to the deferral tirgederral _prep_time command. It
specifies the number of seconds before the deferral timeétthgbb is to be matched and sent to the

execution machine. This permits Condor to make necessapapations before the deferral time
occurs.

Consider the submit description file example that includes

cron_hour = =
cron_prep_time = 300

The job is scheduled to begin execution at the top of every. e job will be matched and sent
to an execution machine no more than five minutes before tkedederral time. For example, if
a job is submitted at 9:30am, then the next deferral timevgltalculated to be 10:00am. Condor
may attempt to match the job to a machine and send the job bisc@5b5am.

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 100

As the CronTab scheduling calculates and uses deferral jmhe may also make use of the
deferral window. The submit commardon_window is analogous to the submit commadbefer-
ral_window. Consider the submit description file example that includes

cron_hour =«
cron_window = 360

As the previous example, the job is scheduled to begin eiatat the top of every hour. Yet with
no preparation time, the job is likely to miss its deferrad¢i. The 6-minute window allows the job
to begin execution, as long as it arrives and can begin whirinutes of the deferral time, as seen
by the time kept on the execution machine.

Scheduling

When a job using the CronTab functionality is submitted tax@ar, use of at least one of the submit
description file commands beginning withon_ causes Condor to calculate and set a deferral time
for when the job should run. A deferral time is determineddubsn the current time rounded later
in time to the next minute. The deferral time is the jobsferralTime attribute. A new deferral
time is calculated when the job first enters the job queuenvite job is re-queued, or when the job
is released from the hold state. New deferral timesalbjobs in the job queue using the CronTab
functionality are recalculated whercandorreconfigor acondorrestartcommand that affects the
job queue is issued.

Ajob’s deferral time is not always the same time that a jolh reiteive a match and be sent to the
execution machine. This is because Condor operates onlilgpigue at times that are independent
of job events, such as when job execution completes. There@ondor may operate on the job
gueue just after a job’s deferral time states that it is tolbegecution. Condor attempts to start a
job when the following pseudo-code boolean expressioruates toTrue :

(CurrentTime + SCHEDD_INTERVAL) >= (DeferralTime - CronPr epTime)

If the CurrentTime plus the number of seconds until the next time Condor chdukgab
gueue is greater than or equal to the time that the job shasilibmitted to the execution machine,
then the job is to be matched and sent now.

Jobs using the CronTab functionality are not automatiagaigueued by Condor after their exe-
cution is complete. The submit description file for a job mepstcify an appropriaten_exit_remove
command to ensure that a job remains in the queue. This jobtaias its originalClusterld
andProcld

Usage Examples

Here are some examples of the submit commands necessahetbue jobs to run at multifarious
times. Please note that it is not necessary to explicitlynéefach attribute; the default valueris

Condor Version 7.2.3 Manual

2.12. Time Scheduling for Job Execution 101

Run 23 minutes after every two hours, every day of the week:

on_exit_remove = false
cron_minute = 23
cron_hour = 0-23/2
cron_day of month = *
cron_month = =
cron_day_of week = *

Run at 10:30pm on each of May 10th to May 20th, as well as evwamaming Monday within
the month of May:

on_exit_remove = false
cron_minute = 30
cron_hour = 20
cron_day_of month = 10-20
cron_month = 5
cron_day of week = 2

Run on every 10 minutes and every 6 minutes before noon oradad@th with a 2-minute
preparation time:

on_exit_remove = false
cron_minute = */10, */6
cron_hour = 0-11
cron_day_of month = 18
cron_month = 1
cron_day_of week = *
cron_prep_time = 120

Limitations

The use of the CronTab functionality has all of the same &tions of deferral times, because the
mechanism is based upon deferral times.

« Itisimpossible to schedule vanilla and standard univiaise at intervals that are smaller than
the interval at which Condor evaluates jobs. This intersalétermined by the configuration
variableSCHEDONTERVAL . As a vanilla or standard universe job completes execution a
is placed back into the job queue, it may not be placed in tleesighte in time. This problem
does not afflict local universe jobs.

« Condor cannot guarantee that a job will be matched in omlendke its scheduled deferral
time. A job must be matched with an execution machine justrgsather Condor job; if
Condor is unable to find a match, then the job will miss its cesfior executing and must wait
for the next execution time specified by the CronTab schedule

Condor Version 7.2.3 Manual

2.13. Stork Applications 102

2.13 Stork Applications

Today'’s scientific applications have huge data requiremenitich continue to increase drastically
every year. These data are generally accessed by many uzerslt across the the globe. This
requires moving huge amounts of data around wide area nk$viorcomplete the computation
cycle, which brings with it the problem of efficient and rélia data placement.

Stork is a scheduler for data placement. With Staolkta placement jobkave been elevated to
the same level as Condor’'s computational jobs; data plactnage queued, managed, queried and
autonomously restarted upon error. Stork understandseimaistics and protocols of data place-
ment.

The underlying data placement jobs are performed by Stwhulestypically installed in the
Condorlibexec directory. The module name is encoded from the data placetyyes and func-
tions. For example, thetork.transfer.file-file module transfers data from tlfite:/

(local file system) to théile:/ protocol. Thestork.transfer.file-file module is the
only module bundled with Condor/Stork. Additionally, cdhuted modules may be downloaded
for these data transfer protocols:

ftp:// FTP File Transfer Protocol

http:// HTTP Hypertext Transfer Protocol

gsiftp:// Globus Grid FTP

nest:// Condor NeST network storage appliance (see htipuics.wisc.edu/condor/nest/)
srb:// SDSC Storage Resource Broker (SRB) (see http://\sdag.edu/srb/)

srm:// Storage Resource Manager (SRM) (see http://sdigolatsrm-wg/)

csrm:// Castor Storage Resource Manager (Castor SRM) {ge#dastor.web.cern.ch/castor/)
unitree:// NCSA UniTree (see http://www.ncsa.uiuc.eduvilons/CC/HPDM/unitree/)

The Stork module API is simple and extensible, enabling sisercreate and use their own
modules.

Stork includes high level features for managing data tenssfBy configuration, the number of
active jobs running from a Stork server may be limited. Stadtudes built in fault tolerance, with
capabilities for retrying failed jobs, together with theegsffication of alternate protocols. Stork users
also have access to a higher level job manager, Condor DAG#éation 2.10), which can manage
both Stork data placement jobs and traditional Condor joliseasame time.

2.13.1 Submitting Stork Jobs

As with Condor jobs, Stork jobs are specified with a submitdesion file. It is important to note
the syntax of the submit description file for a Stork job ideliént than that used by Condor jobs.
Specifically, Stork submit description files are written e tClassAd language. See the ClassAd
Language Reference Manual for complete details. Please that while most of Condor uses
ClassAds, Stork utilizes the most recent version of thiglege, which has evolved over time.
Stork defines keywords. When present in the job submit filgpywkeds define the function of the

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/stork/download.html
http://www.cs.wisc.edu/condor/nest/
http://www.sdsc.edu/srb/
http://sdm.lbl.gov/srm-wg/
http://castor.web.cern.ch/castor/
http://www.ncsa.uiuc.edu/Divisions/CC/HPDM/unitree/
http://www.cs.wisc.edu/condor/classad

2.13. Stork Applications 103

job.
Here is sample Stork job submit description file, showing $§@mtax and keywords. A job
specifies a 1-to-1 mapping of a data source URL to destinati®h.

/I This is a comment line.

[
dap_type = transfer;
src_url = “file:/etc/termcap”;
dest_url = "file:/tmp/stork/file-termcap";

This example shows the ClassAd pairs that form the heart abek $ob specification. The
minimum keywords required to specify a Stork job are:

dap_type Currently, the data type is constrainedtansfer.
src_url Specify the data protocol and URL of the source.

desturl Specify the data protocol and URL of the destination.
Additionally, the following keywords may be used in a Stodbmit description file:

x509proxy Specifies the location of the X.509 proxy file for protocolatthse GSI authentication,
such agysiftp://. The special value dflefault” (quotes are required) invokes GSl libraries to
search for the user credential in the standard locations.

alt_protocols A comma separated list of alternative protocol pairs (farrse and destination pro-
tocols), used in a round robin fashion when transfers faée Section 2.13.3 for a further
discussion and examples.

Stork places no restriction on the submit file name or extensand will accept any valid file
name for a Stork submit description file.

Submit data placement jobs to Stork using #terk submittool. For example, after creating
the submit description filsample.stork with an editor, submit the data transfer job with the
command:

stork_submit sample.stork

Stork then returns the associated job id, which is used bgr@&tork job control tools.

Only the first ClassAd (a record expression within bracket#hin a Stork submit description
file becomes a data placement job upon submission. OthesAtaswithin the file are ignored.

Condor Version 7.2.3 Manual

2.13. Stork Applications 104

2.13.2 Managing Stork Jobs

Stork provides a set of command-line user tools for job manant, including submitting, query-
ing, and removing data placement jobs.

Querying Stork Jobs

Usestork statusto check the status of any active or completed Stork $tdwk statustakes a single
argument: the job id. For example, to check the status of thekk $b with job id 3:

stork_status 3

Usestork g to query all active Stork jobsstork q does not report on completed Stork jobs.

For example, to check the status all active Stork jobs:

stork_q

Removing Stork Jobs

Active jobs may be removed from the job queue with gterkrm tool. storkrm takes a single
argument: the job id of the job to remove. All jobs may be repthvprovided they have not
completed.

For example, to remove the queued job with job id 4:

stork_rm 4

2.13.3 Fault Tolerance

In an ideal world, all data transfers succeed on the firstrgite However, data transfers do fail for
various reasons. Stork is designed with data transfer faldtance. Based on configuration, Stork
retries failed data transfer jobs using specified protocols

If a transfer fails, Stork attempts the transfer again, Iuhg number of attempts reaches the
limit, as defined by the configuration varial8d8 ORKMAXRETRY (section 3.3.33).

For each attempt at transfer, the transfer protocols to lee a$ both source and destination
are defined. These transfer protocols may vary, when defigeankalt_protocols entry in the
submit description file. The location of the data at the sewand destination is unchanged by
the alt_protocols entry. alt_protocols defines an ordered list of alternative translation protsdol
be used. Each entry in the list is a pair. The first of the paifinds the protocol to be used at the

Condor Version 7.2.3 Manual

2.13. Stork Applications 105

source of the transfer. The second of the pair defines thequobto be used at the destination of the
transfer.

The syntax is a comma-separated list of pairs. A dash clerseparated the pairs. The protocol
name is given in all lower case letters, without colons osisleharacters. Stork uses these strings to
identify the protocol translation and transfer module taibed.

The initial translation protocol (specified in tisec_url anddesturl entries) together with the
list defined by amlt_protocolsentry form the ordered list of protocols to be utilized in amal robin
fashion.

For example, iISTORKMAXRETRYhas the value 4, and the Stork job submit description file
contains

dap_type = transfer;
src_url = "gsiftp://serverA/dirAffileA";
dest_url = "http://serverB/dirB/fileB";

then Stork will attempt up to 4 transfers, with each usingsame translation protocajsiftp://
is used at the source, atp:// is used at the destination. The Stork job fails if it has natrbe
completed after 4 attempts.

A second example shows the transfer protocols used for etteimgted transfer, when
alt_protocolsis used. For this example, assume tRADRKMAXRETRYhas the value 7.

[

dap_type = transfer;

src_url = "gsiftp://no-such-server/dir/file";
dest_url = "file:/dir/file";

alt_protocols = “ftp-file, http-file";

Stork attempts the following transfers, in the given ordespping when the transfer succeeds.

1. fromgsiftp://no-such-server/dir/file to file:/dir/file
2. fromftp://no-such-server/dir/file to file:/dir/file

3. fromhttp://no-such-server/dir/file to file:/dir/file

4. fromgsiftp://no-such-server/dir/file to file:/dir/file
5. fromftp://no-such-server/dir/file to file:/dir/file

6. fromhttp://no-such-server/dir/file to file:/dir/file

7. fromgsiftp://no-such-server/dir/file to file:/dir/file

Condor Version 7.2.3 Manual

2.13. Stork Applications

2.13.4 Running Stork Jobs Under DAGMan

Condor DAGMan (section 2.10) provides high level manageroéhoth traditional CPU jobs and
Stork data placement jobs. Using DAGMan, users can speecifg glacement using thBATA
keyword. DAGMan can mix Stork data transfer jobs and Condbsj This capability lends itself
well to grid computing, as data is often staged in (transfdribefore processing the data. After
processing, output is often staged out (transferred).

Here is a sample DAGMan input file that stages in input fileegiSitork transfers, processes the
data as a Condor job, and stages out the result using a Saodfer.

Transfer input files using Stork
DATA INPUTL1 transfer_input_datal.stork
DATA INPUTL1 transfer_input_data2.stork

DATA INPUT2 transfer_data

#

Process the data using Condor

JOB PROCESS process.condor

#

Transfer output file using Stork
DATA RESULT transfer_result_data.stork
#

Specify job dependencies

PARENT INPUT1 INPUT2 CHILD PROCESS
PARENT PROCESS CHILD RESULT

2.13.5 The Lease Manager

The Lease Manager provides a mechanism for managing leasesaurces, as described by Con-
dor’s ClassAd mechanism. The resources and leases arstpatsiso that state may be restored
after a shutdown or crash.

Resources are advertised to the Lease Manager by publish@andor ClassAd with aon-
dor_collector. These leases describe the number of resources availablamber of leases), and
they can also specify a requirements expression using GerdiassAd mechanism. The resource
may also specify the maximum duration of the leases it widival

Similarly, leases are requested by through the Condor Bthesechanism; a Condor daemon
client API provides an interface through which to requestesk. This request ClassAd may specify
the number of and the duration of the resource leases thatarg requested. It may also specify a
requirements expression.

With both the resource and request able to specify requinthexpressions, the Lease Manager
performs 2-way match making, providing a great deal of fliityb

Condor Version 7.2.3 Manual

2.14. Job Monitor 107

2.14 Job Monitor

The Condor Job Monitor is a Java application designed tovaligers to view user log files.

To view a user log file, select it using the open file command@File menu. After the file
is parsed, it will be visually represented. Each horizotited represents an individual job. The
x-axis is time. Whether a job is running at a particular timegpresented by its color at that time —
white for running, black for idle. For example, a job whichpaars predominantly white has made
efficient progress, whereas a job which appears predontynalaick has received an inordinately
small proportion of computational time.

2.14.1 Transition States

A transition state is the state of a job at any time. It is cbdétransition” because it is defined by the
two events which bookmark it. There are two basic transisitattes: running and idle. An idle job

typically is a job which has just been submitted into the Gorgbol and is waiting to be matched

with an appropriate machine or a job which has vacated fronaehine and has been returned to
the pool. A running job, by contrast, is a job which is makimg\ge progress.

Advanced users may want a visual distinction between twesygd running transitions: "good-
put” or "badput”. Goodputis the transition state precedingventual job completion or checkpoint.
Badput is the transition state preceding a non-checkpdatition event. Note that "badput” is po-
tentially a misleading nomenclature; a job which is not &peinted by the Condor program may
checkpoint itself or make progress in some other way. To Mie@se two transition as distinct
transitions, select the appropriate option from the "Vien&nu.

2.14.2 Events

There are two basic kinds of events: checkpoint events aod events. Plus advanced users can
ask to see more events.

2.14.3 Selecting Jobs

To view any arbitrary selection of jobs in a job file, use thk gelector tool. Jobs appear visually
by order of appearance within the actual text log file. Fomepk, the log file might contain jobs
775.1, 775.2, 775.3, 775.4, and 775.5, which appear in tfieroA user who wishes to see only
jobs 775.2 and 775.5 can select only these two jobs in thegtdzt®r tool and click the "Ok” or
"Apply” button. The job selector supports double clickirguble click on any single job to see it
drawn in isolation.

Condor Version 7.2.3 Manual

2.15. Special Environment Considerations 108

2.14.4 Zooming

To view a small area of the log file, zoom in on the area which ywouwld like to see in greater
detail. You can zoom in, out and do a full zoom. A full zoom rds the log file in its entirety. For
example, if you have zoomed in very close and would like tolgthe way back out, you could do
so with a succession of zoom outs or with one full zoom.

There is a difference between using the menu driven zoomidglee mouse driven zooming.
The menu driven zooming will recenter itself around the entcenter, whereas mouse driven zoom-
ing will recenter itself (as much as possible) around the seatlick. To help you re-find the clicked
area, a box will flash after the zoom. This is called the "zoamddr” and it can be turned off in the
zoom menu if you prefer.

2.14.5 Keyboard and Mouse Shortcuts
1. The Keyboard shortcuts:

» Arrows - an approximate ten percent scrollbar movement

» PageUp and PageDown - an approximate one hundred perceliivacmovement
 Control + Left or Right - approximate one hundred percendiicar movement

» End and Home - scrollbar movement to the vertical extreme

» Others - as seen beside menu items

2. The mouse shortcuts:

e Control + Left click - zoom in
 Control + Right click - zoom out
» Shift + left click - re-center

2.15 Special Environment Considerations

2.151 AFS

The Condor daemons do not run authenticated to AFS; they tpassess AFS tokens. Therefore,
no child process of Condor will be AFS authenticated. Thelicagion of this is that you must set

file permissions so that your job can access any necessaydialing on an AFS volume without

relying on having your AFS permissions.

If a job you submit to Condor needs to access files residingf$ Ayou have the following
choices:

Condor Version 7.2.3 Manual

2.15. Special Environment Considerations 109

1. Copy the needed files from AFS to either a local hard diskrevi@ondor can access them
using remote system calls (if this is a standard universg ixopy them to an NFS volume.

2. If you must keep the files on AFS, then set a host ACL (usiegiRSfs setackommand) on
the subdirectory to serve as the current working directontlfie job. If a standard universe
job, then the host ACL needs to give read/write permissioany process on the submit
machine. If vanilla universe job, then you need to set the AGth that any host in the pool
can access the files without being authenticated. If you d&mmwy how to use an AFS host
ACL, ask the person at your site responsible for the AFS cordigon.

The Condor Team hopes to improve upon how Condor deals with &khentication in a sub-
sequent release.

Please see sectipn 3.12.1 on 390 in the Administratamsi8d for further discussion of this
problem.

2.15.2 NFS Automounter

If your current working directory when you rumondor submitis accessed via an NFS automounter,
Condor may have problems if the automounter later decidestoount the volume before your
job has completed. This is becawsmdorsubmitlikely has stored the dynamic mount point as the
job’s initial current working directory, and this mount pbicould become automatically unmounted
by the automounter.

There is a simple work around: When submitting your job, ube initialdir com-
mand in your submit description file to point to the stable emsc point. For exam-
ple, suppose the NFS automounter is configured to mount amelat mount point
/a/lmyserver.company.com/voll/johndoe whenever the directohome/johndoe is
accessed. Adding the following line to the submit desaripfile solves the problem.

initialdir = /home/johndoe

2.15.3 Condor Daemons That Do Not Run as root

Condor is normally installed such that the Condor daemong maot permission. This allows
Condor to run the condeshadow process and your job with your UID and file accesssigiMhen
Condor is started as root, your Condor jobs can access wdrdtias you can.

However, it is possible that whomever installed Condor didhrave root access, or decided not
to run the daemons as root. That is unfortunate, since Casdisigned to be run as the Unix user
root. To see if Condor is running as root on a specific mact@ntgr the command

condor_status -master -I <machine-name>

Condor Version 7.2.3 Manual

2.15. Special Environment Considerations 110

wheremachine-name is the name of the specified machine. This command displagsia ¢
dor_master ClassAd; if the attributRealUid equals zero, then the Condor daemons are indeed
running with root access. If thRealUid attribute is not zero, then the Condor daemons do not
have root access.

NOTE: The Unix progranpsis not an effective method of determining if Condor is running
with root access. When usingg it may often appear that the daemons are running as the condo
user instead of root. However, note that ff&2¢ command shows the curreaffectiveowner of the
process, not theeal owner. (See th@etuid2) andgeteuid2) Unix man pages for details.) In
Unix, a process running under the real UID of root may switsteffective UID. (See thseteuid2)
man page.) For security reasons, the daemons only set #hatieff UID to root when absolutely
necessary (to perform a privileged operation).

If they are not running with root access, you need to makeadinfjles and/or directories that
your job will touch readable and/or writable by the UID (usBrspecified by the RealUid attribute.
Often this may mean using the Unix commasttimod 777 on the directory where you submit
your Condor job.

2.15.4 Job Leases

A job lease specifies how long a given job will attempt to runaoremote resource, even if that
resource loses contact with the submitting machine. Sityjlais the length of time the submitting
machine will spend trying to reconnect to the (now discomedcexecution host, before the submit-
ting machine gives up and tries to claim another resourcaridhe job. The goal aims at run only
once semantics, so that thendorschedddaemon does not allow the same job to run on multiple
sites simultaneously.

If the submitting machine is alive, it periodically renewtjob lease, and all is well. If the
submitting machine is dead, or the network goes down, thdgabe will no longer be renewed.
Eventually the lease expires. While the lease has not ekpine execute host continues to try to
run the job, in the hope that the submit machine will come kadie and reconnect. If the job
completes and the lease has not expired, yet the submittchime is still dead, theondorstarter
daemon will wait for acondorshadowdaemon to reconnect, before sending final information on
the job, and its output files. Should the lease expire cthredor startd daemon Kills off thecon-
dor_starterdaemon and user job.

A default value equal to 20 minutes exists for a job's ClassAaltribute
job _lease _duration , or this attribute may be set in the submit description filekézp a
job running in the case that the submit side no longer renee/tetase. There is a trade off in setting
the value ofjob _lease _duration . Too small a value, and the job might get killed before the
submitting machine has a chance to recover. Forward pregreshe job will be lost. Too large a
value, and an execute resource will be tied up waiting fofjdhdease to expire. The value should
be chosen based on how long is the user willing to tie up thewggamachines, how quickly submit
machines come back up, and how much work would be lost if thedexpires, the job is killed,
and the job must start over from its beginning.

Condor Version 7.2.3 Manual

2.16. Potential Problems 111

As a special case, a submit description file setting of
job_lease_duration = 0

as well as utilizing submission other thaondorsubmitthat do not setlobLeaseDuration

(such as using the web services interface) results in thesponding job ClassAd attribute to be
explicitly undefined. This has the further effect of changtine duration of a claim lease, the amount
of time that the execution machine waits before droppingarctue to missing keep alive messages.

2.16 Potential Problems

2.16.1 Renaming of argv[0]

When Condor starts up your job, it renames argv[0] (whichallgwicontains the name of the pro-
gram) to condaexec. This is convenient when examining a machine’s presessth the Unix
commands the process is easily identified as a Condor job.

Unfortunately, some programs read argv[0] expecting theim program name and get confused
if they find something unexpected like condrec.

Condor Version 7.2.3 Manual

CHAPTER

THREE

Administrators’ Manual

3.1 Introduction

This is the Condor Administrator's Manual for Unix. Its page is to aid in the installation and
administration of a Condor pool. For help on using Condag,tbe Condor User's Manual.

A Condor pool is comprised of a single machine which servat@sentral managerand an
arbitrary number of other machines that have joined the.pBohceptually, the pool is a collection
of resources (machines) and resource requests (jobs). oléa@fr Condor is to match waiting re-
guests with available resources. Every part of Condor spadedic updates to the central manager,
the centralized repository of information about the stdtthe pool. Periodically, the central man-
ager assesses the current state of the pool and tries to pexticting requests with the appropriate
resources.

Each resource has an owner, the user who works at the madtiisgperson has absolute power
over their own resource and Condor goes out of its way to niérthe impact on this owner caused
by Condor. It is up to the resource owner to define a policy foemCondor requests will serviced
and when they will be denied.

Each resource request has an owner as well: the user whotsedbthie job. These people want
Condor to provide as many CPU cycles as possible for theikw@ften the interests of the resource
owners are in conflict with the interests of the resource estgrs.

The job of the Condor administrator is to configure the Corpimnl to find the happy medium
that keeps both resource owners and users of resourcegeshtiShe purpose of this manual is to
help you understand the mechanisms that Condor providestaieyou to find this happy medium
for your particular set of users and resource owners.

112

3.1. Introduction 113

3.1.1 The Different Roles a Machine Can Play

Every machine in a Condor pool can serve a variety of rolesstMmachines serve more than one
role simultaneously. Certain roles can only be performedibgle machines in your pool. The
following list describes what these roles are and what nessuare required on the machine that is
providing that service:

Central Manager There can be only one central manager for your pool. The madkithe col-
lector of information, and the negotiator between resosiered resource requests. These two
halves of the central manager’s responsibility are peréatioy separate daemons, so it would
be possible to have different machines providing those ®vaises. However, normally they
both live on the same machine. This machine plays a very itapppart in the Condor pool
and should be reliable. If this machine crashes, no furtreichmaking can be performed
within the Condor system (although all current matches ienmeeffect until they are broken
by either party involved in the match). Therefore, choogecntral manager a machine that
is likely to be up and running all the time, or at least one thifitoe rebooted quickly if some-
thing goes wrong. The central manager will ideally have adgoetwork connection to all the
machines in your pool, since they all send updates over theonle to the central manager.
All queries go to the central manager.

Execute Any machine in your pool (including your Central Managem te& configured for whether
or not it should execute Condor jobs. Obviously, some of yoachines will have to serve
this function or your pool won't be very useful. Being an execmachine doesn't require
many resources at all. About the only resource that mighten& disk space, since if the
remote job dumps core, that file is first dumped to the loc& dishe execute machine before
being sent back to the submit machine for the owner of theljtwever, if there isn't much
disk space, Condor will simply limit the size of the core fifat a remote job will drop. In
general the more resources a machine has (swap space, r@alhym€PU speed, etc.) the
larger the resource requests it can serve. However, if torereequests that don’t require many
resources, any machine in your pool could serve them.

Submit Any machine in your pool (including your Central Managen ¢e configured for whether
or not it should allow Condor jobs to be submitted. The reseuequirements for a submit
machine are actually much greater than the resource reqeirts for an execute machine.
First of all, every job that you submit that is currently rimgon a remote machine generates
another process on your submit machine. So, if you have fgtde running, you will need a
fair amount of swap space and/or real memory. In additiothalicheckpoint files from your
jobs are stored on the local disk of the machine you subnit fréherefore, if your jobs have
a large memory image and you submit a lot of them, you will nedat of disk space to hold
these files. This disk space requirement can be somewheibddld with a checkpoint server
(described below), however the binaries of the jobs you suara still stored on the submit
machine.

Checkpoint Server One machine in your pool can be configured as a checkpoineisehhis is
optional, and is not part of the standard Condor binary ithistion. The checkpoint server is
a centralized machine that stores all the checkpoint fileghi®jobs submitted in your pool.

Condor Version 7.2.3 Manual

3.1. Introduction

This machine should have lots of disk space and a good netwaonkection to the rest of your
pool, as the traffic can be quite heavy.

Now that you know the various roles a machine can play in a @Gopdol, we will describe the
actual daemons within Condor that implement these funstion

3.1.2 The Condor Daemons

The following list describes all the daemons and prograras¢buld be started under Condor and
what they do:

condor.master This daemon is responsible for keeping all the rest of thed@odaemons running
on each machine in your pool. It spawns the other daemonspamadically checks to see
if there are new binaries installed for any of them. If there,ahe master will restart the
affected daemons. In addition, if any daemon crashes, ttetemwill send e-mail to the
Condor Administrator of your pool and restart the daemore ddndormasteralso supports
various administrative commands that let you start, stapaonfigure daemons remotely. The
condormasterwill run on every machine in your Condor pool, regardless baifunctions
each machine are performing.

condor.startd This daemon represents a given resource (namely, a macpable of running jobs)
to the Condor pool. It advertises certain attributes abloatt tesource that are used to match
it with pending resource requests. The startd will run on mr@chine in your pool that you
wish to be able to execute jobs. It is responsible for enfaythe policy that resource owners
configure which determines under what conditions remots jolfl be started, suspended,
resumed, vacated, or killed. When the startd is ready towdges Condor job, it spawns the
condorstarter, described below.

condor.starter This program is the entity that actually spawns the remoteddo job on a given
machine. It sets up the execution environment and monitergob once it is running. When
a job completes, the starter notices this, sends back atusstdormation to the submitting
machine, and exits.

condor.schedd This daemon represents resource requests to the Condar Angimachine that
you wish to allow users to submit jobs from needs to hagerdorscheddrunning. When
users submit jobs, they go to the schedd, where they aredstothe job queue which the
schedd manages. Various tools to view and manipulate thgiebe (such asondorsubmit
condotg, or condorrm) all must connect to the schedd to do their work. If the schisdd
down on a given machine, none of these commands will work.

The schedd advertises the number of waiting jobs in its jobuguand is responsible for
claiming available resources to serve those requests. ®ackedd has been matched with a
given resource, the schedd spawrt®ador shadow(described below) to serve that particular
request.

Condor Version 7.2.3 Manual

3.1. Introduction 115

condor.shadow This program runs on the machine where a given request wasitad and acts

as the resource manager for the request. Jobs that are fiok€bndor’s standard universe,
which perform remote system calls, do so viatie@dorshadow Any system call performed
on the remote execute machine is sent over the network, lmattletondorshadowwhich
actually performs the system call (such as file 1/0) on therstimachine, and the result is
sent back over the network to the remote job. In additionstteglow is responsible for making
decisions about the request (such as where checkpointtitesdsbe stored, how certain files
should be accessed, etc).

condor.collector This daemon is responsible for collecting all the informaatabout the status of
a Condor pool. All other daemons periodically send Classpdates to the collector. These
ClassAds contain all the information about the state of tieenabns, the resources they repre-
sent or resource requests in the pool (such as jobs that lkeavesnibmitted to a given schedd).
Thecondorstatuscommand can be used to query the collector for specific infion about
various parts of Condor. In addition, the Condor daemonm#iedves query the collector

for important information, such as what address to use fodisgy commands to a remote
machine.

condor_negotiator This daemon is responsible for all the match-making within€ondor system.
Periodically, the negotiator beginsn@gotiation cyclewhere it queries the collector for the
current state of all the resources in the pool. It contaath sahedd that has waiting resource
requests in priority order, and tries to match availableoueses with those requests. The
negotiator is responsible for enforcing user prioritiegha system, where the more resources
a given user has claimed, the less priority they have to aeeuore resources. If a user with
a better priority has jobs that are waiting to run, and resesiiare claimed by a user with a
worse priority, the negotiator can preempt that resourckraatch it with the user with better
priority.
NOTE: A higher numerical value of the user priority in Condor tséate into worse priority
for that user. The best priority you can have is 0.5, the lavnesnerical value, and your
priority gets worse as this number grows.

condor.kbdd This daemon is only needed on Digital Unix. On that platfarthe condorstartd
cannot determine console (keyboard or mouse) activityctlirdrom the system. Theon-
dor_kbddconnects to the X Server and periodically checks to seeiiéthas been any activity.
If there has, the kbdd sends a command to the startd. Thatheagtartd knows the machine
owner is using the machine again and can perform whateviemacare necessary, given the
policy it has been configured to enforce.

condor.ckpt server This is the checkpoint server. It services requests to stoceretrieve check-
pointfiles. If your pool is configured to use a checkpoint sebut that machine (or the server
itself is down) Condor will revert to sending the checkpdilgs for a given job back to the
submit machine.

condor.quill This daemon builds and manages a database that represepts af the Condor job
gueue. Theondorg andcondorhistorytools can then query the database.

condor.dbmsd This daemon assists tisendorquill daemon.

Condor Version 7.2.3 Manual

3.2. Installation 116

condor.gridmanager This daemon handles management and execution gfriall universe jobs.
Thecondorscheddnvokes thecondorgridmanagemwhen there argrid universe jobs in the
gueue, and theondorgridmanagerexits when there are no moggid universe jobs in the
queue.

condorcredd This daemon runs on Windows platforms to manage passwordg&adn a secure
manner.

condorhad This daemon implements the high availability of a pool's tcehmanager through
monitoring the communication of necessary daemons. If tireeat, functioning, central
manager machine stops working, then this daemon ensurearibther machine takes its
place, and becomes the central manager of the pool.

condor.replication This daemon assists tkendorhaddaemon by keeping an updated copy of the
pool’s state. This state provides a better transition frava machine to the next, in the event
that the central manager machine stops working.

condorprocd This daemon controls and monitors process families withamdbr. Its use is op-
tional in general but it must be used if privilege separafsge Section 3.6.12) or group-ID
based tracking (see Section 3.12.10) is enabled.

condorjob_router This daemon transformanilla universe jobs int@rid universe jobs, such that
the transformed jobs are capable of running elsewhere,@eppate.

condorleasemanager This daemon manages leases in a persistent manner. Leaseprasented
by ClassAds.

stork_server This daemon handles requests for Stork data placement jobs.

See figure 3.1 for a graphical representation of the poolitacture.

3.2 Installation

This section contains the instructions for installing Condt your Unix site.

The installation will have a default configuration that cadostomized. Sections of the manual
that follow this one explain customization.

Read this entire section before starting installation.

Please read the copyright and disclaimer information itige®@? on page?? of the manual, or
in the file LICENSE.TXT, before proceeding. Installation and use of Condor is askeagment
that you have read and agree to the terms.

Condor Version 7.2.3 Manual

3.2. Installation 117

Central Manager

Condor_Collector
Condor_Negotiato

0

Submit Machine

[Controlling Daemons}

[Controlling Daemons

Control via Unix Signals to alert
J job when to checkpoint.
[Condor_Shadow Proce}s§ Y
User's Job
/ User's Code
@ All System Calls hN N
N— Performed As ;
Checkpoint File is Remote Procedurd Condor_Syscall_Library|

Saved to Disk Calls back to the
Submit Machine.

Figure 3.1: Pool Architecture

3.2.1 Obtaining Condor

The first step to installing Condor is to download it from theorn@dor web site,
http://www.cs.wisc.edu/condor. The downloads are abglafrom the downloads page, at
http://www.cs.wisc.edu/condor/downloads/.

The platform-dependent Condor files are currently avadldldm two sites. The main site is
at the University of Wisconsin—Madison, Madison, Wiscondi/SA. A second site is the Istituto
Nazionale di Fisica Nucleare Sezione di Bologna, Bologtady.l Please choose the site nearest to
you.

Make note of the location of where you download the binarg.int

The Condor binary distribution is packaged in the followtfijles and 2 directories:

DOC directions on where to find Condor documentation
I NSTALL these installation directions

LI CENSE. TXT the licensing agreement. By installing Condor, you agrethéocontents of this
file

READNME general information

condor_. nst al | the Perl script used to install and configure Condor

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor/downloads/

3.2. Installation

118

exanpl es directory containing C, Fortran and C++ example progranrsitowith Condor
bi n directory which contains the distribution Condor user peogs.

sbi n directory which contains the distribution Condor systemgsams.

et ¢ directory which contains the distribution Condor configioma data.

I i b directory which contains the distribution Condor libraie

I i bexec directory which contains the distribution Condor progrativet are only used internally
by Condor.

man directory which contains the distribution Condor manuajgsm
sql directory which contains the distribution Condor files us®dSQL operations.

sr ¢ directory which contains the distribution Condor sourcdetor CHIRP and DRMAA.

Before you install, please consider joining the condoridianailing list. Traffic on this list is
kept to an absolute minimum. It is only used to announce nésases of Condor. To subscribe,
send a message to majordomo@cs.wisc.edu with the body:

subscribe condor-world

3.2.2 Preparation

Before installation, make a few important decisions abbathasic layout of your pool. The deci-
sions answer the questions:

What machine will be the central manager?

What machines should be allowed to submit jobs?

Will Condor run as root or not?

Who will be administering Condor on the machines in youslpo

Will you have a Unix user named condor and will its home ctivey be shared?

Where should the machine-specific directories for Comgaar

N oo o &~ 0w b

Where should the parts of the Condor system be installed?

» Configuration files
» Release directory

— user binaries
— system binaries

Condor Version 7.2.3 Manual

mailto:majordomo@cs.wisc.edu

3.2. Installation 119

— lib directory
— etc directory

» Documentation
8. Am | using AFS?

9. Do | have enough disk space for Condor?

1. What machine will be the central manager?One machine in your pool must be the central
manager. Install Condor on this machine first. This is thetredimed information reposi-
tory for the Condor pool, and it is also the machine that doachimaking between available
machines and submitted jobs. If the central manager macaiashes, any currently active
matches in the system will keep running, but no new matcht$@imade. Moreover, most
Condor tools will stop working. Because of the importancehi$ machine for the proper
functioning of Condor, install the central manager on a nvaethat is likely to stay up all the
time, or on one that will be rebooted quickly if it does crash.

Also consider network traffic and your network layout whemasing your central manager.
All the daemons send updates (by default, every 5 minutegkjganachine. Memory require-
ments for the central manager differ by the number of machinghe pool. A pool with
up to about 100 machines will require approximately 25 Mbydé memory for the central
manager’s tasks. A pool with about 1000 machines will rezjapproximately 100 Mbytes of
memory for the central manager’s tasks.

A faster CPU will improve the time to do matchmaking.

2. Which machines should be allowed to submit jobsZondor can restrict the machines allowed
to submit jobs. Alternatively, it can allow any machine thetwork allows to connect to a
submit machine to submit jobs. If the Condor pool is behindewfll, and all machines
inside the firewall are trusted, tHdOSTALLOWVRITE configuration entry can be set to *.
Otherwise, it should be set to reflect the set of machinesiftedrio submit jobs to this pool.
Condor tries to be secure by default, so out of the box, thdiguration file ships with an
invalid definition for this configuration variable. This iakd value allows no machine to con-
nect and submit jobs, so after installation, change thig/ehbok for the entry defined with
the valueY OUMUSTCHANGHHIS _INVALID _CONDORONFIGURATIONALUE

3. Will Condor run as root or not? Start up the Condor daemons as the Unix user root. Without
this, Condor can do very little to enforce security and potlecisions. You can install Condor
as any user, however there are both serious security andrpefice consequences. Please
see sectioh 3.6.11 on page 316 in the manual for the detailsanifications of running
Condor as a Unix user other than root.

4. Who will administer Condor? Either root will be administering Condor directly, or sonmeo
else would be acting as the Condor administrator. If rootdelegated the responsibility to
another person, keep in mind that as long as Condor is stapted root, it should be clearly
understood that whoever has the ability to edit the condafigaration files can effectively
run arbitrary programs as root.

Condor Version 7.2.3 Manual

3.2. Installation

120

5. Will you have a Unix user named condor, and will its home diectory be shared?To sim-

plify installation of Condor, create a Unix user named canadlo all machines in the pool.
The Condor daemons will create files (such as the log files}edvay this user, and the home
directory can be used to specify the location of files andotiinées needed by Condor. The
home directory of this user can either be shared among alhines in your pool, or could
be a separate home directory on the local partition of eaathma. Both approaches have
advantages and disadvantages. Having the directoriesateatl can make administration
easier, but also concentrates the resource usage suchothpbientially need a lot of space
for a single shared home directory. See the section belowarhme-specific directories for
more details.

If you choose not to create a user named condor, then you rpesifg either via the
CONDORDS environment variable or thEONDORDS config file setting which uid.gid
pair should be used for the ownership of various Condor fiBee section 3.6.11 on UIDs in
Condor on page 315 in the Administrator's Manual for details

6. Where should the machine-specific directories for Condogo? Condor needs a few directo-
ries that are unique on every machine in your pool. Thessp@woel , log , andexecute .
Generally, all three are subdirectories of a single machpegific directory called the local
directory (specified by th€ OCALDIR macro in the configuration file). Each should be
owned by the user that Condor is to be run as.

If you have a Unix user named condor with a local home dirgctor each machine, the
LOCALDIR could just be user condor’s home directobf(CALDIR = $(TILDE) in the
configuration file). If this user's home directory is sharedamg all machines in your pool,
you would want to create a directory for each host (hamed lsyi@me) for the local directory
(forexample LOCALDIR =$(TILDE) /hosts$(HOSTNAME). If you do not have a condor
account on your machines, you can put these directoriesavaeyou’'d like. However, where
to place them will require some thought, as each one has itsresource needs:

execut e This is the directory that acts as the current working dogcfor any Condor jobs
that run on a given execute machine. The binary for the refjobiés copied into this
directory, so there must be enough space for it. (Condomaitlisend a job to a machine
that does not have enough disk space to hold the initial pjnar addition, if the remote
job dumps core for some reason, it is first dumped to the eretivtctory before it is
sent back to the submit machine. So, put the execute digeatoa partition with enough
space to hold a possible core file from the jobs submitted tw gool.

spool Thespool directory holds the job queue and history files, and the cpeicit files
for all jobs submitted from a given machine. As a result, diplkce requirements for
the spool directory can be quite large, particularly if users are sitting jobs with
very large executables or image sizes. By using a checkpemer (see sectidn 3.8
on Installing a Checkpoint Server on page 346 for details), gan ease the disk space
requirements, since all checkpoint files are stored on tineesénstead of the spool
directories for each machine. However, the initial chedkpfiles (the executables for
all the clusters you submit) are still stored in the spocédiory, so you will need some
space, even with a checkpoint server.

| og Each Condor daemon writes its own log file, and each log filelasqd in thelog
directory. You can specify what size you want these files tagto before they are

Condor Version 7.2.3 Manual

3.2. Installation 121

rotated, so the disk space requirements of the directorycandigurable. The larger
the log files, the more historical information they will hoifithere is a problem,

but the more disk space they use up. If you have a network fié¢eny installed at

your pool, you might want to place the log directories in arsddocation (such as
{usr/local/condor/logs/$(HOSTNAME)), so that you can view the log files
from all your machines in a single location. However, if yake this approach, you will
have to specify a local partition for theck directory (see below).

lock Condor uses a small number of lock files to synchronize adcessrtain files that are
shared between multiple daemons. Because of problems eteced with file lock-
ing and network file systems (particularly NFS), these lotdsfshould be placed on a
local partition on each machine. By default, they are placetthe log directory. If
you place youllog directory on a network file system partition, specify a lopal-
tition for the lock files with theLOCK parameter in the configuration file (such as
Ivar/lock/condor).

Generally speaking, it is recommended that you do not puetiirectories (excepock)
on the same partition dsar , since if the partition fills up, you will fill upvar as well.
This will cause lots of problems for your machines. Ideajtyy will have a separate partition
for the Condor directories. Then, the only consequence lafdilup the directories will be
Condor’s malfunction, not your whole machine.

7. Where should the parts of the Condor system be installed? < Configuration Files
» Release directory

— User Binaries
— System Binaries
— lib Directory
— etc Directory

» Documentation

Configuration Files There are a number of configuration files that allow you déferevels
of control over how Condor is configured at each machine inrymol. The global
configuration file is shared by all machines in the pool. Faeeaf administration, this
file should be located on a shared file system, if possible.dtitian, there is a local
configuration file for each machine, where you can overridérggs in the global file.
This allows you to have different daemons running, difféggolicies for when to start
and stop Condor jobs, and so on. You can also have confignfiiés specific to each
platform in your pool. See section 3.12.2 on page 391 aboufi@aring Condor for
Multiple Platforms for details.

In general, there are a number of places that Condor will lmoknd its configura-
tion files. The first file it looks for is the global configuratidile. These locations are
searched in order until a configuration file is found. If nopatain a valid configuration
file, Condor will print an error message and exit:

1. File specified in th€ ONDOR ONFIGenvironment variable
2. letc/condor/condor _config

Condor Version 7.2.3 Manual

3.2. Installation 122

3. lusr/locall/etc/condor _config
4. “condor/condor _config
5. $(GLOBUSLOCATION)/etc/condor _config

If you specify a file in theCONDOR ONFIGenvironment variable and there’s a problem
reading that file, Condor will print an error message and >tt away, instead of
continuing to search the other options. However, ifCONDORONFIGenvironment
variable is set, Condor will search through the other oggtion

Next, Condor tries to load the local configuration file(s). eTlnly way to
specify the local configuration file(s) is in the global configtion file, with the
LOCALCONFIGFILE macro. If that macro is not set, no local configuration file
is used. This macro can be a list of files or a single file.

Release Directory Every binary distribution contains a contains five subdivees: bin ,
etc ,lib ,sbin , andlibexec . Wherever you choose to install these five directories
we call the release directory (specified by RELEASEDIR macro in the configuration
file). Each release directory contains platform-depentdargries and libraries, so you
will need to install a separate one for each kind of machingoiar pool. For ease of
administration, these directories should be located oraeeshfile system, if possible.

» User Binaries:
All of the files in thebin directory are programs the end Condor users should ex-
pect to have in their path. You could either put them in a wethkn location (such
as/usr/local/condor/bin)which you have Condor users add to tHeAxTH
environment variable, or copy those files directly into alMlown place already
in the user’s PATHs (such dasr/local/bin). With the above examples, you
could also leave the binaries/fusr/local/condor/bin and putin soft links
from /usr/local/bin to point to each program.

» System Binaries:
All of the files in thesbin directory are Condor daemons and agents, or programs
that only the Condor administrator would need to run. Thenefadd these pro-
grams only to thé® ATHof the Condor administrator.

« Private Condor Binaries:
All of the files in thelibexec directory are Condor programs that should never
be run by hand, but are only used internally by Condor.

« lib Directory:
The files in theib directory are the Condor libraries that must be linked inhwit
user jobs for all of Condor’s checkpointing and migratioatfees to be usedib
also contains scripts used by tbendorcompileprogram to help re-link jobs with
the Condor libraries. These files should be placed in a lonatthat is world-
readable, but they do not need to be placed in anyd®®®H Thecondorcompile
script checks the configuration file for the location of tibe directory.

« etc Directory:
etc contains arexamples subdirectory which holds various example configu-
ration files and other files used for installing Condetc is the recommended
location to keep the master copy of your configuration filesu ¥an put in soft
links from one of the places mentioned above that Condorlkshaatomatically to
find its global configuration file.

Condor Version 7.2.3 Manual

3.2. Installation 123

Documentation The documentation provided with Condor is currently ava#éan HTML,
Postscript and PDF (Adobe Acrobat). It can be locally insthlwherever is cus-
tomary at your site. You can also find the Condor documentatio the web at:
http://www.cs.wisc.edu/condor/manual.

7. Am | using AFS? If you are using AFS at your site, be sure to read the sectid@.B.on
page 389 in the manual. Condor does not currently have a wayttenticate itself to AFS.
A solution is not ready for Version 7.2.3. This implies thatuyare probably not going to want
to have thd.OCALDIR for Condor on AFS. However, you can (and probably shouldehav
the CondoRELEASEDIR on AFS, so that you can share one copy of those files and upgrade
them in a centralized location. You will also have to do sdrireg special if you submit jobs
to Condor from a directory on AFS. Again, read manual secBid.1 for all the details.

8. Do | have enough disk space for Condorondor takes up a fair amount of space. This is an-
other reason why it is a good idea to have it on a shared filesysthe size requirements for
the downloads are given on the downloads page. They cwresrty from about 20 Mbytes
(statically linked HP Unix on a PA RISC) to more than 50 Mbytdgnamically linked Irix
on an SGI).

In addition, you will need a lot of disk space in the local dimy of any machines that are
submitting jobs to Condor. See question 6 above for detaikhis.

3.2.3 Newer Unix Installation Procedure

The Perl scriptondorconfigureinstalls Condor. Command-line arguments specify all ndede
formation to this script. The script can be executed mudtifiines, to modify or further set the
configuration.condorconfigurehas been tested using Perl 5.003. Use this or a more recenbwer
of Perl.

After download, all the files are in a compressed, tar formhaey need to be untarred, as
tar xzf completename.tar.gz

After untarring, the directory will have the Perl scripisndor.configureandcondorcinstall, as well
as a “bin”, “etC", “
tories.

examples”, “include”, “lib”, “libexec’; “man”,

shin”, “sql” and “src” subdirec-

condorconfigureand condorinstall are the same program, but have different default behav-
iors. condorinstall is identical to running €ondorconfigure-install=.". condorconfigureandcon-
dor_install work on above directories (“shin”, etc.). As the names impbndorinstall is used to
install Condor, whereasondor configureis used to modify the configuration of an existing Condor
install.

condorconfigureandcondorinstall are completely command-line driven; it is not interactive.
Several command-line arguments are always neededaittlorconfigureandcondorinstall. The
argument

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/manual

3.2. Installation 124

--install=/path/to/release.

specifies the path to the Condor release directories (seeepb®he default forcondorinstall is
“—install=.". The argument

--install-dir=directory
or
--prefix=directory

specifies the path to the install directory.

The argument
--local-dir=directory

specifies the path to the local directory.

The-type option tocondor configurespecifies one or more of the roles that a machine may take
on within the Condor pool: central manager, submit or exectihese options are given in a comma
separated list. So, if a machine is both a submit and execatdime, the proper command-line
option is

--type=manager,execute

Install Condor on the central manager machine first. If Comdbbrun as root in this pool (Item
3 above), rurcondorinstall as root, and it will install and set the file permissions cctlse On the
central manager machine, raondocinstall as follows.

% condor_install --prefix="condor \
--local-dir=/scratch/condor --type=manager

To update the above Condor installation, for example, to béssubmit machine:

% condor_configure --prefix="condor \
--local-dir=/scratch/condor --type=manager,submit

As in the above example, the central manager can also be atsqudinm or and execute machine,
but this is only recommended for very small pools. If thishe tase, thetype option changes to
manager,execute or manager,submit or manager,submit,execute

After the central manager is installed, the execute and gubachines should then be config-
ured. Decisions about whether to run Condor as root shoutmbhsistent throughout the pool. For
each machine in the pool, run

Condor Version 7.2.3 Manual

3.2. Installation 125

% condor_install --prefix="condor \
--local-dir=/scratch/condor --type=execute,submit

See thecondor configuremanual page in section 9 on page 704 for details.

3.2.4 Condor is installed Under Unix ... now what?

Now that Condor has been installed on your machine(s), thexe few things you should check
before you start up Condor.

1. Read through therrelease _dir >/etc/condor _config file. There are a lot of pos-
sible settings and you should at least take a look at the fistnhain sections to make sure
everything looks okay. In particular, you might want to sptagcurity for Condor. See the
section 3.6.1 on page 282 to learn how to do this.

2. Condor can monitor the activity of your mouse and keybpgrdvided that you tell it where
to look. You do this with th&€ONSOLEDEVICES entry in the condastartd section of the
configuration file. On most platforms, reasonable defaukspmovided. For example, the
default device for the mouse on Linux is 'mouse’, since madstk installations have a soft
link from /dev/imouse that points to the right device (such t#g00 if you have a serial
mousepsaux if you have a PS/2 bus mouse, etc). If you do not haldea/mouse link,
you should either create one (you will be glad you did), omgeatheCONSOLEEVICES
entry in Condor’s configuration file. This entry is a commaasaped list, so you can have any
devices indev count as 'console devices’ and activity will be reportedhia tondorstartd’s
ClassAd agonsoleldleTime

3. (Linux only) Condor needs to be able to find thienp file. According to the Linux File
System Standard, this file should bhear/run/utmp . If Condor cannot find it there, it
looks in/fvar/adm/utmp . Ifit still cannot find it, it gives up. So, if your Linux distsution
places this file somewhere else, be sure to put a soft link fi@amrun/utmp to point to
the real location.

To start up the Condor daemons, execuatelease _dir >/sbin/condor _master . This
is the Condor master, whose only job in life is to make sureother Condor daemons are running.
The master keeps track of the daemons, restarts them if thsh,cand periodically checks to see if
you have installed new binaries (and if so, restarts thectftedaemons).

If you are setting up your own pool, you should start Condoyour central manager machine
first. If you have done a submit-only installation and areiagdnachines to an existing pool, the
start order does not matter.

To ensure that Condor is running, you can run either:

ps -ef | egrep condor_

Condor Version 7.2.3 Manual

3.2. Installation 126

or
ps -aux | egrep condor_

depending on your flavor of Unix. On a central manager macttinecan submit jobs as well as
execute them, there will be processes for:

* condormaster

condorcollector

» condornegotiator

condotstartd

condorschedd

On a central manager machine that does not submit jobs noutxthem, there will be processes
for:

» condormaster

« condorcollector

« condornegotiator
For a machine that only submits jobs, there will be procekses

* condormaster

» condorschedd

For a machine that only executes jobs, there will be processe

« condormaster

» condorstartd

Once you are sure the Condor daemons are running, check te soa& that they are commu-
nicating with each other. You can r@wondorstatusto get a one line summary of the status of each
machine in your pool.

Once you are sure Condor is working properly, you should adddormasterinto your
startup/bootup scripts (i.eletc/rc) so that your machine runsondormasterupon bootup.
condormasterwill then fire up the necessary Condor daemons whenever yaohime is rebooted.

Condor Version 7.2.3 Manual

3.2. Installation 127

If your system uses System-V style init scripts, you can look
<release _dir >/etc/examples/condor.boot for a script that can be used to
start and stop Condor automatically by init. Normally, yowul install this script as
/etclinit.d/condor and put in soft link from various directories (for example,
letclrc2.d) that point back to/etc/init.d/condor . The exact location of these
scripts and links will vary on different platforms.

If your system uses BSD style boot scripts, you probably faaetc/rc.local file. Add
a line to start up<release _dir >/sbin/condor = _master .

Now that the Condor daemons are running, there are a fewslyiog can and should do:

1. (Optional) Do a full install for theondorcompilescript. condorcompile assists in linking
jobs with the Condor libraries to take advantage of all of @an's features. As it is currently
installed, it will work by placing it in front of any of the fidwing commands that you would
normally use to link your code: gcc, g++, g77, cc, acc, ¢89, €, fort77 and Id. If
you complete the full install, you will be able to use condompile with any command
whatsoever, in particular, make. See sedtion 3/12.3 on/p@dién the manual for directions.

2. Try building and submitting some test jobs. @samples/README for detalils.
3. If your site uses the AFS network file system, see sectibd.B.on page 389 in the manual.

4. We strongly recommend that you start up Condor (runcibvedormasterdaemon) as user
root. If you must start Condor as some user other than roetseetion 3.6.11 on page 316.

3.2.5 Installation on Windows

This section contains the instructions for installing thieddsoft Windows version of Condor. The
install program will set up a slightly customized configuwatfile that may be further customized
after the installation has completed.

Please read the copyright and disclaimer information itige®@? on page?? of the manual, or
in the file LICENSE.TXT, before proceeding. Installation and use of Condor is askeagment
that you have read and agreed to these terms.

Be sure that the Condor tools run are of the same version ata#raons installed. If they were
not (such as 6.9.12 daemons, when running &8rlorsubmi), then things will not work. There
may be errors generated by thendorschedddaemon in the log. It is likely that a job would be
correctly placed in the queue, but the job will never run.

The Condor executable for distribution is packaged in alsifitg such as:
condor-6.7.8-winnt40-x86.msi

This file is approximately 80 Mbytes in size, and may be rendax&ce Condor is fully installed.

Condor Version 7.2.3 Manual

3.2. Installation 128

Before installing Condor, please consider joining the ayndorld mailing list. Traffic on this
list is kept to an absolute minimum. It is only used to ann@unew releases of Condor. To sub-
scribe, follow the directions given at http://www.cs.wisdu/condor/mail-lists/.

Installation Requirements

» Condor for Windows requires Windows 2000 (or better) or @éws XP.

« 300 megabytes of free disk space is recommended. Sigrtificaore disk space could be
desired to be able to run jobs with large data files.

« Condor for Windows will operate on either an NTFS or FAT fijstem. However, for security
purposes, NTFS is preferred.

Preparing to Install Condor under Windows

Before installing the Windows version of Condor, there ave tnajor decisions to make about the
basic layout of the pool.

1. What machine will be the central manager?

2. Do | have enough disk space for Condor?

If you feel that you already know the answers to these questikip to the Windows Installation
Procedure section below, section 312.5 on page 129. If ypu@asure, read on.

« What machine will be the central manager?

One machine in your pool must be the central manager. Thiziséntralized information
repository for the Condor pool and is also the machine thathes available machines with
waiting jobs. If the central manager machine crashes, amgutly active matches in the
system will keep running, but no new matches will be made. édwer, most Condor tools
will stop working. Because of the importance of this macHimethe proper functioning of
Condor, we recommend you install it on a machine that isyikelstay up all the time, or at
the very least, one that will be rebooted quickly if it doeastr. Also, because all the services
will send updates (by default every 5 minutes) to this maghihis advisable to consider
network traffic and your network layout when choosing thet@manager.

For Personal Condor, your machine will act as your centralagar.
Install Condor on the central manager before installinghendther machines within the pool.

« Do | have enough disk space for Condor?

The Condor release directory takes up a fair amount of spéhe.size requirement for the
release directory is approximately 200 Mbytes.

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor/mail-lists/

3.2. Installation 129

Condor itself, however, needs space to store all of your,jabd their input files. If you will
be submitting large amounts of jobs, you should consideailirsg Condor on a volume with
a large amount of free space.

Installation Procedure Using the Included Set Up Program

Installation of Condor must be done by a user with admintistrarivileges. After installation, the
Condor services will be run under the local system accountef®Condor is running a user job,
however, it will run that user job with normal user permisso

Download Condor, and start the installation process byingthe file (or by double clicking on
the file). The Condor installation is completed by answegungstions and choosing options within
the following steps.

If Condor is already installed. For upgrade purposes, you may be running the installati@®oof
dor after it has been previously installed. In this case,ahodi box will appear before the
installation of Condor proceeds. The question asks if yahwd preserve your current Con-
dor configuration files. Answer yes or no, as appropriate.

If you answer yes, your configuration files will not be changmad you will proceed to the
point where the new binaries will be installed.

If you answer no, then there will be a second question that dsfou want to use answers
given during the previous installation as default answers.

STEP 1: License Agreement.The first step in installing Condor is a welcome screen arghbe
agreement. You are reminded that it is best to run the iradiati when no other Windows
programs are running. If you need to close other Windows iaimg, it is safe to cancel the
installation and close them. You are asked to agree to teade. Answer yes or no. If you
should disagree with the License, the installation will cottinue.

After agreeing to the license terms, the next Window is wiidiria your name and company
information, or use the defaults as given.

STEP 2: Condor Pool Configuration. The Condor installation will require different informatio
depending on whether the installer will be creating a newl,pargoining an existing one.

If you are creating a new pool, the installation program reggthat this machine is the central
manager. For the creation of a new Condor pool, you will beedsgome basic information
about your new pool:

Name of the pool
hostname of this machine.

Size of pool Condor needs to know if this a Personal Condor installatorif, there will be
more than one machine in the pool. A Personal Condor poolignphat there is only
one machine in the pool. For Personal Condor, several ofillefing steps are omitted
as noted.

Condor Version 7.2.3 Manual

3.2. Installation

130

If you are joining an existing pool, all the installation gram requires is the host name of the
central manager for your pool.

STEP 3: This Machine’s Roles. This step is omitted for the installation of Personal Condor

Each machine within a Condor pool may either submit jobs ecate submitted jobs, or both
submit and execute jobs. This step allows the installatiothis machine to choose if the
machine will only submit jobs, only execute submitted jobisboth. The common case is
both, so the default is both.

STEP 4: Where will Condor be installed? The next step is where the destination of the Condor
files will be decided. It is recommended that Condor be itesiah the location shown as the
default in the dialog boxC:\Condor

Installation on the local disk is chosen for several reasons

The Condor services run as local system, and within Mictdaffidows, local system has no
network privileges. Therefore, for Condor to operate, Gmrghould be installed on a local
hard drive as opposed to a network drive (file server).

The second reason for installation on the local disk is thaWindows usage of drive letters
has implications for where Condor is placed. The drive taigeed must be not change, even
when different users are logged in. Local drive letters dbamange under normal operation
of Windows.

While it is strongly discouraged, it may be possible to pl@cador on a hard drive that is not
local, if a dependency is added to the service control marsagd that Condor starts after the
required file services are available.

STEP 5: Where is the Java Virtual Machine? While not required, it is possible for Condor to run
jobs in the Java universe. In order for Condor to have supipoiava, you must supply a
path tojava.exe on your system. The installer will tell you if the path is ifidabefore
proceeding to the next step. To disable the Java universg)ysieave this field blank.

STEP 6: Where should Condor send e-mail if things go wrong?/arious parts of Condor will
send e-mail to a Condor administrator if something goes gramd requires human atten-
tion. You specify the e-mail address and the SMTP relay hb#tis administrator. Please
pay close attention to this email since it will indicate peghs in your Condor pool.

STEP 7: The domain. This step is omitted for the installation of Personal Condor

Enter the machine’s accounting (or UID) domain. On this ier®f Condor for Windows,
this setting only used for User priorities (see section S14age 244) and to form a default
email address for the user.

STEP 8: Access permissionsThis step is omitted for the installation of Personal Condor

Machines within the Condor pool will need various types ofess permission. The three
categories of permission are read, write, and adminigtra&ater the machines to be given
access permissions.

Read Read access allows a machine to obtain information aboui@®uch as the status of
machines in the pool and the job queues. All machines in teégimuld be given read

Condor Version 7.2.3 Manual

3.2. Installation 131

access. In addition, giving read access to *.cs.wisc.edllallow the Condor team to
obtain information about your Condor pool in the event thetiutyging is needed.

Write All machines in the pool should be given write access. Itvedldhe machines you
specify to send information to your local Condor daemonsefample, to start a Condor
Job. Note that for a machine to join the Condor pool, it mustehaoth read and write
access to all of the machines in the pool.

Administrator A machine with administrator access will be allowed moreaged permis-
sion to to things such as change other user’s priorities jiptte job queue, turn Condor
services on and off, and restart Condor. The central marsgerd be given adminis-
trator access and is the default listed. This setting istgrhto the entire machine, so
care should be taken not to make this too open.

For more details on these access permissions, and othérsathde manually changed in
yourcondor _config file, please see the section titled Setting Up IP/Host-B&samlirity
in Condor in section section 3.6.9 on page 307.

STEP 9: Job Start Policy. Condor will execute submitted jobs on machines based onfarprece
given at installation. Three options are given, and the iiratost commonly used by Condor
pools. This specification may be changed or refined in the madblassAd requirements
attribute.

The three choices:

After 15 minutes of no console activity and low CPU activity.
Always run Condor jobs.
After 15 minutes of no console activity.

Console activity is the use of the mouse or keyboard. Foaires, if you are reading this
document on line, and are using either the mouse or the kegltoahange your position,
you are generating Console activity.

Low CPU activity is defined as a load of less than 30%(and isfigorable in your
condor _config file). If you have a multiple processor machine, this is therage per-
centage of CPU activity for both processors.

For testing purposes, it is often helpful to use use the Asmayn Condor jobs option. For
production mode, however, most people chose the After 1biragof no console activity and
low CPU activity.

STEP 10: Job Vacate Policy.This step is omitted if Condor jobs are always run as the optfmo-
senin STEP 9.

If Condor is executing a job and the user returns, Condorimithediately suspend the job,
and after five minutes Condor will decide what to do with thetiply completed job. There
are currently two options for the job.

The job is killed 5 minutes after your return. The job is suspended immediately once there
is console activity. If the console activity continues,ritibe job is vacated (killed) after
5 minutes. Since this version does not include check-painthe job will be restarted
from the beginning at a later time. The job will be placed biet& the queue.

Condor Version 7.2.3 Manual

3.2. Installation

132

Suspend job, leaving it in memory. The job is suspended immediately. At a later time,
when the console activity has stopped for ten minutes, teewdion of Condor job will
be resumed (the job will be unsuspended). The drawbackdmtfition is that since the
job will remain in memory, it will occupy swap space. In mangtances, however, the
amount of swap space that the job will occupy is small.

So which one do you choose? Killing a job is less intrusivetenworkstation owner than
leaving it in memory for a later time. A suspended job left iamory will require swap space,
which could possibly be a scarce resource. Leaving a job mang however, has the benefit
that accumulated run time is not lost for a partially comgdijob.

STEP 11: Review entered information. Check that the entered information is correctly entered.

You have the option to return to previous dialog boxes to fixies.

Unattended Installation Procedure Using the Included Set g Program

This section details how to run the Condor for Windows ifetah an unattended batch mode. This
mode is one that occurs completely from the command pronigitowt the GUI interface.

The Condor for Windows installer uses the Microsoft Inga(MSI) technology, and it can be
configured for unattended installs analogous to any ottdinary MSI installer.

The following is a sample batch file that is used to set all tuperties necessary for an unat-

tended install.

@echo on

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

ARGS=

ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%
ARGS=%ARGS%

NEWPOOL="N"

POOLNAME=""

RUNJOBS="C"

VACATEJOBS="Y"

SUBMITJOBS="Y"
CONDOREMAIL="you@yours.com"
SMTPSERVER="smtp.localhost"
HOSTALLOWREAD="

HOSTALLOWWRITE="
HOSTALLOWADMINISTRATOR="$(FULL_HOSTRA
INSTALLDIR="C:\Condor"
INSTALLDIR_NTS="C:\Condor"
POOLHOSTNAME="$(FULL_HOSTNAME)"
ACCOUNTINGDOMAIN="none"
JVMLOCATION="C:\Windows\system32\java .exe"
USEVMUNIVERSE="N"

VMVERSION="serverl.4"

VMMEMORY="128"
VMMAXNUMBER="$(NUM_CPUS)"

Condor Version 7.2.3 Manual

3.2. Installation 133

set ARGS=%ARGS% VMNETWORKING="N"

msiexec /gb /I * condor-install-log.txt /i condor-7.1.0-winnt50-x86.ms i %ARGS%

Each property corresponds to answers that would have bgmiied while running an inter-
active installer. The following is a brief explanation ofchaproperty as it applies to unattended
installations:

NEWPOOL = <Y | N > determines whether the installer will create a new pool wfih target
machine as the central manager.

POOLNAME sets the name of the pool, if a new pool is to be created. Hesslues are either
the name or the empty strin'gj .

RUNJOBS=<N| A| I | C> determines when Condor will run jobs. This can be set to:

* Never run jobs (N)

 Always run jobs (A)

* Only run jobs when the keyboard and mouse are Idle (1)

» Only run jobs when the keyboard and mouse are idle and the @Rge is low (C)

VACATEJOBS = < Y | N > determines what Condor should do when it has to stop the &recu
of a user job. When set to Y, Condor will vacate the job and gtaomewhere else if possible.
When set to N, Condor will merely suspend the job in memoryaad for the machine to
become available again.

SUBMITJOBS = < Y | N > will cause the installer to configure the machine as a suboden
when setto Y.

CONDOREMAIL sets the e-mail address of the Condor administrator. Pess#dlues are an
e-mail address or the empty stritig .

HOSTALLOWREAD s a list of host names that are allowed to issue READ commen@sndor
daemons. This value should be set in accordance withi@8TALLOVREAD setting in the
configuration file, as described in section 3.6.9 on page 307.

HOSTALLOWWRITE is a list of host names that are allowed to issue WRITE command
Condor daemons. This value should be set in accordance hetll®@STALLOWRITE
setting in the configuration file, as described in sectionBoé pagé 307.

HOSTALLOWADMINISTRATOR is a list of host names that are allowed to issue ADMIN-
ISTRATOR commands to Condor daemons. This value should b secordance with
the HOSTALLOWADMINISTRATOR setting in the configuration file, as described in sec-
tion/3.6.9 on page 307.

INSTALLDIR defines the path to the directory where Condor will be insthll

Condor Version 7.2.3 Manual

3.2. Installation 134

INSTALLDIR _NTS should be set to whatever INSTALLDIR is set to, with the aidial restric-
tion that it cannot end in a backslash. The installer will bediin an upcoming version of
Condor to not require this property.

POOLHOSTNAME defines the host name of the pool’s central manager.
ACCOUNTINGDOMAIN defines the accounting (or UID) domain the target machinkbeiin.
JVMLOCATION defines the path to Java virtual machine on the target machine

SMTPSERVER defines the host name of the SMTP server that the target nmeishio use to send
e-mail.

VMVERSION defines the version of VMware installed on the target machine

VMMEMORY an integer value that defines the maximum memory each VM ruthertarget
machine.

VMMAXNUMBER an integer value that defines the number of VMs that can berparallel on
the target machine.

VMNETWORKING = <N | A| B| C > determines if VM Universe can use networking. This
can be set to:
* None (N)
« NAT (A)
 Bridged (B)
» NAT and Bridged (C)

USEVMUNIVERSE = < Y | N > will cause the installer to enable VM Universe jobs on the tar
get machine.

PERLLOCATION defines the path tBerl on the target machine. This is required in order to use
thevm universe.

After defining each of these properties for the MSI installee installer can be started with the
msiexecommand. The following command starts the installer in tamated mode, and it dumps a
journal of the installer’s progress to a log file:

msiexec /gb /Ixv * condor-install-log.txt /i condor-7.2.2-winnt50-x86.ms i [property=value] ...

More information on the features ofmsiexeccan be found at Microsoft's website at
http://www.microsoft.com/resources/documentationthaws/xp/all/proddocs/en-us/msiexec.mspx.

Condor Version 7.2.3 Manual

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx

3.2. Installation 135

Manual Installation Condor on Windows

If you are to install Condor on many different machines, yayrwish to use some other mechanism
to install Condor on additional machines rather than rugtie Setup program described above on
each machine.

WARNING: This is for advanced users only! All others should use the®program described
above.

Here is a brief overview of how to install Condor manually watit using the provided GUI-
based setup program:

The Service The service that Condor will install is called "Condor”. T&&artup Type is Automatic.
The service should log on as System Account,dmnot enable”Allow Service to Interact
with Desktop”. The program that is run @®@ndormaster.exe

The Condor service can be installed and removed usingdtexe tool, which is included

in Windows XP and Windows 2003 Server. The tool is also abéélas part of the Windows
2000 Resource Kit.

Installation can be done as follows:

sc create Condor binpath= c:\condor\bin\condor_master.e xe
To remove the service, use:

sc delete Condor

The Registry Condor uses a few registry entries in its operation. The key Condor uses is
HKEY_LOCAL_MACHINE/Software/Condor. The values that Condor puts iis tlegistry
key serve two purposes.

1. The values of CONDORCONFIG and RELEASHEDIR are used for Condor to start its
service.
CONDORCONFIG should point to theondor _config file. In this version of Con-
dor, it must reside on the local disk.
RELEASEDIR should point to the directory where Condor is install€tis is typically
C:\Condor , and again, thisnust reside on the local disk.

2. The other purpose is storing the entries from the lastilagion so that they can be used
for the next one.

The File System The files that are needed for Condor to operate are identdhlet Unix version
of Condor, except that executable files endere . For example the on Unix one of the files
iscondor _master and on Condor the corresponding filecisndor _master.exe

These files currently must reside on the local disk for a ¥aoéreasons. Advanced Windows
users might be able to put the files on remote resources. Threaoacern is twofold. First,
the files must be there when the service is started. Secoedilés must always be in the
same spot (including drive letter), no matter who is logged the machine.

Condor Version 7.2.3 Manual

3.2. Installation

136

Note also that when installing manually, you will need toateethe directories that Condor
will expect to be present given your configuration. This nallgnis simply a matter of creating
thelog , spool , andexecute directories.

Condor Is Installed Under Windows ... Now What?

After the installation of Condor is completed, the Condawi must be started. If you used the
GUI-based setup program to install Condor, the Condor sershould already be started. If you
installed manually, Condor must be started by hand, or yousoaply reboot. NOTEThe Condor
service will start automatically whenever you reboot yowaahine.

To start Condor by hand:

1. From the Start menu, choose Settings.

2. From the Settings menu, choose Control Panel.
3.
4

From the Control Panel, choose Services.

. From Services, choose Condor, and Start.

Or, alternatively you can enter the following command froesoanmand prompt:

net start condor

Run the Task Manager (Control-Shift-Escape) to check tlwed@r services are running. The
following tasks should be running:

condormaster.exe

condornegotiator.exgif this machine is a central manager.
condorcollector.exegif this machine is a central manager.
condorstartd.exeif you indicated that this Condor node should start jobs

condorschedd.exaf you indicated that this Condor node should submit jobth#®Condor
pool.

Also, you should now be able to open up a new cmd (DOS prompigevi, and the Condor bin
directory should be in your path, so you can issue the normabl@r commands, such asndotrq
andcondorstatus

Condor is Running Under Windows ... Now What?

Once Condor services are running, try submitting test joBgample 2 within sectioh 2.5.1 on
page 20 presents a vanilla universe job.

Condor Version 7.2.3 Manual

3.2. Installation 137

3.26 RPMs

RPMs are available in Version 7.2.3. This packaging methotliges for installation and configu-
ration in one easy step. Itis currently available for Linystems only.

The format of the installation command is
rom -i <filename> --prefix=<installation dir>

The user provides the path name to the directory used fomtallation. Thepm program
calls condorconfigureto do portions of the installation. If the condor user is prgson the sys-
tem, the installation script will assume that that is theetifre user that Condor should run as (see
section 3.6.11 on page 315). If the condor user is not pretemtlaemon user will be used. This
user will be present on all Linux systems. Note that the uaerlater be changed by running the
condorconfigureprogram using thewner option, of the format:

condor_configure --owner=<user>

After a successful installation, ttBONDOR ONFIG configuration variable must be set to point
to

<installation dir>/etc/condor_config

before starting Condor daemons or invoking Condor tools.

RPM upgrade-u option) does not currently work for Condor Version 7.2.3.

3.2.7 Upgrading - Installing a Newer Version of Condor

An upgrade changes the running version of Condor from theeatimstallation to a newer version.
The safe method to install and start running a newer verdid@oador in essence is: shutdown the
current installation of Condor, install the newer versiand then restart Condor using the newer
version.

To allow for falling back to the current version, place theveersion in a separate directory.
Copy the existing configuration files, and modify the copy éinpto and use the new version. Set
the CONDORONFIGenvironment variable to point to the new copy of the confitjara so the
new version of Condor will use the new configuration whenaxet!.

When upgrading from an earlier version of Condor to a versioh 8, note that the configuration
settings must be modified for security reasons. SpecifichHOSTALLOWVRITE configuration
variable must be explicitly changed, or no jobs may be sulechiind error messages will be issued
by Condor tools.

Condor Version 7.2.3 Manual

3.2. Installation

138

3.2.8 Installing the CondorView Client Contrib Module

The CondorView Client contrib module is used to automalyogénerate World Wide Web pages to
display usage statistics of a Condor pool. Included in thdufis a shell script which invokes the
condorstatscommand to retrieve pool usage statistics from the Condav\derver, and generate
HTML pages from the results. Also included is a Java applbtckvgraphically visualizes Condor
usage information. Users can interact with the applet ttocnize the visualization and to zoomin to

a specific time frame. Figure 3.2 on page 138 is a screen showeb page created by CondorView.

To get a further feel for what pages generated by CondorVak like, view the statistics for
the University of Wisconsin-Madison pool by visiting the URttp://www.cs.wisc.edu/condor and
clicking on Condor View.

J File Edit “iew Go Favoites Help i
-2 0N @38 0PRSS

J Address I@ hittp: //biron. cs.wisc. edu/condar-view-applet A eek. htrl j

UW-Madison Comp Sci Condor Pool Machine Statistics for Week =

From Thu Feb 18 05:43:56 CST 1933 to Thu Feb 26 04:57:35 C5T 1339

435.0
Tatal
371.2 Condor
2475 Tatal
Idle
1237
Tatal
Ouaner
oo
Fri19 Sat20 Sun 21 Maon 22 Tue 23 Wed 24 Thu 25
Configure. .. Zoom In Zoom Dut Reset About

[Craph. Hivgs: The -axis is rammber of tachines the 2rads is tive. When graph finiches updating, press "Corfizime.. " to wiswr differert Architectore or State data. Alao, =
oL cam se the moice to draer o rectangle on the graph and then press "Zoom ' Press "Recet" to cerderfecize the dats aber Confgme or when done mooning.
Highittime shovrs up oh graph bacdkizromd a5 grey]

Arch Cramer Condor Idle Cramer Condor
Average Average Average Peak Peak
Total 136.5 2602 339 272 361
(31.7%%) (60.4%) {7.9%) {63%) (B4%0)
INTE 587 145 2 2.8 162 136
L/SOLARIS26 (27 4% (68.6%) 4. 1% {75%) (B8%)
0.4 1.5 0.1 3 5
INTEL/SOLARIZ251 R A (71 A% 13 A0 10045 10T LI
|@ | l_l_l_@ Intermet zone A

Figure 3.2: Screen shot of CondorView Client

Condor Version 7.2.3 Manual

http://www.cs.wisc.edu/condor

3.2. Installation 139

After unpacking and installing the CondorView Client, aistnamednakestatscan be invoked
to create HTML pages displaying Condor usage for the past luay, week, or month. By using
the Unixcron facility to periodically executenakestats Condor pool usage statistics can be kept
up to date automatically. This simple model allows the CaXaav Client to be easily installed; no
Web server CGl interface is needed.

Step-by-Step Installation of the CondorView Client

1. Make certain that the CondorView Server is configured ti8ed3.12.5 describes configura-
tion of the server. The server logs information on disk inesrtb provide a persistent, his-
torical database of pool statistics. The CondorView Climakes queries over the network to
this database. Theondorcollectorincludes this database support. To activate the persistent
database logging, add the following entries to the configumdile for the condorcollector
chosen to act as the ViewServer.

POOL_HISTORY_DIR = /full/path/to/directory/to/store/h istorical/data
KEEP_POOL_HISTORY = True

2. Create a directory where CondorView is to place the HTMesfilThis directory should be one
published by a web server, so that HTML files which exist irs thirectory can be accessed
using a web browser. This directory is referred to asMlHeWDIR directory.

3. Download thesiew_client contrib module.

4. Unpack or untar this contrib module into the directfWDIR. This creates several files
and subdirectories. Further unpack the jar file withintHEWDIR directory with:

jar -xf condorview.jar

5. Edit themakestatsscript. At the beginning of the file are six parameters to aunze. The
parameters are

ORGNAME A brief name that identifies an organization. An example isittbf Wisconsin”.
Do not use any slashes in the name or other special regutaession characters. Avoid
the character§™ and $.

CONDORADM N The e-mail address of the Condor administrator at your slteis e-malil
address will appear at the bottom of the web pages.

VI EVDI R The full path namer{ot a relative path) to th#/IEWDIR directory set by installa-
tion step 2. Itis the directory that contains tihekestatsscript.

STATSDI R The full path name of the directory which contains twndorstatsbinary. The
condotstatsprogram is included in thecrelease _dir >/bin directory. The value
for STATSDIRIs added to th&®ATHparameter by default.

PATH A list of subdirectories, separated by colons, wherentfadestatsscript can find the
awk bc, sed date andcondorstatsprograms. Ifperl is installed, the path should
also include the directory whepeerl is installed. The following default works on most
systems:

Condor Version 7.2.3 Manual

3.2. Installation

140

PATH=/bin:/usr/bin:$STATSDIR:/usr/local/bin

6. To create all of the initial HTML files, run
.Jmake_stats setup

Open the filandex.html to verify that things look good.

7. Add themakestatsprogram tocron. Runningmakestatsin step 6 created eronentries
file. Thiscronentries file is ready to be processed by the Ugbontabcommand. The
crontab manual page contains details about ttrentab command and theron daemon.
Look at thecronentries file; by default, it will runmakestats hourevery 15 minutes,
makestats dayonce an houmnakestats weekwice per day, angnakestats monttonce per
day. These are reasonable defaults. Add these commandstorctany system that can ac-

cess the/IEWDIR andSTATSDIR directories, even on a system that does not have Condor

installed. The commands do not need to run as root user; tntfagy should probably not
run as root. These commands can run as any user that has réadteess to th#IEWDIR
directory. To add these commands to cron, run

crontab cronentries

8. Point the web browser at thdEWDIR directory to complete the installation.

3.2.9 Dynamic Deployment

Dynamic deploymentis a mechanism that allows rapid, autediastallation and start up of Condor
resources on a given machine. In this way any machine candeglad a Condor pool. The dynamic
deployment tool set also provides tools to remove a maciime the pool, without leaving residual
effects on the machine such as leftover installations, leg,fand working directories.

Installation and start up is provided lbgndorcold_start Thecondorcold_startprogram deter-
mines the operating system and architecture of the targehima, and transfers the correct installa-
tion package from an ftp, http, or grid ftp site. After traesfit installs Condor and creates a local
working directory for Condor to run in. As a last stegpndor.cold_start begins running Condor in
a manner which allows for later easy and reliable shut down.

The program that reliably shuts down and uninstalls a presliopdynamically installed Condor
instance iscondorcold stop condorcold stopbegins by safely and reliably shutting off the run-
ning Condor installation. It ensures that Condor has cotafyleshut down before continuing, and
optionally ensures that there are no queued jobs at theNsibet, condorcold_stopremoves and op-
tionally archives the Condor working directories, inclngithelog directory. These archives can
be stored to a mounted file system or to a grid ftp site. As sstagtcondorcold stopuninstalls the
Condor executables and libraries. The end result is thatthehine resources are left unchanged
after a dynamic deployment of Condor leaves.

Condor Version 7.2.3 Manual

3.2. Installation 141

Configuration and Usage

Dynamic deployment is designed for the expert Condor usgea@ministrator. Tool design choices
were made for functionality, not ease-of-use.

Like every installation of Condor, a dynamically deployedtallation relies on a configuration.
To add a target machine to a previously created Condor po®igtobal configuration file for that
pool is a good starting point. Modifications to that configima can be made in a separate, local
configuration file used in the dynamic deployment. The glamalfiguration file must be placed
on an ftp, http, grid ftp, or file server accessiblednndorcold.start The local configuration file
is to be on a file system accessible by the target machine.eTdrersome specific configuration
variables that may be set for dynamic deployment. A list afcatables and directories which
must be present for Condor to start on the target machine raaebwith the configuration vari-
ablesDEPLOYMENREQUIREDEXECS andDEPLOYMENREQUIREDDIRS . If defined and
the comma-separated list of executables or directoriea@rpresent, thenondorcold_start exits
with error. Note this does not affect what is installed, ontyether start up is successful.

A list of executables and directories which are recommended be present for
Condor to start on the target machine may be set with the amaflign variables
DEPLOYMENRECOMMENDHEXECS and DEPLOYMENRECOMMENDEDRS . If defined
and the comma-separated lists of executables or direstarenot present, thesondorcold_start
prints a warning message and continues. Here is a portidreafdnfiguration relevant to a dynamic
deployment of a Condor submit node:

DEPLOYMENT_REQUIRED_EXECS = MASTER, SCHEDD, PREEN, SERRT

STARTER_STANDARD, SHADOW, \

SHADOW_STANDARD, GRIDMANAGER, GAHP, CONDOR_GAHP
DEPLOYMENT_REQUIRED_DIRS = SPOOL, LOG, EXECUTE
DEPLOYMENT_RECOMMENDED_EXECS = CREDD
DEPLOYMENT_RECOMMENDED_DIRS = LIB, LIBEXEC

Additionally, the user must specify which Condor servicel me started. This is done through
the DAEMONMLIST configuration variable. Another excerpt from a dynamic sitbmade deploy-
ment configuration:

DAEMON_LIST = MASTER, SCHEDD

Finally, the location of the dynamically installed Condaeeutables is tricky to set, since the
location is unknown before installation. Therefore, thealsle DEPLOYMENRELEASEDIR is
defined in the environment. It corresponds to the locatiothefdynamic Condor installation. If,
as is often the case, the configuration file specifies theitotaf Condor executables in relation
to theRELEASEDIR variable, the configuration can be made dynamically defllgyby setting
RELEASEDIR to DEPLOYMENRELEASEDIR as

RELEASE_DIR = $(DEPLOYMENT_RELEASE_DIR)

Condor Version 7.2.3 Manual

3.3. Configuration

142

In addition to setting up the configuration, the user musi distermine where the installation
package will reside. The installation package can be ireeithr or gzipped tar form, and may
reside on a ftp, http, grid ftp, or file server. Create thigatiation package by tar'ing up the binaries
and libraries needed, and place them on the appropriatersérkie binaries can be tar'ed in a flat
structure or withirbin andsbin . Here is a list of files to give an example structure for a dyitam
deployment of theondorschedddaemon.

% tar tfz latest-i686-Linux-2.4.21-37.ELsmp.tar.gz
bin/
bin/condor_config_val
bin/condor_q

shin/

sbhin/condor_preen
shin/condor_shadow.std
sbin/condor_starter.std
sbin/condor_schedd
shin/condor_master
shin/condor_gridmanager
shin/gt4_gahp
sbin/gahp_server
shin/condor_starter
sbin/condor_shadow
shin/condor_c-gahp
shin/condor_off

3.3 Configuration

This section describes how to configure all parts of the Cosgstem. General information about
the configuration files and their syntax is followed by a diggizm of settings that affect all Condor
daemons and tools. The settings that control the policy uniiéch Condor will start, suspend,
resume, vacate or kill jobs are described in section 3.5 art@&Policy Configuration.

3.3.1 Introduction to Configuration Files

The Condor configuration files are used to customize how Cooplerates at a given site. The basic
configuration as shipped with Condor works well for mostsite

Each Condor program will, as part of its initialization pess, configure itself by calling a li-
brary routine which parses the various configuration fileg thight be used including pool-wide,
platform-specific, and machine-specific configuration fil&svironment variables may also con-
tribute to the configuration.

The result of configuration is a list of key/value pairs. E&elnis a configuration variable name,
and each value is a string literal that may utilize macro stulion (as defined below). Note that
the string literal value portion of a pair is not an expreasiand therefore it is not evaluated. Those
configuration variables that express the policy for stgrtamd stopping of jobs appear as expres-
sions in the configuration file. However, these expressitorpnfiguration) are string literals. At

Condor Version 7.2.3 Manual

3.3. Configuration 143

appropriate times, Condor daemons and tools use thesgs#iexpressions, parsing them in order
to do evaluation.

Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment varialtlegermine the configuration. The order
in which attributes are defined is important, as later défing override existing definitions. The

order in which the (multiple) configuration files are parsediesigned to ensure the security of
the system. Attributes which must be set a specific way mystapin the last file to be parsed.

This prevents both the naive and the malicious Condor usen fubverting the system through its
configuration. The order in which items are parsed is

1. global configuration file

2. local configuration file

3. specific environment variables prefixed witbfONDOR

The locations for these files are as given in sedtion 3.2.2agg121.

Some Condor tools utilize environment variables to setrtb@nfiguration. These tools search
for specifically-named environment variables. The vagaldre prefixed by the strin@ ONDORor
_condor _. The tools strip off the prefix, and utilize what remains asf@uration. As the use of
environment variables is the last within the ordered ewidnathe environment variable definition
is used. The security of the system is not compromised, gsspeicific variables are considered for
definition in this manner, not any environment variableswlite_CONDORprefix.

Configuration File Macros
Macro definitions are of the form:
<macro_name> = <macro_definition>

The macro name given on the left hand side of the definitiorcissa sensitive identifier. There
must be white space between the macro name, the equals9igem€l the macro definition. The
macro definition is a string literal that may utilize macrdostitution.

Macro invocations are of the form:
$(macro_name)

Macro definitions may contain references to other macras) ewes that are not yet defined, as
long as they are eventually defined in the configuration fildsmacro expansion is done after all
configuration files have been parsed, with the exception afosathat reference themselves.

Condor Version 7.2.3 Manual

3.3. Configuration 144

A
C

XXX

$(A)

is a legal set of macro definitions, and the resulting valué isfxxx . Note thatCis actually bound
to $(A) , not its value.

As a further example,

XXX
$(A)

A
c
A = yyy

is also a legal set of macro definitions, and the resultingerafCis yyy .

A macro may be incrementally defined by invoking itself indefinition. For example,

A = XxX
B = $(A)
A = $(Ayyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting valugisfxxxyyyzzz . Note thatinvocations
of a macro in its own definition are immediately expand®@) is immediately expanded in line
3 of the example. If it were not, then the definition would bg@assible to evaluate.

Recursively defined macros such as

A
B

$(B)
$(A)

are not allowed. They create definitions that Condor refusesarse.

All entries in a configuration file must have an operator, wahigll be an equals sign<). Identi-
fiers are alphanumerics combined with the underscore cteraptionally with a subsystem name
and a period as a prefix. As a special case, a line without aratmpehat begins with a left square
bracket will be ignored. The following two-line exampledts the first line as a comment, and
correctly handles the second line.

[Condor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variabiame may be prefixed by a subsys-
tem (see th&(SUBSYSTEM)macro in section 3.3.1 for the list of subsystems) and theogér)
character. For configuration variables defined this wayy#thee is applied to the specific subsystem.
For example, the ports that Condor may use can be restriotadange using thell GHPORTand
LOWPORTonfiguration variables. If the range of intended ports feedént for specific daemons,
this syntax may be used.

Condor Version 7.2.3 Manual

3.3. Configuration

145

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100
NEGOTIATOR.LOWPORT = 22000
NEGOTIATOR.HIGHPORT = 22100

Note that all configuration variables may utilize this sytaut nonsense configuration variables
may result. For example, it makes no sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since thecondornegotiatordaemon does not use tMASTERJUPDATEINTERVAL variable.

It makes little sense to do so, but Condor will configure cctityewith a definition such as
MASTER.MASTER_UPDATE_INTERVAL = 60

The condormasteruses this configuration variable, and the prefiMASTER.causes this config-
uration to be specific to theondormasterdaemon.

This syntax has been further expanded to allow for the spatifin of a local name on the
command line using the command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by theessandormasterdaemon, each
instance with its own local configuration variable.

The ordering used to look up a variable, callgghrameter name>

1. <subsystem name>.<local name>.<parameter name>

2. <local name>.<parameter name>

3. <subsystem name>.<parameter name>

4. <parameter name>

If this local name is not specified on the command line, numtieand 2 are skipped. As soon
as the first match is found, the search is completed, and thespmnding value is used.

This example configures@ndormasterto run 2condorschedddaemons. Theondormaster

daemon needs the configuration:

XYZzY = $(SCHEDD)
XYZZY_ARGS -local-name xyzzy

DAEMON_LIST = $(DAEMON_LIST) XYzzY
DC_DAEMON_LIST = + XYZzZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

Condor Version 7.2.3 Manual

3.3. Configuration 146

Using this example configuration, tkendormasterstarts up a secormbndorschedddaemon,
where this secondondorschedddaemon is passetbcal-namexyzzyon the command line.

Continuing the example, configure tlndorschedddaemon namedyzzy . This con-
dor_schedddaemon will share all configuration variable definitionshwilhe othercondorschedd
daemon, except for those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

Note that the exampl8CHEDINAMEand SPOOLare specific to theondorschedddaemon,
as opposed to a different daemon such ascibredorstartd Other Condor daemons using this
feature will have different requirements for which paraemstneed to be specified individually.
This example works for theondorscheddand more local configuration can, and likely would be
specified.

Also note that each daemon’s log file must be specified indadigh, and in two places: one
specification is for use by theondormaster and the other is for use by the daemon itself. In
the example, th&XYZZY condorscheddconfiguration variableSCHEDD.XYZZY.SCHEDROG
definition references theondormasterdaemon’'sxYZZY LOG

Comments and Line Continuations

A Condor configuration file may contain comments and line icartions. A comment is any line
beginning with a pound charactet)(A continuation is any entry that continues across mudspl
lines. Line continuation is accomplished by placing thekiséash characten\ at the end of any
line to be continued onto another. Valid examples of lineticoration are

START = (Keyboardidle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu ,\
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \

bigbird.cs.wisc.edu

HOSTALLOW_ADMIN = $(ADMIN_MACHINES)

Note that a line continuation character may currently belwgighin a comment, so the following
example doenot set the configuration variablEOO

This comment includes the following line, so FOO is NOT set \
FOO = BAR

Condor Version 7.2.3 Manual

3.3. Configuration 147

It is a poor idea to use this functionality, as it is likely tojg working in future Condor releases.

Executing a Program to Produce Configuration Macros

Instead of reading from a file, Condor may run a program toioltanfiguration macros. The ver-
tical bar character () as the last character defining a file name provides the syrgegssary to tell
Condor to run a program. This syntax may only be used in thaitiefi of the CONDORONFIG
environment variable, or theOCALCONFIGFILE configuration variable.

The command line for the program is formed by the charactersquling the vertical bar char-
acter. The standard output of the program is parsed as a ooatiion file would be.

An example:
LOCAL_CONFIG_FILE = /bin/make_the_config|

Program/bin/makethe_configis executed, and its output is the set of configuration macros

Note that either a program is executed to generate the caafign macros or the configuration
is read from one or more files. The syntax uses space chaaotegparate command line elements,
if an executed program produces the configuration macrascesgharacters would otherwise sepa-
rate the list of files. This syntax does not permit distinbing one from the other, so only one may
be specified.

Pre-Defined Macros
Condor provides pre-defined macros that help configure Qoreie-defined macros are listed as
$(macro _name).
This first set are entries whose values are determined atmendand cannot be overwritten.
These are inserted automatically by the library routinechiparses the configuration files.
$(FULLLHOSTNAME) The fully qualified host name of the local machine, which isth@ame plus
domain name.
$(HOSTNAME) The host name of the local machine (no domain name).
$(| PLADDRESS) The ASCII string version of the local machine’s IP address.

$(TI LDE) The full path to the home directory of the Unix user condasu€h a user exists on the
local machine.

$(SUBSYSTEM The subsystem name of the daemon or tool that is evaluatengntcro. This
is a unique string which identifies a given daemon within tlemd@r system. The possible
subsystem names are:

Condor Version 7.2.3 Manual

3.3. Configuration

148

« STARTD
« SCHEDD

« MASTER

« COLLECTOR

« NEGOTIATOR

« KBDD

« SHADOW

« STARTER

« CKPT_SERVER
« SUBMIT

« GRIDMANAGER
.« TOOL

« STORK

« HAD

« REPLICATION

« QUILL

- DBMSD

. JOB_ROUTER

« LEASEMANAGER

This second set of macros are entries whose default valeededermined automatically at run
time but which can be overwritten.

$(ARCH) Defines the string used to identify the architecture of tt@lanachine to Condor. The
condotstartdwill advertise itself with this attribute so that users cabmit binaries compiled
for a given platform and force them to run on the correct maebi condorsubmitwill
append a requirement to the job ClassAd that it must run osdngeARCHand OPSY Sof
the machine where it was submitted, unless the user speaR€sand/orOPSY Sexplicitly
in their submit file. See the trmondorsubmitmanual page on page 795 for details.

$(OPSYS) Defines the string used to identify the operating systemefdbal machine to Condor.
If it is not defined in the configuration file, Condor will autatically insert the operating
system of this machine as determinedumname

$(UNAMEARCH) The architecture as reported bmamég2)’s machine field. Always the same
asARCHon Windows.

$(UNAMEOPSYS) The operating system as reportedunamég2)’s sysname field. Always the
same a©PSYSon Windows.

$(PI D) The process ID for the daemon or tool.

Condor Version 7.2.3 Manual

3.3. Configuration 149

$(PPI D) The process ID of the parent process for the daemon or tool.

$(USERNAME) The user name of the UID of the daemon or tool. For daemontedtas root, but
running under another UID (typically the user condor), thill be the other UID.

$(FI LESYSTEMDOMAI N) Defaults to the fully qualified host name of the machine ivialeated
on. See section 3.3.7, Shared File System Configuratior&fitaes for the full description
of its use and under what conditions you would want to chahge i

$(Ul DDOVAI N) Defaults to the fully qualified host name of the machine itMaleated on. See
section 3.3.7 for the full description of this configuratiariable.

Since$(ARCH) and$(OPSYS) will automatically be set to the correct values, we recomdnen
that you do not overwrite them. Only do so if you know what yoe doing.

3.3.2 The Special Configuration Macros $ENV(), $SRANDOMCHOICE(),
and $SRANDOM_INTEGER()

References to the Condor process’s environment are allowtbeé configuration files. Environment
references use tHeNV macro and are of the form:

$ENV(environment_variable_name)
For example,
A = $ENV(HOME)

bindsA to the value of the HOME environment variable. Environmeférences are not currently
used in standard Condor configurations. However, they caremes be useful in custom configu-
rations.

This same syntax is used in tRRANDOMMHOICE() macro to allow a random choice of a
parameter within a configuration file. These references fileeoform:

$RANDOM_CHOICE(list of parameters)

This allows a random choice within the parameter list to belenat configuration time. Of the list
of parameters, one is chosen when encountered during ceetfigjun. For example, if one of the
integers 0-8 (inclusive) should be randomly chosen, theronasage is

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

TheRANDOMNTEGER() macro is similar to th@RANDOMMHOICE() macro, and is used to
select a random integer within a configuration file. Refeesrare of the form:

Condor Version 7.2.3 Manual

3.3. Configuration 150

$RANDOM_INTEGER(min, max [, step])

A random integer within the rangmin andmayx, inclusive, is selected at configuration time. The
optionalstep parameter controls the stride within the range, and it d&fda the value 1. For
example, to randomly chose an even integer in the range ficRiive), the macro usage is

$RANDOM_INTEGER(0, 8, 2)

See section 7.2 on page 555 for an actual use of this speatiacro.

3.3.3 Condor-wide Configuration File Entries

This section describes settings which affect all parts ef @ondor system. Other system-wide
settings can be found in sectibn 3.3.6 on “Network-Relatedfiguration File Entries”, and sec-
tion[3.3.7 on “Shared File System Configuration File Entries

CONDORHOST This macro may be used to define tBeNEGOTIATORHOST) and is used
to define the$(COLLECTORHOST) macro. Normally thecondorcollector and con-
dor_negotiatorwould run on the same machine. If for some reason they wergumobn
the same maching(CONDORHOST) would not be needed. Some of the host-based secu-
rity macros us&(CONDORHOST) by default. See section 3.6.9, on Setting up IP/host-based
security in Condor for details.

COLLECTORHOST The host name of the machine where tiomdoc.collectoris running for your
pool. Normally, it is defined relative to tH CONDORHOST) macro. There is no default
value for this macroCOLLECTORHIOSTmust be defined for the pool to work properly.

In addition to defining the host name, this setting can ojtigte used to specify the network
port of thecondorcollector. The port is separated from the host name by a colol).(For
example,

COLLECTOR_HOST = $(CONDOR_HOST):1234

If no port is specified, the default port of 9618 is used. Ushmdefault port is recommended
for most sites. It is only changed if there is a conflict wittotlrer service listening on the
same network port. For more information about specifyingpa-standard port for theon-
dor_collectordaemon, see section 3.7.1 on pagel 326.

NEGOTI ATORHOST This configuration variable is no longer used. It previowd#fined the host
name of the machine where thendornegotiatoris running. At present, the port where the
condornegotiatoris listening is dynamically allocated.

CONDORVI EWHOST The host name of the machine, optionally appended by a caidntlze
port number, where the CondorView server is running. Thigise is optional, and requires

Condor Version 7.2.3 Manual

3.3. Configuration 151

additional configuration to enable it. There is no defaultiggfor CONDOR/IEW.HOST If
CONDONIEW_HOSTis not defined, no CondorView server is used. See sectionBdi?
page 396 for more details.

SCHEDDHGOST The host name of the machine where tomdorschedds running for your pool.
This is the host that queues submitted jobs. Note that, irt cwwor installations, there is
a condorscheddrunning on each host from which jobs are submitted. The diefailue of
SCHEDIHOST s the current host. For most pools, this macro is not defined.

RELEASEDI R The full path to the Condor release directory, which holdskim , etc , lib ,
andsbin directories. Other macros are defined relative to this oferd is no default value
for RELEASEDIR .

BI N This directory points to the Condor directory where useelgrograms are installed. It is
usually defined relative to tHflRELEASE DIR) macro. There is no default value fBIN .

LI B This directory points to the Condor directory where libegriused to link jobs for Condor’s
standard universe are stored. Ttwndorcompileprogram uses this macro to find these li-
braries, so it must be defined faondorcompileto function. $(LIB) is usually defined
relative to the$(RELEASE.DIR) macro, and has no default value.

LI BEXEC This directory points to the Condor directory where supmammands that Condor
needs will be placed. Do not add this directory to a user aiesysvide path.

I NCLUDE This directory points to the Condor directory where headesfieside 5(INCLUDE)
would usually be defined relative to tB6RELEASE_DIR) configuration macro. There is no
default value, but if defined, it can make inclusion of neaegtieader files for compilation
of programs (such as those programs thatlibm®ndorapi.a) easier through the use of
condorconfigval.

SBI N This directory points to the Condor directory where Cong@ystem binaries (such as the
binaries for the Condor daemons) and administrative to@srestalled. Whatever directory
$(SBIN) points to ought to be in theATHof users acting as Condor administratd@&IN
has no default value.

LOCAL DI R The location of the local Condor directory on each machingadnr pool. One
common option is to use the condor user's home directory i@y be specified with
$(TILDE) . There is no default value f&tOCALDIR . For example:

LOCAL_DIR = $(tilde)
On machines with a shared file system, where either®$ffdLDE) directory or another
directory you want to use is shared among all machines in poot, you might use the
$(HOSTNAME)macro and have a directory with many subdirectories, onedeh machine

in your pool, each named by host names. For example:

LOCAL_DIR = $(tilde)/hosts/$(hostname)

Condor Version 7.2.3 Manual

3.3. Configuration 152

or:

LOCAL_DIR = $(release_dir)/hosts/$(hostname)

LOG Used to specify the directory where each Condor daemonsitgdog files. The names of the
log files themselves are defined with other macros, whichhes$(LOG) macro by default.
The log directory also acts as the current working directdmyhe Condor daemons as the run,
so if one of them should produce a core file for any reason, itlvbe placed in the directory
defined by this macrd.OGis required to be defined. Normal§(LOG) is defined in terms
of $(LOCAL_DIR) .

SPOOL The spool directory is where certain files used by ¢bedorscheddare stored, such as
the job queue file and the initial executables of any jobshhge been submitted. In addition,
for systems not using a checkpoint server, all the checkgibd@s from jobs that have been
submitted from a given machine will be store in that machirggool directory. Therefore,
you will want to ensure that the spool directory is locatedaopartition with enough disk
space. If a given machine is only set up to execute Condorgndsot submit them, it would
not need a spool directory (or this macro defined). There islefault value forSPOOL,
and thecondorscheddwill not function without itSPOOLdefined. Normally$(SPOOL) is
defined in terms o$(LOCAL_DIR) .

EXECUTE This directory acts as a place to create the scratch dineotforny Condor job that is
executing on the local machine. The scratch directory igltrgtination of any input files that
were specified for transfer. It also serves as the job’s wayldirectory if the job is using
file transfer mode and no other working directory was spegtifléa given machine is set up
to only submit jobs and not execute them, it would not needxatwge directory, and this
macro need not be defined. There is no default valueEXECUTEand thecondorstartd
will not function if EXECUTHSs undefined. Normally$(EXECUTE) is defined in terms of
$(LOCAL DIR) . To customize the execute directory independently for deathbh slot, use
SLOTXEXECUTE

SLOTx_EXECUTE Specifies an execute directory for use by a specific batch@should be the
number of the batch slot, such as 1, 2, 3, etc.) This execteetdry serves the same purpose
asEXECUTE but it allows you to configure the directory independendlydach batch slot.
Having slots each using a different partition would be ukdéu example, in preventing one
job from filling up the same disk that other jobs are trying totevto. If this parameter is
undefined for a given batch slot, it will ueXECUTEas the default. Note that each slot will
advertiseTotalDisk andDisk for the partition containing its execute directory.

LOCAL_CONFI GFI LE Identifies the location of the local, machine-specific camfigion file for
each machine in the pool. The two most common choices wouljukteng this file in the
$(LOCAL_DIR) , or putting all local configuration files for the pool in a sedrdirectory,
each one named by host name. For example,

LOCAL_CONFIG_FILE = $(LOCAL_DIR)/condor_config.local

Condor Version 7.2.3 Manual

3.3. Configuration 153

or,

LOCAL_CONFIG_FILE = $(release_dir)/etc/$(hostname).lo cal

or, not using the release directory

LOCAL_CONFIG_FILE = /full/path/to/configs/$(hostname) Jocal

The value ofs(LOCAL_CONFIGFILE) istreated as a list of files, nota single file. The items
in the list are delimited by either commas or space charsctehnis allows the specification
of multiple files as the local configuration file, each one pssed in the order given (with
parameters set in later files overriding values from presibles). This allows the use of
one global configuration file for multiple platforms in thegdpdefines a platform-specific
configuration file for each platform, and uses a local configian file for each machine. If
the list of files is changed in one of the later read files, the l& replaces the old list, but
any files that have already been processed remain processgdre removed from the new
list if they are present to prevent cycles. See section @8 dage 147 for directions on using
a program to generate the configuration macros that wouleraike reside in one or more
files as described here. HOCALCONFIGFILE is not defined, no local configuration files
are processed. For more information on this, see secti¢hBabout Configuring Condor for
Multiple Platforms on page 391.

REQUI RELOCAL_CONFI GFI LE A boolean value that defaults forue . WhenTrue , Con-
dor exits with an error, if any file listed ihOCALCONFIGFILE cannot be read. A value
of False allows local configuration files to be missing. This is mostfukfor sites that
have both large numbers of machines in the pool and a locdigeoation file that uses the
$(HOSTNAME)macro in its definition. Instead of having an empty file formMeost in the
pool, files can simply be omitted.

LOCAL_CONFI GDI R Beginning in Condor 6.7.18, a directory may be used as a owrtéor
local configuration files. The files found in the directory a®rted into lexicographi-
cal order, and then each file is treated as though it was listdd CALCONFIGFILE .
LOCALCONFIGDIR is processed before any files listedi®@ CALCONFIGFILE , and is
checked again after processing t@CALCONFIGFILE list. Itis a list of directories, and
each directory is processed in the order it appears in thellle process is not recursive, so
any directories found inside the directory being processedgnored.

CONDORLI DS The User ID (UID) and Group ID (GID) pair that the Condor daemahould
run as, if the daemons are spawned as root. This value canbalsspecified in the
CONDORDS environment variable. If the Condor daemons are not staatedoot, then
neither thisCONDORDS configuration macro nor th€ ONDORDS environment vari-
able are used. The value is given by two integers, separatea ieriod. For example,
CONDOR_IDS = 1234.1234. If this pair is not specified in either the configuration file o
in the environment, and the Condor daemons are spawned gghen Condor will search
for acondor user on the system, and run as that user's UID and GID. Seiers@&c6.11 on
UIDs in Condor for more details.

Condor Version 7.2.3 Manual

3.3. Configuration 154

CONDORADM N The email address that Condor will send mail to if somethingggwrong in
your pool. For example, if a daemon crashes,abedormastercan send aobituaryto this
address with the last few lines of that daemon’s log file anded imessage that describes what
signal or exit status that daemon exited with. There is naulefalue fortCONDORDMIN.

CONDOR.SUPPORT_EMAI L The email address to be included at the bottom of all email-Con
dor sends out under the label “Email address of the local Goadministrator:”. This is
the address where Condor users at your site should sendgtiestions about Condor and
get technical support. If this setting is not defined, Conalitiruse the address specified in
CONDORDMIN(described above).

MAI L The full path to a mail sending program that useso specify a subject for the message.
On all platforms, the default shipped with Condor should kvadnly if you installed things
in a non-standard location on your system would you needdogé this setting. There is no
default value foMAIL, and thecondorscheddwill not function unlessMAIL is defined.

RESERVEDSWAP Determines how much swap space you want to reserve for yonmoachine.
Condor will not start up moreondotrshadowprocesses if the amount of free swap space on
your machine falls below this leveRESERVEISWARSs specified in megabytes. The default
value of RESERVELSWARSs 5 megabytes.

RESERVEDDI SK Determines how much disk space you want to reserve for your machine.
When Condor is reporting the amount of free disk space in argpartition on your machine,
it will always subtract this amount. An example is tbendorstartd which advertises the
amount of free space in tIB%EXECUTE) directory. The default value RESERVEIDISK

is zero.

LOCK Condor needs to create lock files to synchronize access tougalog files. Because of
problems with network file systems and file locking over tharge wehighly recommend
that you put these lock files on a local partition on each mehif you do not have your
$(LOCAL_DIR) on a local partition, be sure to change this entry.

Whatever user or group Condor is running as needs to have aeitess to this directory. If
you are not running as root, this is whatever user you stanettiecondormasteras. If you
are running as root, and there is a condor account, it is nigdylcondor. Otherwise, it is
whatever you set in thEONDORDS environment variable, or whatever you define in the
CONDORDS setting in the Condor config files. See section 3.J6.11 on UiDSandor for
details.

If no value forLOCK:is provided, the value dfOGis used.

HI STORY Defines the location of the Condor history file, which stonefoimation about all
Condor jobs that have completed on a given machine. This aniacused by both the
condorscheddwhich appends the information amtndorhistory, the user-level program
used to view the history file. This configuration macro is givihe default value of
$(SPOOL)/history in the default configuration. If not defined, no history filkept.

ENABLEHI STORY.ROTATI ON If this is defined to be true, then the history file will be retet
If it is false, then it will not be rotated, and it will grow irdinitely, to the limits allowed by
the operating system. If this is not defined, it is assumecettrde. The rotated files will be
stored in the same directory as the history file.

Condor Version 7.2.3 Manual

3.3. Configuration 155

MAX HI STORY.LOG Defines the maximum size for the history file, in bytes. It détfato 20MB.
This parameter is only used if history file rotation is enable

MAX_HI STORY_.ROTATI ONS When history file rotation is turned on, this controls how man
backup files there are. It default to 2, which means that theag be up to three history
files (two backups, plus the history file that is being curyentritten to). When the history
file is rotated, and this rotation would cause the number okbps to be too large, the oldest
file is removed.

MAX_J OB.QUEUE.LOG ROTATI ONS The schedd periodically rotates the job queue database file
in order to save disk space. This option controls how marsteotfiles are saved. It defaults
to 1, which means there may be up to two history files (the prevone, which was rotated
out of use, and the current one that is being written to). Wthenjob queue file is rotated,
and this rotation would cause the number of backups to beiaing the maximum specified,
the oldest file is removed. The primary reason to save one oe modated job queue files
is if you are using Quill, and you want to ensure that Quill p&@n accurate history of all
events logged in the job queue file. Quill keeps track of whielast left off when reading
logged events, so when the file is rotated, Quill will resumading from where it last left
off, provided that the rotated file still exists. If Quill fisdhat it needs to read events from
a rotated file that has been deleted, it will be forced to sk missing events and resume
reading in the next chronological job queue file that can mdb Such an event should not
lead to an inconsistency in Quill's view of the current queoatents, but it would create a
inconsistency in Quill's record of the history of the job qee

DEFAULT_DOVAI NNAME The value to be appended to a machine’s host name, repmgenti
domain name, which Condor then uses to form a fully qualifiest imame. This is required
if there is no fully qualified host name in filetc/hosts or in NIS. Set the value in the
global configuration file, as Condor may depend on knowing ¥aiue in order to locate the
local configuration file(s). The default value as given in $henple configuration file of the
Condor download is bogus, and must be changed. If this Varialbemoved from the global
configuration file, or if the definition is empty, then Condtteanpts to discover the value.

NODNS A boolean value that defaults féalse . WhenTrue , Condor constructs host names
using the host’s IP address together with the value defineBEs-AULTDOMAINNAME

CMI P_ADDR If neitherCOLLECTORHOSTnor COLLECTORP _ADDRmacros are defined, then
this macro will be used to determine the IP address of thaaenainager (collector daemon).
This macro is defined by an IP address.

EMAI L DOVAI N By default, if a user does not specifiptify _user in the submit description
file, any email Condor sends about that job will go to "usera@WID.DOMAIN". If your
machines all share a common UID domain (so that you wouldJ#et DOMAINto be the
same across all machines in your pool), but email to user@D@MAIN is not the right
place for Condor to send email for your site, you can definedigfault domain to use for
email. A common example would be to $WAIL_DOMAINo the fully qualified host name
of each machine in your pool, so users submitting jobs frorpeciéic machine would get
email sent to user@machine.your.domain, instead of useas@omain. You would do this

Condor Version 7.2.3 Manual

3.3. Configuration 156

by settingEMAIL_DOMAINto $(FULL _HOSTNAME)In general, you should leave this set-
ting commented out unless two things are truelU1lp)_DOMAINis set to your domain, not
$(FULL _HOSTNAME)and 2) email to user@UIMOMAIN will not work.

CREATE COREFI LES Defines whether or not Condor daemons are to create a core fiteei
LOG directory if something really bad happens. It is used to setresource limit for the
size of a core file. If not defined, it leaves in place whateimaitlwas in effect when the
Condor daemons (normally theondormastej were started. This allows Condor to inherit
the default system core file generation behavior at starfop.Unix operating systems, this
behavior can be inherited from the parent shell, or specifiedshell script that starts Condor.
If this parameter is set anttue , the limit is increased to the maximum. If it is setRalse ,
the limit is set at 0 (which means that no core files are crgat€dre files greatly help the
Condor developers debug any problems you might be havingudyg the parameter, you
do not have to worry about tracking down where in your booipgstyou need to set the core
limit before starting Condor. You set the parameter to whatdehavior you want Condor
to enforce. This parameter defaults to undefined to allowrthial operating system default
value to take precedence, and is commented out in the detafiguration file.

CKPT_PROBE Defines the path and executable name of the helper procestoCuwiill use to
determine information for th€heckpointPlatform attribute in the machine’s ClassAd.
The default value i$(LIBEXEC)/condor _ckpt _probe .

ABORT_ONLEXCEPTI ON When Condor programs detect a fatal internal exceptioly, tioemally
log an error message and exit. If you have turne@€&®EATECOREFILES , in some cases
you may also want to turn cABORTONEXCEPTION so that core files are generated when
an exception occurs. Set the following to True if that is wya want.

QQUERY_TI MEQUT Defines the timeout (in seconds) tlaindorqg uses when trying to connect
to thecondorschedd Defaults to 20 seconds.

DEAD.COLLECTORMAX_ AVO DANCETI ME Defines the interval of time (in seconds) between
checks for a failed primargondor.collectordaemon. If connections to the dead primeoy-
dor_collectortake very little time to fail, new attempts to query the primmaondorcollector
may be more frequent than the specified maximum avoidanee fithe default value equals
one hour. This variable has relevance to flocked jobs, asfih@®the maximum time they
may be reporting to the primagondorcollectorwithout thecondornegotiatornoticing.

PASSWD CACHE_REFRESH Condor can cause NIS servers to become overwhelmed by gderie
uid and group information in large pools. In order to avoii throblem, Condor caches UID
and group information internally. This integer value alkywool administrators to specify
(in seconds) how long Condor should wait until refreshescheaentry. The default is set
to 300 seconds, or 5 minutes, plus a random number of secatdedn 0 and 60 to avoid
having lots of processes refreshing at the same time. Thamthat if a pool administrator
updates the user or group database (for exaniele/passwd or/etc/group), it can
take up to 6 minutes before Condor will have the updated mé&tion. This caching feature
can be disabled by setting the refresh interval to 0. In &dithe cache can also be flushed
explicitly by running the command

Condor Version 7.2.3 Manual

3.3. Configuration 157

condor_reconfig -full

This configuration variable has no effect on Windows.

SYSAPI _GET_LOADAVG If set to False, then Condor will not attempt to compute ttaellaverage
on the system, and instead will always report the system &wadage to be 0.0. Defaults to
True.

NETWORK MAX_PENDI NGCONNECTS This specifies a limit to the maximum number of simulta-
neous network connection attempts. This is primarily raféstocondorscheddwhich may
try to connect to large numbers of startds when claiming thEhe negotiator may also con-
nect to large numbers of startds when initiating securigssms used for sending MATCH
messages. On Unix, the default for this parameter is eigityent of the process file descrip-
tor limit. On windows, the default is 1600.

WANT_UDP_COMMAND SOCKET This setting, added in version 6.9.5, controls if Condomdaes
should create a UDP command socket in addition to the TCP @mdmsocket (which is
required). The default i$rue , and modifying it requires restarting all Condor daemorms, n
just acondorreconfigor SIGHUP.

Normally, updates sent to theondorcollector use UDP, in addition to certain keep alive
messages and other non-essential communication. Howiavegrtain situations, it might
be desirable to disable the UDP command port (for exampleedace the number of ports
represented by a GCB broker, etc).

Unfortunately, due to a limitation in how these command stelare created, it is not
possible to define this setting on a per-daemon basis, fompl& by trying to set
STARTD.WANTUDRPCOMMANBOCKETAL least for now, this setting must be defined ma-
chine wide to function correctly.

If this setting is set to true on a machine runningpadorcollector, the pool should be config-
ured to use TCP updates to that collector (see section 3page 345 for more information).

3.3.4 Daemon Logging Configuration File Entries

These entries control how and where the Condor daemonstaritg files. Many of the entries in
this section represents multiple macros. There is one fohn sabsystem (listed in sectibn 3.3.1).
The macro name for each substitut3lUBSY S>with the name of the subsystem corresponding to
the daemon.

<SUBSYS>L0OG The name of the log file for a given subsystem. For exan§{l&TARTD_LOG)
gives the location of the log file faondorstartd

MAX_<SUBSYS>LOG Controls the maximum length in bytes to which a log will beoaléd to
grow. Each log file will grow to the specified length, then beeshto a file with the suffix
.old . The.old files are overwritten each time the log is saved, thus the mawi space
devoted to logging for any one program will be twice the maximlength of its log file. A
value of 0 specifies that the file may grow without bounds. Téfadlt is 1 Mbyte.

Condor Version 7.2.3 Manual

3.3. Configuration 158

TRUNC <SUBSYS>LOGONOPEN If this macro is defined and set Taue , the affected log will
be truncated and started from an empty file with each invonaif the program. Otherwise,
new invocations of the program will append to the previougfite. By default this setting is
False for all daemons.

<SUBSYS>LOCK This macro specifies the lock file used to synchronize apppedations to the
log file for this subsystem. It must be a separate file fronfiSUBSY S>_LOG) file, since
the $(<SUBSYS>_LOG) file may be rotated and you want to be able to synchronize acces
across log file rotations. A lock file is only required for lote# which are accessed by more
than one process. Currently, this includes onlyStADOWUbsystem. This macro is defined
relative to theb(LOCK) macro.

FI LELOCK.VI AMUTEX This macro setting only works on Win32 — it is ignored on Urlbset
to beTrue , then log locking is implemented via a kernel mutex instefadafile locking. On
Win32, mutex access is FIFO, while obtaining a file lock isu@terministic. Thus setting to
True fixes problems on Win32 where processes (usually shadows) starve waiting for a
lock on a log file. Defaults tdrue on Win32, and is alwayBalse on Unix.

ENABL E USERLOGL OCKI NG WhenTrue (the default value), a user’s job log (as specified in
a submit description file) will be locked before being writte. If False , Condor will not
lock the file before writing.

TOUCHLOGI NTERVAL The time interval in seconds between when daemons touch ltggei
files. The change in last modification time for the log file iefus when a daemon restarts
after failure or shut down. The last modification date is f@ih and it provides an upper
bound on the length of time that the daemon was not runninéaults to 60 seconds.

LOGS.USE_TI MESTAMP This macro controls how the current time is formatted at thet of each
line in the daemon log files. Whérrue , the Unix time is printed (humber of seconds since
00:00:00 UTC, January 1, 1970). Whealse (the default value), the time is printed like
s0: <Month>/<Day> <Hour>:<Minute>:<Second> in the local timezone.

<SUBSYS>DEBUG All of the Condor daemons can produce different levels opatitiepending
on how much information is desired. The various levels obesity for a given daemon are
determined by this macro. All daemons have the default IBuBLWAY Sand log messages
for that level will be printed to the daemon’s log, regardles$ this macro’s setting. Settings
are a comma- or space-separated list of the following values

D.ALL This flag turns orall debugging output by enabling all of the debug levels at once.
There is no need to list any other debug levels in addition #l L ; doing so would be
redundant. Be warned: this will generate abottld3GE amount of output. To obtain a
higher level of output than the default, consider udmgULLDEBUGefore using this
option.

D_FULLDEBUG This level provides verbose output of a general nature imtddg files. Fre-
guent log messages for very specific debugging purposesiviieuéxcluded. In those

cases, the messages would be viewed by having that anotemittD_ FULLDEBUG
both listed in the configuration file.

Condor Version 7.2.3 Manual

3.3. Configuration 159

D_DAEMONCORE Provides log file entries specific to DaemonCore, such agitine dae-
mons have set and the commands that are registered. If &l DEBUGand
D_DAEMONCORIEe set, expeateryverbose output.

D_PRI V This flag provides log messages aboutghgilege stateswitching that the daemons
do. See sectidn 3.6.1.1 on UIDs in Condor for details.

D_COMVAND With this flag set, any daemon that uses DaemonCore will ptibfa log mes-
sage whenever a command comes in. The name and integer afrtireand, whether
the command was sent via UDP or TCP, and where the commandawafam are all
logged. Because the messages about the command useadgrkbddto communi-
cate with thecondorstartdwhenever there is activity on the X server, and the command
used for keep-alives are both only printed widtFULLDEBUnabled, it is best if this
setting is used for all daemons.

D_LOAD The condorstartd keeps track of the load average on the machine where it is run-
ning. Both the general system load average, and the loacd@wdreing generated by
Condor’s activity there are determined. With this flag skg ¢ondorstartd will log
a message with the current state of both of these load awergenever it computes
them. This flag only affects theondorstartd

D_KEYBOARD With this flag set, thecondorstartd will print out a log message with the
current values for remote and local keyboard idle time. Tlaig affects only theon-
dor_startd

D_JOB When this flag is set, theondorstartd will send to its log file the contents of any job
ClassAd that theondorscheddsends to claim theondotstartd for its use. This flag
affects only thecondorstartd

D_MACHI NE When this flag is set, theondorstartdwill send to its log file the contents of its
resource ClassAd when tlowndorscheddtries to claim thecondorstartd for its use.
This flag affects only theondorstartd

D_SYSCALLS This flag is used to make tlemndorshadowlog remote syscall requests and
return values. This can help track down problems a user isbawith a particular job
by providing the system calls the job is performing. If ang &ailing, the reason for
the failure is given. Theondorscheddalso uses this flag for the server portion of the
gueue management code. WitSYSCALL Sdefined inSCHEDIDEBUGhere will be
verbose logging of all gueue management operationsdhdorscheddberforms.

D_MATCH When this flag is set, theondornegotiatorlogs a message for every match.

D_NETWORK When this flag is set, all Condor daemons will log a messageveryelCP
accept, connect, and close, and on every UDP send and retaigdlag is not yet fully
supported in theondorshadow

D_HOSTNANME When this flag is set, the Condor daemons and/or tools wiltperbose mes-
sages explaining how they resolve host names, domain nameés$P addresses. This is
useful for sites that are having trouble getting Condor tokAmecause of problems with
DNS, NIS or other host name resolving systems in use.

D_CKPT When this flag is set, the Condor process checkpoint suppdg,avhich is linked
into a STANDARD universe user job, will output some low-legetails about the check-
point procedure into th§(SHADOWLOG).

Condor Version 7.2.3 Manual

3.3. Configuration

160

D_SECURI TY This flag will enable debug messages pertaining to the sdtgpaure net-
work communication, including messages for the negotiadioa socket authentication
mechanism, the management of a session key cache. and exabagt the authentica-
tion process itself. See section 3.6.1 for more informasibaut secure communication
configuration.

D_PROCFAM LY Condor often times needs to manage an entire family of peasegthat is,
a process and all descendants of that process). This delgugiflaurn on debugging
output for the management of families of processes.

D_ACCOUNTANT When this flag is set, theondornegotiatorwill output debug messages
relating to the computation of user priorities (see sec¢8at).

D_PROTOCOL Enable debug messages relating to the protocol for Conduathmaking
and resource claiming framework.

D_PI D This flag is different from the other flags, because it is usechiange the formatting
of all log messages that are printed, as opposed to spegifyirat kinds of messages
should be printed. ID_PID is set, Condor will always print out the process identi-
fier (PID) of the process writing each line to the log file. Thaespecially helpful for
Condor daemons that can fork multiple helper-processeh(as thecondorscheddor
condorcollector) so the log file will clearly show which thread of executiorgsnerat-
ing each log message.

D_FDS This flag is different from the other flags, because it is usechiange the formatting
of all log messages that are printed, as opposed to spegifyirat kinds of messages
should be printed. ID_FDSis set, Condor will always print out the file descriptor that
the open of the log file was allocated by the operating systéhis can be helpful in
debugging Condor’s use of system file descriptors as it vefigyally track the number
of file descriptors that Condor has open.

ALL_DEBUG Used to make all subsystems share a debug flag. Set the parakh&t DEBUG
instead of changing all of the individual parameters. Famagle, to turn on all debugging in
all subsystems, sétlLLL. DEBUG = D_ALL

TOOL_DEBUG Uses the same values (debugging levelsx88BSYS>DEBUGo0 describe the
amount of debugging information sentgtderr for Condor tools.

SUBM T_DEBUG Uses the same values (debugging levelsya&BSYS>DEBUGoO describe the
amount of debugging information sentdtderr for condorsubmit

Log files may optionally be specified per debug level as faow

<SUBSYS><LEVEL>LOG This is the name of a log file for messages at a specific debeg lev
for a specific subsystem. If the debug level is include@(®SUBSYS>DEBUG) then all
messages of this debug level will be written both to #{eSUBSYS>LOG) file and the
$(<SUBSYS><LEVEL>_LOG)file. For example$(SHADOWSY SCALLSLOG) specifies
a log file for all remote system call debug messages.

MAX_<SUBSYS><LEVEL>LOG Similar toMAX<SUBSYS=>LOG.

Condor Version 7.2.3 Manual

3.3. Configuration 161

TRUNC <SUBSYS><LEVEL>LOGON.OPEN Similar to TRUNC<SUBSYS>LOGONOPEN

The following macros control where and what is written to ¢vent log, a file that receives job
user log events, but across all users and user’s jobs.

EVENT_LOG The full path and file name of the eventlog. There is no defaliite for this variable,
so no event log will be written, if not defined.

EVENT_LOGMAX_SI ZE Controls the maximum length in bytes to which the event lolj e
allowed to grow. The log file will grow to the specified lengthen be saved to a file with the
suffix .old. The .old files are overwritten each time the logased. A value of O specifies
that the file may grow without bounds (and disables rotatidrje default is 1 Mbyte. For
backwards compatibilityMAXEVENTLOGwill be used if EVENTLOGMAXSIZE is not
defined. IIEVENTLOGIis not defined, this parameter has no affect.

MAX_EVENT_LOG SeeEVENTLOGMAXSIZE .

EVENT_LOGMAX_ROTATI ONS Controls the maximum number of rotations of the event log tha
will be stored. If this value is 1 (the default), the eventlaig be rotated to a “.old” file as de-
scribed above. However, if this is greater than 1, then iplgltiotation files will be stores, up
to EVENTLOGMAXROTATIONSof them. These files will be named, instead of the “.old”
suffix, “.1", “.2", with the “.1” being the most recent rotatn. This is an integer parameter
with a default value of 1. IEVENTLOG:Is not defined, or EVENTLOGMAXSIZE has a
value of 0 (which disables event log rotation), this parankas no affect.

EVENT_LOGROTATI ONLOCK Controls the lock file that will be used to ensure that, when ro
tating files, the rotation is done by a single process. Th& $ring parameter; it's default
value is the file path of the event log itself, with a “.lock”"@manded. IfEVENTLOGIs not
defined, or fIEVENTLOGMAXSIZE has a value of 0 (which disables event log rotation),
this parameter has no affect.

EVENT_LOGFSYNC A boolean value that controls whether Condor will performfaync()
after writing each event to the event log. WhBrnue , anfsync() operation is performed
after each event. Thisync() operation forces the operating system to synchronize the
updates to the event log to the disk, but can negatively &ffecperformance of the system.
Defaults toFalse .

EVENT_LOGLOCKI NG A boolean value that defaults firue . WhenTrue , the event log (as
specified by VENTLOQ will be locked before being written to. Wheralse , Condor
does not lock the file before writing.

EVENT_LOGUSE XM_ A boolean value that defaults false . WhenTrue , events are logged
in XML format. If EVENTLOGIis not defined, this parameter has no affect.

EVENT_LOG.JOB_AD_I NFORMATI ONATTRS A comma-separated list of job ClassAd attributes,
whose evaluated values form a new event, the JobAdInfoom&tient. This new event is
placed in the event log in addition to each logged evenEMENTLOGis not defined, this
parameter has no affect.

Condor Version 7.2.3 Manual

3.3. Configuration 162

3.3.5 DaemonCore Configuration File Entries

Please read section 3.9 for details on DaemonCore. Theregeen configuration file settings that
DaemonCore uses which affect all Condor daemons (excephekpoint server, standard universe
shadow, and standard universe starter, none of which usea@#@ore).

HOSTALLOW. . All macros that begin with eithddOSTALLOWbr HOSTDENYare settings for
Condor's host-based security. See sedtion 8.6.9 on Seipitig/host-based security in Condor
for details on these macros and how to configure them.

ENABLERUNTI MEECONFI G Thecondorconfigval tool has an optioarset for dynamically set-
ting run time configuration values (which only effect thenmemory configuration variables).
Because of the potential security implications of thisdieat by default, Condor daemons will
not honor these requests. To use this functionality, Coadaministrators must specifically
enable it by settindENABLERUNTIMECONFIGto True , and specify what configuration
variables can be changed using SETTABLEATTRS .. family of configuration options
(described below). Defaults fealse .

ENABLEPERSI STENT_.CONFI G The condorconfigval tool has a-setoption for dynamically
setting persistent configuration values. These valuesidesoptions in the normal Condor
configuration files. Because of the potential security igatibns of this feature, by default,
Condor daemons will not honor these requests. To use thitifumality, Condor admin-
istrators must specifically enable it by settiBIABLEPERSISTENTCONFIGto True ,
creating a directory where the Condor daemons will holdertgramically-generated persis-
tent configuration files (declared usiRERSISTENT.CONFIGDIR, described below) and
specify what configuration variables can be changed use§BTTABLEATTRS .. family
of configuration options (described below). Defaultadse .

PERSI STENT_.CONFI GDI R Directory where daemons should store dynamically-gerdrpér-
sistent configuration files (used to suppoohdorconfigval -sef) This directory shoulanly
be writable by root, or the user the Condor daemons are rgrasr(if non-root). There is no
default, administrators that wish to use this functiomatitust create this directory and define
this setting. This directory must not be shared by multipte@or installations, though it can
be shared by all Condor daemons on the same host. Keep in hahthts directory should
not be placed on an NFS mount where “root-squashing” is iecefor else Condor daemons
running as root will not be able to write to them. A directopnly writable by root) on the
local file system is usually the best location for this dicegt

SETTABLEATTRS... All macros that begin with SETTABLEATTRS or
<SUBSYS>SETTABLEATTRS are settings used to restrict the configuration values
that can be changed using thendorconfigval command. Sectionh 3.6.9 on Setting up
IP/Host-Based Security in Condor for details on these nmsaami how to configure them. In
particular, section 3.6.9 on page 307 contains detailsifip&z these macros.

SHUTDOWNGRACEFUL TI MEOUT Determines how long Condor will allow daemons try their
graceful shutdown methods before they do a hard shutdowusdéfined in terms of seconds.
The default is 1800 (30 minutes).

Condor Version 7.2.3 Manual

3.3. Configuration

163

<SUBSYS>ADDRESSFI LE A complete path to a file that is to contain an IP address and por

number for a daemon. Every Condor daemon that uses Daemeii@sra command port
where commands are sent. The IP/port of the daemon is puailtemon’s ClassAd, so that
other machines in the pool can query ttendorcollector (which listens on a well-known
port) to find the address of a given daemon on a given machingenwbols and daemons
are all executing on the same single machine, communicatiomot require a query of the
condorcollectordaemon. Instead, they look in a file on the local disk to findHport. This
macro causes daemons to write the IP/port of their commacicesto a specified file. In this
way, local tools will continue to operate, even if the maehianning thecondorcollector
crashes. Using this file will also generate slightly lessvwogk traffic in the pool, since tools

including condorq and condorrm do not need to send any messages over the network to

locate thecondorschedddaemon. This macro is not necessary forebadorcollector dae-
mon, since its command socket is at a well-known port.

The macro is named by substitutirggUBSY S>with the appropriate subsystem string as
defined in sectioh 3.3/.1.

<SUBSYS>DAEMONAD_FI LE A complete path to a file that is to contain the ClassAd for a dae
mon. When the daemon sends a ClassAd describing itself teahdorcollector, it will
also place a copy of the ClassAd in this file. Currently, thattisg only works for thecon-
dor_scheddthat isSCHEDIDAEMOMDFILE) and is required for Quill.

<SUBSYS>ATTRSor <SUBSYS>EXPRS Allows any DaemonCore daemon to advertise arbi-
trary expressions from the configuration file in its Class&ive the comma-separated list of
entries from the configuration file you want in the given daem&lassAd. Frequently used
to add attributes to machines so that the machines canrdisate between other machines
in a job’srank andrequirements.

The macro is named by substitutirggUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

<SUBSYS>EXPRSs a historic setting that functions identically¢SUBSYS>ATTRS Use
<SUBSYS>ATTRS

NOTE: Thecondorkbdddoes not send ClassAds now, so this entry does not affechi. T
condorstartd, condorschedd condormaster and condorcollector do send ClassAds, so
those would be valid subsystems to set this entry for.

SUBMIT_.EXPRSnot part of the<SUBSYS>EXPRSit is documented in section 3.3]14

Because of the different syntax of the configuration file ateas€Ads, a little extra work is
required to get a given entry into a ClassAd. In particuldasSAds require quote marks (")
around strings. Numeric values and boolean expressiong@amdirectly. For example, if
thecondorstartdis to advertise a string macro, a numeric macro, and a bo@gpression,
do something similar to:

STRING = This is a string

NUMBER = 666

BOOL1 = True

BOOL2 = CurrentTime >= $(NUMBER) || $(BOOL1)
MY_STRING = "$(STRING)"

Condor Version 7.2.3 Manual

3.3. Configuration 164

STARTD_ATTRS = MY_STRING, NUMBER, BOOL1, BOOL2

DAEMON.SHUTDOWN Starting with Condor version 6.9.3, whenever a daemon isiefoopublish
a ClassAd update to theondorcollector, it will evaluate this expression. If it evaluates to
True , the daemon will gracefully shut itself down, exit with thdtecode 99, and will not be
restarted by theondormaster(as if it sent itself acondoroff command). The expression is
evaluated in the context of the ClassAd that is being settdodndorcollector, so it can ref-
erence any attributes that can be seen wathdor_status -long [-daemon_type]
(for examplegcondor_status -long [-master] for thecondormastej. Since each
daemon’s ClassAd will contain different attributes, adistirators should define these shut-
down expressions specific to each daemon, for example:

STARTD.DAEMON_SHUTDOWN
MASTER.DAEMON_SHUTDOWN

when to shutdown the startd
when to shutdown the master

Normally, these expressions would not be necessary, sa dfefmed, they default to FALSE.
One possible use case is for Condor glide-in, to havectimelor startd shut itself down if it
has not been claimed by a job after a certain period of time.

NOTE: This functionality does not work in conjunction with Corrdohigh-availability sup-
port (see section 3.10 on pdge 354 for more information)otf gnable high-availability for
a particular daemon, you should not define this expression.

DAEMON. SHUTDOWNFAST Identical toDAEMOMNSHUTDOW(\efined above), except the dae-
mon will use the fast shutdown mode (as if it sent itsadbadoroff command using thdast
option).

USE_CLONE_TO.CREATE PROCESSES This setting controls how a Condor daemon creates a new
process under certain versions of Linux. If seTtoe (the default value), thelone system
call is used. Otherwise, tferk system call is usecclone provides scalability improve-
ments for daemons using a large amount of memory (ecpndorscheddwith a lot of jobs
in the queue). Currently, the use dbne s available on Linux systems other than 1A-64,
but not when GCB is enabled.

NOT_RESPONDI NGTI MEOUT When a Condor daemon’s parent process is another Condor dae-
mon, the child daemon will periodically send a short mesgsages parent stating that it is
alive and well. If the parent does not hear from the child fevtdle, the parent assumes that
the child is hung, kills the child, and restarts the childislparameter controls how long the
parent waits before killing the child. It is defined in ternfsseconds and defaults to 3600 (1
hour). The child sends its alive and well messages at arvaitef one third of this value.

<SUBSYS>NOT_RESPONDI NGTI MEOUT Identical to NOTRESPONDINGIMEOUT
but controls the timeout for a specific type of daemon. For nga,
SCHEDINOTRESPONDINGIMEOUT controls how long thecondorschedd parent
daemon will wait without receiving an alive and well mess&gen thecondorscheddefore
killing it.

Condor Version 7.2.3 Manual

3.3. Configuration 165

NOT_RESPONDI NGWANT_CORE A boolean parameter with a default value of false. This
parameter is for debugging purposes on UNIX systems, andraisnthe behavior of
the parent process when it determines that a child processoisresponding (see
[164). If NOTRESPONDINGVANICOREIs true, the parent will send a SIGABRT
instead of SIGKILL to the child process. If the child proceiss configured with
CREATECOREFILES enabled, the child process will then generate a core dumge Se
NOTRESPONDING@IMEOUTon page 164, an€REATECOREFILES on page 156 for
related details.

LOCK FI LEUPDATE.I NTERVAL An integer value representing seconds, controlling howroft
valid lock files should have their on disk timestamps updatdpdating the timestamps pre-
vents administrative programs, suchtagpwatch from deleting long lived lock files. If set to
a value less than 60, the update time will be 60 seconds. Theltlealue is 28800, which is
8 hours. This variable only takes effect at the start or restfea daemon.

3.3.6 Network-Related Configuration File Entries

More information about networking in Condor can be foundent®on 3.7 on page 325.

Bl NDALL_I NTERFACES For systems with multiple network interfaces, if this configtion set-
ting is False , Condor will only bind network sockets to the IP address Hjwet with
NETWORKNTERFACE (described below). If set tdrue , the default value, Condor will
listen on all interfaces. However, currently Condor isl tilly able to advertise a single IP
address, evenif itis listening on multiple interfaces. Byadilt, it will advertise the IP address
of the network interface used to contact the collector,esithés is the most likely to be acces-
sible to other processes which query information from thmesaollector. More information
about using this setting can be found in section 3.7.2 on/age

NETWORK.| NTERFACE For systems with multiple network interfaces, if this configtion set-
ting is not defined, Condor binds all network sockets to finseiface found. To bind to a
specific network interface other than the first one, MEETWORKNTERFACEshould be set
to the IP address to use. WhBIND_ALL_INTERFACESIs set toTrue (the default), this
setting simply controls what IP address a given Condor hdsaavertise. More informa-
tion about configuring Condor on machines with multiple ratainterfaces can be found in
section 3.7.2 on page 329.

PRI VATENETWORK NAME If two Condor daemons are trying to communicate with eacleipth
and they both belong to the same private network, this gettifi allow them to commu-
nicate directly using the private network interface, iasteof having to use the Generic
Connection Broker (GCB) or to go through a public IP addre§sach private network
should be assigned a unique network name. This string cae &ay form, but it must
be unique for a particular private network. If another Candaemon or tool is config-
ured with the sam@®RIVATE.NETWORKAME it will attempt to contact this daemon us-
ing thePrivatelpAddr attribute from the classified ad. Even for sites using GCE; th
is an important optimization, since it means that two daesnom the same network can

Condor Version 7.2.3 Manual

3.3. Configuration

166

communicate directly, without having to go through the GOBKer. If GCB is enabled,
and thePRIVATE . NETWORKAMEs defined, théPrivatelpAddr will be defined auto-
matically. Otherwise, you can specify a particular priviBReaddress to use by defining the
PRIVATE.NETWORKNTERFACESsetting (described below). There is no default for this
setting.

PRI VATENETWORK.I NTERFACE For systems with multiple network interfaces, if this config
ration setting an@®RIVATE_ NETWORKAMEare both defined, Condor daemons will adver-
tise some additional attributes in their ClassAds to helgepCondor daemons and tools in
the same private network to communicate directly. PRIVATE.NETWORKNTERFACE
defines what IP address a given multi-homed machine shogldanghe private network.

If another Condor daemon or tool is configured with the s&@RE&VATE_NETWORKAME

it will attempt to contact this daemon using the IP addresxi§ied here. Sites using the
Generic Connection Broker (GCB) only need to defineRiR{VATE NETWORKAMEand
the PRIVATE NETWORKNTERFACEwill be defined automatically. Unless GCB is en-
abled, there is no default for this setting.

HI GHPORT Specifies an upper limit of given port numbers for Condor te, ssich that Condor is
restricted to a range of port numbers. If this macro is notliekly specified, then Condor
will not restrict the port numbers that it uses. Condor wielsystem-assigned port numbers.
For this macro to work, bothillGHPORTandLOWPOR(given below) must be defined.

LOWPORT Specifies a lower limit of given port numbers for Condor to,usgech that Condor is
restricted to a range of port numbers. If this macro is notliekly specified, then Condor
will not restrict the port numbers that it uses. Condor wikwsystem-assigned port numbers.
For this macro to work, bothllGHPORT(given above) andOWPORIust be defined.

I NLOWPORT An integer value that specifies a lower limit of given port rhars for Condor to
use on incoming connections (ports for listening), such @@ndor is restricted to a range
of port numbers. This range implies the use of bithLOWPOR&NdIN _HIGHPORTA
range of port numbers less than 1024 may be used for daemaniguas root. Do not
specifyIN _LOWPORIn combination withIN _HIGHPORTsuch that the range crosses the
port 1024 boundary. Applies only to Unix machine configuwmatiUse ofiN _LOWPORa&nd
IN _HIGHPORToverrides any definition dfOWPOR&andHIGHPORT

I NHI GHPORT An integer value that specifies an upper limit of given ponniers for Condor
to use on incoming connections (ports for listening), sunett Condor is restricted to a range
of port numbers. This range implies the use of bithLOWPOR&ANdIN _HIGHPORTA
range of port numbers less than 1024 may be used for daemaniguas root. Do not
specifyIN _LOWPORIn combination withIN _HIGHPORTsuch that the range crosses the
port 1024 boundary. Applies only to Unix machine configuwatiUse ofiIN _LOWPOR#&nd
IN _HIGHPORToverrides any definition dfOWPOR&andHIGHPORT

OUT_LOWPORT An integer value that specifies a lower limit of given port raers for Condor to
use on outgoing connections, such that Condor is restrtctadange of port numbers. This
range implies the use of bo®UTLOWPOR&NdOUTHIGHPORTA range of port numbers
less than 1024 is inappropriate, as not all daemons andwalblse run as root. Applies only
to Unix machine configuration. Use flUTLOWPOR&NdOUTHIGHPORToverrides any
definition of LOWPORandHIGHPORT

Condor Version 7.2.3 Manual

3.3. Configuration 167

OUT_HI GHPORT An integer value that specifies an upper limit of given pontnters for Condor
to use on outgoing connections, such that Condor is restricta range of port numbers. This
range implies the use of bo®UTLOWPOR&NJOUTHIGHPORTA range of port numbers
less than 1024 is inappropriate, as not all daemons andwalblse run as root. Applies only
to Unix machine configuration. Use flUTLOWPOR&NdOUTHIGHPORToverrides any
definition of LOWPORandHIGHPORT

UPDATE.COLLECTORW TH.TCP If your site needs to use TCP connections to send ClassAd
updates to your collector (which it almost certainly doesTNGset toTrue to enable this
feature. Please read section 3.7.4 on “Using TCP to Sené@otl Updates” on page 345
for more details and a discussion of when this functionaitjeeded. At this time, this
setting only affects the maicondorcollectorfor the site, not any sites thatcmndorschedd
might flock to. If enabled, also defitfOLLECTOBSOCKETCACHESIZE at the central
manager, so that the collector will accept TCP connectionsipdates, and will keep them
open for reuse. Defaults tealse .

TCP_UPDATE.COLLECTORS The list of collectors which will be updated with TCP insteaifd
UDP. Please read section 3]7.4 on “Using TCP to Send Colleffidates” on page 345 for
more details and a discussion of when a site needs this @unadiiy. If not defined, no collec-
tors use TCP instead of UDP.

<SUBSYS>TI MEOUT_MULTI PLI ER An integer value that defaults to 1. This value multiplies
configured timeout values for all targeted subsystem conications, thereby increasing the
time until a timeout occurs. This configuration variablerisehded for use by developers for
debugging purposes, where communication timeouts imerfe

NONBL OCKI NGCOLLECTORUPDATE A boolean value that defaults Taue . WhenTrue , the
establishment of TCP connections to ttemdorcollectordaemon for a security-enabled pool
are done in a honblocking manner.

NEGOTI ATORUSE_NONBLOCKI NGSTARTD.CONTACT A boolean value that defaults Toue .
WhenTrue , the establishment of TCP connections from tle@dornegotiatordaemon to
thecondorstartd daemon for a security-enabled pool are done in a nonblockegner.

The following settings are specific to enabling Generic Gamion Brokering or GCB in your
Condor pool. More information about GCB and how to configtican be found in section 3.7.3 on

page 332.

NET_REMAP_ENABLE A boolean variable, that when definedTaue , enables a network remap-
ping service for Condor. The service to use is controlled\iiyT. REMABSERVICE This
boolean value defaults fealse .

NET_REMAP_SERVI CE If NET.REMAPENABLEIs defined toTrue , this setting controls what
network remapping service should be used. Currently, thgwalue supported i$SCB The
default is undefined.

NET_REMAP.I NAGENT A comma or space-separated list of IP addresses for GCB tzoki@on
start up, thecondormasterchooses one at random from among the working brokers in the
list. There is no default if not defined.

Condor Version 7.2.3 Manual

3.3. Configuration 168

NET_REMAP_.ROUTE Hosts with the GCB network remapping service enabled thatldvike to
use a GCB routing table GCB broker specify the full path tartheuting table with this
setting. There is no default value if undefined.

MASTERWAI TSFOR.GCB.BROKER A boolean value that defaults tbrue . This variable
determines the behavior of thebndormaster with GCB enabled. With no GCB bro-
ker working upon either the start up of ttmndormaster or once thecondormaster
has successfully communicated with a GCB broker, but the ngonication fails, if
MASTERWVAITS FORGCBBROKERSs True , thecondormasterwaits while attempting to
find a working GCB broker. With no GCB broker working upon thars up of thecon-
dor_master if MASTERWAITS FORGCBBROKER:S False , thecondormasterfails and
exits, without restarting. Once tleendormasterhas successfully communicated with a GCB
broker, but the communication fails, MASTERWVAITS FORGCBBROKERSs False , the
condormasterkills all its children, exits, and restarts.

The set up task otondorglidein explicitly sets MASTERWAITS.FORGCBBROKERO
False in the configuration file it produces.

3.3.7 Shared File System Configuration File Macros

These macros control how Condor interacts with variouseshand network file systems. If you are
using AFS as your shared file system, be sure to read secfi@rln Using Condor with AFS. For
information on submitting jobs under shared file systems seetion 2.5.3.

Ul D.DOMAI N The UID _DOMAINmacro is used to decide under which user to run jobs. If the
$(UID _DOMAIN)on the submitting machine is different than $@ID _DOMAIN)on the
machine that runs a job, then Condor runs the job as thenm®rdy . For example, if the
submit machine has®UID _DOMAIN)of flippy.cs.wisc.edu, and the machine where the job
will execute has & UID _DOMAIN)of cs.wisc.edu, the job will run as useobody , because
the two$(UID _-DOMAIN)s are not the same. If tHUID -DOMAIN)is the same on both
the submit and execute machines, then Condor will run thagothe user that submitted the
job.

A further check attempts to assure that the submitting nmeckian not lie about its
UID _DOMAIN Condor compares the submit machine’s claimed valugJiir DOMAINto
its fully qualified name. If the two do not end the same, thengihbmit machine is presumed
to be lying about it4JID _DOMAIN In this case, Condor will run the job as usebody . For
example, a job submission to the Condor pool at the UW Madisan flippy.example.com,
claiming aUID _DOMAINof of cs.wisc.edu, will run the job as the usabody .

Because of this verificatio®(UID _.DOMAIN)must be a real domain name. At the Computer
Sciences department at the UW Madison, we setthdD DOMAIN)to be cs.wisc.edu to
indicate that whenever someone submits from a departmectiimg we will run the job as
the user who submits it.

Also seeSOFT.UID _DOMAINbelow for information about one more check that Condor per-
forms before running a job as a given user.

Condor Version 7.2.3 Manual

3.3. Configuration 169

A few detalils:

An administrator could séflID_DOMAINo *. This will match all domains, but it is a gaping
security hole. It is not recommended.

An administrator can also leaw¢!D _DOMAINundefined. This will force Condor to always
run jobs as usamobody . Running standard universe jobs as usalnody enhances security
and should cause no problems, because the jobs use remaie &aess all of their files.
However, if vanilla jobs are run as usaobody , then files that need to be accessed by the job
will need to be marked as world readable/writable so the nsbody can access them.

When Condor sends e-mail about a job, Condor sends the g¢ernagr@$(UID _DOMAIN).
If UID_DOMAINSs undefined, the e-mail is senttiser@submitmachinename

TRUST_UI D.DOMAI N As an added security precaution when Condor is about to spajeh, it
ensures that th&JID_DOMAINof a given submit machine is a substring of that machine’s
fully-qualified host name. However, at some sites, there aynultiple UID spaces that
do not clearly correspond to Internet domain names. In thases, administrators may wish
to use names to describe the UID domains which are not sngstof the host names of
the machines. For this to work, Condor must not do this regségurity check. If the
TRUSTUID _DOMAINsetting is defined tdrue , Condor will not perform this test, and will
trust whateveldID _DOMAINSs presented by the submit machine when trying to spawn a job,
instead of making sure the submit machine’s host name mathbeID_DOMAINWhen not
defined, the default iBalse , since it is more secure to perform this test.

SOFT_UlI D.DOVAI N A boolean variable that defaults Ealse when not defined. When Condor
is about to run a job as a particular user (instead of asndeody), it verifies that the UID
given for the user is in the password file and actually matthegiven user name. However,
under installations that do not have every user in every mathpassword file, this check
will fail and the execution attempt will be aborted. To ca@ndor not to do this check, set
this configuration variable tdrue . Condor will then run the job under the user’s UID.

SLOTX_USER The name of a user for Condor to use instead of user nobodyara®pa solu-
tion that plugs a security hole whereby a lurker process cag pn a subsequent job run
as user name nobody is an integer associated with slots. On Windo8s§OTx USER
will only work if the credential of the specified user is stdren the execute machine using
condorstorecred See Sectioh 3.6.11 for more information.

STARTERALLOWRUNAS ONNER This is a boolean expression (evaluated with the job ad as the
target) that determines whether the job may run under theojsber’'s account (true) or
whether it will run asSLOTx USERor nobody (false). In Unix, this defaults to true. In
windows, it defaults to false. The job ClassAd may also coraa attributeRunAsOwner
which is logically ANDed with the starter’s boolean valuendér Unix, if the job does not
specify it, this attribute defaults to true. Under windovtsjefaults to false. In Unix, if the
UidDomain of the machine and job do not match, then there is no poggibilirun the job
as the owner anyway, so, in that case, this setting has ncteSee Section 3.6.11 for more
information.

DEDI CATEDEXECUTE ACCOUNT_REGEXP This is a regular expression (i.e. a string matching
pattern) that matches the account name(s) that are dedlimateinning condor jobs on the

Condor Version 7.2.3 Manual

3.3. Configuration

170

execute machine and which will never be used for more tharjanat a time. The default
matches no account name. If you have configilBe@Tx USERto be adifferentaccount for
each Condor slot, and no non-condor processes will evermbeyuhese accounts, then this
pattern should match the names of allOTx USERaccounts. Jobs run under a dedicated
execute account are reliably tracked by Condor, whereasr goivs, may spawn processes
that Condor fails to detect. Therefore, a dedicated exeswtcount provides more reliable
tracking of CPU usage by the job and it also guarantees thanhvte job exits, no “lurker”
processes are left behind. When the job exits, condor viéhapt to kill all processes owned
by the dedicated execution account. Example:

SLOT1 USER = cndrusrl

SLOT2_USER = cndrusr2
STARTER_ALLOW_RUNAS_OWNER = False
DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

You can tell if the starter is in fact treating the account aedicated account, because it will
print a line such as the following in its log file:

Tracking process family by login "cndrusrl"

EXECUTELOG NI S_.DEDI CATED This configuration setting is deprecated because it cannot

handle the case where some jobs run as dedicated accountsoam® do not. Use
DEDICATEDEXECUTEACCOUNREGEXHRnstead.

A boolean value that defaults fealse . WhenTrue , Condor knows that all jobs are being
run by dedicated execution accounts (whether they are mgras the job owner or as nobody
or asSLOTx USER. Therefore, when the job exits, all processes running uttte same
account will be killed.

FI LESYSTEMDOVAI N The FILESYSTEMDOMAINmacro is an arbitrary string that is used to
decide if two machines (a submitting machine and an execatehine) share a file system.
Although the macro name contains the word “DOMAIN”", the maix not required to be a
domain name. It often is a domain name.

Note that this implementation is not ideal: machines mayesisame file systems but not
others. Condor currently has no way to express this autealbti You can express the need
to use a particular file system by adding additional attebub your machines and submit
files, similar to the example given in Frequently Asked Qioest, section 7 on how to run
jobs only on machines that have certain software packages.

Note that if you do not se$(FILESYSTEM_DOMAIN), Condor defaults to setting the

macro’s value to be the fully qualified host name of the locathine. Since each machine
will have a differen(FILESYSTEM DOMAIN), they will not be considered to have shared
file systems.

RESERVEAFS_CACHE If your machine is running AFS and the AFS cache lives on theesa
partition as the other Condor directories, and you want ©otalreserve the space that your
AFS cache is configured to use, set this macroriee . It defaults toFalse .

Condor Version 7.2.3 Manual

3.3. Configuration

171

USE_NFS This macro influences how Condor jobs running in the standaiderse access their
files. Condor will redirect the file 1/O requests of standaniverse jobs to be executed on
the machine which submitted the job. Because of this, as al@daob migrates around the
network, the file system always appears to be identical tdihesystem where the job was
submitted. However, consider the case where a user’s dasadiik sitting on an NFS server.
The machine running the user’'s program will send all /O aber network to the machine
which submitted the job, which in turn sends all the 1/O over hetwork a second time back
to the NFS file server. Thus, all of the program’s 1/O is beiagtover the network twice.

If this macro toTrue , then Condor will attempt to read/write files without reditieg
I/O back to the submitting machine if both the submitting hine and the machine run-
ning the job are both accessing the same NFS senitrth¢y are both in the same
$(FILESYSTEM DOMAIN) and in the sam&(UID _-DOMAIN), as described above). The
result is 1/0 performed by Condor standard universe jobsilg sent over the network once.
While sending all file operations over the network twice ntighund really bad, unless you
are operating over networks where bandwidth as at a verygrigimium, practical experience
reveals that this scheme offers very little real perforneagain. There are also some (fairly
rare) situations where this scheme can break down.

Setting$(USE_NFS) to False is always safe. It may result in slightly more network traffic
but Condor jobs are most often heavy on CPU and light on I/@lskt ensures that a remote
standard universe Condor job will always use Condor’s rensystem calls mechanism to
reroute 1/0 and therefore see the exact same file systemhbatser sees on the machine
where she/he submitted the job.

Some gritty details for folks who want to know: If the you $UUSE _NFS) to True , and the
$(FILESYSTEM DOMAIN)of both the submitting machine and the remote machine aboutt
execute the job match, and th@~ILESYSTEM _DOMAIN)claimed by the submit machine is
indeed found to be a subset of what an inverse look up to a DNI®dth name server) reports
as the fully qualified domain name for the submit machine’adBress (this security measure
safeguards against the submit machine from lyitiggnthe job will access files using a local
system call, without redirecting them to the submitting hiae (with NFS). Otherwise, the
system call will get routed back to the submitting machinegi€ondor’s remote system call
mechanism. NOTEWhen submitting a vanilla jolgondorsubmitwill, by default, append
requirements to the Job ClassAd that specify the machingridhe job must be in the same
$(FILESYSTEM DOMAIN)and the sam&(UID _-DOMAIN).

| GNORE.NFS_LOCK ERRORS When set toTrue , all errors related to file locking errors from
NFS are ignored. Defaults fealse , not ignoring errors.

USE_AFS If your machines have AFS, this macro determines whetherd@owill use remote
system calls for standard universe jobs to send 1/O requedtse submit machine, or if it
should use local file access on the execute machine (whi¢hihgih use AFS to get to the
submitter’s files). Read the setting aboveffd SE _NFS) for a discussion of why you might
want to use AFS access instead of remote system calls.

One important difference betwe&USE _NFS) and$(USE _AFS) is the AFS cache. With
$(USE_AFS) set toTrue , the remote Condor job executing on some machine will start
modifying the AFS cache, possibly evicting the machine avgrfies from the cache to make

Condor Version 7.2.3 Manual

3.3. Configuration 172

room for its own. Generally speaking, since we try to minienize impact of having a Condor
job run on a given machine, we do not recommend using thimgett

While sending all file operations over the network twice nmigbund really bad, unless you
are operating over networks where bandwidth as at a verygrigimium, practical experience
reveals that this scheme offers very little real perforneagain. There are also some (fairly
rare) situations where this scheme can break down.

Setting$(USE_AFS) to False is always safe. It may result in slightly more network traffic

but Condor jobs are usually heavy on CPU and light on F@lse ensures that a remote

standard universe Condor job will always see the exact sdengytem that the user on sees
on the machine where he/she submitted the job. Plus, it nélliee that the machine where the
job executes does not have its AFS cache modified as a resh& @fondor job being there.

However, things may be different at your site, which is why fletting is there.

3.3.8 Checkpoint Server Configuration File Macros

These macros control whether or not Condor uses a checkgsivér. If you are using a check-
point server, this section describes the settings that ieekpoint server itself needs defined. A
checkpoint server is installed separately. It is not ineldiéh the main Condor binary distribution
or installation procedure. See section/3.8 on InstallindiadRpoint Server for details on installing
and running a checkpoint server for your pool.

NOTE: If you are setting up a machine to join the UW-Madison CS D&pant Condor pool,
you shouldconfigure the machine to use a checkpoint server, and uselécarkpt.cs.wisc.edu” as
the checkpoint server host (see below).

CKPT_SERVERHOST The host name of a checkpoint server.

STARTER CHOOSES CKPT_SERVER If this parameter isTrue or undefined on the submit ma-
chine, the checkpoint server specified $(CKPT_SERVERHOST) on the execute ma-
chine is used. If it isFalse on the submit machine, the checkpoint server specified by
$(CKPT_SERVERHOST) on the submit machine is used.

CKPT_SERVERDI R The checkpoint server needs this macro defined to the fuil pithe direc-
tory the server should use to store checkpoint files. Depgrati the size of your pool and the
size of the jobs your users are submitting, this directond(iés subdirectories) might need to
store many Mbytes of data.

USE CKPT_SERVER A boolean which determines if you want a given submit machioe
use a checkpoint server if one is available. If a checkpoérvey isn't available or
USECKPT.SERVERS set to False, checkpoints will be written to the lo$éEPOOL) di-
rectory on the submission machine.

MAX_DI SCARDEDRUN.TI ME If the shadow is unable to read a checkpoint file from the check
point server, it keeps trying only if the job has accumulateste than this many seconds of
CPU usage. Otherwise, the job is started from scratch. Misfeu3600 (1 hour). This setting
is only used if$(USE_CKPT.SERVER)is True .

Condor Version 7.2.3 Manual

3.3. Configuration 173

CKPT_SERVER CHECK PARENT_I NTERVAL This is the number of seconds between checks to
see whether the parent of the checkpoint server (i.e. cirelotmastej has died. If the

parent has died, the checkpoint server shuts itself dowa.dBfault is 120 seconds. A setting
of 0 disables this check.

3.3.9 condormaster Configuration File Macros

These macros control theondormaster

DAEMONLI ST This macro determines what daemons tieedormasterwill start and keep its
watchful eyes on. The list is a comma or space separated lsthsystem names (listed in
section 3.3.1). For example,

DAEMON_LIST = MASTER, STARTD, SCHEDD

NOTE: This configuration variable cannot be changed by usondorreconfigor by sending
a SIGHUP. To change this configuration variable, restarttmalormasterdaemon by using
condorrestart Only then will the change take effect.

NOTE: Onyour central manager, yoR(DAEMONLIST) will be different from your regular
pool, since it will include entries for theondor collectorandcondornegotiator

DC_DAEMONLI ST This macro lists the daemons AEMONLIST which use the Condor Dae-
moncCore library. Theondormastermust differentiate between daemons that use Daemon-
Core and those that don’t so it uses the appropriate intergss communication mechanisms.
This list currently includes all Condor daemons except thec&point server by default.

As of 7.2.1, you can append to the default DBEMON_LIST list by specifying a “+” as the
first character in the DAOAEMON_LIST definition. For example:

DAEMON_LIST = NEW_DAEMON
DC_DAEMON_LIST = +NEW_DAEMON

<SUBSYS> Once you have defined which subsystems you want@melormasterto start, you
must provide it with the full path to each of these binariest &le:

MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd

These are most often defined relative to #8BIN) macro.

The macro is named by substitutirggUBSY S>with the appropriate subsystem string as
defined in sectioh 3.3/.1.

Condor Version 7.2.3 Manual

3.3. Configuration 174

DAEMONNAMEENVI RONMVENT For each subsystem defined iDAEMONMNIST, you
may specify changes to the environment that daemon is dtanigh by setting
DAEMONNAMENVIRONMENTwhere DAEMONNAMEE the name of a daemon listed
in DAEMONMLIST . It should use the same syntax for specifying the envirortnasnthe
environment specification in@ondorsubmitfile (see page 797). For example, if you wish to
redefine theTMPand CONDOR ONFIGenvironment variables seen by thendorschedd
you could place the following in the config file:

SCHEDD_ENVIRONMENT = "TMP=/new/value CONDOR_CONFIG=/gxial/config"

When thecondorscheddwas started by theondormaster it would see the specified values
of TMPandCONDORONFIG

<SUBSYS>ARGS This macro allows the specification of additional commane lkrguments for
any process spawned by thendormaster List the desired arguments using the same syn-
tax as the arguments specification ic@dorsubmitsubmit file (see page 796), with one
exception:; do not escape double-quotes when using thetydkelsyntax (this is for backward
compatibility). Set the arguments for a specific daemon with macro, and the macro will
affect only that daemon. Define one of these for each daeneorotidormasteris control-
ling. For example, seé3(STARTD_ARGS)to specify any extra command line arguments to
thecondocstartd

The macro is named by substitutirggUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

PREEN In addition to the daemons defined$(DAEMONLIST) , thecondormasteralso starts
up a special processpndorpreento clean out junk files that have been left laying around
by Condor. This macro determines where ttmdormasterfinds thecondorpreenbinary.
Comment out this macro, armbndor preenwill not run.

PREENARGS Controls howcondorpreenbehaves by allowing the specification of command-line
arguments. This macro works 8&SUBSYS> ARGS)does. The difference is that you must
specify this macro focondorpreenif you want it to do anythingcondor preentakes action
only because of command line arguments. means you want e-mail about filesndotrpreen
finds that it thinks it should remover. means you wartondor preento actually remove these
files.

PREEN.I NTERVAL This macro determines how oftenondorpreenshould be started. Itis defined
in terms of seconds and defaults to 86400 (once a day).

PUBLI SHOBI TUARI ES When a daemon crashes, ttendormastercan send e-mail to the ad-
dress specified b$(CONDORADMIN) with an obituary letting the administrator know that
the daemon died, the cause of death (which signal or exiistaexited with), and (option-
ally) the last few entries from that daemon’s log file. If yoant obituaries, set this macro to
True .

OBl TUARY.LOGLENGTH This macro controls how many lines of the log file are part afudy-
ies. This macro has a default value of 20 lines.

Condor Version 7.2.3 Manual

3.3. Configuration 175

START_MASTER If this setting is defined and setkalse when thecondormasterstarts up, the
first thing it will do is exit. This appears strange, but pgdgou do not want Condor to
run on certain machines in your pool, yet the boot scriptg/farr entire pool are handled by
a centralized This is an entry you would most likely find in adbconfiguration file, not a
global configuration file.

START_DAEMONS This macro is similar to thég(START_MASTER) macro described above.
However, thecondormasterdoes not exit; it does not start any of the daemons listedan th
$(DAEMONLIST) . The daemons may be started at a later time witbradoron command.

MASTERUPDATELI NTERVAL This macro determines how often tltmndormaster sends a
ClassAd update to theondorcollector. It is defined in seconds and defaults to 300 (every 5
minutes).

MASTER CHECK NEWEXEC.I NTERVAL This macro controls how often theondormaster
checks the timestamps of the running daemons. If any daetmares been modified, the
master restarts them. It is defined in seconds and defauB@tdevery 5 minutes).

MASTERNEWBI NARY_DELAY Once thecondormasterhas discovered a new binary, this macro
controls how long it waits before attempting to execute tbes binary. This delay exists
because theondormastemight notice a new binary while it is in the process of beinpied,
in which case trying to execute it yields unpredictable lssT he entry is defined in seconds
and defaults to 120 (2 minutes).

SHUTDOWNFAST_TI MEOUT This macro determines the maximum amount of time daemons are
given to perform their fast shutdown procedure beforedtiedor masterkills them outright.
It is defined in seconds and defaults to 300 (5 minutes).

MASTERSHUTDOWN.<Name> A full path and file name of a program that tbendormasteris
to execute via the Uniexecl() call, or the similar Win32execl() call, instead of the
normal call toexit() . Multiple programs to execute may be defined with multipl&ies,
each with a uniqgu&lame These macros have no affect orcandormasterunlesscon-
dor_setshutdowris run. TheNamespecified as an argument to thendor setshutdowrpro-
gram must match thiameportion of one of thesIASTERSHUTDOWMNName> macros;
if not, the condormasterwill log an error and ignore the command. If a match is found,
the condormasterwill attempt to verify the program, and it will store the pathd program
name. When theondormastershuts down, the program is then executed as described above.
The manual page forondorsetshutdownon page 781 contains details on the use of this
program.

MASTERBACKOFF.CONSTANT and MASTER <nanme>BACKOFF.CONSTANT When a dae-
mon crashesgondormasteruses an exponential back off delay before restarting it;tisee
discussion at the end of this section for a detailed disonssn how these parameters work
together. These settings define the constant value of theessipn used to determine how
long to wait before starting the daemon again (and, effelitibecomes the initial backoff
time). It is an integer in units of seconds, and defaults tecads.

$(MASTER<name>_BACKOFECONSTANT) is the daemon-specific form of
MASTERBACKOFECONSTANT if this daemon-specific macro is not defined for a
specific daemon, the non-daemon-specific value will used.

Condor Version 7.2.3 Manual

3.3. Configuration

176

MASTER BACKOFF.FACTOR and MASTER<name>BACKOFFFACTOR When a daemon
crashes,condormasteruses an exponential back off delay before restarting it; thee
discussion at the end of this section for a detailed disonssh how these parameters work
together. This setting is the base of the exponent used &rdite how long to wait before
starting the daemon again. It defaults to 2 seconds.

$(MASTER<name>BACKOFB-ACTOR) is the daemon-specific form of
MASTERBACKOFHB-ACTOR if this daemon-specific macro is not defined for a spe-
cific daemon, the non-daemon-specific value will used.

MASTER BACKOFF_CEI LI NG and MASTER <nanme>_BACKOFF.CEI LI NG When a daemon
crashescondormasteruses an exponential back off delay before restarting it;tseeis-
cussion at the end of this section for a detailed discussiohaw these parameters work
together. This entry determines the maximum amount of timewant the master to wait be-
tween attempts to start a given daemon. (With 2.0 a$(MASTERBACKOFEFACTOR)

1 hour is obtained in 12 restarts). It is defined in terms obsds and defaults to 3600 (1
hour).
$(MASTER<name>_BACKOFECEILING) is the daemon-specific form of

MASTERBACKOFECEILING ; if this daemon-specific macro is not defined for a spe-
cific daemon, the non-daemon-specific value will used.

MASTER RECOVERFACTOR and MASTER <name>RECOVERFACTOR A macro to set how
long a daemon needs to run without crashing before it is denedrecovered Once a dae-
mon has recovered, the number of restarts is reset, so ttenenpal back off returns to its
initial state. The macro is defined in terms of seconds analudtsfto 300 (5 minutes).
$(MASTER<name>_RECOVERACTOR) is the daemon-specific form of
MASTERRECOVERACTOR if this daemon-specific macro is not defined for a spe-
cific daemon, the non-daemon-specific value will used.

When a daemon crashefindormasterwill restart the daemon after a delay (a back off). The
length of this delay is based on how many times it has beearted{ and gets larger after each
crashes. The equation for calculating this backoff timevsmgby:

t=c+ k"

wheret is the calculated time; is the constant defined I3(MASTERBACKOFECONSTANT) .
is the “factor” defined bys(MASTERBACKOFHB-ACTOR) andn is the number of restarts already
attempted (O for the first restart, 1 for the next, etc.).

With default values, after the first crash, the delay would ke 9 + 2.0°, giving 10 seconds
(rememberp = 0). If the daemon keeps crashing, the delay increases.

For example, take th§(MASTERBACKOFHB-ACTOR)(which defaults to 2.0) to the power
the number of times the daemon has restarted, an8@IASTERBACKOFECONSTANT Jwhich
defaults to 9). Thus:

1%t crash:n = 0, s0:t = 9 + 20 =9+ 1 = 10 seconds

2" crashin = 1,50:t = 9+ 21 = 9+ 2 = 11 seconds

Condor Version 7.2.3 Manual

3.3. Configuration 177

37d crash:n = 2,50:t = 9+ 22 = 9 + 4 = 13 seconds

6t crashin = 5, s0:t = 9 + 25 = 9 + 32 = 41 seconds

9th crash:n = 8, s0:t = 9 + 28 = 9 + 256 = 265 seconds
And, after the 13 crashes, it would be:
13th crash:n = 12, s0:t = 9 + 212 = 9 4+ 4096 = 4105 seconds

This is bigger than th§(MASTERBACKOFECEILING) , which defaults to 3600, so the dae-
mon would really be restarted after only 3600 seconds, n664Irhecondormastertries again
every hour (since the numbers would get larger and wouldydviee capped by the ceiling). Even-
tually, imagine that daemon finally started and did not crashis might happen if, for example,
an administrator reinstalled an accidentally deleteddyiadter receiving e-mail about the daemon
crashing. If it stayed alive fo)(MASTERRECOVERACTOR)seconds (defaults to 5 minutes),
the count of how many restarts this daemon has performedés te 0.

The moral of the example is that the defaults work quite veglt] you probably will not want to
change them for any reason.

MASTERNAME Defines a unique name given forcandormasterdaemon on a machine. For
a condormasterrunning asroot , it defaults to the fully qualified host name. Whaot
running asroot , it defaults to the user that instantiates twndormaster concatenated
with an at symbol @, concatenated with the fully qualified host name. If morantlone
condormasteris running on the same host, then MMASTERNAMHEor eachcondormaster
must be defined to uniquely identify the separate daemons.

A defined MASTERNAME is presumed to be of the form
identifying-string@full.host.name . If the string does not include a@
sign, Condor appends one, followed by the fully qualifiedth@sme of the local machine.
The identifying-string portion may contain any alphanumeric ASCII characters or
punctuation marks, except ti@sign. We recommend that the string does not contain the
(colon) character, since that might cause problems witkagetools. Previous to Condor
7.1.1, when the string included &@sign, Condor replaced whatever followed tBsign with

the fully qualified host name of the local machine. Condorsdoet modify any portion of
the string, if it contains ai@sign. This is useful for remote job submissions under thé hig
availability of the job queue.

If the MASTERNAMESetting is used, and thredndormasteris configured to spawn eon-
dor_scheddthe name defined wittASTERNAMHEakes precedence over tS€EHEDINAME
setting (see section 3.3.11 on page199). Since Condor nthkesssumption that there
is only one instance of theondorstartd running on a machine, thilASTERNAMES not
automatically propagated to tleondorstartd However, in situations where multipton-
dor_startd daemons are running on the same host (for example, when csimaprglidein),
theSTARTDNAMEshould be set to uniquely identify titendor startddaemons (this is done

Condor Version 7.2.3 Manual

3.3. Configuration 178

automatically in the case abndorglidein).

If a Condor daemon (master, schedd or startd) has been giveigae name, all Condor tools
that need to contact that daemon can be told what name to askesname command-line
option.

MASTERATTRS This macro is described in section 3.3.5<8UBSYS>ATTRS
MASTERDEBUG This macro is described in section 3.3.4<8UBSYS>DEBUG

MASTERADDRESSFI LE This macro is described in section [3.3.5 as
<SUBSYS>ADDRESS-ILE .

SECONDARY.COLLECTORLI ST This macro has been removed as of Condor version 6.9.3. Use
the COLLECTORHOST configuration variable, which may define a listafndorcollector
daemons.

ALLOWADM N.COMMANDS If set to NO for a given host, this macro disables administeatom-
mands, such asondotrestart, condoron, andcondoroff, to that host.

MASTERI NSTANCELOCK Defines the name of a file for thmondormasterdaemon to lock in
order to prevent multipleondormastes from starting. This is useful when using shared
file systems like NFS which do not technically support logkin the case where the lock
files reside on a local disk. If this macro is not defined, théadl file name will be
$(LOCK)/InstanceLock . $(LOCK) can instead be defined to specify the location of
all lock files, not just theondormastets InstanceLock . If $(LOCK) is undefined, then
the master log itself is locked.

ADDW NDOWS FI REWALL EXCEPTI ON When set toFalse , the condormasterwill not au-
tomatically add Condor to the Windows Firewall list of tredtapplications. Such trusted
applications can accept incoming connections withoutrietence from the firewall. This
only affects machines running Windows XP SP2 or higher. Téfault isTrue .

W NDOWS FI REWALL FAI LURERETRY An integer value (default value is 60) that represents
the number of times theondocmasterwill retry to add firewall exceptions. When a Win-
dows machine boots up, Condor starts up by default as weldeUoertain conditions, the
condormastermay have difficulty adding exceptions to the Windows Firdwakause of a
delay in other services starting up. Examples of servicatsriay possibly be slow are the
SharedAccess service, the Netman service, or the Worstagrvice. This configuration
variable allows administrators to set the number of timaséoevery 10 seconds) that the
condormastemwill retry to add firewall exceptions. A value of 0 means than@or will retry
indefinitely.

USE_PROCESS GROUPS A boolean value that defaults Toue . WhenFalse , Condor daemons
on Unix machines willnot create new sessions or process groups. Condor uses prmcesse
groups to help it track the descendants of processes iteseahis can cause problems when
Condor is run under another job execution system (e.g. GoBGtidein).

Condor Version 7.2.3 Manual

3.3. Configuration 179

3.3.10 condorstartd Configuration File Macros

NOTE: If you are running Condor on a multi-CPU machine, be surd¢o eead section 3.12.7 on
page 399 which describes how to set up and configure CondolghrBachines.

These settings control general operation of¢bhadorstartd Examples using these configura-
tion macros, as well as further explanation is found in s&t8.5 on Configuring The Startd Policy.

START A boolean expression that, whé@mue , indicates that the machine is willing to start run-
ning a Condor jobSTARTIs considered when th@ondornegotiatordaemon is considering
evicting the job to replace it with one that will generate dtérerank for thecondorstartd
daemon, or a user with a higher priority.

SUSPEND A boolean expression that, whd@mue , causes Condor to suspend running a Condor
job. The machine may still be claimed, but the job makes nthé&urprogress, and Condor
does not generate a load on the machine.

PREEMPT A boolean expression that, wh&nue , causes Condor to stop a currently running job.

CONTI NUE A boolean expression that, whé&nue , causes Condor to continue the execution of a
suspended job.

KI' LL A boolean expression that, whé@mue , causes Condor to immediately stop the execution
of a currently running job, without delay, and without tagithe time to produce a checkpoint
(for a standard universe job).

PERI ODI CCHECKPO NT A boolean expression that, whé@mue , causes Condor to initiate a
checkpoint of the currently running job. This setting applto all standard universe jobs and
to vm universe jobs that have seh_checkpointto True in the submit description file.

RANK A floating point value that Condor uses to compare potentibs]j A larger value for a
specific job ranks that job above others with lower valuesaNK

| SVALI DCHECKPO NT_PLATFORM A boolean expression that is logically ANDed with the
with the STARTexpression to limit which machines a standard universe jaly nontinue
execution on once they have produced a checkpoint. Theltefqression is

IS_VALID_CHECKPOINT_PLATFORM =

((TARGET.JobUniverse == 1) == FALSE) ||

(MY.CheckpointPlatform =!= UNDEFINED) &&
(
(TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatf orm) ||
(TARGET.NumCkpts == 0)
)
)
)

Condor Version 7.2.3 Manual

3.3. Configuration 180

WANT_SUSPEND A boolean expression that, whé@nue , tells Condor to evaluate tH®USPEND
expression.

WANT_VACATE A boolean expression that, wh@&nue , defines that a preempted Condor job is to
be vacated, instead of killed.

| SOANNER A boolean expression that defaults to being defined as
IS OWNER = (START =?= FALSE)

Used to describe the state of the machine with respect tsésy its owner. Job ClassAd
attributes are not used in definittg _~OWNERas they would bé&ndefined

STARTER This macro holds the full path to tlkwndorstarterbinary that thecondorstartdshould
spawn. Itis normally defined relative ${SBIN) .

POLLI NGI NTERVAL When acondorstartd enters the claimed state, this macro determines how
often the state of the machine is polled to check the needdpesul, resume, vacate or kill
the job. It is defined in terms of seconds and defaults to 5.

UPDATEI NTERVAL Determines how often theondorstartd should send a ClassAd update to
thecondorcollector. Thecondorstartd also sends update on any state or activity change, or
if the value of itsSTARTexpression changes. See section 3.5.6andor startd states, sec-
tion[3.5.6 oncondotstartd Activities, and section 3.5.2 arondorstartd STARTexpression
for details on states, activities, and tB&@ ARTexpression. This macro is defined in terms of
seconds and defaults to 300 (5 minutes).

MAXJOBRETI REMENTTI ME An integer value representing the number of seconds a preeimp
job will be allowed to run before being evicted. The defaaline of 0 (when the configuration
variable is not present) implements the expected policyttiere is no retirement time. See
MAXJOBRETIREMENTTIMilz section 3.5.8 for further explanation.

CLAI MWORKLI FE If provided, this expression specifies the number of secafids which a
claim will stop accepting additional jobs. By default, ortbe negotiator gives a schedd a
claim to a slot, the schedd will keep running jobs on that atolong as it has more jobs with
matching requirements, without returning the slot to thelaimed state and renegotiating for
machines. Onc€LAIM_WORKLIFEexpires, any existing job may continue to run as usual,
but once it finishes or is preempted, the claim is closed. Way be useful if you want to
force periodic renegotiation of resources without preeampthaving to occur. For example, if
you have some low-priority jobs which should never be intpted with kill signals, you could
preventthem from being killed withlaxJobRetirementTime , but now high-priority jobs
may have to wait in line when they match to a machine that iy busning one of these
uninterruptible jobs. You can prevent the high-prioritypgofrom ever matching to such a
machine by using a rank expression in the job or in the negosaank expressions, but then
the low-priority claim will never be interrupted; it can kgeunning more jobs. The solution
is to useCLAIM_.WORKLIFEo force the claim to stop running additional jobs after aaier
amount of time. The default value f&LAIM_WORKLIFESs -1, which is treated as an infinite

Condor Version 7.2.3 Manual

3.3. Configuration 181

claim worklife, so claims may be held indefinitely (as longlasy are not preempted and the
schedd does not relinquish them, of course). A value of Olaeffect of not allowing more
than one job to run per claim, since it immediately expiraerahe first job starts running.

MAX_CLAI MALI VESM SSED Thecondorscheddsends periodic updates to eamindorstartd
as a keep alive (see the descriptiobiVE INTERVAL on pagé 197). If theondorstartd
does not receive any keep alive messages, it assumes thethéogrhas gone wrong with the
condorscheddand that the resource is not being effectively used. Onsentlppens, theon-
dor_startd considers the claim to have timed out, it releases the claimd,starts advertising
itself as available for other jobs. Because these keep alegsages are sent via UDP, they
are sometimes dropped by the network. Thereforectmlorstartd has some tolerance for
missed keep alive messages, so that in case a few keep abviest thecondorstartd will
not immediately release the claim. This setting controls hwany keep alive messages can
be missed before thmondorstartd considers the claim no longer valid. The default is 6.

STARTDHAS BAD.UTMP When thecondorstartd is computing the idle time of all the users of
the machine (both local and remote), it checkstlmap file to find all the currently active
ttys, and only checks access time of the devices associatedetive logins. Unfortunately,
on some systemsitmp is unreliable, and theondorstartd might miss keyboard activity by
doing this. So, if youutmp is unreliable, set this macro frue and thecondorstartd will
check the access time on all tty and pty devices.

CONSOLEDEVI CES This macro allows thecondorstartd to monitor console (keyboard and
mouse) activity by checking the access times on specialifilfev . Activity on these files
shows up afonsoleldle time in thecondorstartds ClassAd. Give a comma-separated
list of the names of devices considered the console, witttmutdev/ portion of the path
name. The defaults vary from platform to platform, and aneally correct.

One possible exception to this is on Linux, where we use “rabas one of the entries. Most
Linux installations put in a soft link fron'dev/mouse that points to the appropriate device
(for example,/dev/psaux for a PS/2 bus mouse, ddev/tty00 for a serial mouse
connected to com1). However, if your installation does rastehthis soft link, you will either
need to put it in (you will be glad you did), or change this neater point to the right device.

Unfortunately, there are no such devices on Digital Unix n(tobe fooled by
/dev/keyboard0 ; the kernel does not update the access times on these dewodhis
macro is not useful in these cases, and we must usecatheéorkbddto get this information
by connecting to the X server.

STARTDJOB_EXPRS When the machine is claimed by a remote usercthredor startd can also
advertise arbitrary attributes from the job ClassAd in thachine ClassAd. List the attribute
names to be advertised. NOTEince these are already ClassAd expressions, do not do
anything unusual with strings. This setting defaults taddUaiverse”.

STARTDATTRS This macro is described in section 3.3.5<8JBSYS>ATTRS

STARTDDEBUG This macro (and other settings related to debug loggingérctindorstartd) is
described in section 3.3.4 aSUBSYS>=DEBUG

Condor Version 7.2.3 Manual

3.3. Configuration 182

STARTDADDRESSFI LE This macro is described in section 3.3.5 as
<SUBSYS>ADDRESSILE

STARTDSENDS ALI VES A boolean value that defaults fealse , such that theondorschedd
daemon sends keep alive signals todhrdor startddaemon. Whefirue , thecondorstartd
daemon sends keep alive signals tot¢badorschedddaemon, reversing the direction. This
may be useful if theondorstartd daemon is on a private network or behind a firewall.

STARTDSHOULDWRI TE.CCLAI MI D_FI LE The condorstartd can be configured to write out
theClaimld for the next available claim on all slots to separate fileds Dloolean attribute
controls whether theondorstartd should write these files. The default valudize .

STARTDCLAI MI DFI LE This macro controls what file names are used if the above
STARTDSHOULDWRITECLAIM.ID _FILE is true. By default, Condor will write the
Claimld into a file in the$(LOG) directory called.startd _claim _id.slotX , where
X is the value ofSlotID , the integer that identifies a given slot on the systeml on a
single-slot machine. If you define your own value for thigisgt you should provide a full
path, and Condor will automatically append telotX portion of the file name.

NUMCPUS An integer value, which can be used to lie to #t@ndorstartd daemon about how
many CPUs a machine has. When set, it overrides the valuendatel with Condor’s au-
tomatic computation of the number of CPUs in the machine.ndyin this way can allow
multiple Condor jobs to run on a single-CPU machine, by hgwirat machine treated like an
SMP machine with multiple CPUs, which could have differenth@or jobs running on each
one. Or, an SMP machine may advertise more slots than it hals GRowever, lying in this
manner will hurt the performance of the jobs, since now rpidtjobs will run on the same
CPU, and the jobs will compete with each other. The optiomiy sneant for people who
specifically want this behavior and know what they are doihig. disabled by default.

Note that this setting cannot be changed with a simple regordj either by sending a
SIGHUP or by using theondotreconfigcommand. To change this, restart twndotstartd
daemon for the change to take effect. The command will be

condor_restart -startd

If lying about a given machine, this fact should probably lkwetised in the machine’s
ClassAd by using th& TARTDATTRSsetting. This way, jobs submitted in the pool could
specify that they did or did not want to be matched with maekithat were only really offer-
ing these fractional CPUs.

MAX_NUMCPUS An integer value used as a ceiling for the number of CPUs tleddry Condor on
a machine. This value is ignoredNFUMCPUSIs set. If set to zero, there is no ceiling. If not
defined, the default value is zero, and thus there is no geilin

Note that this setting cannot be changed with a simple regordj either by sending a
SIGHUP or by using theondorreconfigcommand. To change this, restart tendorstartd
daemon for the change to take effect. The command will be

condor_restart -startd

Condor Version 7.2.3 Manual

3.3. Configuration 183

COUNT_HYPERTHREADCPUS This macro controls how Condor sees hyper threaded proesso
When set toTrue (the default), it includes virtual CPUs in the default vabfeNUMCPUS
On dedicated cluster nodes, counting virtual CPUs can sorastimprove total throughput
at the expense of individual job speed. However, countiegition desktop workstations can
interfere with interactive job performance.

MEMORY Normally, Condor will automatically detect the amount ofypltal memory available on
your machine. Defind I EMORYo tell Condor how much physical memory (in MB) your
machine has, overriding the value Condor computes autoaibti

RESERVEDNMEMORY How much memory would you like reserved from Condor? By difau
Condor considers all the physical memory of your machinesagable to be used by Condor
jobs. If RESERVEIMEMOR1 defined, Condor subtracts it from the amount of memory it
advertises as available.

STARTDNAME Used to give an alternative value to thame attribute in thecondorstartds
ClassAd. This esoteric configuration macro might be usedhénsituation where there are
two condotstartd daemons running on one machine, and each reports to the same
dor_collector. Different names will distinguish the two daemons. See tascdption of
MASTERNAMEDN section 3.3.9 on pade 177 for defaults and compositionatitivCondor
daemon names.

RUNBENCHMARKS Specifies when to run benchmarks. When the machine is in ttotalomed
state and this expression evaluatesTtae , benchmarks will be run. If RunBenchmarks
is specified and set to anything other tHaalse , additional benchmarks will be run when
the condorstartd initially starts. To disable start up benchmarks, RenBenchmarks to
False , or comment it out of the configuration file.

Dedi cat edSchedul er A string thatidentifies the dedicated scheduler this mazlsimanaged
by. Section 3.12.8 on page 409 details the use of a dedicaledsler.

STARTD.NOCLAI MSHUTDOWN The number of seconds to run without receiving a claim before
shutting Condor down on this machine. Defaults to unsetclvhieans to never shut down.
This is primarily intended for condaglidein. Use in other situations is not recommended.

These macros control if theondorstartd daemon should perform backfill computations when-
ever resources would otherwise be idle. See settion 3.12p&gé¢ 412 on Configuring Condor for
Running Backfill Jobs for details.

ENABLEBACKFI LL A boolean value that, whefrue , indicates that the machine is willing to
perform backfill computations when it would otherwise beidrhis is not a policy expression
that is evaluated, it is a simplErue or False . This setting controls if any of the other
backfill-related expressions should be evaluated. TheuttéaFalse .

BACKFI LL.SYSTEM A string that defines what backfill system to use for spawnimjrmaanaging
backfill computations. Currently, the only supported vdhurehis is"BOINC" , which stands
for the Berkeley Open Infrastructure for Network Computiri8ee http://boinc.berkeley.edu
for more information about BOINC. There is no default valagministrators must define this.

Condor Version 7.2.3 Manual

http://boinc.berkeley.edu

3.3. Configuration 184

START_BACKFI LL A boolean expression that is evaluated whenever a Condaures is
in the Unclaimed/ldle state and thENABLEBACKFILL expression isTrue . If
STARTBACKFILL evaluates tdrue , the machine will enter the Backfill state and attempt
to spawn a backfill computation. This expression is analegouthe START expression
that controls when a Condor resource is available to run abfondor jobs. The default
value isFalse (which means do not spawn a backfill job even if the machineles and
ENABLEBACKEFILL expression idfrue). For more information about policy expressions
and the Backfill state, see sectjon 3.5 beginning on pages&p2cially sections 3.55, 3.5.6,
and 3.5.7.

EVI CT_.BACKFI LL A boolean expression that is evaluated whenever a Condouresis in the
Backfill state which, whefirue , indicates the machine should immediately kill the curgent
running backfill computation and return to the Owner statédisTexpression is a way for
administrators to define a policy where interactive usera arachine will cause backfill jobs
to be removed. The default valuekalse . For more information about policy expressions
and the Backfill state, see section 3.5 beginning on pageezp@cially sections 3.5/5, 3.5.6,
and 3.5.7.

These macros only apply to tlkendorstartd daemon when it is running on an SMP machine.
See sectioh 3.12.7 on page 399 on Configuring The Startd fét Bléichines for details.

STARTDRESOURCEPREFI X A string which specifies what prefix to give the unique Condor
resources that are advertised on SMP machines. Previdlishdor used the termirtual
machineto describe these resources, so the default value for thisg&as “vm”. However,
to avoid confusion with other kinds of virtual machines (thees created using tools like
VMware or Xen), the oldvirtual machineterminology has been changed, and we now use
the termslot Therefore, the default value of this prefix is now “slot”. sites want to keep
using “vm?”, or prefer something other “slot”, this settingables sites to define what string
thecondorstartd will use to name the individual resources on an SMP machine.

SLOTS_.CONNECTEDTO.CONSOLE An integer which indicates how many of the machine slots
thecondorstartdis representing should be "connected” to the console (irrotlords, notice
when there’s console activity). This defaults to all slétsit a machine with N CPUSs).

SLOTS. CONNECTEDTOKEYBOARD An integer which indicates how many of the machine slots
thecondorstartdis representing should be "connected” to the keyboard forate tty activ-
ity, as well as console activity). Defaults to 1.

DI SCONNECTEDKEYBOARDI DLE.BOOST If there are slots not connected to either the key-
board or the console, the corresponding idle time report#idoe the time since theon-
dor_startd was spawned, plus the value of this macro. It defaults to E2@@nds (20 min-
utes). We do this because if the slot is configured not to daoetkeyboard activity, we want
it to be available to Condor jobs as soon astbadorstartd starts up, instead of having to
wait for 15 minutes or more (which is the default time a maehimust be idle before Condor
will start a job). If you do not want this boost, set the vala@®t If you change your START
expression to require more than 15 minutes before a jobsstaut you still want jobs to start
right away on some of your SMP nodes, increase this macri'geva

Condor Version 7.2.3 Manual

3.3. Configuration 185

STARTDSLOT_ATTRS The list of ClassAd attribute names that should be sharedsacall
slots on the same machine. This setting was formerly kno@ BARTDVMATTRS or
STARTRDVMEXPRS (before version 6.9.3). For each attribute in the list, thieikaite’s
value is taken from each slot's machine ClassAd and pladedfie machine ClassAd of all
the other slots within the machine. For example, if the canfitjon file for a 2-slot machine
contains

STARTD_SLOT_ATTRS = State, Activity, EnteredCurrentActi vity
then the machine ClassAd for both slots will contain atti@suthat will be of the form:

slotl State = "Claimed"
slotl_Activity = "Busy"

slotl EnteredCurrentActivity = 1075249233
slot2_State = "Unclaimed"

slot2_Activity = "Idle"
slot2_EnteredCurrentActivity = 1075240035

The following settings control the number of slots reporteda given SMP host, and what
attributes each one has. They are only needed if you do ndttevdwave an SMP machine report to
Condor with a separate slot for each CPU, with all sharecesysesources evenly divided among
them. Please read section 3.12.7 on pageé 400 for detailswotohmroperly configure these settings
to suit your needs.

NOTE: You can only change the number of each type of slottivedor startd is reporting with
a simple reconfig (such as sending a SIGHUP signal, or usiengahdorreconfigcommand). You
cannot change the definition of the different slot types waitteconfig. If you change them, you
must restart theondorstartd for the change to take effect (for example, usaomdor _restart
-startd).

NOTE: Prior to version 6.9.3, any settings that included the téstat” used to use “virtual
machine” or “vm”. If you're looking for information about @nof these older settings, search for
the corresponding attribute names using “slot”, instead.

MAX_SLOT_TYPES The maximum number of different slot types. Note: this is thaximum
number of differentypes not of actual slots. Defaults to 10. (You should only neechiange
this setting if you define more than 10 separate slot typeghwliould be pretty rare.)

SLOT_TYPE.<N> This setting defines a given slot type, by specifying what paeach shared
system resource (like RAM, swap space, etc) this kind ofgts. This setting haso effect
unless you also defilTdUMSLOTSTYPE<N>. N can be any integer from 1 to the value of
$(MAX_SLOT.TYPES), such asSLOT.TYPE.1. The format of this entry can be somewhat
complex, so please refer to section 3.12.7 on 400 failslen the different possibilities.

SLOT_TYPE.<N>_PARTI TI ONABLE A boolean variable that defaults false . WhenTrue ,
this slot permits dynamic provisioning, as specified inisect3.12.7.

Condor Version 7.2.3 Manual

3.3. Configuration 186

NUMSLOTS TYPE <N> This macro controls how many of a given slot type are actualhorted
to Condor. There is no default.

NUMSLOTS If your SMP machine is being evenly divided, and the slot tgp#ings described
above are not being used, this macro controls how many sliitbewreported. The default
is one slot for each CPU. This setting can be used to reserae &PUs on an SMP which
would not be reported to the Condor pool. You cannot use thiampeter to make Condor
advertise more slots than there are CPUs on the machine. ffraaiseNUMCPUS.

ALLOMVMCRUFT A boolean value that Condor sets and uses internally, ctlyrdefaulting to
True . WhenTrue , Condor looks for configuration variables named with thevimasly
used stringvMafter searching unsuccessfully for variables named withdhrrently used
string SLOT. WhenFalse , Condor doesiot look for variables named with the previously
used string/Mafter searching unsuccessfully for the striBigOT.

The following macros describe tloeon capabilities of Condor. Theron mechanism is used to
run executables (called modules) directly from toedotstartddaemon. The output from modules
is incorporated into the machine ClassAd generated bgdhdorstartd These capabilities are used
in Hawkeye, but can be used in other situations as well.

These configuration macros are divided into three sets. Aitee tsets occurred as the function-
ality and usage of Condorsron capabilities evolved. The first set applies to both new aniérol
macros and syntax. The second set applies to the new maaayatax. The third set applies only
to the older (and outdated) macros and syntax.

This first set of configuration macros applies to both new dddranacros and syntax.

STARTDCRONLNAME Defines a logical name to be used in the formation of relatedigora-
tion macro names. While not required, this macro makes atiearos more readable and
maintainable. A common example is

STARTD_CRON_NAME = HAWKEYE

This example allows the naming of other related macros téaiothe string HAWKEYE'"in
their name.

STARTDCRON.CONFI GVAL This configuration variable can be used to specify twn-
dor_configval program which the modules (jobs) should use to get configur@tformation
from the daemon. If this is provided, a environment varidijléhe same name with the same
value will be passed to all modules.

If STARTDCRONNAMEIis defined, then this configuration macro name is changed from
STARTDCRONCONFIGVALto $(STARTD_.CRONNAME) CONFIGVAL. Example:

HAWKEYE_CONFIG_VAL = /usr/local/condor/bin/condor_con fig_val

Condor Version 7.2.3 Manual

3.3. Configuration 187

STARTD.CRONLAUTOPUBLI SH Optional setting that determines if tikendotstartd should au-
tomatically publish a new update to thendorcollector after any of the cron modules pro-
duce output. Beware that enabling this setting can greatsease the network traffic in a
Condor pool, especially when many modules are executeflftoe period in which they run
is short. There are three possible (case insensitive) sdiudhis setting:

Never This default value causes tldndorstartd to not automatically publish updates
based on any cron modules. Instead, updates rely on the bshalior for sending
updates, which is periodic, based on theDATEINTERVAL configuration setting, or
whenever a given slot changes state.

Al ways Causes theondorstartd to always send a new update to tbendorcollector
whenever any module exits.

| f _Changed Causes theondorstartd to only send a new update to tikendorcollector
if the output produced by a given module is different than phevious output of the
same module. The only exception is thastUpdate attribute (automatically set for
all cron modules to be the timestamp when the module last varigh is ignored when
STARTDCRONAUTOPUBLISHSs set tolf_Changed

Beware thatSTARTDCRONAUTOPUBLISHdoes not honor the6sTARTDCRONNAME
setting described above. Even ifSTARTDCRONNAME is defined,
STARTDCRONAUTOPUBLISHwill have the same name.

The following second set of configuration macros appliey ¢mlthe new macros and syntax.
This set is to be used for all new applications.

STARTD.CRONLJOBLI ST This configuration variable is defined by a white space sepdrést
of job names (called modules) to run. Each of these is thedbgiame of the module. This
name must be unique (no two modules may have the same name).

If STARTDCRONNAMEis defined, then this configuration macro name is changed from
STARTDCRONIOBLIST to $(STARTD_.CRONNAME) JOBLIST.

STARTD.CRON.<Modul eName>PREFI X Specifies a string which is prepended by Condor to
all attribute names that the module generates. For exanfpdeprefix is “xyz.”, and an
individual attribute is named “abc”, the resulting attibwould be “xyzabc”. Although it
can be quoted, the prefix can contain only alpha-numericaciears.

If STARTDCROMNNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName>_PREFIX to
$(STARTD.CRONNAME) <ModuleName>_PREFIX.

STARTD CRON.<Modul eNanme>EXECUTABLE Used to specify the full path to the executable
to run for this module. Note that multiple modules may spettie same executable (although
they need to have different names).

If STARTDCRONNAME is defined, then this configuration macro name

is changed from STARTDCRONModuleName> EXECUTABLE to
$(STARTD_.CRONNAME) <ModuleName>_EXECUTABLE

Condor Version 7.2.3 Manual

3.3. Configuration 188

STARTD CRON.<Modul eNanme>PERI OD The period specifies time intervals at which the mod-
ule should be run. For periodic modules, this is the timeriratkthat passes between starting
the execution of the module. The value may be specified inmgc@ppend value with the
character 's’), in minutes (append value with the charatctey, or in hours (append value
with the character 'h’). As an example, 5m starts the exeoutif the module every five min-
utes. If no character is appended to the value, seconds adeassa default. For “Wait For
Exit” mode, the value has a different meaning; in this caseptriod specifies the length of
time after the module ceases execution before it is restafiee minimum valid value of the
period is 1 second.

If STARTDCROMNNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName>_PERIOD to
$(STARTD_.CRONNAME) <ModuleName>_PERIOD

STARTD.CRON.<Modul eName>MODE Used to specify the “Mode” in which the module oper-
ates. Legal values are “WaitForExit” and “Periodic” (thdalgt).

If STARTDCROMNNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName>_MODE to
$(STARTD_.CRONNAME) <ModuleName>_MODE

The default “Periodic” mode is used for most modules. In thie, the module is expected
to be started by theondorstartd daemon, gather and publish its data, and then exit.

The “WaitForExit” mode is used to specify a module which rimthe “Wait For Exit” mode.
In this mode, thecondorstartd daemon interprets the “period” differently. In this cage, i
refers to the amount of time to wait after the module exitobefestarting it. With a value of
1, the module is kept running nearly continuously.

In general, “Wait For Exit” mode is for modules that producpexiodic stream of updated
data, but it can be used for other purposes, as well.

STARTD CRON.<Modul eNanme>RECONFI G The “ReConfig” macro is used to specify whether
a module can handle HUP signals, and should be sent a HUR sigaa thecondorstartd
daemon is reconfigured. The module is expected to rereadiifigtration at that time. A
value of “True” enables this setting, and “False” disabtes i

If STARTDCROMNNAME is defined, then this configuration macro
name is changed from STARTDCROMNModuleName>_RECONFIG to
$(STARTD_.CRONNAME) <ModuleName>_RECONFIG

STARTD.CRON.<Modul eNane>KI LL The “Kill” macro is applicable on for modules running
in the “Periodic” mode. Possible values are “True” and “Eélghe default).

If STARTDCROMNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName> KILL to
$(STARTD.CRONNAME) <ModuleName> KILL .

This macro controls the behavior of tkendorstartd when it detects that the module’s ex-
ecutable is still running when it is time to start the modwe & run. If enabled, theon-
dor_startdwill kill and restart the process in this condition. If notadsied, the existing process
is allowed to continue running.

Condor Version 7.2.3 Manual

3.3. Configuration 189

STARTDCRON.<Modul eNane>ARGS The command line arguments to pass to the module to
be executed.

If STARTDCROMNNAME is defined, then this configuration macro
name is changed from STARTDCRONModuleName>_ARGS to
$(STARTD.CRONNAME) <ModuleName>_ARGS

STARTDCRON.<Modul eNanme>ENV The environment string to pass to the module. The syntax
is the same as that IAEMONNANMENVIRONMENTN [3.3.9.

If STARTDCRONNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName>_ENV to
$(STARTD_.CRONNAME) <ModuleName>_ENV.

STARTD CRON.<Modul eNanme>CWD The working directory in which to start the module.

If STARTDCROMNNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName>_CWD to
$(STARTD_.CRONNAME) <ModuleName>_CWD

STARTD CRON.<Modul eNanme>OPTI ONS A colon separated list of options. Not all combina-
tions of options make sense; when a nonsense combinatiisteid,Ithe last one in the list is
followed.

If STARTDCROMNNAME is defined, then this configuration macro
name is changed from STARTDCRON<ModuleName>_OPTIONS to
$(STARTD_.CRONNAME) <ModuleName>_OPTIONS

» The “WaitForExit” option enables the “Wait For Exit” modsge above).
» The “ReConfig” option enables the “Reconfig” setting (seeval.

* The “NoReConfig” option disables the “Reconfig” settingg sdove).

» The “Kill” option enables the “Kill” setting (see above).

» The “NoKill" option disables the “Kill” setting (see aboue

Here is a complete configuration example that uses Hawkeye.

Hawkeye Job Definitions
STARTD_CRON_NAME = HAWKEYE

Job 1

HAWKEYE_JOBLIST = job1l
HAWKEYE_jobl_PREFIX = prefix_

HAWKEYE_jobl _EXECUTABLE = $(MODULES)/jobl
HAWKEYE_jobl_PERIOD = 5m
HAWKEYE_jobl_MODE = WaitForExit
HAWKEYE_jobl_KILL = false
HAWKEYE_jobl ARGS =-foo -bar
HAWKEYE_jobl ENV = xyzzy=somevalue

Condor Version 7.2.3 Manual

3.3. Configuration 190

Job 2

HAWKEYE_JOBLIST = $(HAWKEYE_JOBLIST) job2
HAWKEYE_job2_PREFIX = prefix_

HAWKEYE_job2 EXECUTABLE = $(MODULES)/job2
HAWKEYE_job2_PERIOD = 1h
HAWKEYE_job2 ENV = lwpi=somevalue

The following third set of configuration macros applies otdyolder macros and syntax. This
set is documented for completeness and backwards comipatiBio not use these configuration
macros for any new application. Future releases of Condgrdisable the use of this set.

STARTDCRON.JOBS The list of the modules to execute. In Hawkeye, this is uguasimed
HAWKEYE _JOBS. This configuration variable is defined by a white spaceewline sepa-
rated list of jobs (called modules) to run, where each modudpecified using the format

modulename:prefix:executable:period[:options]

Each of these fields can be surrounded by matching quoteathesgsingle quote or double
quote, but they must match). This allows colon and white spdnaracters to be specified.
For example, the following specifies an executable nameavitblon and a space in it:

foo:foo_:"c:/some dir/foo.exe":10m

These individual fields are described below:

» modulename The logical name of the module. This must be unique (no twoutesd
may have the same name). SSEARTDCRONIOBLIST

» prefix SeeSTARTDCRON<ModuleName>_PREFIX
» executable SeeSTARTDCRON<ModuleName> EXECUTABLE
» period SeeSTARTDCRON<ModuleName>_PERIOD

» Several options are available. Using more than one of tloggiens for one mod-
ule does not make sense. If this happens, the last one inghs Ifollowed. See
STARTDCRON<ModuleName>_OPTIONS

— The “Continuous” option is used to specify a module whichsrim continuous
mode (as described above). See the “WaitForExit” and “R&Gbaptions which
replace “Continuous”.

This option is how deprecated, and its functionality hasnbreplaced by the new
“WaitForExit” and “ReConfig” options, which together impleent the capabilities
of “Continuous”. This option will be removed from a futurerg@n of Condor.

— The “WaitForExit” option
See the discussion of “WaitForExit” BTARTDCRON<ModuleName>_OPTIONS
above.

Condor Version 7.2.3 Manual

3.3. Configuration 191

— The “ReConfig” option
See the discussion of “ReConfig BTARTDCRON<ModuleName>_OPTIONS
above.

— The ‘NoReConfig” option
See the discussion of “NoReConfig3T ARTRDCRONModuleName>_OPTIONS

above.

— The “Kill” option
See the discussion of “Kill” inSTARTDCRONModuleName>_OPTIONS
above.

— The “NoKill” option
See the discussion of “NoKill” iISTARTDCRON<ModuleName>_OPTIONS
above.

NOTE: The configuration file parsing logic will strip white spacerh the beginning and end
of continuation lines. Thus, a job list like below will be rimiterpreted and will not work as
expected:

Hawkeye Job Definitions
HAWKEYE_JOBS =\
JOB1.:prefix_:$(MODULES)/job1:5m:nokill\
JOB2:prefix_:$(MODULES)/job1_co:1h
HAWKEYE_JOB1_ARGS =-foo -bar
HAWKEYE_JOB1 ENV = xyzzy=somevalue
HAWKEYE_JOB2_ENV = Iwpi=somevalue

Instead, write this as below:

Hawkeye Job Definitions
HAWKEYE_JOBS =

Job 1

HAWKEYE_JOBS = $(HAWKEYE_JOBS) JOBI1:prefix_:$(MODULES) /job1:5m:nokill
HAWKEYE_JOB1 ARGS =-foo -bar

HAWKEYE_JOB1 ENV = xyzzy=somevalue

Job 2
HAWKEYE_JOBS = $(HAWKEYE_JOBS) JOB2:prefix_:$(MODULES) /job2:1h
HAWKEYE_JOB2_ENV = Iwpi=somevalue

The following macros control the optional computation adaerce availability statistics in the
condorstartd

STARTDCOVPUTEAVAI L. STATS A boolean that determines if tremndor startd computes re-
source availability statistics. The default is False.

If STARTDCOMPUTRVAIL _STATS = True, thecondorstartd will define the following
ClassAd attributes for resources:

Condor Version 7.2.3 Manual

3.3. Configuration 192

Avai | Ti me The proportion of the time (between 0.0 and 1.0) that thisuese has been in
a state other than Owner.

Last Avai | | nt er val The duration (in seconds) of the last period between Owa¢est
The following attributes will also be included if the resoatis not in the Owner state:

Avai | Si nce The time at which the resource last left the Owner state. Meakin the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970)

Avai | Ti meEst i mat e Based on past history, an estimate of how long the curremger
between Owner states will last.

STARTDAVAI L_.CONFI DENCE A floating point number representing the confidence levehef t
condotstartd daemon’s AvailTime estimate. By default, the estimate isellaon the 80th
percentile of past values (that is, the value is initiall/tee0.8).

STARTDMAX AVAI L_PERI OD.SAMPLES An integer that limits the number of samples of past
available intervals stored by tlendorstartd to limit memory and disk consumption. Each
sample requires 4 bytes of memory and approximately 10 lmftdisk space.

The following configuration variables support java unieejabs.

JAVA The full path to the Java interpreter (the Java Virtual Maehi

JAVA MAXHEAP ARGUMENT An incomplete command line argument to the Java interp(éter
Java Virtual Machine) to specify the switch name for the Mesgh Argument. Condor uses it
to construct the maximum heap size for the Java Virtual MaehiFor example, the value for
the Sun JVM isXmx

JAVA CLASSPATHARGUMENT The command line argument to the Java interpreter (the Java V
tual Machine) that specifies the Java Classpath. Classpatidava-specific term that denotes
the list of locations far files and/or directories) where the Java interpreter cak foothe
Java class files that a Java program requires.

JAVA CLASSPATHSEPARATOR The single character used to delimit constructed entrighen
Classpath for the given operating system and Java Virtuahine. If not defined, the oper-
ating system is queried for its default Classpath separator

JAVA CLASSPATHDEFAULT A list of path names tgar files to be added to the Java Class-
path by default. The comma and/or space character deliisiitsritries.

JAVA EXTRAARGUMENTS A list of additional arguments to be passed to the Java eabtaut

These macros control the system of job hooks invoked bytmelor startd to optionally fetch
work. See section 4.4 on page 460 on “Job Hooks” for more ldetai

Condor Version 7.2.3 Manual

3.3. Configuration 193

SLOTN.J OB.HOOK KEYWORD The keyword used to define which set of hooks a particu-
lar compute slot should invoke. Note that the “N” in “SLOTNhauld be replaced
with the slot identification number, for example, on slothjstsetting would be called
[SLOT1 _JOB.HOOKKEYWORD here is no default keyword. Sites that wish to use these
job hooks must explicitly define the keyword (and the coreeaping hook paths).

STARTD.JOB_HOOK KEYWORD The keyword used to define which set of hooks a partiotder
dor_startd should invoke. This setting is only used if a slot-specifigerd is not defined
for a given compute slot. There is no default keyword. Sites tvish to use these job hooks
must explicitly define the keyword (and the correspondingkyeaths).

HOOK_FETCHWORK The full path to the program to invoke whenever ttendor startd wants to
fetch work. The actual configuration setting must be prefinét a hook keyword. There is
no default.

HOOK_REPLY_CLAI M The full path to the program to invoke whenever ttemdorstartd finishes
fetching a job and decides what to do with it. The actual caméiion setting must be prefixed
with a hook keyword. There is no default.

HOOK_EVI CT_CLAI M The full path to the program to invoke whenever tomdorstartd needs to
evict a fetched claim. The actual configuration setting nhegprefixed with a hook keyword.
There is no default.

Fet chWor kDel ay An expression that defines the number of seconds thatdheorstartd
should wait after an invocation diOOKFETCHWORKcompletes before the hook should
be invoked again. The expression is evaluated in the coofettte slot ClassAd, and the
ClassAd of the currently running job (if any). The expressinust evaluate to an integer. If
not defined, theondorstartd will wait 300 seconds (five minutes) between attempts tdifetc
work. For more information about this expression, see sacti4.1 on page 465.

These macros control the power management capabilitiéseabindor startd to optionally put
the machine in to a low power state. See section|3.15 on pagePower Management for more
details.

HI BERNATECHECK.I NTERVAL An integer number of seconds that determines how often the
condorstartd checks to see if the machine is ready to enter a low power. sTdte default
value is 0, which disables the check. If not 0, HIBERNATEexpression is evaluated within
the context of each slot at the given interval. If used, a&800 (5 minutes) is recommended.

As a special case, the interval is ignored when the machisgisareturned from a low power
state (excluding shutdown (5)). In order to avoid machimesifvolleying between a running
state and a low power state, an hour of uptime is enforced afteachine has been woken.
After the hour has passed, regular checks resume.

HI BERNATE An string expression that represents lower power state./\tie state name evalu-
ates to a valid non-“NONE” state (see below), causes Corwput the machine into a low
power state given by the evaluation of the expression. THewitng names are supported
(and are not case sensitive):

Condor Version 7.2.3 Manual

3.3. Configuration 194

"NONE”, "0": No-op: do not enter a low power state

"S1”,"1", "STANDBY”, "SLEEP”": On Windows, Sleep (standby)
"S2”,"2": On Windows, Sleep (standby)

"S3”, "3", "/RAM”, "MEM": Sleep (standby)

"S4”, 74", "DISK”, "HIBERNATE": Hibernate

"S5”, "5”, "SHUTDOWN”: Shutdown (soft-off)

The HIBERNATEexpression is written in terms of the S-states as definedartivanced
Configuration and Power Interface (ACPI) specification. Bh&tates take the forrm$Swhere

n is an integer in the range@to 5, inclusive. The number that results from evaluating the
expression determines which S-state to enter.”7frem Sn. notation was adopted because at
this junction in time it appears to be the standard namingisehfor power states on several
popular Operating Systems, including various flavors of &ins and Linux distributions.
The other strings (“RAM”, “DISK?”, etc.) are provided for easf configuration.

Since this expression is evaluated in the context of eadhosldhe machine, any one slot
has veto power over the other slots. If the evaluatioHBBERNATEIn one slot evaluates
to “NONE” or “0”, then the machine will not be placed into a Igwer state. On the other
hand, if all slots evaluate to a non-zero value, but differatue, then the largest value is used
as the representative power state.

Strings that do not match any in the table above are treatdd@SE".

LI NUXHI BERNATI ONMETHOD A string that can be used to override the default search uged b
Condor on Linux platforms to detect the hibernation methmdige. The default behavior
orders its search with:

1. Detect and use them-utilscommand line tools. The corresponding string is defined
with "pm-utils"

2. Detect and use the directory in the virtual file systeys/power . The corresponding
string is defined with/sys"

3. Detect and use the directory in the virtual file sysfpnoc/ACPI . The corresponding
string is defined with/proc"

To override this ordered search behavior, and force the fisme particular method, set
LINUX_HIBERNATIONMETHOMo one of the defined strings.

OFFLI NELOG The full path and file name of a file that stores machine Clasdad every hi-
bernating machine. This forms a persistent storage of tiassAds, in case theon-
dor_collectordaemon crashes.

To avoid condotpreenremoving this log, place it in a directory other than the dicay
defined by$(SPOOL). Alternatively, if this log file is to go in the directory de&d by
$(SPOOL), add the file to the list given byALID _SPOOLFILES.

OFFLI NEEXPI READS_AFTER An integer number of seconds specifying the lifetime of the p
sistent machine ClassAd representing a hibernating macHefaults to the largest 32-bit
integer.

Condor Version 7.2.3 Manual

3.3. Configuration 195

3.3.11 condorschedd Configuration File Entries
These macros control tteondorschedd

SHADOW This macro determines the full path of tbendorshadowbinary that thecondorschedd
spawns. It is normally defined in terms &fSBIN) .

START_LOCAL_UNI VERSE A boolean value that defaults forue . The condorschedduses
this macro to determine whether to startogal universe job. At intervals determined by
SCHEDONTERVAL, the condorschedddaemon evaluates this macro for each idieal
universe job that it has. For each job, if t S8 ARTLOCALUNIVERSEmacro isTrue , then
the job’sRequirements expression is evaluated. If both conditions are met, therjah
is allowed to begin execution.

The following example only allows 1®cal universe jobs to execute concurrently. The at-
tribute TotalLocalJobsRunning is supplied bycondorschedd ClassAd:

START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 10

STARTERLOCAL The complete path and executable name ofcitredor starter to run forlocal
universe jobs. This variable’s value is defined in the ih@@nfiguration provided with Condor
as

STARTER_LOCAL = $(SBIN)/condor_starter

This variable would only be modified or hand added into thefigomation for a pool to be
upgraded from one running a version of Condor that existédrbghelocal universe to one
that includes théocal universe, but without utilizing the newer, provided configfion files.

START_SCHEDUL ERUNI VERSE A boolean value that defaults fbrue . The condorschedd
uses this macro to determine whether to stastheduleruniverse job. At intervals deter-
mined by SCHEDONTERVAL, the condorschedddaemon evaluates this macro for each
idle scheduleruniverse job that it has. For each job, if B# ARTSCHEDULERINIVERSE
macro isTrue , then the job’sRequirements expression is evaluated. If both conditions
are met, then the job is allowed to begin execution.

The following example only allows 1€cheduleruniverse jobs to execute concurrently. The
attributeTotalSchedulerJobsRunning is supplied bycondorschedd ClassAd:

START_SCHEDULER_UNIVERSE = TotalSchedulerJobsRunning < 10

MAX_JOBS_RUNNI NG This macro limits the number of processes spawned by a gbemn
dor_schedd for all job universes except the grid universe. See se@idrl. This includes,
but is not limited tocondorshadowprocesses, and scheduler universe processes, including
condordagman The actual number afondorshadovg may be less if you have reached your
$(RESERVEDSWAP)Iimit. This macro has a default value of 200.

Condor Version 7.2.3 Manual

3.3. Configuration 196

MAX.JOBS_.SUBM TTED This integer value limits the number of jobs permitted incen-
dor_schedddaemon’s queue. Submission of a new cluster of jobs failheftotal number
of jobs would exceed this limit. The default value for thigiahle is the largest positive
integer value.

MAX_SHADOWEXCEPTI ONS This macro controls the maximum number of times tlah-
dor_shadowprocesses can have a fatal error (exception) beforedneorscheddwill re-
linquish the match associated with the dying shadow. Defaals.

MAX_PENDI NGSTARTD CONTACTS An integer value that limits the number of simultaneous
connection attempts by theondorscheddwhen it is requesting claims from one or more
condorstartddaemons. The intention is to protect t@ndorscheddrom being overloaded
by authentication operations. The default value is 0. Tleeisppvalue 0 indicates no limit.

MAX_CONCURRENT_.DOWNLOADS This specifies the maximum number of simultaneous transfers
of output files from execute machines to the submit machine limit applies to all jobs
submitted from the sameondorschedd The default is 10. A setting of 0 means unlimited
transfers. This limit currently does not apply to grid unse jobs or standard universe jobs,
and it also does not apply to streaming output files. Whenith# is reached, additional
transfers will queue up and wait before proceeding.

MAX_CONCURRENT_.UPLOADS This specifies the maximum number of simultaneous transflers
input files from the submit machine to execute machines. ifhieapplies to all jobs submit-
ted from the sameondorschedd The default is 10. A setting of 0 means unlimited transfers.
This limit currently does not apply to grid universe jobs targard universe jobs. When the
limit is reached, additional transfers will queue up andtwafore proceeding.

SCHEDD QUERY_-WORKERS This specifies the maximum number of concurrent sub-presdbsit
thecondotrscheddwill spawn to handle queries. The setting is ignored in Wingoln Unix,
the default is 3. If the limit is reached, the next query wil lhandled in theondorschedds
main process.

SCHEDDI| NTERVAL This macro determines the maximum interval for both how rottee con-
dor_scheddsends a ClassAd update to ttendorcollectorand how often theondorschedd
daemon evaluates jobs. It is defined in terms of seconds dadltito 300 (every 5 minutes).

SCHEDD.I NTERVALTI MESLI CE The bookkeeping done by tltendorscheddakes more time
when there are large numbers of jobs in the job queue. Howatem it is not too expensive
to do this bookkeeping, it is best to keep the collector up @tedvith the latest state of
the job queue. Therefore, this macro is used to adjust th&keeping interval so that it is
done more frequently when the cost of doing so is relativedgl and less frequently when
the cost is high. The default is 0.05, which means the schelichdapt its bookkeeping
interval to consume no more than 5% of the total time ava#lablthe schedd. The lower
bound is configured b CHEDIMIN_INTERVAL (default 5 seconds), and the upper bound
is configured bySCHEDONTERVAL (default 300 seconds).

JOB_START_COUNT This macro works together with thEOB. START.DELAY macro to throttle
job starts. The default and minimum values for this integfiguration variable are both 1.

Condor Version 7.2.3 Manual

3.3. Configuration 197

JOB_START_DELAY This integer-valued macro works together with ts®@B.STARTCOUNT
macro to throttle job starts. Theondorschedddaemon start$(JOB _START.COUNT)
jobs at a time, then delays fdB(JOB _STARTDELAY) seconds before starting the
next set of jobs. This delay prevents a sudden, large loadesources required by
the jobs during their start up phase. The resulting job stat¢ averages as fast as
($(JOB _STARTCOUNT)$(JOB _STARTDELAY)) jobs/second. This configuration vari-
able is also used during the graceful shutdown ofdbiedorschedddaemon. During grace-
ful shutdown, this macro determines the wait time in betwegpesting eacbondorshadow
daemon to gracefully shut down. It is defined in terms of sdsand defaults to 0, which
means jobs will be started as fast as possible. If you wishrtmttte the rate of specific types
of jobs, you can use the job attributkextJobStartDelay

MAX_NEXT_JOB_START_DELAY An integer number of seconds representing the maximum al-
lowed value of the job ClassAd attributéextJobStartDelay . It defaults to 600, which
is 10 minutes.

JOB.I S_.FI NI SHEDI NTERVAL Thecondorscheddmaintains a list of jobs that are ready to per-
manently leave the job queue, e.g. they have completed arleesoved. This integer-valued
macro specifies a delay in seconds to place between the tgltisgpermanently out of the
gueue. The default value is 0, which tells t@ndorscheddo not impose any delay.

ALI VEI NTERVAL An initial value for an integer number of seconds defining tudten thecon-
dor_scheddsends a UDP keep alive message to emydorstartd it has claimed. When the
condorscheddclaims acondorstartd, thecondorscheddells thecondorstartd how often
it is going to send these messages. The utilized intervadnding keep alive messages is the
smallest of the two valuesLIVE _INTERVAL and the expressiaiobLeaseDuration/3 ,
formed with the job ClassAd attributdobLeaseDuration . The value of the inter-
val is further constrained by the floor value of 10 seconds.th# condorstartd does
not receive any of these keep alive messages during a cergiod of time (defined via
MAXCLAIM_ALIVES _MISSED, described on page 181) tlewndorstartd releases the
claim, and thecondorscheddno longer pays for the resource (in terms of user priority in
the system). The macro is defined in terms of seconds andlte@B800, which is 5 minutes.

REQUEST_CLAI MTI MEQUT This macro sets the time (in seconds) thatdbadorscheddwill
wait for a claim to be granted by thmndorstartd The default is 30 minutes. This is only
likely to matter if thecondorstartd has an existing claim and it takes a long time for the

existing claim to be preempted due MaxJobRetirementTime . Once a request times
out, thecondorscheddwill simply begin the process of finding a machine for the jdtoger
again.

Normally, it is not a good idea to set this to be very small (e.few minutes). Doing so can
lead to failure to preempt, because the preempting job wéhsl a significant fraction of its
time waiting to be re-matched. During that time, it would snégit on any opportunity to run
if the job it is trying to preempt gets out of the way.

SHADOWSI ZE_ESTI MATE This macro sets the estimated virtual memory size of ez
dor_shadowprocess. Specified in kilobytes. The default varies frontfpten to platform.

Condor Version 7.2.3 Manual

3.3. Configuration 198

SHADOWRENI CE| NCREMENT When thecondorscheddspawns a newondorshadow it can
do so with anice-level A nice-level is a Unix mechanism that allows users to astigir
own processes a lower priority so that the processes runlesthpriority than other tasks on
the machine. The value can be any integer between 0 and 19 awidlue of 19 being the
lowest priority. It defaults to 0.

SCHED.UNI V.RENI CEl NCREMENT Analogous to JOBRENICEINCREMENT and
SHADOWRENICEINCREMENT scheduler universe jobs can be given a nice-level.
The value can be any integer between 0 and 19, with a value béit® the lowest priority.
It defaults to 0.

QUEUE_CLEANI NTERVAL The condorscheddmaintains the job queue on a given machine. It
does so in a persistent way such that if teemdorschedccrashes, it can recover a valid state
of the job queue. The mechanism it uses is a transactiordbagéle (thejob _queue.log
file, not theSchedLog file). This file contains an initial state of the job queue, arsetries of
transactions that were performed on the queue (such as mavgjdmitted, jobs completing,
and checkpointing). Periodically, trendorscheddwill go through this log, truncate all the
transactions and create a new file with containing only thve indial state of the log. This is
a somewhat expensive operation, but it speeds up whearotiaorscheddestarts since there
are fewer transactions it has to play to figure out what statgdb queue is really in. This
macro determines how often tkendorscheddshould rework this queue to cleaning it up. It
is defined in terms of seconds and defaults to 86400 (once)a day

WALL _CLOCK CKPT_I NTERVAL The job queue contains a counter for each job’s “wall clock”
run time, i.e., how long each job has executed so far. Thiswewus displayed byon-
dor_g. The counter is updated when the job is evicted or when thegohpletes. When the
condorscheddcrashes, the run time for jobs that are currently runnind mét be added to
the counter (and so, the run time counter may become smhlerthe CPU time counter).
The condorscheddsaves run time “checkpoints” periodically for running jodasif thecon-
dor_scheddcrashes, only run time since the last checkpoint is losts Ticro controls how
often thecondorscheddsaves run time checkpoints. It is defined in terms of seconds a
defaults to 3600 (one hour). A value of 0 will disable wallataheckpoints.

QUEUEALL_USERS. TRUSTED Defaults to False. If set to True, then unauthenticatedsuser
allowed to write to the queue, and also we always trust wieatitxeOwner value is set to be
by the client in the job ad. This was added so users can cantinuse the SOAP web-services
interface over HTTP (w/o authenticating) to submit jobs iseaure, controlled environment
—forinstance, in a portal setting.

QUEUE_SUPER.USERS This macro determines what user names on a given machineshpeg-
user accesso the job queue, meaning that they can modify or delete theJiassAds of
other users. (Normally, you can only modify or delete CladsArom the job queue that
you own). Whatever user name corresponds with the UID thad8pis running as (usually
the Unix user condor) will automatically be included in thist because that is needed for
Condor’s proper functioning. See section 3.6.11 on UIDsamdbr for more details on this.
By default, we give root the ability to remove other userisgpin addition to user condor.

SCHEDDLOCK This macro specifies what lock file should be used for accetsetSchedLog
file. It must be a separate file from ti8chedLog , since theSchedLog may be rotated

Condor Version 7.2.3 Manual

3.3. Configuration 199

and synchronization across log file rotations is desireds Wacro is defined relative to the
$(LOCK) macro.

SCHEDDNAME Used to give an alternative value to theame attribute in thecondorschedd
ClassAd.

See the description ®ASTERNAMEN section 3.3.9 on page 177 for defaults and composi-
tion of valid Condor daemon names. Also, note that if h&@STERNAMEsetting is defined
for the condormasterthat spawned a givecondorschedd that name will take precedence
over whatever is defined S8CHEDINAME

SCHEDDATTRS This macro is described in section 3.3.5<8UBSYS>ATTRS

SCHEDD.DEBUG This macro (and other settings related to debug loggingerdmdorscheddl is
described in section 3.3.4 aSUBSYS>DEBUG

SCHEDDADDRESSFI LE This macro is described in section 3.3.5 as
<SUBSYS>ADDRESSILE .

SCHEDD EXECUTE A directory to use as a temporary sandbox for local univerbe.j Defaults to
$(SPOOL)/execute

FLOCK.NEGOTI ATORHOSTS This macro defines a list of negotiator host names (not inctud
the local$(NEGOTIATORHOST) machine) for pools in which theondorscheddshould
attempt to run jobs. Hosts in the list should be in order ofgnence. Thecondorschedd
will only send a request to a central manager in the list ifld@al pool and pools earlier in
the list are not satisfying all the job request§(HOSTALLOWNEGOTIATORSCHEDD)
(see section 3.3.5) must also be configured to allow negosiafrom all of the
$(FLOCK_NEGOTIATORHOSTS) to contact thecondorschedd Please make sure the
$(NEGOTIATORHOST)is first in the$(HOSTALLOWNEGOTIATORSCHEDDYist. Sim-
ilarly, the central managers of the remote pools must be gordgd to listen to requests from
thiscondorschedd

FLOCK COLLECTORHOSTS This macro defines a list of collector host names for pools
in which the condorschedd should attempt to run jobs. The collectors must be
specified in order, corresponding to tH{FLOCK_NEGOTIATORHOSTS) list. In
the typical case, where each pool has the collector and iagotrunning on the
same machine $(FLOCK_COLLECTORHOSTS) should have the same definition as
$(FLOCK_NEGOTIATORHOSTS)

NEGOT| ATEALL_JOBS.I NNCLUSTER If this macro is set to False (the default), when toa-
dor_scheddfails to start an idle job, it will not try to start any otherlédjobs in the same
cluster during that negotiation cycle. This makes negotiatnuch more efficient for large
job clusters. However, in some cases other jobs in the claate be started even though an
earlier job can't. For example, the jobs’ requirements mifed because of different disk
space, memory, or operating system requirements. Or, mestmay be willing to run only
some jobs in the cluster, because their requirements referthe jobs’ virtual memory size
or other attribute. Setting this macro to True will force ttandorscheddto try to start all
idle jobs in each negotiation cycle. This will make negadiatcycles last longer, but it will
ensure that all jobs that can be started will be started.

Condor Version 7.2.3 Manual

3.3. Configuration 200

PERI ODI CEXPR.I NTERVAL This macro determines the minimum period, in seconds, btwe
evaluation of periodic job control expressions, such asopérhold, periodicrelease, and
periodicremove, given by the user in a Condor submit file. By defatlis talue is 60
seconds. A value of 0 prevents tbendorscheddrom performing the periodic evaluations.

PERI ODI CEXPR.TI MESLI CE This macro is used to adapt the frequency with whichadbe-
dor_scheddevaluates periodic job control expressions. When the jaugqus very large, the
cost of evaluating all of the ClassAds is high, so in ordertf@rcondorscheddio continue
to perform well, it makes sense to evaluate these expressias frequently. The default
time slice is 0.01, so theondorscheddwill set the interval between evaluations so that it
spends only 1% of its time in this activity. The lower boundtiwe interval is configured by
PERIODIC_EXPRINTERVAL (default 60 seconds).

SYSTEMPERI ODI CHOLD This expression behaves identically to the job expression
periodic _hold , but it is evaluated by the&ondorschedd daemon individually for
each job in the queue. It defaultsfkalse . WhenTrue , it causes the job to stop running
and go on hold. Here is an example that puts jobs on hold if tteeye been restarted too
many times, have an unreasonably large virtual menhoggeSize , or have unreasonably
large disk usage for an invented environment.

SYSTEM_PERIODIC_HOLD =\
(JobStatus == 1 || JobStatus == 2) && \
(JobRunCount > 10 || ImageSize > 3000000 || DiskUsage > 10000 000)

SYSTEMPERI ODI CRELEASE This expression behaves identically to the job expression
periodic _release , but it is evaluated by theondorschedddaemon individually for
each job in the queue. It defaultsfalse . WhenTrue , it causes a held job to return to the
idle state. Here is an example that releases jobs from hdfekyf have tried to run less than
20 times, have most recently been on hold for over 20 minates have gone on hold due to
“Connection timed out” when trying to execute the job, besgathe file system containing the
job’s executable is temporarily unavailable.

SYSTEM_PERIODIC_RELEASE =\
(JobRunCount < 20 && CurrentTime - EnteredCurrentStatus > 1 200) && (\
(HoldReasonCode == 6 && HoldReasonSubCode == 110) \

)

SYSTEMPERI ODI CREMOVE This expression behaves identically to the job expression
periodic _remove , butit is evaluated by theondorschedddaemon individually for each
jobin the queue. It defaults tealse . WhenTrue , it causes the job to be removed from the
gueue. Here is an example that removes jobs which have beeoldfor 30 days:

SYSTEM_PERIODIC_REMOVE = \
(JobStatus == 5 && CurrentTime - EnteredCurrentStatus > 360 0+ 24+ 30)

Condor Version 7.2.3 Manual

3.3. Configuration

201

SCHEDD ASSUVME NEGOTI ATORGONE This macro determines the period, in seconds, that the

condorscheddwill wait for the condornegotiatorto initiate a negotiation cycle before
the schedd will simply try to claim any locatondorstartd This allows for a ma-
chine that is acting as both a submit and execute node to ro® lpcally if it can-

not communicate with the central manager. The default vaiimot specified, is 4
X $(NEGOTIATORINTERVAL). If $(NEGOTIATORINTERVAL) is not defined, then
SCHEDDASSUMBNEGOTIATORGONEwill default to 1200 (20 minutes).

SCHEDD ROUND ATTR<xxxx> This is used to round off attributes in the job ClassAd so that
similar jobs may be grouped together for negotiation puggosThere are two cases. One
is that a percentage such as 25% is specified. In this casealine of the attribute named
<xxxx>\ in the job ClassAd will be rounded up to the next multiple af #pecified percent-
age of the values order of magnitude. For example, a setfi2g% will cause a value near
100 to be rounded up to the next multiple of 25 and a value n@@® Will be rounded up to
the next multiple of 250. The other case is that an integah s1s 4, is specified instead of
a percentage. In this case, the job attribute is rounded thetepecified number of decimal
places. Replacexxxx> with the name of the attribute to round, and set this macrakgu
the number of decimal places to round up. For example, toddhe value of job ClassAd
attributefoo up to the nearest 100, set

SCHEDD_ROUND_ATTR_foo = 2

When the schedd rounds up an attribute value, it will saveahe(un-rounded) actual value
in an attribute with the same name appended wilRAW”. So in the above example, the
raw value will be stored in attributtdmo _-RAWN the job ClassAd. The following are set by
default:

SCHEDD_ROUND_ATTR_ImageSize = 25%
SCHEDD_ROUND_ATTR_ExecutableSize = 25%
SCHEDD_ROUND_ATTR_DiskUsage = 25%
SCHEDD_ROUND_ATTR_NumCkpts = 4

Thus, an ImageSize near 100MB will be rounded up to the netipteiof 25MB. If your
batch slots have less memory or disk than the rounded vatuasy be necessary to reduce
the amount of rounding, because the job requirements wilbeanet.

SCHEDD BACKUP_SPOOL This macro is used to enable thendorscheddto make a backup of
the job queue as it starts. If set to “True”, t@ndorscheddwill create host specific a backup
of the current spool file to the spool directory. This backigiill be overwritten each time
thecondorscheddstarts. SCHEDIBACKUPSPOOL defaults to “False”.

MPI _CONDORRSH.PATH The complete path to the special versiomstfthat is required to spawn
MPI jobs under Condor$(LIBEXEC) is the proper value for this configuration variable,
required when running MPI dedicated jobs.

SCHEDD PREEMPTI ONREQUI REMENTS This boolean expression is utilized only for machines
allocated by a dedicated scheduler. WHemne , a machine becomes a candidate for job
preemption. This configuration variable has no default; nvhet defined, preemption will
never be considered.

Condor Version 7.2.3 Manual

3.3. Configuration 202

SCHEDD PREEMPTI ONRANK This floating point value is utilized only for machines akded
by a dedicated scheduler. It is evaluated in context of a jlas<Ad, and it represents a
machine’s preference for running a job. This configuratiariable has no default; when not
defined, preemption will never be considered.

Par al | el Schedul i ngGr oup For parallel jobs which must be assigned within a group of ma-
chines (and not cross group boundaries), this configura@miable identifies members of a
group. Each machine within a group sets this configuratioialsée with a string that identi-
fies the group.

PER.JOB.HI STORY.DI R If set to a directory writable by the Condor user, when a javés the
condorschedd queue, a copy of its ClassAd will be written in that diragtoT he files are
named “history.” with the job’s cluster and process numhpgremded. For example, job 35.2
will result in a file named “history.35.2". Condor does notate or delete the files, so without
an external entity to clean the directory it can grow vergéarThis option defaults to being
unset. When not set, no such files are written.

DEDI CATERSCHEDULERUSE_FI FO When this parameter is set to true (the default), parallel
and mpi universe jobs will be scheduled in a first-in, first-manner. When set to false,
parallel and mpi jobs are scheduled using a best-fit algoritdsing the best-fit algorithm is
not recommended, as it can cause starvation.

SCHEDD SEND.VACATEVI ATCP A boolean value that defaults tealse . WhenTrue , the
condorschedddaemon sends vacate signals via TCP, instead of the defa#t U

SCHEDD CLUSTERI NI TI ALVALUE An integer that specifies the initial cluster number value
to use within a job id when a job is first submitted. The defaalue is 1.

SCHEDD CLUSTERI NCREMENT.VALUE A positive integer that defaults to 1, representing a
stride used for assignment of cluster numbers within a job/Athen a job is submitted, the
job will be assigned a job id. The cluster number of the job il be equal to the previous
cluster number used plus the value of this setting.

3.3.12 condorshadow Configuration File Entries
These settings affect thewndorshadow

SHADOWL OCK This macro specifies the lock file to be used for access t@talowlLog file.
It must be a separate file from ti#hadowlLog, since theShadowLog may be rotated and
you want to synchronize access across log file rotations iaicro is defined relative to the
$(LOCK) macro.

SHADOWDEBUG This macro (and other settings related to debug logging énstiadow) is de-
scribed in section 3.3.4 asSUBSYS>DEBUG

SHADOWQUEUE_UPDATEI NTERVAL The amount of time (in seconds) between ClassAd up-
dates that theondorshadowdaemon sends to ttedndorschedddaemon. Defaults to 900
(15 minutes).

Condor Version 7.2.3 Manual

3.3. Configuration 203

SHADOWLAZY_QUEUE_UPDATE This boolean macro specifies if tikendorshadowshould im-
mediately update the job queue for certain attributes (& time, it only effects the
NumJobStarts and NumJobReconnects counters) or if it should wait and only up-
date the job queue on the next periodic update. There is a-tfdetween performance and
the semantics of these attributes, which is why the behasicontrolled by a configuration
macro. If thecondorshadowdo not use a lazy update, and immediately ensures the changes
to the job attributes are written to the job queue on disk,sémantics for the attributes are
very solid (there’s only a tiny chance that the counters bglbut of sync with reality), but this
introduces a potentially large performance and scalglplibblem for a busgondorschedd
If the condorshadowuses a lazy update, there’s no additional cost tactilorschedd but
it means thatondorq and Quill won’timmediately see the changes to the job attab, and
if the condorshadowhappens to crash or be killed during that time, the attribate never
incremented. Given that the most obvious usage of these@oaittributes is for the periodic
user policy expressions (which are evaluated directly ®yciindorshadowusing its own
copy of the job’s classified ad, which is immediately updatedither case), and since the
additional cost for aggressive updates to a bemydorscheddcould potentially cause major
problems, the default iSrue to do lazy, periodic updates.

COVPRESSPERI ODI CCKPT This boolean macro specifies whether the shadow shouldigtstr
applications to compress periodic checkpoints (when ptessiThe default is-alse .

COVPRESS VACATE CKPT This boolean macro specifies whether the shadow shouldigistp-
plications to compress vacate checkpoints (when possible) default id-alse .

PERI ODI CMEMORY_SYNC This boolean value specifies whether tendorshadowshould in-
struct applications to commit dirty memory pages to swagsphiring a periodic checkpoint.
The default id=alse . This potentially reduces the number of dirty memory pagesaate
time, thereby reducing swapping activity on the remote riraxh

SLOWCKPT_SPEED This macro specifies the speed at which vacate checkpoiotddshe writ-
ten, in kilobytes per second. If zero (the default), vacdieckpoints are written as fast as
possible. Writing vacate checkpoints slowly can avoid edeximing the remote machine
with swapping activity.

SHADOWJ OB_CLEANUP.RETRY_DELAY This integer specifies the number of seconds to wait be-
tween tries to commit the final update to the job ClassAd inctvedorschedd job queue.
The default is 30.

SHADOWMAX_J OB_.CLEANUP.RETRI ES This integer specifies the number of times to try com-
mitting the final update to the job ClassAd in tbendorschedds job queue. The default is
5.

3.3.13 condorstarter Configuration File Entries

These settings affect thondorstarter.

Condor Version 7.2.3 Manual

3.3. Configuration 204

EXEC TRANSFERATTEMPTS Sometimes due to a router misconfiguration, kernel bug, feerot
network problem, the transfer of the initial checkpointfrthe submit machine to the execute
machine will fail midway through. This parameter allows &yeof the transfer a certain
number of times that must be equal to or greater than 1. Ifghiameter is not specified, or
specified incorrectly, then it will default to three. If thehsfer of the initial executable fails
every attempt, then the job goes back into the idle staté thietnext renegotiation cycle.

NOTE: : This parameter does not exist in the NT starter.

JOB_RENI CE.Il NCREMENT When thecondorstarter spawns a Condor job, it can do so with a
nice-level A nice-level is a Unix mechanism that allows users to asgigir own processes a
lower priority, such that these processes do not interfetie interactive use of the machine.
For machines with lots of real memory and swap space, suthhbanly scarce resource is
CPU time, use this macro in conjunction with a policy thavait Condor to always start jobs
on the machines. Condor jobs would always run, but interagtsponse on the machines
would never suffer. A user most likely will not notice Condsrunning jobs. See section 3.5
on Startd Policy Configuration for more details on settingugmwlicy for starting and stopping
jobs on a given machine.

The integer value is set by ttmndorstarter daemon for each job just before the job runs.
The range of allowable values are integers in the range ofi®t@nclusive), with a value of
19 being the lowest priority. If the integer value is outsilis range, then on a Unix machine,
a value greater than 19 is auto-decreased to 19; a valuenks®tis treated as 0. For values
outside this range, a Windows machine ignores the value aed the default instead. The
default value is 10, which maps to the idle priority class aiadows machine.

STARTERLOCAL_LOGGI NG This macro determines whether the starter should do locgiitm
to its own log file, or send debug information back to tomdorshadowwhere it will end up
in the ShadowLog. It defaults forue .

STARTERDEBUG This setting (and other settings related to debug loggintpénstarter) is de-
scribed above in sectidn 3.3.4$&SUBSYS>.DEBUG)

STARTERUPDATELI NTERVAL An integer value representing the number of seconds between
ClassAd updates that theondorstarter daemon sends to theondorshadowand con-
dor_startd daemons. Defaults to 300 (5 minutes).

STARTERUPDATELI NTERVAL TI MESLI CE A floating point value, specifying the highest frac-
tion of time that thecondorstarter daemon should spend collecting monitoring information
about the job, such as disk usage. The default value is Orhofifitoring, such as checking
disk usage takes a long time, tbendor starterwill monitor less frequently than specified by
STARTERUPDATEINTERVAL.

USER.JOBWRAPPER The full path to an executable or script. This macro allowadministrator
to specify a wrapper script to handle the execution of allrygbks. If specified, Condor
never directly executes a job, but instead invokes the piogpecified by this macro. The
command-line arguments passed to this program will incthedull-path to the actual user
job which should be executed, followed by all the commaneé-fparameters to pass to the
user job. This wrapper program must ultimately replacernitage with the user job; in other

Condor Version 7.2.3 Manual

3.3. Configuration 205

words, it mustexec() the userjob, notork() it. For instance, if the wrapper program is
a C/Korn shell script, the last line of execution should be:

exec $ *

This can potentially lose information about the argumemtay argument with embedded
white space will be split into multiple arguments. For exderthe argument "argument one”
will become the two arguments "argument” and "one”. For Bautype shells (sh, bash, ksh),
the following preserves the arguments:

exec "$@"
For the C type shells (csh, tcsh), the following preservesfguments:
exec $*:q

For Windows machines, the wrapper will either be a batchpsdiwith a file extension of
.bat or.cmd) or an executable (with a file extension.eke or.com).

USE_VI SI BLEDESKTOP This setting is only meaningful on Windows machines. If Trdendor
will allow the job to create windows on the desktop of the e#ecmachine and interact
with the job. This is particularly useful for debugging why application will not run under
Condor. If False, Condor uses the default behavior of angatinew, non-visible desktop to
run the job on. See section 6.2 for details on how Condoratsrwith the desktop.

STARTERJOB_ENVI RONMENT This macro sets the default environment inherited by joldse T
syntax is the same as the syntax for environment settindieijob submit file (see page 797).
If the same environment variable is assigned by this macatdogrthe user in the submit file,
the user’s setting takes precedence.

JOB.I NHERI TSSTARTERENVI RONMENT A boolean value that defaults téalse . When
True , it causes jobs to inherit all environment variables fromabndor starter. This is use-
ful for glidein jobs that need to access environment vadalitom the batch system running
the glidein daemons. When both the user job &IARTERIJOB.ENVIRONMENefine
an environment variable that is in titkendorstarters environment, the user job’s definition
takes precedence. This variable does not apply to standéarerge jobs.

STARTERUPLOADTI MEOQUT An integer value that specifies the network communicatiometi
out to use when transferring files back to the submit machiie. default value is set by the
condorshadowdaemon to 300. Increase this value if the disk on the subnihima cannot
keep up with large bursts of activity, such as many jobs athgleting at the same time.

3.3.14 condorsubmit Configuration File Entries

DEFAULT_UNI VERSE The universe under which a job is executed may be specifidkiaubmit
description file. If it is not specified in the submit desdadptfile, then this variable specifies
the universe (when defined). If the universe is not specifigde submit description file, and
if this variable is not defined, then the default universegfgob will be the vanilla universe.

Condor Version 7.2.3 Manual

3.3. Configuration 206

If you wantcondorsubmitto automatically append an expression to Refjuirements ex-
pression oiRank expression of jobs at your site use the following macros:

APPEND REQVANI LLA Expression to be appended to vanilla job requirements.
APPEND REQ STANDARD Expression to be appended to standard job requirements.

APPEND REQUI REMENTS Expression to be appended to any type of universe jobs. How-
ever, if APPENDREQVANILLA or APPENDREQSTANDARDs defined, then ignore the
APPENDREQUIREMENT®r those universes.

APPENDRANK Expression to be appended to job rank APPENDRANKSTANDARDor
APPENDRANKVANILLA will override this setting if defined.

APPEND RANK_STANDARD Expression to be appended to standard job rank.
APPEND RANK VANI LLA Expression to append to vanilla job rank.

NOTE: The APPENDRANKSTANDARDandAPPENDRANKVANILLA macros were called
APPENDPREESTANDARDandAPPENDPREFEVANILLA in previous versions of Condor.

In addition, you may provide defauRank expressions if your users do not specify their own
with:

DEFAULT_RANK Default rank expression for any job that does not specifgiita rank expression
in the submit description file. There is no default value hstiat when undefined, the value
used will be 0.0.

DEFAULT_RANK VANI LLA Default rank for vanilla universe jobs. There is no defadtue,
such that when undefined, the value used will be 0.0. When b&RAULTRANKand
DEFAULTRANKVANILLA are defined, the value fddEFAULTRANKVANILLA is used
for vanilla universe jobs.

DEFAULT_RANK_STANDARD Default rank for standard universe jobs. There is no defeallie,
such that when undefined, the value used will be 0.0. When b&RAULTRANKand
DEFAULTRANKSTANDARRre defined, the value fREFAULTRANKSTANDARID used
for standard universe jobs.

DEFAULT.I OBUFFERSI ZE Condor keeps a buffer of recently-used data for each file ati-ap
cation opens. This macro specifies the default maximum nuwibytes to be buffered for
each open file at the executing machine. Thedorstatusbuffer _size command will
override this default. If this macro is undefined, a defaizik ®f 512 KB will be used.

DEFAULT.I OBUFFERBLOCK SI ZE When buffering is enabled, Condor will attempt to consol-
idate small read and write operations into large blockssTimacro specifies the default block
size Condor will use. Theondorstatusbuffer _block _size command will override this
default. If this macro is undefined, a default size of 32 KB td used.

Condor Version 7.2.3 Manual

3.3. Configuration 207

SUBM T_SKI P_FI LECHECKS If True, condorsubmitbehaves as if thed command-line option
is used. This tellxondorsubmitto disable file permission checks when submitting a job.
This can significantly decrease the amount of time requinezslibmit a large group of jobs.
The default value is False.

WARN.ONLUNUSED SUBM T_FI LE MACROS A boolean variable that defaults irue . When
True , condorsubmitperforms checks on the job’s submit description file corgéat com-
mands that define a macro, but do not use the macro within theXilvarning is issued, but
job submission continues. A definition of a new macro occungmthe Ihs of a command
is not a known submit command. This check may help spot sigedlirors of known submit
commands.

SUBM T_SEND RESCHEDULE A boolean expression that when False, prevewtsdorsubmit
from automatically sending @ondorreschedulecommand as it completes. Thmn-
dor_rescheduleommand causes ttomndorschedddaemon to start searching for machines
with which to match the submitted jobs. When True, this stefags occurs. In the case that
the machine where the job(s) are submitted is managing amugéer of jobs (thousands or
tens of thousands), this step would hurt performance in aughy that it became an obstacle
to scalability. The default value is True.

SUBM T_EXPRS The given comma-separated, named expressions are insetoedll the job
ClassAds thatondorsubmitcreates. This is equivalent to the “+” syntax in submit files.
See the theondorsubmitmanual page on page 795 for details on using the “+” syntaddo a
attributes to the job ClassAd. Attributes defined in the siildscription file with “+” will
override attributes defined in the config file WBUBMIT_EXPRS

LOGONLNFS.| S.LERROR A bhoolean value that controls whethr@mndorsubmitprohibits job sub-
mit files with user log files on NFS. FOGONNFSIS ERRORs set toTrue , such submit
files will be rejected. LOGONNFSIS _ERRORs set toFalse |, the job will be submitted.
If not defined LOGONNFSIS ERRORIefaults toFalse .

SUBM T_-MAX_ PROCS.I NCLUSTER An integer value that limits the maximum number of jobs
that would be assigned within a single cluster. Job suborisshat would exceed the defined
value fail, issuing an error message, and with no jobs subciThe default value is 0, which
does not limit the number of jobs assigned a single clusterbar.

3.3.15 condorpreen Configuration File Entries

These macros affecondotpreen

PREENADM N This macro sets the e-mail address whesadorpreenwill send e-mail (if it is
configured to send email at all; see the entryR®REEN. Defaults toa3(CONDORADMIN).

VALI DSPOOL_FI LES This macro contains a (comma or space separated) list oftfil@son-
dor_preen considers valid files to find in th&(SPOOL) directory. There is no default
value. condorpreenwill add to the list files and directories that are normallyegent in
the$(SPOOL) directory.

Condor Version 7.2.3 Manual

3.3. Configuration

I NVALI DLOGFI LES This macro contains a (comma or space separated) list oftfilson-
dor_preenconsiders invalid files to find in th&(LOG) directory. There is no default value.

3.3.16 condorcollector Configuration File Entries
These macros affect tlowndorcollector.

CLASSADLI FETI ME This macro determines the default maximum age for ClassAtisated
by the condoccollector. ClassAd older than the maximum age are discarded bycdime
dor_collectoras stale.

If present, the ClassAd attribute “ClassAdLifetime” sgms the ad’s lifetime in seconds.

If “ClassAdLifetime” is not present in the ad, trmondoccollector will use the value of
$(CLASSADLIFETIME) . The macro is defined in terms of seconds, and defaults to 900
(15 minutes).

MASTER CHECK | NTERVAL This macro defines how often the collector should check for ma
chines that have ClassAds from some daemons, but not froroatheor master(orphaned
daemonygand send e-mail about it. It is defined in seconds and default0800 (3 hours).

COLLECTORREQUI REMENTS A boolean expression that filters out unwanted ClassAd @sdat
The expression is evaluated for ClassAd updates that haseg@ahrough enabled security
authorization checks. The default behavior when this esgiom is not defined is to allow all
ClassAd updates to take placeFklse , a ClassAd update will be rejected.

Stronger security mechanisms are the better way to authorizleny updates to theon-
dor_collector. This configuration variable exists to help those that us#-based security, and
do not trust all processes that run on the hosts in the podk ddnfiguration variable may
be used to throw out ClassAds that should not be allowed. famele, forcondorstartd
daemons that run on a fixed port, configure this expressiongore that only machine Class-
Ads advertising the expected fixed port are accepted. Aseectmence, before evaluating the
expression, some basic sanity checks are performed on #ssA to ensure that all of the
ClassAd attributes used by Condor to contain IP:port inftion are consistent. To validate
this information, the attribute to check TARGET.MyAddress .

CLI ENT_TI MEOUT Network timeout that theondorcollectoruses when talking to any daemons
or tools that are sending it a ClassAd update. It is defineédosds and defaults to 30.

QUERY_TI MEQUT Network timeout when talking to anyone doing a query. It irded in seconds
and defaults to 60.

CONDORDEVELOPERS By default, Condor will send e-mail once per week to this addrwith
the output of thecondorstatuscommand, which lists how many machines are in the pool
and how many are running jobs. The default value of condama@cs.wisc.edu will send
this report to the Condor Team developers at the UniversitWisconsin-Madison. The
Condor Team uses these weekly status messages in ordeetadrae idea as to how many
Condor pools exist in the world. We appreciate getting thports, as this is one way we can
convince funding agencies that Condor is being used in @lexerld. If you do not wish this

Condor Version 7.2.3 Manual

mailto:condor-admin@cs.wisc.edu

3.3. Configuration 209

information to be sent to the Condor Team, explicitly set\ihkie toNONEo disable this
feature, or replace the address with a desired locationnditined (commented out) in the
configuration file, Condor follows its default behavior.

COLLECTORNANME This macro is used to specify a short description of your pdtoshould be
about 20 characters long. For example, the name of the UWddadComputer Science Con-
dor Pool is"UW-Madison CS" . While this macro might seem similar dASTERNAME
or SCHEDINAME: t is unrelated. Those settings are used to uniquely iflefand locate) a
specific set of Condor daemons, if there are more than onengien the same machine. The
COLLECTORAMEsetting is just used as a human-readable string to desbetyobl, which
is included in the updates set to t8ONDOREVELOPEREOLLECTORsee below).

CONDOR.DEVELOPERSCOLLECTOR By default, every pool sends periodic updates to a central
condorcollectorat UW-Madison with basic information about the status ofryeool. This
includes only the number of total machines, the number of ptbmitted, the number of ma-
chines running jobs, the host name of your central managdrtte$(COLLECTORNAME)
specified above. These updates help the Condor Team see hwwiGs being used around
the world. By default, they will be sent tmndor.cs.wisc.edu . If you do notwant these
updates to be sent from your pool, explicitly set this maofd®NEIf undefined (commented
out) in the configuration file, Condor follows its default laefor.

COLLECTORSOCKET.BUFSI ZE This specifies the buffer size, in bytes, reserved ¢on-
dor_collector network UDP sockets. The default is 10240000, or a ten mdgayffer.
This is a healthy size, even for a large pool. The larger thisie, the less likely theon-
dor_collector will have stale information about the pool due to droppinglate packets. If
your pool is small or your central manager has very little RAMnNsidering setting this pa-
rameter to a lower value (perhaps 256000 or 128000).

NOTE For some Linux distributions, it may be necessary to ralse ©S’s system-
wide limit for network buffer sizes. The parameter that colgt this limit is
/proc/sys/net/core/rmemmax. You can see the values that tendorcollectoractually uses
by enabling DFULLDEBUG for the collector and looking at the log line thabks like this:

Reset OS socket buffer size to 2048k (UDP), 255k (TCP).
For changes to this parameter to take effeohdorcollectormust be restarted.

COLLECTORTCP_SOCKET_BUFSI ZE This specifies the TCP buffer size, in bytes, reserved for
condorcollector network sockets. The default is 131072, or a 128 kilobytddsufThis is a
healthy size, even for a large pool. The larger this value Jéiss likely thecondorcollector
will have stale information about the pool due to droppinglaie packets. If your pool is
small or your central manager has very little RAM, considgrsetting this parameter to a
lower value (perhaps 65536 or 32768).

NOTE: See the note foEOLLECTOEBSOCKETBUFSIZE .

COLLECTORSOCKET_.CACHE_SI ZE If your site wants to use TCP connections to send ClassAd
updates to the collector, you must use this setting to ersatdehe of TCP sockets (in addition
to enablingUPDATECOLLECTORNITH.TCP). Please read section 3.7.4 on “Using TCP to
Send Collector Updates” on page 345 for more details andauskson of when you would

Condor Version 7.2.3 Manual

3.3. Configuration 210

need this functionality. If you do not enable a socket cadl@R? updates will be refused by
the collector. The default value for this setting is 0, with cache enabled. If you lower
this number, you must rucondorrestartand not justondorreconfigfor the change to take
effect.

KEEP_POOL_HI STORY This boolean macro is used to decide if the collector willtevaut statis-
tical information about the pool to history files. The defasiFalse . The location, size, and
frequency of history logging is controlled by the other ntecr

POOL_HI STORY.DI R This macro sets the name of the directory where the histag fiéside (if
history logging is enabled). The default is t8@OOLdirectory.

POOL_HI STORY.MAX_STORAGE This macro sets the maximum combined size of the history files
When the size of the history files is close to this limit, theéest information will be discarded.
Thus, the larger this parameter’s value is, the larger e tiange for which history will be
available. The default value is 10000000 (10 Mbytes).

POOL_HI STORY_.SAMPLI NGI NTERVAL This macro sets the interval, in seconds, between sam-
ples for history logging purposes. When a sample is takes ctillector goes through the
information it holds, and summarizes it. The informatiomistten to the history file once
for each 4 samples. The default (and recommended) valuess&ihds. Setting this macro’s
value too low will increase the load on the collector, whigdtimg it to high will produce less
precise statistical information.

COLLECTORDAEMONSTATS This macro controls whether or not the Collector keeps updat
statistics on incoming updates. The default value is Trithid option is enabled, the collector
will insert several attributes into ClassAds that it stoeesl sends. ClassAds without the
“UpdateSequenceNumber” and “DaemonStartTime” attributdl not be counted, and will
not have attributes inserted (all modern Condor daemonshwpublish ClassAds publish
these attributes).

The attributes inserted are “UpdatesTotal”, “Updates®aged”, and “UpdatesLost”. “Up-

datesTotal” is the total number of updates (of this ad type)Collector has received from
this host. “UpdatesSequenced” is the number of updatesgttb&tollector could have as lost.
In particular, for the first update from a daemon it is impbksito tell if any previous ones

have been lost or not. “UpdatesLost” is the number of updigEsthe Collector has detected
as being lost. See page 894 for more information on the adiidolies.

COLLECTORSTATS.SVEEP This value specifies the number of seconds between sweeps of t
condorcollectors per-daemon update statistics. Records for daemons wizdeh not re-
ported in this amount of time are purged in order to save mgnidre default is two days. It
is unlikely that you would ever need to adjust this.

COLLECTORDAEMONHI STORY.SI ZE This macro controls the size of the published update his-
tory that the Collector inserts into the ClassAds it stomred sends. The default value is 128,
which means that history is stored and published for thestet28 updates. This macro is
ignored if$(COLLECTORDAEMOISTATS) is not enabled.

If this has a non-zero value, the Collector will insert “UpelsHistory” into the ClassAd (sim-
ilar to “UpdatesTotal” above). “UpdatesHistory” is a heratnal string which represents a

Condor Version 7.2.3 Manual

3.3. Configuration 211

bitmap of the lasCOLLECTOBAEMOMISTORY.SIZE updates. The most significant
bit (MSB) of the bitmap represents the most recent updatittamleast significant bit (LSB)
represents the least recent. A value of zero means that thetesgvas not lost, and a value of
1 indicates that the update was detected as lost.

For example, if the last update was not lost, the previous &l the previous two not, the
bitmap would be 0100, and the matching hex digit would be Mdte that the MSB can never
be marked as lost because its loss can only be detected bylastarpdate (a “gap” is found
in the sequence numbers). Thus, UpdatesHistory = "0x40"lévbe the history for the last 8
updates. If the next updates are all successful, the valuldshped, after each update, would
be: 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x00.

See page 894 for more information on the added attribute.

COLLECTORCLASSHI STORY.SI ZE This macro controls the size of the published update his-
tory that the Collector inserts into the Collector ClassAtdsroduces. The default value is
zero.

If this has a non-zero value, the Collector will insert “UpesClassHistory” into the Collector
ClassAd (similar to “UpdatesHistory” above). These areaatitper class” of ClassAd, how-
ever. The classes refer to the “type” of ClassAds (i.e. ‘t3taAdditionally, there is a “Total”
class created which represents the history of all Classhalsthis Collector receives.

Note that the collector always publishes Lost, Total andugaqed counts for all ClassAd
“classes”. This is similar to the statistics gathere@(€OLLECTORDAEMONSTATS) is
enabled.

COLLECTORQUERYWORKERS This macro sets the maximum number of “worker” processes
that the Collector can have. When receiving a query reqtfest)NIX Collector will “fork”
a new process to handle the query, freeing the main procdssndle other requests. When
the number of outstanding “worker” processes reaches thigmum, the request is handled
by the main process. This macro is ignored on Windows, andefault value is zero. The
default configuration, however, has this set to 16.

COLLECTORDEBUG This macro (and other macros related to debug logging in dilector) is
described in section 3.3.4 aSUBSYS>DEBUG

3.3.17 condornegotiator Configuration File Entries
These macros affect tlewndornegotiator
NEGOTI ATORI NTERVAL Sets how often the negotiator starts a negotiation cycles defined

in seconds and defaults to 300 (5 minutes).

NEGOTI ATORCYCLEDELAY An integer value that represents the minimum number of sec-
onds that must pass before a new negotiation cycle may stre default value is 20.
NEGOTIATORCYCLEDELAYis intended only for use by Condor experts.

Condor Version 7.2.3 Manual

3.3. Configuration 212

NEGOTI ATORTI MEQUT Sets the timeout that the negotiator uses on its networkexdions to
thecondorscheddandcondorstartds. It is defined in seconds and defaults to 30.

PRI ORI TYHALFLI FE This macro defines the half-life of the user priorities. Seetisn/2.7.2
on User Priorities for details. It is defined in seconds arfdulés to 86400 (1 day).

DEFAULT PRI OFACTOR This macro sets the priority factor for local users. Seeisa(@.7.2 on
User Priorities for details. Defaults to 1.

NI CE.USER PRI OFACTOR This macro sets the priority factor for nice users. See se@i7.2
on User Priorities for details. Defaults to 20000000.

REMOTE PRI OFACTOR This macro defines the priority factor for remote users (sisé10 who
do not belong to the accountant’s local domain - see beloag.sectioh 2.7]2 on User Priori-
ties for details. Defaults to 10000.

ACCOUNTANT_LOCAL_DOMAI N This macro is used to decide if a user is local or remote. A user
is considered to be in the local domain if the UMDMAIN matches the value of this macro.
Usually, this macro is set to the local UIDOMAIN. If it is not defined, all users are consid-
ered local.

MAX_ACCOUNTANT.DATABASESI ZE This macro defines the maximum size (in bytes) that the
accountant database log file can reach before it is trundatbath re-writes the file in a
more compact format). If, after truncating, the file is larfean one half the maximum size
specified with this macro, the maximum size will be autonslyeexpanded. The defaultis 1
megabyte (1000000).

NEGOT| ATORDI SCOUNT_SUSPENDEDRESOURCES This macro tells the negotiator to not
count resources that are suspended when calculating thberush resources a user is us-
ing. Defaults to false, that is, a user is still charged foesource even when that resource has
suspended the job.

NEGOT| ATORSOCKET_.CACHE SI ZE This macro defines the maximum number of sockets that
thecondornegotiatorkeeps in its open socket cache. Caching open sockets makasdb-
tiation protocol more efficient by eliminating the need focket connection establishment for
each negotiation cycle. The default is currently 16. To lfeative, this parameter should be
set to a value greater than the numbecohdorschedd submitting jobs to the negotiator at
any time. If you lower this number, you must raandorrestartand not justondorreconfig
for the change to take effect.

NEGOTI ATORI NFORMSTARTD Boolean setting that controls if theondornegotiatorshould
inform the condotstartd when it has been matched with a job. The defaulise .
When this is set td-alse , the condorstartd will never enter the Matched state, and will
go directly from Unclaimed to Claimed. Because this nottfara is done via UDP, if a
pool is configured so that the execute hosts do not create WWbinand sockets (see the
WANTUDPCOMMANBOCKET setting described in sectibn 3.3.3 on pagel 157 for details),
thecondornegotiatorshould be configured not to attempt to contact theselor startdsby
configuring this setting t&alse .

Condor Version 7.2.3 Manual

3.3. Configuration 213

NEGOT| ATORPRE_.JOB_RANK Resources that match a request are first sorted by this expres
sion. If there are any ties in the rank of the top choice, thersources are sorted by the
user-supplied rank in the job ClassAd, then REGOTIATORPOSTJIJOB.RANK then by
PREEMPTIONRANK(if the match would cause preemption and there are still @syih the
top choice). MYrefers to attributes of the machine ClassAd aeRGETrefers to the job
ClassAd. The purpose of the pre job rank is to allow the poatiagstrator to override any
other rankings, in order to optimize overall throughputr Egample, it is commonly used to
minimize preemption, even if the job rank prefers a machira is busy. If undefined, this
expression has no effect on the ranking of matches. The atdrunfiguration file shipped
with Condor specifies an expression to steer jobs away frasy lesources:

NEGOTIATOR_PRE_JOB_RANK = RemoteOwner =?= UNDEFINED

NEGOT| ATORPOST_JOB.RANK Resources that match a request are first sorted by
NEGOTIATORPREJOB.RANK If there are any ties in the rank of the top choice,
the top resources are sorted by the user-supplied rank injabeClassAd, then by
NEGOTIATORPOSTJOB.RANK then byPREEMPTIONRANK(if the match would cause
preemption and there are still any ties in the top choib®jrefers to attributes of the machine
ClassAd andr ARGETrefers to the job ClassAd. The purpose of the post job rank &low
the pool administrator to choose between machines thaothegnks equally. The default
value is undefined, which causes this rank to have no effethi®nanking of matches. The
following example expression steers jobs toward fasterhimas and tends to fill a cluster of
multi-processors by spreading across all machines befitirgfup individual machines. In
this example, the expression is chosen to have no effect wlremption would take place,
allowing control to pass on tBREEMPTIONRANK

UWCS_NEGOTIATOR_POST _JOB_RANK =\
(RemoteOwner =?= UNDEFINED) =* (KFlops - VirtualMachinelD)

PREEMPTI ONREQUI REMENTS When considering user priorities, the negotiator will noé
empt a job running on a given machine unlessRREEMPTIONREQUIREMENT 8xpres-
sion evaluates tdrue and the owner of the idle job has a better priority than theewvaf the
running job. ThePREEMPTIONREQUIREMENT&xpression is evaluated within the con-
text of the candidate machine ClassAd and the candidatgolll€lassAd; thus th#Yscope
prefix refers to the machine ClassAd, and TEeRGETscope prefix refers to the ClassAd of
the idle (candidate) job. There is no direct access to theently running job, but attributes
of the currently running job that need to be accessdRREEMPTIONREQUIREMENT&an
be placed in the machine ClassAd usB§ARTRIJOB.EXPRS. If not explicitly set in the
Condor configuration file, the default value for this expr@sss True . Note that this setting
does not influence other potential causes of preemptioi, asistarttRANK or PREEMPT
expressions. See section 3.5.9 for a general discussiimitihly preemption.

PREEMPTI ONREQUI REMENTSSTABLE A boolean value that defaults True , implying that
all attributes utilized to define tieRREEMPTIONREQUIREMENT 8ariable will not change
within a negotiation period time interval. If utilized atiutes will change during the negotia-
tion period time interval, then set this variableRalse .

Condor Version 7.2.3 Manual

3.3. Configuration 214

PREEMPTI ONRANK Resources that match a request are first sorted by
NEGOTIATORPREJOB RANK If there are any ties in the rank of the top choice,
the top resources are sorted by the user-supplied rank injadbeClassAd, then by
NEGOTIATORPOSTJOB.RANK then byPREEMPTIONRANK(if the match would cause
preemption and there are still any ties in the top choib®jrefers to attributes of the machine
ClassAd andTARGETrefers to the job ClassAd. This expression is used to rankhinas
that the job and the other negotiation expressions rankahees For example, if the job has
no preference, it is usually preferable to preempt a job witmalllmageSize instead of
a job with a largelmageSize . The default is to rank all preemptable matches the same.
However, the negotiator will always prefer to match the joibhvan idle machine over a
preemptable machine, if none of the other ranks expressfarprece between them.

PREEMPTI ONRANK_STABLE A boolean value that defaults Toue , implying that all attributes
utilized to define th®REEMPTIONRANKvariable will not change within a negotiation pe-
riod time interval. If utilized attributes will change dag the negotiation period time interval,
then set this variable tBalse .

NEGOTI ATORDEBUG This macro (and other settings related to debug loggingemtgotiator)
is described in sectidn 3.3.4 aSUBSYS>=DEBUG

NEGOTI ATORMAX_TI MEEPER.SUBM TTER The maximum number of seconds theon-
dor_negotiatorwill spend with a submitter during one negotiation cycle.c@ihis time limit
has been reached, tltendotrnegotiatorwill still finish its current pie spin, but it will skip
over the submitter if subsequent pie spins are needed tadisdl of the available machines.
It defaults to one year. S#@EGOTIATORMAXTIME _PERPIESPIN for more information.

NEGOTI ATORMAX_TI MEIPERPI ESPI N The maximum number of seconds theon-
dor_negotiator will spend with a submitter in one pie spin. A negotiation leyds
composed of at least one pie spin, possibly more, dependinghether there are still ma-
chines left over after computing fair shares and negotigtiith each submitter. By limiting
the maximum length of a pie spin or the maximum time per sutemjter negotiation cycle,
the condornegotiatoris protected against spending a long time talking to one #tdmyfor
example someone with a very slawondorschedddaemon. But, this can result in unfair
allocation of machines or some machines not being allocateall. See section 3.4.6 on
page 248 for a description of a pie slice.

NEGOTI ATORMATCHEXPRS This macro specifies a list of macro names that are inserted as
ClassAd attributes into matched job ClassAds. The atiimame in the ClassAd will be
given the prefix NegotiatorMatchExpr if the macro name ddesineady begin with that.
Example:

NegotiatorName = "My Negotiator"
NEGOTIATOR_MATCH_EXPRS = NegotiatorName

As a result of the above configuration, jobs that are matclyetthils negotiator will contain
the following attribute when they are sent to the startd:

NegotiatorMatchExprNegotiatorName = "My Negotiator"

Condor Version 7.2.3 Manual

3.3. Configuration 215

The expressions inserted by the negotiator may be usefuartdspolicy expressions when
the startd belongs to multiple Condor pools.

The following configuration macros affect negotiation foogp users.

GROUP_NAMES A comma-separated list of the recognized group names, nasasitive. If unde-
fined (the default), group support is disabled. Group namest mot conflict with any user
names. That is, if there isghysics group, there may not beghysics user. Any group
that is defined here must also have a quota, or the group widjrimred. Example:

GROUP_NAMES = group_physics, group_chemistry

GROUP_QUOTA <gr oupname> A positive integer to represent a static quota specifyiregak-
act number of machines owned by this group. Note that Condes dhot verify or check
consistency of quota values. Example:

GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

GROUP_PRI OFACTOR<gr oupnane> A floating point value greater than or equal to 1.0 to
specify the default user priority factor fergroupname> . The group name must also be
specified in theGROUMNAMESist. GROURPRIO_FACTOR<groupname> is evaluated
when the negotiator first negotiates for the user as a menflibe@roup. All members of
the group inherit the default priority factor when no othaiue is present. For example, the
following setting specifies that all members of the group edgroup_physics inherit a
default user priority factor of 2.0:

GROUP_PRIO_FACTOR_group_physics = 2.0

GROUP_AUTOREGROUP A boolean value (defaults tealse) that whenTrue , causes users who
submitted to a specific group to also negotiate a second tithetie none group, to be con-
sidered with the independent job submitters. This alloveaigrsubmitted jobs to be matched
with idle machines even if the group is over its quota.

GROUP_AUTOREGROUR<gr oupname> This is the same aSROURAUTOREGROUBULt it is
settable on a per-group basis. If no value is specified fovanggroup, the default behavior
is determined bfaROURAUTOREGROUWhich in turn defaults té-alse .

NEGOT| ATORCONSI DERPREEMPTI ON For expert users only. A boolean value (defaults to
True), that wherFalse , can cause the negotiator to run faster and also have bpiteriisg
pie accuracyOnly set this td=al se if PREEMPTI ONLREQUI REMENTS is Fal se, and if
all condorstartd rank expressions afal se.

Condor Version 7.2.3 Manual

3.3. Configuration 216

3.3.18 condorprocd Configuration File Macros

USE_PROCD This boolean parameter is used to determine whethecahdorprocd will be used
for managing process families. If thmwndorprocdis not used, each daemon will run the
process family tracking logic on its own. Use of tbendorprocd results in improved scal-
ability because only one instance of this logic is requirdde condorprocd is required
when using privilege separation (see Section 3.6.12) argtB-based process tracking (see
Section 3.12.10). In either of these cases, s PROCBetting will be ignored and eon-
dor_procd will always be used. By default, trmondormasterwill not use acondorprocd
but all other daemons that need process family tracking willdaemon that uses theon-
dor_procdwill start acondorprocdfor use by itself and all of its child daemons.

PROCD.MAX_SNAPSHOT_I NTERVAL This setting determines the maximum time that tom-
dor_procd will wait between probes of the system for information abitwt process families
it is tracking.

PROCDLOG Specifies a log file for the ProcD to use. Note that by design¢timdorprocd does
notinclude most of the other logic that is shared amongstdhieus Condor daemons. This is
because theondorprocdis a component of the PrivSep Kernel (see Section 3.6.12 foem
information regarding privilege separation). This mears thecondotrprocd does not in-
clude the normal Condor logging subsystem, and thus thikgsiultiple debug levels and log
rotation are not supported. TherefoRROCLLOGIis not set by default and is only intended
to debug problems should they arise. Note, however, thailegpD_PROCFAMILYin the
debug level for any other daemon will cause it to log all iatgions with thecondorprocd

PROCDADDRESS This specifies the address that tt@ndorprocd will use to receive requests
from other Condor daemons. On Unix, this should point to asfiistem location that can be
used for a named pipe. On Windows, named pipes are also usdltelpudo not exist in the
file system. The default setting therefore depends on thfopia: $(LOCK)/procd_pipe
on Unix and\.\pipe\procd_pipe on Windows.

3.3.19 condorcredd Configuration File Macros
These macros affect thwondorcredd

CREDDHOST The host name of the machine running ttemdorcredddaemon.

CREDD CACHELOCALLY A booleanvalue that defaultskalse . WhenTrue , the first success-
ful password fetch operation to tleendorcredddaemon causes the password to be stashed
in a local, secure password store. Subsequent uses of saw@al do not require communi-
cation with thecondorcredddaemon.

3.3.20 condorgridmanager Configuration File Entries

These macros affect theondorgridmanager

Condor Version 7.2.3 Manual

3.3. Configuration 217

GRI DMANAGERLOG Defines the path and file name for the log of temdorgridmanager The
owner of the file is theondor user.

GRI DMANAGERCHECKPROXY.I NTERVAL The number of seconds between checks for an up-
dated X509 proxy credential. The defaultis 10 minutes (6Q®ads).

GRI DMANAGERM NI MUMPROXY_TI ME The minimum number of seconds before expiration of
the X509 proxy credential for the gridmanager to continueragion. If seconds until expira-
tion is less than this number, the gridmanager will shutdawd wait for a refreshed proxy
credential. The default is 3 minutes (180 seconds).

HOLD.JOB.I F_.CREDENTI ALEXPI RES True or False. Defaults to True. If
True, and for grid universe jobs only, Condor-G will place abj on hold
GRIDMANAGERIINIMUMPROXYTIME seconds before the proxy expires. If False,
the job will stay in the last known state, and Condor-G wiltipdically check to see if the
job’s proxy has been refreshed, at which point managemehegbb will resume.

GRI DMANAGERCONTACT_SCHEDD DELAY The minimum number of seconds between connec-
tions to thecondorschedd The default is 5 seconds.

GRI DMANAGERJ OB_PROBE.I NTERVAL The number of seconds between active probes of the
status of a submitted job. The default is 5 minutes (300 stx)on

CONDOR.JOB_POLL_I NTERVAL After a condor grid type job is submitted, how often (in seden
the condorgridmanagershould probe the remoteondorscheddto check the jobs status.
This defaults to 300 seconds (5 minutes). Setting this tavalmumber will decrease latency
(Condor will discover that a job has finished more quicklyt Will increase network traffic.

GRI DMANAGERRESOURCE PROBE.I NTERVAL When a resource appears to be down, how of-
ten (in seconds) theondorgridmanagershould ping it to test if it is up again.

GRI DMANAGERRESOURCE PROBE.DELAY The number of seconds between pings of a remote
resource that is currently down. The default is 5 minute®(@fconds).

GRI DMANAGEREMPTY_RESOURCEDELAY The number of seconds that thecon-
dor_gridmanagerretains information about a grid resource, once ¢badorgridmanager
has no active jobs on that resource. An active job is a gridaree job that is in the queue,
but is not in the HELD state. Defaults to 300 seconds.

GRI DMANAGERMAX_SUBM TTEDJOBS_PER RESOURCE Limits the number of jobs that a
condorgridmanagerdaemon will submit to a resource. Itis useful for contrajlthe number
of jobmanagemrocesses running on the front-end node of a cluster. Thisben may be
exceeded if it is reduced through the usecohdorreconfigwhile thecondorgridmanager
is running or if thecondorgridmanagereceives new jobs from theondorscheddhat were
already submitted (that is, the@ridJobld is not undefined). In these cases, submitted jobs
will not be killed, but no new jobs can be submitted until thember of submitted jobs falls
below the current limit. Defaults to 100.

Condor Version 7.2.3 Manual

3.3. Configuration 218

GRI DMANAGERMAX_PENDI NGSUBM TSPER RESOURCE The maximum number of jobs
that can be in the process of being submitted at any time (ihathow many
globus _gram_client _job _request() calls are pending). It is useful for controlling
the number of new connections/processes created at a giventhe default value is 5. This
variable allows you to set different limits for each resaurAfter the first integer in the value
comes a list of resourcename/number pairs, where each musnihe limit for that resource.
If a resource is not in the list, Condor uses the first integarexample usage:

GRIDMANAGER_MAX_PENDING_SUBMITS_PER_RESOURCE=2Qg%5,beak,50

GRI DMANAGERMAX_PENDI NGSUBM TS Configuration variable still recognized, but the name
has changed to BRIDMANAGERIAXPENDINGSUBMITSPERRESOURCE

GRI DMANAGERMAX_J OBMANAGERSPER RESOURCE For grid jobs of typeyt2, limits the num-
ber of globus-job-manager processes thatdbedorgridmanagerets run at a time on the
remote head node. Allowing too many globus-job-managersitocauses severe load on
the headnote, possibly making it non-functional. This nambay be exceeded if it is re-
duced through the use obndotreconfigwhile thecondorgridmanageiis running or if some
globus-job-managers take a few extra seconds to exit. The\vameans there is no limit.
The default value is 10.

GRI DMANAGERMAX WS_DESTROYS PER RESOURCE For grid jobs of typegt4, limits the num-
ber of destroy commands that tbendorgridmanagemill issue at a time to each WS GRAM
server. Too many destroy commands can have severe effetite @erver. The default value
is 5.

GAHP The full path to the binary of the GAHP server. This configimatvariable is no longer
used. Us&s T2 GAHPat section 3.3.20 instead.

GAHP_ARGS Arguments to be passed to the GAHP server. This configuraéidable is no longer
used.

GRI DMANAGERGAHP_CALL_TI MEOUT The number of seconds after which a pending GAHP
command should time out. The default is 5 minutes (300 sexjond

GRI DMANAGERMAX_PENDI NGREQUESTS The maximum number of GAHP commands that
can be pending at any time. The default is 50.

GRI DMANAGERCONNECT_FAI LURE.RETRY_.COUNT The number of times to retry a command
that failed due to a timeout or a failed connection. The défal3.

GRI DMANAGERGLOBUS COVM T_TI MEQUT The duration, in seconds, of the two phase commit
timeout to Globus for gt2 jobs only. This maps directly to the _phase setting in the
Globus RSL.

GLOBUS GATEKEEPERTI MEOUT The number of seconds after which if a gt2 grid universe job
fails to ping the gatekeeper, the job will be put on hold. Dédtkato 5 days (in seconds).

Condor Version 7.2.3 Manual

3.3. Configuration 219

GRI DFTP.URL_BASE Specifies an existin@ridFTP server on the local system to be used for
file transfers for gt4 grid universe jobs. The value is givertlee base of a URL, such as
gsiftp://mycomp.foo.edu:2118 . The default is for Condor to launch temporary
GridFTP servers as needed for file transfer.

C_.GAHP_LOG The complete path and file name of the Condor GAHP server's Idthere
is no default value. The expected location as defined in tlemele configuration is
/temp/CGAHPL0g.$(USERNAME) .

MAX_C_.GAHP_.LOG The maximum size of thE. GAHPLOG

C_GAHP.WORKER THREADLOG The complete path and file name of the Condor GAHP worker
process’ log. There is no default value. The expected lonatis defined in the example
configuration igtemp/CGAHPWorkerLog.$(USERNAME)

GLI TELOCATI ON The complete path to the directory containing the Glite wsafe. There
is no default value. The expected location as given in thengla configuration is
$(LIB)/glite . The necessary Glite software is included with Condor, ancbgquired
for pbs and Isf jobs.

AMAZONLEC2_URL The URL Condor should use when contacting the Amazon EC2cgerfhe
default value ishttps://ec2.amazonaws.com/

AMAZONLHTTP_PROXY The http proxy that Condor should use when contacting theZam&C2
service. The default is to not use a proxy.

CONDORGAHP The complete path and file name of the Condor GAHP executalilbere
is no default value. The expected location as given in themgka configuration is
$(SBIN)/condor _c-gahp .

AMAZONLGAHP The complete path and file hame of the Amazon GAHP executableere
is no default value. The expected location as given in thenga configuration is
$(SBIN)/amazon-gahp

GT2_GAHP The complete path and file name of the GT2 GAHP executable. reTlhge
no default value. The expected location as given in the el@anspnfiguration is
$(SBIN)/gahp _server

GT4_GAHP The complete path and file name of the wrapper script thatkiesdhe GT4 GAHP
executable. There is no default value. The expected latasagiven in the example configu-
ration is$(SBIN)/gt4 _gahp.

PBS_.GAHP The complete path and file name of the PBS GAHP executable. reTle
no default value. The expected location as given in the el@anspnfiguration is
$(GLITE _LOCATION)/bin/batch _gahp.

LSF_GAHP The complete path and file name of the LSF GAHP executable. reThe
no default value. The expected location as given in the el@angpnfiguration is
$(GLITE _LOCATION)/bin/batch _gahp.

Condor Version 7.2.3 Manual

3.3. Configuration 220

UNI CORE.GAHP The complete path and file name of the wrapper script thakieswdhe Unicore
GAHP executable. There is no default value. The expectattitotas given in the example
configuration ish(SBIN)/unicore _gahp.

NORDUGRI DGAHP The complete path and file name of the wrapper script thatkkesohe Nor-
duGrid GAHP executable. There is no default value. The eegelocation as given in the
example configuration i$(SBIN)/nordugrid _gahp.

3.3.21 condorjob_router Configuration File Entries

These macros affect tlewndorjob_router daemon.

JOB_ROUTERDEFAULTS Defined by a single ClassAd in New ClassAd syntax, used toigeov
default values for all routes in theondorjob_router daemon’s routing table. Where an at-
tribute is set outside of these defaults, that attributaeédkes precedence.

JOB_.ROUTERENTRI ES Specification of the job routing table. It is a list of ClassAdh New
ClassAd syntax, where each individual ClassAd is surrodrimiesquare brackets, and the
ClassAds are separated from each other by spaces. EaclA@ldsscribes one entry in the
routing table, and each describes a site that jobs may beddot

A condorreconfigcommand causes tlondorjob_router daemon to rebuild the routing ta-
ble. Routes are distinguished by a routing table entry's€Aa attributeName Therefore, a
Namechange in an existing route has the potential to cause tloeunate reporting of routes.

Instead of setting job routes using this configuration \@d&athey may be read from an ex-
ternal source using th8OB.ROUTERENTRIES.FILE or be dynamically generated by an
external program via th#€OB. ROUTERENTRIES_CMDconfiguration variable.

JOB_.ROUTERENTRI ESFI LE A path and file name of a file that contains the ClassAds, in New
ClassAd syntax, describing the routing table. The specifieds periodically reread to check
for new information. This occurs eve(JOB _ROUTERENTRIES_ REFRESH)seconds.

JOB.ROUTERENTRI ESCMD Specifies the command line of an external program to run. The

output of the program defines or updates the routing tablé tla@ output must be given in
New ClassAd syntax. The specified command is periodicatlyréo regenerate or update the
routing table. This occurs evef§(JOB _ROUTEREENTRIES.REFRESH)seconds. Specify
the full path and file name of the executable within this comdhbine, as no assumptions
may be made about the current working directory upon comnirartation. To enter spaces

in any command-line arguments or in the command name iw&ifound the right hand side

of this definition with double quotes, and use single quotesrad individual arguments that
contain spaces. This is the same as when dealing with spattéa yob arguments in a
Condor submit description file.

JOB_.ROUTERENTRI ESREFRESH The number of seconds between updates to the routing table
described byJOB.ROUTEEENTRIES.FILE or JOBROUTERENTRIES_ CMDThe default
value is 0, meaning no periodic updates occur. With the diefalue of 0, the routing table

Condor Version 7.2.3 Manual

3.3. Configuration 221

can be modified whene@ondorreconfigcommand is invoked or when tleendorjob_router
daemon restarts.

JOB_ROUTER SOURCE.JOB_.CONSTRAI NT Specifies a globdRequirements expression that
will be appended to all routed jobs, in addition to a@Rgquirements specified within a
routing table entry.

JOB_.ROUTERMAX.JOBS An integer value representing the maximum number of jobs ritey
be routed, summed over all routes. The default value is -Ighwimeans an unlimited number
of jobs may be routed.

MAX_JOB.M RRORUPDATELAG Aninteger value that administrators will rarely consideang-
ing, representing the maximum number of secondsctirelorjob_router daemon waits, be-
fore it decides that routed copies have gone awry, due tcaihed of events to appear in the
condorschedd job queue log file. The default value is 600. As ttendorjob_router dae-
mon uses theondorschedds job queue log file entries for synchronization of routegies,
when an expected log file event fails to appear after this peitod, thecondorjob_router
daemon acts presuming the expected event will never occur.

JOB_.ROUTERPOLLI NGPERI OD An integer value representing the number of seconds between
cycles in thecondorjob_router daemon’s task loop. The default is 10 seconds. A small value
makes thecondorjob_router daemon quick to see new candidate jobs for routing. A large
value makes theondotjob_router daemon generate less overhead at the cost of being slower
to see new candidates for routing. For very large job queueseva few minutes of routing
latency is no problem, increasing this value to a few hungdemibnds would be reasonable.

JOB.ROUTERNAME A unique identifier utilized to name multiple instances ofe thon-
dor_job_router daemon within a single Condor pool. Each instance must haldiffexent
name, or all but the first to start up will refuse to run.

3.3.22 condorleasemanager Configuration File Entries

These macros affect tlewndorleasemanager

Thecondorleasemanagerexpects to use the syntax
<subsystem name>.<parameter name>

in configuration. This allows multiple instances of t@ndorleasemanageto be easily configured
using the syntax

<subsystem name>.<local name>.<parameter name>

LeaseManager . GETADS NTERVAL An integer value, given in seconds, that controls the fre-
guency with which theondorleasemanagerpulls relevant resource ClassAds from tten-
dor_collector. The default value is 60 seconds, with a minimum value of 23ds.

Condor Version 7.2.3 Manual

3.3. Configuration 222

LeaseManager . UPDATH NTERVAL An integer value, given in seconds, that controls the fre-
guency with which theondorleasemanageisends its ClassAds to tisendorcollector. The
default value is 60 seconds, with a minimum value of 5 seconds

LeaseManager . PRUNEl NTERVAL An integer value, given in seconds, that controls the fre-
guency with which theondorleasemanager pruneds leases. This involves checking all
leases to see if they have expired. The default value is Gihsks¢ with no minimum value.

LeaseManager . DEBUGADS A boolean value that defaults tealse . WhenTrue , it en-
ables extra debugging information about the resource Btissthat it retrieves from theon-
dor_collectorand about the search ClassAds that it sends tadheorcollector.

LeaseManager . MAXLEASE DURATI ON An integer value representing seconds which deter-
mines the maximum duration of a lease. This can be used tdde@vhard limit on lease
durations. Normally, theondorleasemanagerthonors theMaxLeaseDuration attribute
from the resource ClassAd. If this configuration variablaléined, it limits the effective
maximum duration for all resources to this value. The defeailue is 1800 seconds.

Note that leases can be renewed, and thus can be extendedilieigdimit. To provide a limit
on the total duration of a lease, useaseManager.MAX _TOTALLEASEDURATION

LeaseManager . MAXTOTAL_LEASE DURATI ON An integer value representing seconds used
to limit the total duration of leases, over all its renewals. The default v 8600 seconds.

LeaseManager . DEFAULTVAX LEASE DURATI ON The condorleasemanager uses the
MaxLeaseDuration attribute from the resource ClassAd to limit the lease danat If
this attribute is not present in a resource ClassAd, thexm dbnfiguration variable is used
instead. This integer value is given in units of secondd) witlefault value of 60 seconds.

LeaseManager . CLASSADLOG This variable defines a full path and file name to the location
where thecondorleasemanagerkeeps persistent state information. This variable has no
default value.

LeaseManager . QUERYADTYPE This parameter controls the type of the query in the ClassAd
sent to thecondorcollector, which will control the types of ClassAds returned by tten-
dor_collector. This parameter must be a valid ClassAd type name, with auttefalue of
"Any" .

LeaseManager. QUERYCONSTRAI NTS A ClassAd expression that controls the constraint in
the query sent to theondorcollector. It is used to further constrain the types of ClassAds
from thecondorcollector. There is no default value, resulting in no constraints ggilaced
on query.

3.3.23 gridmonitor Configuration File Entries

These macros affect tlggid_monitor.

Condor Version 7.2.3 Manual

3.3. Configuration 223

ENABLE GRI DMONI TOR When set toTrue enables theyrid_monitor tool. Thegrid_monitor
tool is used to reduce load on Globus gatekeepers. This maearanly affects grid jobs
of type gt2. GRID_MONITORmust also be correctly configured. DefaultsRalse . See
section 5.3.2 on pagde 508 for more information.

GRI DLMONI TOR The complete path name of thed_monitortool used to reduce load on Globus
gatekeepers. This parameter only affects grid jobs of gt@e This parameter is not refer-
enced unlesENABLEGRID_.MONITORSs set toTrue . See sectioh 5.3.2 on page 508 for
more information.

GRI DMONI TORHEARTBEAT.TI MEQUT If this many seconds pass without hearing from a
grid_monitor, it is assumed to be dead. Defaults to 300 (5 minutes). Isorgahis num-
ber will improve the ability of thegrid_monitorto survive in the face of transient problems
but will also increase the time before Condor notices a pnabl

GRI DLMONI TORRETRY_DURATI ON If something goes wrong with thgrid_monitorat a partic-
ular site (likeGRID_.MONITORHEARTBEATTIMEOUTexpiring), Condor-G will attempt to
restart thegrid_monitor for this many seconds. Defaults to 900 (15 minutes). If thisad
tion passes without success tjrgd_monitorwill be disabled for the site in question until 60
minutes have passed.

GRI DMONI TORNOSTATUS TI MEQUT Jobs can disappear from tigeid_monitors status re-
ports for short periods of time under normal circumstanbesa prolonged absence is often
a sign of problems on the remote machine. This parametettse@mount of time (in sec-
onds) that a job can be absent beforedbrdorgridmanagerreacts by restarting the GRAM
jobmanager The default is 15 minutes.

3.3.24 Configuration File Entries Relating to Grid Usage andslidein

These macros affect the Condor’s usage of grid resourceglatein.

GLI DEI NSERVERURLS A comma or space-separated list of URLSs that contain theiesthat
must be copied bgondorglidein. There are no default values, but working URLSs that copy
from the UW site are provided in the distributed sample camfigion files.

GLEXECJOB A boolean value that defaults fealse . WhenTrue , it enables the use gflexec
on the machine.

GLEXEC The full path and file name of thggexecexecutable.

3.3.25 Configuration File Entries for DAGMan

These macros affect the operation of DAGMan and DAGMan joitisisvCondor.

Condor Version 7.2.3 Manual

3.3. Configuration 224

DAGMAN.DEBUG CACHE ENABLE A boolean value that determines if log line caching for the
dagman.out file should be enabled in tendordagmanprocess to increase performance
(potentially by orders of magnitude) when writing the dagnoat file to an NFS server. Cur-
rently, this cache is only utilized in Recovery Mode. If neffided, it defaults té-alse .

DAGMANDEBUGCACHE.SI ZE An integer value in bytes which controls how many bytes of log
lines are to be stored in the log line cache. When the caclpasses this number the entries
are written out in one call to the logging subsystem. A valfigeyo is not recommended
since each log line would surpass the cache size and be énnitteldition to bracketing log
lines explaining that the flushing was happening. The legaje of values is 0 to INMAX.

If defined with a value less than 0, the value O will be used.olfdefined, it defaults to 5
Megabytes.

DAGMANMAX_SUBM TS PER.I NTERVAL An integer that controls how many individual jobs
condordagmanwill submit in a row before servicing other requests (suclaasndorrm).
The legal range of values is 1 to 1000. If defined with a valge than 1, the value 1 will be
used. If defined with a value greater than 1000, the value ¥ilDBe used. If not defined, it
defaults to 5.

DAGMANMAX_SUBM T ATTEMPTS An integer that controls how many times in a rawen-
dor_dagmanwill attempt to executeondorsubmitfor a given job before giving up. Note
that consecutive attempts use an exponential backoffirgiawith 1 second. The legal range
of values is 1 to 16. If defined with a value less than 1, theevalwvill be used. If defined
with a value greater than 16, the value 16 will be used. Nattdlvalue of 16 would result in
condordagmartrying for approximately 36 hours before giving up. If noffided, it defaults
to 6 (approximately two minutes before giving up).

DAGMAN.SUBM T_DELAY An integer that controls the number of seconds tmidordagman
will sleep before submitting consecutive jobs. It can baéased to help reduce the load on
thecondorschedddaemon. The legal range of values is 0 to 60. If defined withlaeviess
than 0, the value O will be used. If defined with a value gretitan 60, the value 60 will be
used. The default value is 0.

DAGMANSTARTUP.CYCLEDETECT A boolean value that whelrue causesondordagman
to check for cycles in the DAG before submitting DAG node jabsaddition to its run time
cycle detection. If not defined, it defaultsFalse .

DAGVAN.RETRY_.SUBM T_FI RST A boolean value that controls whether a failed submit isedtr
first (before any other submits) or last (after all other repobs are submitted). If this value
is set toTrue , when a job submit fails, the job is placed at the head of theugquof ready
jobs, so that it will be submitted again before any other jatlessubmitted (this has been the
behavior ofcondordagmarup to this point). If this value is set tealse , when a job submit
fails, the job is placed at the tail of the queue of ready jdbisot defined, it defaults tdrue .

DAGMANRETRY_NODE_FI RST A boolean value that controls whether a failed node (withes}
is retried first (before any other ready nodes) or last (atiesther ready nodes). If this value
is set toTrue , when a node with retries fails (after the submit succeedbd)node is placed
at the head of the queue of ready nodes, so that it will be &igdn before any other jobs are

Condor Version 7.2.3 Manual

3.3. Configuration

submitted. If this value is set tealse , when a node with retries fails, the node is placed at
the tail of the queue of ready nodes (this has been the batafvimndordagmanup to this
point). If not defined, it defaults tBalse .

DAGMANMAX JOBS.I DLE An integer value that controls the maximum number of idle enod
jobs allowed within the DAG beforeondordagmantemporarily stops submitting jobs.
Once idle jobs start to rungondordagmanwill resume submitting jobs. If both the
command-line flag and the configuration parameter are spdcithe command-line flag
overrides the configuration parameter. UnfortunatdDAGMAMAXJOBSIDLE cur-
rently counts each individual process within a cluster aska which is inconsistent with
DAGMAMAXJOBS SUBMITTED The default is that there is no limit on the maximum
number of idle jobs.

DAGMANMAX_JOBS_SUBM TTED An integer value that controls the maximum number of node
jobs within the DAG that will be submitted to Condor at onedinNote that this parameter
is the same as thenaxjobs command-line flag t@ondorsubmitdag If both the command-
line flag and the configuration parameter are specified, thentand-line flag overrides the
configuration parameter. A single invocationaafndorsubmitcounts as one job, even if the
submit file produces a multi-job cluster. The default is tiftre is no limit on the maximum
number of jobs run at one time.

DAGMAN.MUNGE_NODE_NAMES A boolean value that controls whethewndordagmanautomat-
ically renames nodes when running multiple DAGs (the remgni$ done to avoid possi-
ble name conflicts). If this value is set Toue , all node names have the "DAG number”
prepended to them. For example, the first DAG specified orctimelorsubmitdag com-
mand line is considered DAG number 0, the second is DAG nuntbetc. So if DAG
number 2 has a node B, that node will internally be renamed2t8™ If not defined,
DAGMAMUNGHENODENAMESiefaults toTrue .

DAGMANLI GNORE.DUPLI CATEJOB_EXECUTI ON This macro is no longer used. The improved
functionality of theDAGMAMLLOWEVENTSmacro eliminates the need for this variable.

A boolean value that controls whetheondordagmanaborts or continues with a DAG
in the rare case that Condor erroneously executes the jobinvd DAG node more
than once. A bug in Condor very occasionally causes a job to tmice. Run-
ning a job twice is contrary to the semantics of a DAG. The apmfition macro
DAGMANGNOREDUPLICATEJOB.EXECUTION determines whethecondordagman
considers this a fatal error or not. The default valué#@se ; condordagmanconsiders
running the job more than once a fatal error, logs this fautl, @borts the DAG. When set to
True , condordagmanstill logs this fact, but continues with the DAG.

This configuration macro is to remain at its default valueegtan the case where a site
encounters the Condor bug in which DAG job nodes are exetwied, and where it is certain
that having a DAG job node run twice will not corrupt the DAGhdllogged messages within
* .dagman.out files in the case of that a node job runs twice contain thegtEVENT
ERROR”

DAGVANALLOWEVENTS An integer that controls which "bad” events are consideredlfer-
rors by condordagman This macro replaces and expands upon the functionalitthef t

Condor Version 7.2.3 Manual

3.3. Configuration 226

DAGMANGNOREDUPLICATEJOB_EXECUTIONMacro. IfDAGMAMLLOWEVENTSSs
set, it overrides the setting 8 AGMANGNOREDUPLICATEJOB.EXECUTION

The DAGMAMLLOWEVENTSvalue is a bitwise-OR of the following values:

0 = allow no "bad” events
1 = allow almost all "bad” events (all except "job re-run afterminated event”)
2 = allow terminated/aborted event combination
4 = allow "job re-run after terminated event” bug
8 = allow garbage/orphan events
16 = allow execute or terminate event before job’s submiheve
32 = allow two terminated events per job (sometimes seengpvithjobs)
64 = allow duplicated events in general
The default value is 114 (allow terminated/aborted eventlzioation, allow execute and/or

terminated event before job’s submit event, allow doublmteated events, and allow general
duplicate events).

For example, a value of 6 instruatsndordagmarto allow both the terminated/aborted event
combination and the "job re-run after terminated event”.biégvalue of 0 means that any
"bad” event will be considered a fatal error.

A value of 5 (1 + 4) will never abort the DAG because of a "badéet/— but you should
almost never use this setting, because the "job re-run tdterinated event” bug breaks the
semantics of the DAG.

This macro should almost always remain set to the defaulieval
DAGMANDEBUG This macro is described in section 3.3.4<8UBSYS>DEBUG
MAX_DAGMANLOG This macro is described in section 3.3.4\&X<SUBSYS>LOG

DAGMAN.CONDOR SUBM T_EXE The executable thatondordagmarnwill use to submit Condor
jobs. If not definedgondordagmanooks forcondorsubmitin the PATH.

DAGMAN.STORK SUBM T_EXE The executable thabndordagmarwill use to submit Stork jobs.
If not defined condordagmanooks forstork submitin the PATH.

DAGVAN.CONDORRMEXE The executable thatondordagmanwill use to remove Condor jobs.
If not defined condordagmanooks forcondorrm in the PATH.

DAGVAN.STORK RMEXE The executable thatondordagmanwill use to remove Stork jobs. If
not definedcondordagmanooks forstork rm in the PATH.

DAGMANPROHI BI TMULTI _.JOBS A boolean value that controls whethesndordagmanpro-
hibits node job submit files that queue multiple job proc&i¢othan parallel universe). If a
DAG references such a submit file, the DAG will abort during thitialization process. If not
defined DAGMANPROHIBIT _MULTI_JOBSdefaults toFalse .

Condor Version 7.2.3 Manual

3.3. Configuration 227

DAGMANLOGONNFS.| S EERROR A boolean value that controls whetheondordagmanpro-
hibits node job submit files with user log files on NFS. If a DA&farences such a
submit file andDAGMANOGONNFSIS ERRORIs True , the DAG will abort dur-
ing the initialization process. IDAGMANOGONNFSIS _ERRORSs False , a warn-
ing will be issued but the DAG will still be submitted. It istrongly recommended
that DAGMANOGONNFSIS _[ERRORremain set to the default value, because run-
ning a DAG with node job log files on NFS will often cause errordf not defined,
DAGMANOGONNFSIS _ERRORjefaults toTrue .

DAGMANABORT_DUPLI CATES A boolean value that controls whether to attempt to abort du-
plicate instances ofondordagmanrunning the same DAG on the same machine. When
condordagmanstarts up, if no DAG lock file existgondordagmancreates the lock file and
writes its PID into it. If the lock file does exist, alAGMAMBORTDUPLICATES:is set
to True , condordagmanchecks whether a process with the given PID exists, and iit so,
assumes that there is already another instancemdordagmanrunning on the same DAG.
Note that this test is not foolproof: it is possible thatd@hdordagmarcrashes, the same PID
gets reused by another process befmyadordagmangets rerun on that DAG. This should
be quite rare, however. If not definddAGMAMBORTDUPLICATESdefaults toTrue .

DAGMAN.SUBM T_DEPTHFI RST A boolean value that controls whether to submit ready DAG
node jobs in (more-or-less) depth first order, as opposedréadbh-first order. Setting
DAGMANUBMIT_.DEPTHFIRST to True doesnot override dependencies defined in the
DAG. Rather, it causes newly-ready nodes to be added to thd, trather than the tail,
of the ready node list. If there are no PRE scripts in the DA@s will cause the
ready nodes to be submitted depth-first. If there are PRBptscrthe order will not be
strictly depth-first, but it will tend to favor depth rathehan breadth in executing the
DAG. If you set DAGMANSUBMIT.DEPTHFIRST to True , you may also want to set
DAGMANRETRYSUBMITFIRST and DAGMANRETRYNODEFIRST to True . If not
defined DAGMANSUBMIT.DEPTHFIRST defaults tofalse

DAGVAN.ON_EXI T_-REMOVE TheOnExitRemove expression put into theondordagmansub-
mit file by condorsubmitdag The default expression is designed to ensure tuai-
dor_dagmanis automatically re-queued by the schedd if it exits abndignoa is killed (e.g.,
during a reboot). If this results inondordagmanstaying in the queue when it should exit,
you may want to change to a less restrictive expression xamgle:

(ExitBySignal == false || ExitSignal =!= 9)

If not defined DAGMANDNEXIT _-REMOVHefaults to
(ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >= 0 && ExitCode <= 2]
DAGVANABORT_ONLSCARY_.SUBM T A boolean value that controls whether to abort a DAG

upon detection of a “scary” submit event (one in which the @onID does not match
the expected value). Note that in all versions prior to §.28ndordagmanhas not

Condor Version 7.2.3 Manual

3.3. Configuration 228

aborted a DAG upon detection of a “scary” submit event (th&hdvior is what now
happens if DAGMAMBORTONSCARYSUBMIT is set tofalse). If not defined,
DAGMAMBORTONSCARYSUBMITdefaults tatrue .

DAGMANPENDI NGREPORT_I NTERVAL An integer value (in seconds) that controls how of-
ten condocdagmanwill print a report of pending nodes to thdagman.out file.
Note that the report will only be printed iEondordagmanhas been waiting at least
DAGMANPENDINGREPORTINTERVAL seconds without seeing any node job user log
events, in order to avoid cluttering tldagman.out file. (This feature is mainly intended
to help diagnose "stuckéondordagmanprocesses that are waiting indefinitely for a job to
finish.) If not definedPAGMANPENDINGREPORTINTERVAL defaults to 600 seconds (10
minutes).

DAGMANLI NSERT_SUB_FI LE A file name of a file containing submit fle commands to be in-
serted into thecondor.sub file created bycondorsubmitdag The specified file is
inserted into the.condor.sub file before thequeue command and before any com-
mands specified with theappend condorsubmitdag command-line option. Note that
the DAGMANNSERT_SUBFILE value can be overridden by thénsert_sub file con-
dor_submitdagcommand-line option.

DAGMAN.OLD_RESCUE A boolean value that controls whethewndordagmanuses "old-style”
rescue DAG naming when creating a rescue DAG. (With "oldestyescue DAG nam-
ing, if your DAG file is my.dag , the rescue DAG file will bemy.dag.rescue , and
that file will be overwritten if you re-runmy.dag and it fails again. With "new-
style” rescue DAG naming, the first time a rescue DAG is crbdte my.dag , it will
be namedmy.dag.rescue001 ,and subsequent failures ofiy.dag will produce res-
cue DAGs namedny.dag.rescue002 , my.dag.rescue003 , etc.) If not defined,
DAGMANLDRESCUHlefaults tofalse

DAGMANAUTORESCUE A boolean value that controls whetheondordagmanautomatically
runs rescue DAGs. IDAGMAMUTQRESCUEs true and you run the DAG filmy.dag , if
arescue dag such asg/.dag.rescue001 , my.dag.rescue002 |, etc., exists, the newest
(highest-numbered) such rescue DAG will be run. If not defiiPAGMAMUTQRESCUE
defaults tatrue .

Note: havingDAGMAINDLDRESCUEand DAGMAMUTQRESCUBhoth set tatrue is a
fatal error.

DAGMANMAX_ RESCUENUM An integer value that controls the maximum “new-style” res-
cue DAG number that will be written (iDAGMANDLDRESCUESs false) or run (if
DAGMAMUTQRESCUES true). The maximum legal value is 999; the minimum value
is 0 (which will prevent a rescue DAG from being written at, alf automatically run). If not
defined DAGMANMAXRESCUBNUMlefaults to 100.

DAGVAN.COPY_.TO.SPOOL A boolean value that controls whether the condagman binary is
copied to the spool directory when a DAG is submitted. Tharnaason for setting this value
totrue is if you have long-running DAGs that should survive a DAGMansion upgrade. If
you run large numbers of small DAGs, you should leave thisrmanset (or set it téalse).

If not defined DAGMAMUTQRESCUHefaults tofalse

Condor Version 7.2.3 Manual

3.3. Configuration 229

3.3.26 Configuration File Entries Relating to Security

These macros affect the secure operation of Condor. Manlyesfet macros are described in sec-
tion[3.6 on Security.

SEC* _AUTHENTI CATI ON ‘ This section has not yet been Writt)en

SEC.* _[ENCRYPTI ON ‘ This section has not yet been writtbn

SEC* | NTEGRI TY ‘ This section has not yet been WrittFn

SEC* _NEGOTI ATI ON ‘ This section has not yet been Writtkn

SEC.* _AUTHENTI CATI ONMETHODS ‘ This section has not yet been writtFn

SEC*_CRYPTQMETHODS | This section has not yet been written

GSI _DAEMONNAME This configuration variable is retired. Instead USELOWCLIENT or
DENYCLIENT as appropriate. When used, this variable defined a commaagegdist
of the subject name(s) of the certificate(s) that the daemses

GSI _DAEMONDI RECTORY A directory name used in the construction of complete
paths for the configuration variable&SI_DAEMONCERT GSI_DAEMONXEY, and
GSI_DAEMONRUSTEDRCADIR, for any of these configuration variables are not explicitly
set.

GSI _DAEMONCERT A complete path and file name to the X.509 certificate to be useaSI
authentication. If this configuration variable is not definandGSI_DAEMONIRECTORY
is defined, then Condor us&S|I_DAEMONDIRECTORMo construct the path and file name
as

GSI_DAEMON_CERT = $(GSI_DAEMON_DIRECTORY)/hostcert.pe m

GSI _DAEMONKEY A complete path and file name to the X.509 private key to be us€aSI
authentication. If this configuration variable is not definandGSI_DAEMONIRECTORY
is defined, then Condor us&S|_DAEMONDIRECTORMo construct the path and file name
as

GSI_DAEMON_KEY = $(GSI_DAEMON_DIRECTORY)/hostkey.pem

GSI _DAEMONTRUSTEDCADI R The directory that contains the list of trusted certificatio
authorities to be used in GSI authentication. The files irs tthrectory are the pub-
lic keys and signing policies of the trusted certificationthewities. If this configura-
tion variable is not defined, an@SI_DAEMONDIRECTORYis defined, then Condor uses
GSI_DAEMONDIRECTORMo construct the directory path as

Condor Version 7.2.3 Manual

3.3. Configuration 230

GSI|_DAEMON_TRUSTED_CA_DIR = $(GSI_DAEMON_DIRECTORYeftificates

GSI _DAEMONPROXY A complete path and file name to the X.509 proxy to be used in&&SlI
thentication. When this configuration variable is definesk af this proxy takes precedence
over use of a certificate and key.

DELEGATEJOB_GSI _CREDENTI ALS A boolean value that defaults Toue for Condor version
6.7.19 and more recent versions. WHemie , a job’s GSI X.509 credentials are delegated,
instead of being copied. This results in a more secure cornmation when not encrypted.

GRI DMAP The complete path and file name of the Globus Gridmap file. Titidn@p file is used
to map X.509 distinguished names to Condor user ids.

SEC.DEFAULT_SESSI ONDURATI ON The amount of time in seconds before a communication
session expires. Defaults to 86400 seconds (1 day). A sess@ record of necessary in-
formation to do communication between a client and daemod,is protected by a shared
secret key. The session expires to reduce the window of dypity where the key may be
compromised by attack.

SEC.| NVAL| DATESESSI ONSVI ATCP Use TCP (if True) or UDP (if False) for responding to
attempts to use an invalid security session. This happensxémple, if a daemon restarts and
receives incoming commands from other daemons that arestilg a previously established
security session. The default is True.

FS_REMOTEDI R The location of a file visible to both server and client in ReéenBile System
authentication. The default when not defined is the dirgdslrared/scratch/tmp

ENCRYPT_EXECUTEDI RECTORY The execute directory for jobs on Windows platforms may be
encrypted by setting this configuration variableTime . Defaults toFalse . The method of
encryption uses the EFS (Encrypted File System) featureinflowws NTFS v5.

SEC.TCP_SESSI ONTI MEOUT The length of time in seconds until the timeout on individoet-
work operations when establishing a UDP security sessiaim@P. The default value is 20
seconds. Scalability issues with a large pool would be tHg loasis for a change from the
default value.

SEC. TCP_SESSI ONDEADLI NE An integer representing the total length of time in seconds u
giving up when establishing a security session. Whe&a& TCP.SESSIONTIMEOUT
specifies the timeout for individual blocking operationsr{nect, read, write), this setting
specifies the total time across all operations, includiny-blmcking operations that have little
cost other than holding open the socket. The default vald2@seconds. The intention of
this setting is to avoid waiting for hours for a response ia thre event that the other side
freezes up and the socket remains in a connected state. ftikem has been observed in
some types of operating system crashes.

SEC DEFAULTAUTHENTI CATI ONTI MEOQUT The length of time in seconds that Condor should
attempt authenticating network connections before givipgThe default is 20 seconds. Like

Condor Version 7.2.3 Manual

3.3. Configuration 231

other security settings, the portion of the configurationalde nameDEFAULT may be re-
placed by a different access level to specify the timeous#far different types of commands,
for exampleSECCLIENT _AUTHENTICATIONTIMEOUT

SEC PASSWORDFI LE For Unix machines, the path and file name of the file contaittiegpool
password for password authentication.

AUTHSSL_SERVERCAFI LE The path and file name of a file containing one or more trusted
CA's certificates for the server side of a communication antltating with SSL.

AUTHSSL_CLI ENT_CAFI LE The path and file name of a file containing one or more trusted
CA's certificates for the client side of a communication aurticating with SSL.

AUTHSSL_SERVER CADI R The path to a directory that may contain the certificatesh@adts
own file) for multiple trusted CAs for the server side of a coomitation authenticating with
SSL. When defined, the authenticating entity’s certificatatilized to identify the trusted
CA's certificate within the directory.

AUTH.SSL_CLI ENT_CADI R The path to a directory that may contain the certificatesh@adts
own file) for multiple trusted CAs for the client side of a comnication authenticating with
SSL. When defined, the authenticating entity’s certificatatilized to identify the trusted
CA's certificate within the directory.

AUTHSSL_SERVERCERTFI LE The path and file name of the file containing the public certifi-
cate for the server side of a communication authenticatiitiy 8SL .

AUTHSSL _CLI ENT_CERTFI LE The path and file name of the file containing the public certifi-
cate for the client side of a communication authenticatiity 8SL.

AUTHSSL_SERVERKEYFI LE The path and file name of the file containing the private key for
the server side of a communication authenticating with SSL.

AUTHSSL_CLI ENT.KEYFI LE The path and file name of the file containing the private key for
the client side of a communication authenticating with SSL.

CERTI FI CATEMAPFI LE A path and file name of the unified map file.

SEC_ENABL EMATCHPASSWORDAUTHENTI CATI ON This is a special authentication mecha-
nism designed to minimize overhead in tbendorscheddwhen communicating with the
execute machine. Essentially, matchmaking results in @etbeing shared between then-
dor_scheddandcondotstartd, and this is used to establish a strong security sessioreleetw
the execute and submit daemons without going through thal ssgurity negotiation proto-
col. This is especially important when operating at largalesover high latency networks
(e.g. a glidein pool with one schedd and thousands of starids network with 0.1 second
round trip times).

The default value for this configuration option False . To have any effect, it must
be True in the configuration of both the execute side (startd) as aglthe submit side
(schedd). When this authentication method is used, allratbeurity negotiation between
the submit and execute daemons is bypassed. All inter-daeoromunication between the

Condor Version 7.2.3 Manual

3.3. Configuration 232

submit and execute side will use the startd’s settingsSt6€ DAEMONENCRYPTIONaNd
SECDAEMONNTEGRITY:; the configuration of these values in the schedd, shadow, and
starter are ignored.

Important; For strong security, at least one of the two, gntg or encryption, should be

enabled in the startd configuration. Also, some form of gjrarutual authentication (e.g.
GSI) should be enabled between all daemons and the centrelgaaor the shared secret
which is exchanged in matchmaking cannot be safely enadypteen transmitted over the
network.

The schedd and shadow will be authenticatedwtsmit-side @matchsession when
they talk to the startd and starter. The startd and startdlr v authenticated as
execute-side@matchsession when they talk to the schedd and shadow. On the sub-
mit side, authorization of the execute side happens autoatlgt On the execute side, it is
necessary to explicitly authorize the submit side. Example

ALLOW_DAEMON = submit-side@matchsession/192.168.123. *

Replace the example netmask with something suitable for sitwation.

KERBEROS SERVERKEYTAB The path and file name of the keytab file that holds the neggssar
Kerberos principals. If not defined, this variable’s valaseét by the installed Kerberos; it is

/etc/v5srvtab on most systems.
KERBEROS SERVERPRI NCI PAL An exact Kerberos principal to use. The default value
is host/<hostname>@<realm> , as set by the installed Kerberos. Where both

KERBEROSERVERPRINCIPAL and KERBEROSERVERSERVICE are defined, this
value takes precedence.

KERBEROS SERVERUSER The user name that the Kerberos server principal will mapfter a
authentication. The default valuegsndor .

KERBEROS SERVERSERVI CE A string representing the Kerberos service name. This
string is prepended with a slash characté) @nd the host name in order to form
the Kerberos server principal. This value defaults host , resulting in the same
default value as specified by usingERBEROSERVERPRINCIPAL. Where both
KERBEROSERVERPRINCIPAL and KERBEROSERVERSERVICE are defined, the
value of KERBEROSSERVERPRINCIPAL takes precedence.

KERBEROSCLI ENT_KEYTAB The path and file name of the keytab file for the client in Keolser
authentication. This variable has no default value.

3.3.27 Configuration File Entries Relating to PrivSep

PRI VSEP.ENABLED A boolean variable that, whefrue , enables PrivSep. Whefrue , the
condorprocdis used, ignoring the definition of the configuration varaldSEPROCD The
default value when this configuration variable is not defiizsdealse .

PRI VSEP.SW TCHBOARD The full (trusted) path and file name of tkendorroot_switchboard
executable.

Condor Version 7.2.3 Manual

3.3. Configuration 233

3.3.28 Configuration File Entries Relating to Virtual Machines

These macros affect how Condor rum universe jobs on a matched machine within the pool. They
specify items related to theondorvm-gahp

VM GAHP_SERVER The complete path and file name of thendorvm-gahp There is no default
value for this required configuration variable.

VMGAHP_LOG The complete path and file name of ttendorvm-gahpog. If not specified on a
Unix platform, thecondorstarterlog will be used forcondorvm-gahdog items. There is no
default value for this required configuration variable omdbws platforms.

MAX_ VM GAHP_LOG Controls the maximum length (in bytes) to which tbendorvm-gahplog
will be allowed to grow.

VMTYPE Specifies the type of supported virtual machine softwarewilltbe the valuexen or
vmware. There is no default value for this required configuratiorialale.

VMVERSI ON Specifies the version of supported virtual machine softwdafined byVMTYPE
There is no default value for this required configurationiafalle. This configuration vari-
able does not currently alter the behavior of twmdorvm-gahp instead, it is used ion-
dor_statuswhen printing VM-capable hosts and slots.

VMIMEMORY An integer to specify the maximum amount of memory in Mbytext till be allowed
to the virtual machine program.

VMMAX_NUMBER An integer limit on the number of executing virtual machin&ghen not de-
fined, the default value is the salN&MCPUS

VMSTATUS| NTERVAL An integer number of seconds that defaults to 60, reprasgttie inter-
val between job status checks by ttendorstarterto see if the job has finished. A minimum
value of 30 seconds is enforced.

VMGAHP_REQTI MEOUT An integer number of seconds that defaults to 300 (five msjutep-
resenting the amount of time Condor will wait for a commarstied from theeondor starter
to thecondorvm-gahpto be completed. When a command times out, an error is reptote
thecondorstartd

VMRECHECK.I NTERVAL An integer number of seconds that defaults to 600 (ten m&)utep-
resenting the amount of time tleendorstartd waits after a virtual machine error as reported
by thecondorstarter, and before checking a final time on the status of the virtusdimme. If
the check fails, Condor disables starting any new vm unévgss by removing the#MType
attribute from the machine ClassAd.

VM SOFT_SUSPEND A boolean value that defaults Ealse , causing Condor to free the memory
of a vm universe job when the job is suspended. Where , the memory is not freed.

VMUNI V.NOBODY_USER Identifies a login name of a user with a home directory that beysed
for job owner of a vm universe job. Theobody user normally utilized when the job arrives
from a different UID domain will not be allowed to invoke a VMure virtual machine.

Condor Version 7.2.3 Manual

3.3. Configuration 234

ALVWAYS VM UNI V_.USE_.NOBODY A boolean value that defaults tealse . WhenTrue , all
vm universe jobs (independent of their UID domain) will rue the user defined in
VMUNIV_NOBODNSER

VMNETWORKI NG A boolean variable describing if networking is supportedhéf not defined,
the default value ifalse .

VMINETWORKI NGTYPE A string describing the type of networking, required ancevaint only
whenVMNETWORKING True . Defined strings are

bridge
nat
nat, bridge

VMINETWORKI NGDEFAULT_TYPE Where multiple networking types are given in
VMNETWORKINGYPE, this optional configuration variable identifies which toeus
Therefore, for

VM_NETWORKING_TYPE = nat, bridge

this variable may be defined as eitmat orbridge . Where multiple networking types are
given inVMNETWORKINGYPE, and this variable isotdefined, a default afiat is used.

The following configuration variables are specific to the V& virtual machine software.

VMMREPERL The complete path and file nameRerl. There is no default value for this required
variable.

VMAMRE SCRI PT The complete path and file name of the script that controls \dké&w There is
no default value for this required variable.

VMMRENETWORKI NGTYPE An optional string used in networking that tlsendocvm-gahp
inserts into the VMware configuration file to define a netwngdype. Defined types arat
orbridged . If a default value is needed, the inserted string wilhiag .

VMARENAT_NETWORKI NGTYPE An optional string used in networking that tlkendorvm-
gahp inserts into the VMware configuration file to define a netwogkitype. If nat
networking is used, this variable’s definition takes prewes over one defined by
VMWARBETWORKINGYPE

VMAMRE BRI DGE.NETWORKI NGTYPE An optional string used in networking that then-
dor_vm-gahpinserts into the VMware configuration file to define a netwodkitype. If
bridge networking is used, this variable’s definition talgecedence over one defined by
VMWARBEETWORKINGYPE

Condor Version 7.2.3 Manual

3.3. Configuration 235

VMMRE LOCAL_SETTI NGSFI LE The complete path and file name to a file, whose contents
will be inserted into the VMware description file (i.e., thenx file) before Condor starts the
virtual machine. This parameter is optional.

The following configuration variables are specific to the Xa@ntual machine software.

XENLSCRI PT The complete path and file name of the script that controls Xéere is no default
value for this required variable.

XEN.DEFAULT_.KERNEL The complete path and executable name of a Xen kernel toledtif
the job’s submission does not specify its own kernel image.

XEN.DEFAULT.I NI TRD The complete path and image file name for the initrd imagesétuwith
the default kernel image.

XEN.BOOTLOADER A required full path and executable for the Xen bootloadéng kernel image
includes a disk image.

XENBRI DGE.SCRI PT A path, file name, and command-line arguments to specify iptdtrat
will be run to set up a bridging network interface for guestéie interface should provide
direct access to the host system’s LAN, that is, not be NARdle host. An example:

XEN_BRIDGE_SCRIPT = vif-bridge bridge=xenbr0

XENLLOCAL_SETTI NGSFI LE A complete path and file name. The file’s contents will be in-
cluded in the Xen configuration file that Condor writes to rba virtual machine. This pa-
rameter is optional.

The following two macros affect the configuration of Conddrese Condor is running on a host
machine, the host machine is running an inner virtual maghand Condor is also running on that
inner virtual machine. These two variables have nothingotavilh thevm universe.

VMP_HOST_MACHI NE A configuration variable for the inner virtual machine, whispecifies the
host name.

VMP_VMLI ST Forthe host, acomma separated list of the host names or lessds for machines
running inner virtual machines on a host.

3.3.29 Configuration File Entries Relating to High Availabiity

These macros affect the high availability operation of Gond

Condor Version 7.2.3 Manual

3.3. Configuration 236

MASTERHA LI ST Similar to DAEMONLIST , this macro defines a list of daemons that toa-
dor_masterstarts and keeps its watchful eyes on. HoweverMASTERHALIST daemons
are run in aHigh Availability mode. The list is a comma or space separated list of subsystem
names (as listed in section 3.3.1). For example,

MASTER_HA_LIST = SCHEDD

TheHigh Availability feature allows for severalondormasterdaemons (most likely on sep-
arate machines) to work together to insure that a partickdavice stays available. These
condormasterdaemons ensure that one and only one of them will have thesllddemons
running.

To use this feature, the lock URL must be set with LOCKURL

Currently, only file URLs are supported (those witte: ...). The default value for
MASTERHALIST is the empty string, which disables the feature.

HA_LOCK.URL This macro specifies the URL that titkendormasterprocesses use to synchro-
nize for theHigh Availability service. Currently, only file URLs are supported; for exaeppl
file:/share/spool . Note that this URL must be identical for albbndormasterpro-
cesses sharing this resource. Eondorscheddsharing, we recommend setting GROOL
on an NFS share and having &ligh Availability condorscheddprocesses sharing it, and
setting theHALOCKURLto point at this directory as well. For example:

MASTER_HA _LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = SCHEDD.lock

A separate lock is created for eaeigh Availability daemon.
There is no default value faALOCKURL

Lock files are in the form<SUBSYS>.lock. condorpreenis not currently aware of the
lock files and will delete them if they are placed in tBEOOLdirectory, so be sure to add
<SUBSYS-.lock to VALID _SPOOLFILES for eachHigh Availability daemon.

HA <SUBSYS>LOCK URL This macro controls thedigh Availability lock URL for a spe-
cific subsystem as specified in the configuration variable eyaand it overrides the
system-wide lock URL specified b MALOCKURL If not defined for each subsystem,
HA<SUBSYS>LOCKURLIs ignored, and the value 6fALOCKURLIis used.

HA LOCK HOLD.TI ME This macro specifies the number of seconds thattirelormasterwill
hold the lock for eactHigh Availability daemon. Upon gaining the shared lock, tton-
dor_masterwill hold the lock for this number of seconds. Additionaltihe condormaster
will periodically renew each lock as long as tbendormasterand the daemon are running.
When the daemon dies, or teendormasterexists, thecondormasterwill immediately re-
lease the lock(s) it holds.

HALOCKHOLDTIME defaults to 3600 seconds (one hour).

Condor Version 7.2.3 Manual

3.3. Configuration 237

HA <SUBSYS>LOCKHOLD.TI ME This macro controls theligh Availability lock hold time for
a specific subsystem as specified in the configuration varizgdine, and it overrides the sys-
tem wide poll period specified ifALOCKHOLDTIME. If not defined for each subsystem,
HA<SUBSYS>LOCKHOLDTIME is ignored, and the value 1A LOCKHOLDTIME is
used.

HA_POLL_PERI OD This macro specifies how often tikendormasterpolls theHigh Availability
locks to see if any locks are either stale (meaning not upldatdHA LOCKHOLDTIME sec-
onds), or have been released by the owrdagdormaster Additionally, thecondormaster
renews any locks that it holds during these polls.

HAPOLL PERIODdefaults to 300 seconds (five minutes).

HA <SUBSYS>POLL_PERI OD This macro controls théligh Availability poll period for a spe-
cific subsystem as specified in the configuration variable@aamd it overrides the sys-
tem wide poll period specified bHAPOLLPERIOD If not defined for each subsystem,
HA<SUBSYS>POLL PERIODis ignored, and the value 6fAPOLL_PERIODis used.

MASTER <SUBSYS>.CONTROLLER Used only in HA configurations involving theondorhad

The condormasterhas the concept of a controlling and controlled daemoncallyi with
the condorhad daemon serving as the controlling process. In this caseoalioron and
condoroff commands directed at controlled daemons are given to theatiomy daemon,
which then handles the command, and, when required, semis@pate commands to the
condormasterto do the actual work. This allows the controlling daemonrow the state of
the controlled daemon.

As of 6.7.14, this configuration variable must be specifiedalb configurations usingon-
dor_had To configure theeondornegotiatorcontrolled bycondorhad

MASTER_NEGOTIATOR_CONTROLLER = HAD

The macro is named by substitutirggUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

HADLI ST A comma-separated list of akondorhad daemons in the formP:port or
hostname:port . Each central manager machine that runsctvedorhad daemon should
appear in this list. IHADUSEPRIMARYis set toTrue , then the first machine in this list is
the primary central manager, and all others in the list ackbps.

All central manager machines must be configured with an idaitiADLIST . The machine
addresses are identical to the addresses define®LLECTORIOST

HAD_USE PRI MARY Boolean value to determine if the first machine in BeDLIST configura-
tion variable is a primary central manager. Defaultf#ise .

HAD_CONNECT! ONTI MEOUT The time (in seconds) that tteondorhad daemon waits before
giving up on the establishment of a TCP connection. Theraitd the communication con-
nection is the detection mechanism for the failure of a @mb@anager machine. For a LAN,
a recommended value is 2 seconds. The use of authentichtid®andor) increases the con-
nection time. The default value is 5 seconds. If this valiseitoo lowcondorhaddaemons
will incorrectly assume the failure of other machines.

Condor Version 7.2.3 Manual

3.3. Configuration 238

HAD_ARGS Command line arguments passed by¢badormasterdaemon as it invokes theon-
dor_haddaemon. To make high availability work, tikendorhad daemon requires the port
number it is to use. This argument is of the form

-p $(HAD_PORT_NUMBER)

whereHADPORTNUMBERS a helper configuration variable defined with the desired po
number. Note that this port number must be the same valueasarsed irHADRLIST . There
is no default value.

HAD The path to thecondorhad executable. Normally it is defined relative $§SBIN) . This
configuration variable has no default value.

MAX HAD.LOG Controls the maximum length in bytes to which ttendorhad daemon log will
be allowed to grow. It will grow to the specified length, themdaved to a file with the suffix
.old . The.old file is overwritten each time the log is saved, thus the maxringpace
devoted to logging is twice the maximum length of this log.fike value of 0 specifies that
this file may grow without bounds. The default is 1 Mbyte.

HAD_DEBUG Logging level for thecondorhad daemon. SeeSUBSY S>DEBUGor values.
HAD_LOG Full path and file name of the log file. There is no default value

REPLI CATI ONLI ST A comma-separated list of alondorreplication daemons in the form
IP:port or hostname:port . Each central manager machine that runsabedorhad
daemon should appear in this list. All potential central agar machines must be configured
with an identicaREPLICATION_LIST .

STATEFI LE A full path and file name of the file protected by the replicatinechanism. When
not defined, the default path and file used is

$(SPOOL)/Accountantnew.log

REPLI CATI ONI NTERVAL Sets how often theondorreplicationdaemon initiates its tasks of
replicating the$(STATE _FILE) . It is defined in seconds and defaults to 300 (5 minutes).
This is the same as the defaNEGOTIATORNTERVAL.

MAX_TRANSFERERLI FETI ME A timeout period within which the process that transfers the
state file must complete its transfer. The recommended vsl2iex average size of
state file / network rate . Itis defined in seconds and defaults to 300 (5 minutes).

HAD UPDATE.I NTERVAL Like UPDATEINTERVAL, determines how often theondorhad is
to send a ClassAd update to thendorcollector. Updates are also sent at each and every
change in state. It is defined in seconds and defaults to 300n&tes).

HAD.USE_REPLI| CATI ON A boolean value that defaults fealse . WhenTrue , the use oton-
dor_replicationdaemons is enabled.

Condor Version 7.2.3 Manual

3.3. Configuration 239

REPLI CATI ONARGS Command line arguments passed by tioadormasterdaemon as it in-
vokes thecondotreplicationdaemon. To make high availability work, toendotreplication
daemon requires the port number it is to use. This argumerittie form

-p $(REPLICATION_PORT_NUMBER)

where REPLICATION_PORTNUMBERs a helper configuration variable defined with the
desired port number. Note that this port number must be tmeesaalue as used in
REPLICATIONLLIST . There is no default value.

REPLI CATI ON The full path and file name of theondorreplication executable. It is normally
defined relative t&(SBIN) . There is no default value.

MAX_REPLI CATI ONLOG Controls the maximum length in bytes to which ttendorreplication
daemon log will be allowed to grow. It will grow to the spectfieength, then be saved to a
file with the suffix.old . The.old file is overwritten each time the log is saved, thus the
maximum space devoted to logging is twice the maximum leofthis log file. A value of 0
specifies that this file may grow without bounds. The default Mbyte.

REPLI CATI ONDEBUG Logging level for the condorreplication daemon. See
<SUBSYS>DEBUGor values.

REPLI CATI ONLOG Full path and file name to the log file. There is no default value

TRANSFERER The full path and file name of the condortransferer exe-
cutable. Versions of Condor previous to 7.2.2 hard coded theation as
$(RELEASE_DIR)/sbin/condor transferer . This is now the default value.
The future default value is likely to change, and be definéative to$(SBIN) .

TRANSFERERLOG Full path and file name to the log file. There is no default vehrethis
variable; a definition is required if theondorreplicationdaemon does a file transfer.

TRANSFERERDEBUG Logging level for thecondortransfererdaemon. SeeSUBSYS>DEBUG
for values.

MAX_TRANSFERERLOG Controls the maximum length in bytes to which tb@endortransferer
daemon log will be allowed to grow. A value of 0 specifies thas file may grow without
bounds. The defaultis 1 Mbyte.

3.3.30 Configuration File Entries Relating to Quill

These macros affect the Quill database management anthorgdp its representation of the job
queue.

QUI LL The full path name to theondorquill daemon.

QUI LL.ARGS Arguments to be passed to thendorquill daemon upon its invocation.

Condor Version 7.2.3 Manual

3.3. Configuration 240

QUI LLLOG Path to the Quill daemon’s log file.

QUI LL.ENABLED A boolean variable that defaults Ealse . WhenTrue , Quill functionality is
enabled. Whefralse , the Quill daemon writes a message to its log and exits.cbinelorq
andcondorhistorytools then do not use Quill.

QUI LL.NAME A string that uniquely identifies an instance of ttendorquill daemon, as there
may be more thanondorquill daemon per pool. The string must not be the same as for any
condorschedddaemon.

See the description IASTERNAMEN section 3.3.9 on page 177 for defaults and composi-
tion of valid Condor daemon names.

QUI LL.USE_.SQL_LOG In order for Quill to store historical job information or r@srce informa-
tion, the Condor daemons must write information to the SQifile. By default, this is set
to False , and the only information Quill stores in the database isdheent job queue.
This can be set on a per daemon basis. For example, to stamniation about historical
jobs, but not store execute resource information,@etLL _USESQL LOGto False and
setSCHEDD.QUILL _USESQLLOGto True .

QUI LL_.DB_NAME A string that identifies a database within a database server.

QUI LL.DB.USER A string that identifies théPostgreSQLuser that Quill will connect to the
database as. We recommenmgliifiwriter ” for this setting.

QUI LL.DB_TYPE A string that distinguishes between database system tigmfauilts to the only
database system currently defindeGSQL".

QUI LL_DB.I P_.ADDR The host address of the database server. It can be eitheraatuiBss or an
IP address. It must match exactly what is used inpigpass file.

QUI LL_POLLI NGPERI OD The frequency, in number of seconds, at which the Quill daepails
the filejob _queue.log for updates. New information in the log file is sent to the Datze.
The default value is 10.

QUI LL_NOT_RESPONDI NGTI MEQUT The length of time, in seconds, before tendormaster
may decide that theondorquill daemon is hung due to a lack of communication, potentially
causing theeondormasterto kill and restart theondorquill daemon. When theondorquill
daemon is processing a very long log file, it may not be abl@mrounicate with the master.
The default is 3600 seconds, or one hour. It may be advisalihetease this to several hours.

QUI LL_MAI NTAI NDB_CONN A boolean variable that defaults iocue . WhenTrue , thecon-
dor_quill daemon maintains an open connection the database senieh, spleeds up updates
to the database. As each open connection consumes resatirites database server, we
recommend a setting ¢false for large pools.

DATABASEPURGE.lI NTERVAL The interval, in seconds, between scans of the databaserte id
tify and delete records that are beyond their history daregi The default value is 86400, or
one day.

Condor Version 7.2.3 Manual

3.3. Configuration 241

DATABASE REI NDEX| NTERVAL The interval, in seconds, between reindex commands on
the database. The default value is 86400, or one day. Thiqlg wsed when the
QUILL_DBTYPEis set toa"PGSQL".

QUI LL.JOB.HI STORY_.DURATI ON The number of days after entry into the database that a job
will remain in the database. AfteQUILL _JOBHISTORY.DURATIONdays, the job is
deleted. The job history is the final ClassAd, and contaihsfidrmation necessary faron-
dor_historyto succeed. The default is 3650, or about 10 years.

QUI LL.RUNHI STORY.DURATI ON The number of days after entry into the database
that extra information about the job will remain in the datsé. After
QUILL _RUNHISTORYDURATIONdays, the records are deleted. This data includes
matches made for the job, file transfers the job performed teser log events. The default is
7 days, or one week.

QUI LL.RESOURCEHI STORY.DURATI ON The number of days after entry into
the database that a resource record will remain in the dséaba After
QUILL _RESOURCHISTORYDURATIONdays, the record is deleted. The resource
history data includes the ClassAd of a compute slot, submiflassAds, and daemon
ClassAds. The default is 7 days, or one week.

QUI LL.DBSI ZELI M T After each purge, theondorquill daemon estimates the size of the
database. If the size of the database exceeds this limitaha@orquill daemon will e-mail
the administrator a warning. This size is given in gigabyaesl defaults to 20.

QUI LL_.MANAGE.VACUUM A boolean value that defaults Ealse . WhenTrue , thecondorquill
daemon takes on the maintenance task of vacuuming the datahsofPostgreSQlversion
8.1, the database can perform this task automaticallyefbes, having theondorquill dae-
mon vacuum is not necessary. A valueTofie causes warnings to be written to the log
file.

QUI LL_.SHOULDREI NDEX A boolean value that defaultsTaue . WhenTrue , thecondorquill
daemon will re-index the database tables when the histaydfipurged of old data. So, if
Quill is configured to never delete history data, the tablesn@ver re-indexed.

QUI LL_I SSREMOTELY.QUERYABLE A boolean value that defaults Tue . WhenFalse , the
remote database tables may not be remotely queryable.

QUI LL_DB_QUERY_PASSWORD Defines the password string neededdoydorq to gain read ac-
cess for remotely querying the Quill database.

QUI LL_.ADDRESS FI LE When defined, it specifies the path and file name of a local filéadoing
the IP address and port number of the Quill daemon. By usiadilén tools executed on the
local machine do not need to query the central manager inr@aodénd the condorquill
daemon.

DBMSD The full path name to thecondordbmsd daemon. The default location is
$(SBIN)/condor _dbmsd.

Condor Version 7.2.3 Manual

3.3. Configuration 242

DBMSDARGS Arguments to be passed to tkendordbmsddaemon upon its invocation. The
default arguments aré .

DBMSDLOG Path to thecondordbmsd daemon’s log file. The default log location is
$(LOG)/DbmsdLog .

DBMSD NOT_RESPONDI NGTI MEQUT The length of time, in seconds, before tendormaster
may decide that theondordbmsds hung due to a lack of communication, potentially causing
the condormasterto kill and restart theeondordbmsddaemon. When theondordbmsdis
purging or reindexing a very large database, it may not be &blcommunicate with the
master. The default is 3600 seconds, or one hour. It may bisalle to increase this to
several hours.

3.3.31 MyProxy Configuration File Macros

In some cases, Condor can autonomously refresh GSI cesifiraxies viaMyProxy, available
from http://myproxy.ncsa.uiuc.edul/.

MYPROXY_GET_DELEGATI ON The full path name to thenyproxy-get-delegatioexecutable, in-
stalled as part of th&¥lyProxysoftware. Often, it is necessary to wrap the actual exetritab
with a script that sets the environment, such aslibe IBRARY_PATH correctly. If this
macro is defined, Condor-G amtndorcreddwill have the capability to autonomously re-
fresh proxy certificates. By default, this macro is undefined

3.3.32 Configuration File Macros Affecting APIs

ENABLE.SOAP A boolean value that defaults tealse . WhenTrue , Condor daemons will
respond to HTTP PUT commands as if they were SOAP calls. VWadse , all HTTP PUT
commands are denied.

ENABLEWEB_SERVER A boolean value that defaults false . WhenTrue , Condor daemons
will respond to HTTP GET commands, and send the static fil#i®giin the subdirectory
defined by the configuration variab®EBROOTDIR. In addition, web commands are con-
sidered a READ command, so the client will be checked by hased security.

SOAP_LEAVE | NQUEUE A boolean value that wheFrue , causes a job in the completed state to
remain in the queue, instead of being removed based on thpletiam of file transfer. There
is no default value.

VEB_ROOT_DI R A complete path to the directory containing all the files seirfoy the web server.

<SUBSYS>ENABLE SOAP_SSL A boolean value that defaults talse . WhenTrue , enables
SOAP over SSL for the specifieBUBSY S> Any specificcSUBSYS>ENABLESOARSSL
setting overrides the value 8NABLESOAPRSSL.

Condor Version 7.2.3 Manual

http://myproxy.ncsa.uiuc.edu/

3.3. Configuration 243

ENABLE SOAP_SSL A boolean value that defaults fealse . WhenTrue , enables SOAP over
SSL for all daemons.

<SUBSYS>SOAP_SSL_PORT A required port number on which SOAP over SSL messages are
accepted, when SOAP over SSL is enabled. ¥B&BSYS>must be specified, because
multiple daemons running on a single machine may not shamrta @here is no default
value.

The macro is named by substitutirggUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

SOAP_SSL_SERVERKEYFI LE A required complete path and file name to specify the daemon’s
identity, as used in authentication when SOAP over SSL idleda The file is to be an
OpenSSL PEM file containing a certificate and private key.rélieno default value.

SOAP_SSL_SERVERKEYFI LEPASSWORD An optional complete path and file name to specify
a password for unlocking the daemon'’s private key. Ther@idefault value.

SOAP_SSL_CA FI LE A required complete path and file name to specify a file coiriginertifi-
cates of trusted Certificate Authorities (CAs). Only clentho present a certificate signed by
a trusted CA will be authenticated. There is no default value

SOAP_SSL_CADI R A required complete path to a directory containing certtéssof trusted Cer-
tificate Authorities (CAs). Only clients who present a dartite signed by a trusted CA will
be authenticated. There is no default value.

SOAP_SSL_DHFI LE An optional complete path and file name to a DH file containiegsdfor a
DH key exchange. There is no default value.

3.3.33 Stork Configuration File Macros

STORKIMAX_NUMJOBS An integer limit on the number of concurrent data placemehsjhan-
dled by Stork. The default value when not defined is 10.

STORK.MAX_RETRY An integer limit on the number of attempts for a single datcpment job.
For data transfers, this includes transfer attempts on tiinegpy protocol, all alternate proto-
cols, and all retries. The default value when not defined is 10

STORK.MAXDELAY.I NM NUTES An integer limit (in minutes) on the run time for a data place-
ment job, after which the job is considered failed. The difealue when not defined is 10,
and the minimum legal value is 1.

STORK.TMP_.CRED.DI R The full path to the temporary credential storage directesgd by Stork.
The default value i#mp when not defined.

STORKIMODULEDI R The full path to the directory containing Stork modules. Tdefault
value when not defined is as defined BYLIBEXEC) . It is a fatal error for both
STORKMODULBIR andLIBEXEC to be undefined.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 244

CRED SUPERUSERS Access to a stored credential is restricted to the user whmgted the
credential, and any user names specified in this macro. Timeatois a space or comma
separated list of user names which are valid orstivek creddhost. The default value of this
macro isroot on Unix systems, anddministrator on Windows systems.

CRED STORE DI R Directory for storing credentials. This directory must sxprior to starting
storkcredd It is highly recommended to restrict access permissionsnityg the directory
owner. The default value (SPOOLDIR)/cred

CRED.I NDEXFI LE Index file path of saved credentials. This file will be autocelly created if
it does not exist. The default value$¢CRED_STOREDIR)/cred-index

DEFAULT_CRED.EXPI RETHRESHOLD stork credd will attempt to refresh credentials when
their remaining lifespan is less than this value. Units =osels. Default value = 3600 seconds
(2 hour).

CRED.CHECK.lI NTERVAL stork credd periodically checks remaining lifespan of stored creden-
tials, at this interval. Units = seconds. Default value = 66ands (1 minute).

3.4 User Priorities and Negotiation

Condor uses priorities to determine machine allocatiorjdbs. This section details the priorities
and the allocation of machines (negotiation).

For accounting purposes, each user is identified by user@antedomain. Each user is as-
signed a priority value even if submitting jobs from diffatenachines in the same domain, or even
if submitting from multiple machines in the different domai

The numerical priority value assigned to a user is inversadbted to thgoodnessf the priority.
A user with a numerical priority of 5 gets more resources tharser with a numerical priority of
50. There are two priority values assigned to Condor users:

« Real User Priority (RUP), which measures resource usatfeeafser.
« Effective User Priority (EUP), which determines the numékresources the user can get.

This section describes these two priorities and how thegcafesource allocations in Condor. Doc-
umentation on configuring and controlling priorities mayfbend in section 3.3.17.

3.4.1 Real User Priority (RUP)

A user's RUP measures the resource usage of the user thrioughEvery user begins with a RUP
of one half (0.5), and at steady state, the RUP of a user boatitis to the number of resources used
by that user. Therefore, if a specific user continuously es@sgtly ten resources for a long period
of time, the RUP of that user stabilizes at ten.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 245

However, if the user decreases the number of resources tieeBUP gets better. The rate at
which the priority value decays can be set by the m&RIORITY _HALFLIFE , a time period
defined in seconds. Intuitively, if tieRIORITY _HALFLIFE in a pool is set to 86400 (one day),
and if a user whose RUP was 10 removes all his jobs, the usePswould be 5 one day later, 2.5
two days later, and so on.

3.4.2 Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to detamtiow many resources that user may
receive. The EUP is linearly related to the RUP bprarity factor which may be defined on a
per-user basis. Unless otherwise configured, the prioaitydi for all users is 1.0, and so the EUP
is the same as the the RUP. However, if desired, the priaitiofs of specific users (such as remote
submitters) can be increased so that others are servedaqmtédly.

The number of resources that a user may receive is inverstdied to the ratio between the
EUPs of submitting users. Therefore usewith EUP=5 will receive twice as many resources as
user B with EUP=10 and four times as many resources as Gsweith EUP=20. However, ifA
does not use the full number of allocated resources, thdatairesources are repartitioned and
distributed among remaining users according to the invextse rule.

Condor supplies mechanisms to directly support two pdigievhich EUP may be useful:

Nice users A job may be submitted with the parametdce _user set to TRUE in the submit
command file. A nice user job gets its RUP boosted byNheE_USERPRIO_FACTOR
priority factor specified in the configuration file, leadingd (usually very large) EUP. This
corresponds to a low priority for resources. These jobslageefore equivalent to Unix back-
ground jobs, which use resources not used by other Conds.use

Remote UsersThe flocking feature of Condor (see section/5.2) allowsdtvedorscheddto sub-
mit to more than one pool. In addition, the submit-only featallows a user to run eon-
dor_scheddhat is submitting jobs into another pool. In such situatisubmitters from other
domains can submit to the local pool. It is often desirablaawee Condor treat local users
preferentially over these remote users. If configured, @omdll boost the RUPs of remote
users byREMOTEPRIO_FACTORspecified in the configuration file, thereby lowering their
priority for resources.

The priority boost factors for individual users can be sethwhe setfactor option of con-
dor_userpria Details may be found in theondoruserpriomanual page on page 838.

3.4.3 Priorities and Preemption

Priorities are used to ensure that users get their fair sffaesources. The priority values are used at
allocation time. In addition, Condor may preempt a machla@tand reallocate it when conditions
change.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 246

Too many preemptions lead to thrashing, a condition in whiegotiation for a machine iden-
tifies a new job with a better priority most every cycle. Eaob js, in turn, preempted, and no
job finishes. To avoid this situation, ttRREEMPTIONREQUIREMENT ®onfiguration variable is
defined for and used only by tle@ndornegotiatordaemon to specify the conditions that must be
met for a preemption to occur. It is usually defined to dengprption if a current running job has
been running for a relatively short period of time. This effeely limits the number of preemptions
per resource per time interval.

Note thatPREEMPTIONREQUIREMENTS8nly applies to preemptions due to user priority. It
does not have any effect if the machin@ANKexpression prefers a different job, or if the machine’s
policy causes the job to vacate due to other activity on thehina. See sectidn 3.5.9 for a general
discussion of limiting preemption.

The following attributes may be used within the definitiorRREEMPTIONREQUIREMENTS
and PREEMPTIONRANK In these attributes, those with names that begin with thmimgst
Submitter refer to characteristics about the candidate job’s usersdhwith names that begin
with the stringRemote refer to characteristics about the user currently usingeleurce. Further,
those with names that end with the strirgsourcesinUse have values that may change within
the time period associated with a single negotiation cy@leerefore, the configuration variables
PREEMPTIONREQUIREMENTSTABLE and andPREEMPTIONRANKSTABLE exist to in-
form the condornegotiatordaemon that values may change. See section 3.3.17 on pader213
complete definitions.

Submi tt erUser Pri o Afloating point value representing the user priority of tlaadidate job.

Submni tt er User Resour cesl nUse The integer number of slots currently utilized by the user
submitting the candidate job.

Renpt eUser Pri a A floating point value representing the user priority of the purrently run-
ning on the machine.

Rempt eUser Resour cesl nUse The integer number of slots currently utilized by the user of
the job currently running on the machine.

Subni tt er G oupResour cesl nUse If the owner of the candidate job is a member of a valid
accounting group, with a defined group quota, then thisaitteiis the integer number of slots
currently utilized by the group.

Submni tt er G oupQuot a If the owner of the candidate job is a member of a valid acdognt
group, with a defined group quota, then this attribute is titeger number of slots defined as
the group’s quota.

Rempt eGr oupResour cesl nUse If the owner of the currently running job is a member of a
valid accounting group, with a defined group quota, thendttisbute is the integer number
of slots currently utilized by the group.

Renpt eGr oupQuot a Ifthe owner of the currently running job is a member of a val@tounting
group, with a defined group quota, then this attribute is titeger number of slots defined as
the group’s quota.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 247

3.4.4 Priority Calculation

This section may be skipped if the reader so feels, but forctiveous, here is Condor’s priority
calculation algorithm.

The RUP of a usex at timet, .. (u, t), is calculated every time intervéi using the formula
Tr’l‘(uvt) = 6 X ﬂ-(uvt - 6t) + (1 - ﬂ) X p(u7t)

wherep(u, t) is the number of resources used by uset timet, andg = 0.5%/", h is the half life
period set byPRIORITY _HALFLIFE .

The EUP of user at timet, . (u, t) is calculated by
Te(u,t) = mr(u,t) X f(u,t)
wheref (u, t) is the priority boost factor for user at timet.

As mentioned previously, the RUP calculation is designethat at steady state, each user’s
RUP stabilizes at the number of resources used by that user.dé&finition of3 ensures that the
calculation ofr,.(u,t) can be calculated over non-uniform time intervédswithout affecting the
calculation. The time intervallt varies due to events internal to the system, but Condor gtsea
that unless the central manager machine is down, no matciidsewunaccounted for due to this
variance.

3.4.5 Negotiation

Negotiation is the method Condor undergoes periodicalipédch queued jobs with resources ca-
pable of running jobs. Theondornegotiatordaemon is responsible for negotiation.

During a negotiation cycle, theondornegotiatordaemon accomplishes the following ordered
list of items.

1. Build a list of all possible resources, regardless of thtesof those resources.
2. Obtain a list of all job submitters (for the entire pool).

3. Sort the list of all job submitters based on EUP (see sec3id.2 for an explanation of EUP).
The submitter with the best priority is first within the sattkést.

4. lterate until there are either no more resources to matang more jobs to match.

For each submitter (in EUP order):

For each submitter, get each job. Since jobs may be subnfiitedmore than one ma-
chine (hence to more than onendorschedddaemon), here is a further definition
of the ordering of these jobs. With jobs from a singendorschedddaemon, jobs
are typically returned in job priority order. When more thane condorschedd
daemon is involved, they are contacted in an undefined ofdlgabs from a single
condotschedddaemon are considered before moving on to the next. For e&ch j

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 248

» For each machine in the pool that can execute jobs:

(@) If machine.requirements evaluates to False or
job.requirements evaluates td-alse , skip this machine

(b) If the machine is in the Claimed state, but not runningla gkip this ma-
chine.

(c) Ifthis machineis notrunning a job, add it to the potdntiatch list by reason

of No Preemption.

(d) If the machine is running a job

— If the machine.RANK on this job is better than the running job, add this
machine to the potential match list by reason of Rank.

— If the EUP of this job is better than the EUP of the currentlgning job,
andPREEMPTIONREQUIREMENTRE True , and themachine.RANK
on this job is not worse than the currently running job, add thachine
to the potential match list by reason of Priority.

o Of machines in the potential match list, sort
by NEGOTIATORPREJOB.RANK job.RANK ,
NEGOTIATORPOSTJOB.RANK Reason for claim (No Preemption,
then Rank, then Priority PREEMPTIONRANK

» The job is assigned to the top machine on the potential mistci he machine
is removed from the list of resources to match (on this negjoth cycle).

The condornegotiatorasks thecondorscheddfor the "next job” from a given submitter/user.
Typically, the condorscheddreturns jobs in the order of job priority. If priorities arbd same,
job submission time is used; older jobs go first. If a clustas multiple procs in it and one of
the jobs cannot be matched, thendorscheddwill not return any more jobs in that cluster on
that negotiation pass. This is an optimization based ontteery that the cluster jobs are similar.
The configuration variabl&lEGOTIATEALL _JOBSIN _CLUSTER disables the cluster-skipping
optimization. Use of the configuration variatB@BGNIFICANT _ATTRIBUTES will change the
definition of what thecondorscheddconsiders a cluster from the default definition of all jobatth
share the sam@lusterld

3.4.6 The Layperson’s Description of the Pie Spin and Pie Sk

Condor schedules in a variety of ways. First, it takes altssao have submitted jobs and calculates
their priority. Then, it totals the number of resources klae at the moment, and using the ratios of
the user priorities, it calculates the number of machines eaer could get. This is thejie slice

The Condor matchmaker goes in user priority order, contaath user, and asks for job infor-
mation. Thecondorschedddaemon (on behalf of a user) tells the matchmaker about @jabthe
matchmaker looks at available resources to create a ligsfurces that match the requirements ex-
pression. With the list of resources that match, it sortathecording to the rank expressions within
ClassAds. If a machine prefers a job, the job is assignedabnttachine, potentially preempting a
job that might already be running on that machine. Otherwgses the machine to the job that the
job ranks highest. If the machine ranked highest is alreadyping a job, we may preempt running

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation

249

job for the new job. A default policy for preemption statesttthe user must have a 20% better
priority in order for preemption to succeed. If the job hagomeferences as to what sort of machine
it gets, matchmaking gives it the first idle resource to msetaquirements.

This matchmaking cycle continues until the user has redialeof the machines in their pie
slice. The matchmaker then contacts the next highest pyrioser and offers that user their pie slice
worth of machines. After contacting all users, the cyclejsaated with any still available resources
and recomputed pie slices. The matchmaker contispesing the pieuntil it runs out of machines
or all thecondorschedddaemons say they have no more jobs.

3.4.7 Group Accounting

By default, Condor does all accounting on a per-user basttis accounting is primarily used to
compute priorities for Condor’s fair-share schedulingagithms. However, accounting can also be
done on a per-group basis. Multiple users can all submitjjotosthe same accounting group, and
all of the jobs will be treated with the same priority.

To use an accounting group, each job inserts an attributefietjob ClassAd which defines the
accounting group name for the job. A common name is decided apd used for the group. The
following line is an example that defines the attribute witthie job’s submit description file:

+AccountingGroup = "group_physics"

TheAccountingGroup attribute is a string, and it therefore must be enclosed ubtioquote
marks. The string may have a maximum length of 40 charactérs.name shouldot be qualified
with a domain. Certain parts of the Condor system do appenddtue$(UID _DOMAIN)(as spec-
ified in the configuration file on the submit machine) to thignst for internal use. For example, if
the value ofuID _DOMAINs example.com , and the accounting group name is as specified;
dor_userpriowill show statistics for this accounting group using the eqpgeed domain, for example

Effective
User Name Priority
group_physics@example.com 0.50
user@example.com 23.11
heavyuser@example.com 111.13

Additionally, thecondoruserpriocommand allows administrators to remove an entity from the
accounting system in Condor. Tkaeleteoption tocondoruserprioaccomplishes this if all the jobs
from a given accounting group are completed, and the adtratis wishes to remove that group
from the system. Thedeleteoption identifies the accounting group with the fully-qfielil name of
the accounting group. For example

condor_userprio -delete group_physics@example.com

Condor removes entities itself as they are no longer retevatervention by an administrator to
delete entities can be beneficial when the use of thousarsl®dfterm accounting groups leads to
scalability issues.

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 250

Note that the name of an accounting group may include a pérjodinclusion of a period
character in the accounting group name only has relevanite iportion of the name before the
period matches a group name, as described in the next sectigroup quotas.

3.4.8 Group Quotas

The use of group quotas modifies the negotiation for avaladsdources (machines) within a Con-
dor pool. This solves the difficulties inherent when priestassigned based on each single user
are insufficient. This may be the case when different groopsdrying size) own computers, and
the groups choose to combine their computers to form a Copalot Consider an imaginary Con-
dor pool example with thirty computers; twenty computers @avned by the physics group and ten
computers are owned by the chemistry group. One notion oBflication could be implemented
by configuring the twenty machines owned by the physics gtoypefer (using th&@ANKconfigu-
ration macro) jobs submitted by the users identified as &ssatwith the physics group. Likewise,
the ten machines owned by the chemistry group are configarprefer jobs from users associated
with the the chemistry group. This routes jobs to executepetific machines, perhaps causing
more preemption than necessary. The (fair allocation)cgalesired is likely somewhat different,
if these thirty machines have been pooled. The desiredypdbes not tie users to specific sets of
machines, but to numbers of machines (a quota). Given thiintylar machines, the desired policy
allows users within the physics group to have preferencepao twenty of the machines within the
pool, and the machines can be any of the machines that ateldeai

A quota for a set of users requires an identification of the eeimbers are called group users.
Jobs under the group quota specify the group user withAteountingGroup job ClassAd
attribute. This is the same attribute as is used with grogpuating.

The submit file syntax for specifying a group user includethtzogroup name and a user name.
The syntax is

+AccountingGroup = "<group>.<user>"

The group is a name chosen for the group. Group names are case-imgerfsit negotia-
tion. Group names are not required to begin with the stfiggpup ", as in the examples
"group _physics.newton" and"group _chemistry.curie" , but it is a useful conven-
tion, because group names must not conflict with user nambe. p€riod character between the
group and the user name is a required part of the syntax. N@hE&ccounting group value lacking
the period will cause the job to not be considered part of ttoeig when negotiating, even if the
group name has a quota. Furthermore, there will be no wasrthmgf the group quota is not in effect
for the job, as this syntax defines group accounting.

Configuration controls the order of negotiation for groups @ndividual users, as well as sets
guotas (preferentially allocated numbers of machines}Hergroups. A declared number of slots
specifies the quota for each group (&ROURQUOTA<groupname> in section 3.3.17). The sum
of the quotas for all groups must be less than or equal to thebeu of slots in the entire pool. If
the sum is less than the number of slots in the entire pookltts are allocated to theone group,
comprised of the general users not submitting jobs in a group

Condor Version 7.2.3 Manual

3.4. User Priorities and Negotiation 251

Where group users are specified for jobs, accounting is dengrpup user. Itis no longer done
by group, or by individual user.

Negotiation is changed when group quotas are used. Condotiates first for defined groups,
and then for independent job submitters. Given jobs belantp different groups, Condor nego-
tiates first for the group currently utilizing the smallegrpentage of machines in its quota. After
this, Condor negotiates for the group currently utilizihe second smallest percentage of machines
in its quota. The last group will be the one with the highestpetage of machines in its quota.
As an example, again use the imaginary pool and groups gikemea If various users within
group_physics have jobs running on 15 computers, then the physics group5%s of the
machines within its quota. If various users witlgnoup_chemistry have jobs running on 5
computers, then the chemistry group has 50% of the machiiteswits quota. Negotiation will
take place for the chemistry group first. For independentsiobmissions (those not part of any
group), the classic Condor user fair share algorithm spifiles.

Note that there is no verification that a user is a member ofitbap that he claims. We rely on
societal pressure for enforcement.

Configuration variables affect group quotas. See seCtiBri3.for detailed descriptions of the
variables mentioned. Group names that may be given quotas tsed in negotiation are listed in
the GROUBNAMESmacro. The names chosen must not conflict with Condor useesauotas
(by group) are defined in numbers of machine slots. Each gneayp be assigned an initial value
for its user priority factor with th6ROURPRIO_FACTOR<groupname> macro. If a group is
currently allocated its entire quota of machines, and a gmeger has a submitted job that is not
running, theGROURAUTOREGROURacro allows the job to be considered a second time within
the negotiation cycle along with all other individual us¢os.

HHAHHH AR

#

Example 1

Configuration for group quotas
#

HHAHHH AR

GROUP_NAMES = group_physics, group_chemistry
GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10
GROUP_PRIO_FACTOR_group_physics = 1.0
GROUP_PRIO_FACTOR_group_chemistry = 3.0
GROUP_AUTOREGROUP_group_physics = FALSE
GROUP_AUTOREGROUP_group_chemistry = TRUE

This configuration specifies that tlggoup_physics users will get 20 machines and the
group_chemistry users will get ten machinegroup_physics users will never get more
than 20 machines; howevegroup_chemistry users can potentially get more than ten machines
becaus&ROURAUTOREGROUthemistry s true. This could happen, for example, if there are

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 252

only 15 jobs submitted bgroup_physics users. Also, the default priority factor for the physics
groups is 1.0, and the default priority factor for the chamigroup is 3.0.

HHEHHHHE

#

Submit description file for group quota user
#

HHEHHH I

+AccountingGroup = "group_physics.newton"

This submit file specifies that this job is to be negotiatedaasqf thegroup_physics group
and that the user is newton. Remember that both the group aadhe user name are required for
the group quota to take effect.

3.5 Policy Configuration for the condor startd

This section describes the configuration of machines, swattthey, through theondorstartd dae-
mon, implement a desired policy for when remote jobs shotdd,sbe suspended, (possibly) re-
sumed, vacate (with a checkpoint) or be killed (no checkoirhis policy is the heart of Condor’s
balancing act between the needs and wishes of resource®(oam@chine owners) and resource users
(people submitting their jobs to Condor). Please read thisien carefully if you plan to change
any of the settings described here, as a wrong setting canahagvere impact on either the owners
of machines in your pool (they may ask to be removed from tta pntirely) or the users of your
pool (they may stop using Condor).

Before the details, there are a few things to note:

« Much of this section refers to ClassAd expressions. Pleaad through section 4.1 on
ClassAd expressions before continuing.

« If defining the policy for an SMP machine (a multi-CPU madhiralso read section 3.12.7 for
specific information on configuring thebndorstartd daemon for SMP machines. Easlot
represented by theondorstartd daemon on an SMP machine has its estateandactivity
(as described below). In the future, each slot will be ablaawee its own individual policy
expressions defined. Within this manual section, the wordctine” refers to an individual
slot within an SMP machine.

To define a policy, set expressions in the configuration fie @ectioh 3.3 on Configuring Con-
dor for an introduction to Condor’s configuration files). Tdwpressions are evaluated in the context
of the machine’s ClassAd and a job ClassAd. The expressiangherefore reference attributes
from either ClassAd. See the unnumbered Appendix on[pagéoBadist of job ClassAd attributes.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 253

See the unnumbered Appendix on pagel886 for a list of machimes8d attributes. ThETART
expression is explained. It describes the conditions thagtribe met for a machine to start a job.
The RANKexpression for a machine is described. It allows the spatidic of the kinds of jobs a
machine prefers to run. A final discussion details howdbedorstartd daemon works. Included
are the machinstatesandactivities to give an idea of what is possible in policy decisions. Two
example policy settings are presented.

3.5.1 Startd ClassAd Attributes

The condorstartd daemon represents the machine on which it is running to thel@opool. The
daemon publishes characteristics about the machine in gdehime’s ClassAd to aid matchmak-
ing with resource requests. The values of these attribugs lme listed by using the command:
condorstatus -| hostnameOn an SMP machine, ttendorstartd will break the machine up and
advertise it as separate slots, each with its own name arss&tia

3.5.2 TheSTART expression

The most important expression to thendorstartd is the START expression. This expression
describes the conditions that must be met for a machine ta fah. This expression can reference
attributes in the machine’s ClassAd (suchkaeyboardldle andLoadAvg) and attributes in a
job ClassAd (such a®wner, Imagesize , andCmd the name of the executable the job will run).
The value of theSsTARTexpression plays a crucial role in determining the stateamiiity of a
machine.

TheRequirements expression is used for matching machines with jobs.

Thecondorstartd defines thdRequirements expression by logicallanding theSTARTex-
pression and thiS _-VALID _CHECKPOINTPLATFORMXxpression.

In situations where a machine wants to make itself unavailébr further matches, the
Requirements expression is set to FALSE. When tl8§ ART expression locally evaluates to
TRUE, the machine advertises tRequirements expression as TRUE and does not publish the
STARTexpression.

Normally, the expressions in the machine ClassAd are etedusgainst certain request ClassAds
in the condotnegotiatorto see if there is a match, or against whatever request CtheaAently
has claimed the machine. However, by locally evaluatingg@mession, the machine only evaluates
the expression against its own ClassAd. If an expressionatame locally evaluated (because it
references other expressions that are only found in a réqdesuch a®wner or Imagesize),
the expression is (usually) undefined. See sectioh 4.1 fecifips on how undefined terms are
handled in ClassAd expression evaluation.

A note of caution is in order when modifying tf&TARTto reference job ClassAd attributes.
The defaulis _OWNERXxpression is a function of tH&TARTexpression

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 254

START =?= FALSE

See a detailed discussion of tf&_OWNERXxpression in sectidn 3.5.7. However, the machine lo-
cally evaluates théS _OWNERXxpression to determine if it is capable of running jobs fon@or.
Any job ClassAd attributes appearing in tBF ARTexpression, and hence in the& _OWNERX-
pression are undefined in this context, and may lead to ugeg&ehavior. Whenever tI&TART
expression is modified to reference job ClassAd attributes|S _OWNERXpression should also
be modified to reference only machine ClassAd attributes.

NOTE: If you have machines with lots of real memory and swap spach that the only scarce
resource is CPU time, consider definid@B_RENICEINCREMENTso that Condor starts jobs on
the machine with low priority. Then, further configure to sptthe machines with:

START = True
SUSPEND = False
PREEMPT = False
KILL = False

In this way, Condor jobs always run and can never be kickedroff activity on the machine.
However, because they would run with “nice priority”, irdetive response on the machines will not
suffer. You probably would not notice Condor was runningjtites, assuming you had enough free
memory for the Condor jobs that there was little swapping.

3.5.3 Thel S.VALI DCHECKPO NT_PLATFORMexpression

A checkpoint is the platform-dependent information neagsto continue the execution of a stan-
dard universe job. Therefore, the machine (platform) updictva job executed and produced a
checkpoint limits the machines (platforms) which may usedheckpoint to continue job execution.
This platform-dependentinformation is no longer the olgioombination of architecture and oper-
ating system, but may include subtle items such as the differ between the normal, bigmem, and
hugemem kernels within the Linux operating system. Thisltesn the incorporation of a separate
expression to indicate the ability of a machine to resumecamtinue the execution of a job that has
produced a checkpoint. TREQUIREMENT8xpression is dependent on this information.

At a high level,IS _VALID _CHECKPOINTPLATFORMs an expression which becomes true
when a job’s checkpoint platform matches the current cheickimg platform of the machine. Since
this expression ianded with theSTARTexpression to produce tiREQUIREMENT8xpression, it
must also behave correctly when evaluating in the contejxtasf that are not standard universe.

In words, the current default policy for this expression:

Any non standard universe job may run on this machine. A stanérd universe job may
run on machines with the new checkpointing identification sgtem. A standard universe job
may run if it has not yet produced a first checkpoint. If a standard universe job has produced a
checkpoint, then make sure the checkpoint platforms betwaethe job and the machine match.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 255

The following is the default boolean expression for thisipol A JobUniverse value of 1
denotes the standard universe. This expression may bddulenrin the Condor configuration files.

IS_VALID_CHECKPOINT_PLATFORM =

(
((TARGET.JobUniverse == 1) == FALSE) ||

(
(MY.CheckpointPlatform =!= UNDEFINED) &&

(
(TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatf orm) ||
(TARGET.NumCkpts == 0)

)
)
)

IS VALID _CHECKPOINTPLATFORMSs a separate policy expression because the complex-
ity of IS _VALID _CHECKPOINTPLATFORMan be very high. While this functionality is con-
ceptually separate from the normaTART policies usually constructed, it is also a part of the
Requirements to allow the job to run.

3.5.4 TheRANK expression

A machine may be configured to prefer certain jobs over otheisg theRANKexpression. It is
an expression, like any other in a machine ClassAd. It cagreete any attribute found in either
the machine ClassAd or a request ad (normally, in fact, @&nefces things in the request ad). The
most common use of this expression is likely to configure ahimacto prefer to run jobs from the
owner of that machine, or by extension, a group of machinesdfer jobs from the owners of those
machines.

For example, imagine there is a small research group with éhinas called tenorsax, piano,
bass, and drums. These machines are owned by the 4 useemeoltyner, garrison, and jones,
respectively.

Assume that there is a large Condor pool in your departmentydu spent a lot of money on
really fast machines for your group. You want to implementodiqy that gives priority on your
machines to anyone in your group. To achieve this, seRiiBKexpression on your machines to
reference th®©wner attribute and prefer requests where that attribute matochef the people in
your group as in

RANK = Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

The RANKexpression is evaluated as a floating point number. Howdker,in C, boolean
expressions evaluate to either 1 or 0 depending on if theyRt¢E or FALSE. So, if this expression
evaluated to 1 (because the remote job was owned by one ofdfeened users), it would be a larger
value than any other user (for whom the expression wouldietalto 0).

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 256

A more complexRANKexpression has the same basic set up, where anyone fromrngoyr lgas
priority on your machines. Its difference is that the maehimvner has better priority on their own
machine. To set this up for Jimmy Garrison, place the folfayéntry in Jimmy Garrison’s local
configuration filebass.local

RANK = (Owner == "coltrane”) + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")

NOTE: The parentheses in this expression are important, be¢atisperator has higher default
precedence than “==".

The use of “+” instead of ‘| ” allows us to distinguish which terms matched and which ones
didn’t. If anyone not in the John Coltrane quartet was rugrarjob on the machine called bass, the
RANKwould evaluate numerically to 0, since none of the booleangevaluates to 1, and 0+0+0+0
still equals 0.

Suppose Elvin Jones submits a job. His job would match thishina (assuming th8 TART
was True for him at that time) and tHRANKwould numerically evaluate to 1. Therefore, Elvin
would preempt the Condor job currently running. Assume thtr Jimmy submits a job. The
RANKevaluates to 10, since the boolean that matches Jimmy gdtiplied by 10. Jimmy would
preempt Elvin, and Jimmy'’s job would run on Jimmy’s machine.

The RANKexpression is not required to reference @wener of the jobs. Perhaps there is one
machine with an enormous amount of memory, and others witlmueh at all. You can configure
your large-memory machine to prefer to run jobs with largemnory requirements:

RANK = ImageSize
That’s all there is to it. The bigger the job, the more this hiae wants to run it. It is an altruistic
preference, always servicing the largest of jobs, no muaitersubmitted them. A little less altruistic
is John’sRANKthat prefers his jobs over those with the largesagesize

RANK = (Owner == "coltrane" * 1000000000000) + Imagesize

This RANKbreaks if a job is submitted with an image size of mtbé? Kbytes. However, with that
size, thisRANKexpression preferring that job would not be Condor’s onlytpem!

3.5.5 Machine States

A machine is assigned stateby Condor. The state depends on whether or not the machine is
available to run Condor jobs, and if so, what point in the riiegions has been reached. The possible
states are

Owner The machine is being used by the machine owner, and/or isvadahle to run Condor
jobs. When the machine first starts up, it begins in this state

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd

257

Unclaimed The machine is available to run Condor jobs, but it is noteotly doing so.

Matched The machine is available to run jobs, and it has been matchéddebnegotiator with a
specific schedd. That schedd just has not yet claimed thisimacin this state, the machine
is unavailable for further matches.

Claimed The machine has been claimed by a schedd.

Preempting The machine was claimed by a schedd, but is now preemptingltie for one of the
following reasons.
1. the owner of the machine came back
2. another user with higher priority has jobs waiting to run
3. another request that this resource would rather servéouasl

Backfill The machine is running a backfill computation while waitingéither the machine owner

to come back or to be matched with a Condor job. This stateliseariered if the machine is
specifically configured to enable backfill jobs.

Figure 3.3 shows the states and the possible transitiomsbatthe states.

Preempting
Claimed

e T
D

Matched

Unclaimed
Backfill

Figure 3.3: Machine States

Each transition is labeled with a letter. The cause of eautsttion is described below.

* Transitions out of the Owner state

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 258

A The machine switches from Owner to Unclaimed wheneverSMART expression no
longer locally evaluates to FALSE. This indicates that thechine is potentially avail-
able to run a Condor job.

« Transitions out of the Unclaimed state

B The machine switches from Unclaimed back to Owner when&eS3TARTexpression lo-
cally evaluates to FALSE. This indicates that the machinmayvailable to run a Condor
job and is in use by the resource owner.

C The transition from Unclaimed to Matched happens whenelrercobndornegotiator
matches this resource with a Condor job.

D The transition from Unclaimed directly to Claimed also hapg if thecondornegotiator
matches this resource with a Condor job. In this casectirelorscheddreceives the
match and initiates the claiming protocol with the machirdobe thecondorstartd
receives the match notification from thendornegotiator

E The transition from Unclaimed to Backfill happens if the miaetis configured to run back-
fill computations (see section 3.12.9) and 8IBART.BACKFILL expression evaluates
to TRUE.

» Transitions out of the Matched state

F The machine moves from Matched to Owner if either 816ARTexpression locally evalu-
ates to FALSE, or if théIATCHTIMEOUT timer expires. This timeout is used to ensure
that if a machine is matched with a giveandorschedd but thatcondorschedddoes
not contact theondorstartdto claim it, that the machine will give up on the match and
become available to be matched again. In this case, sinceTTARTexpression does
not locally evaluate to FALSE, as soon as transiftos complete, the machine will im-
mediately enter the Unclaimed state again (via transi#ipriThe machine might also go
from Matched to Owner if theondorscheddattempts to perform the claiming protocol
but encounters some sort of error. Finally, the machine mvdlve into the Owner state
if the condorstartd receives a&ondorvacatecommand while it is in the Matched state.

G Thetransition from Matched to Claimed occurs whendbedor scheddsuccessfully com-
pletes the claiming protocol with ttmndorstartd

* Transitions out of the Claimed state

H From the Claimed state, the only possible destination iftleempting state. This transi-
tion can be caused by many reasons:

— Thecondorscheddhat has claimed the machine has no more work to perform and
releases the claim

— The PREEMPexpression evaluates to TRUE (which usually means the resou
owner has started using the machine again and is now usirketfmard, mouse,
CPU, etc)

— Thecondorstartdreceives a&ondorvacatecommand
— Thecondorstartdis told to shutdown (either via a signal ocandoroff command)

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 259

— The resource is matched to a job with a better priority (eithbetter user priority,
or one where the machine rank is higher)

 Transitions out of the Preempting state

I The resource will move from Preempting back to Claimed ifrémource was matched to a
job with a better priority.

J The resource will move from Preempting to Owner if PREEMPExpression had evalu-
ated to TRUE, iftondorvacatewas used, or if th&TARTexpression locally evaluates
to FALSE when thecondorstartd has finished evicting whatever job it was running
when it entered the Preempting state.

» Transitions out of the Backfill state

K The resource will move from Backfill to Owner for the follovgjmeasons:

— TheEVICT _BACKFILL expression evaluates to TRUE
— Thecondorstartdreceives a&ondorvacatecommand
— Thecondorstartdis being shutdown

L The transition from Backfill to Matched occurs whenever sougse running a backfill
computation is matched with@ndorscheddhat wants to run a Condor job.

M The transition from Backfill directly to Claimed is similay the transition from Unclaimed
directly to Claimed. It only occurs if theondorscheddzompletes the claiming protocol
before thecondotstartd receives the match notification from thendornegotiator

The Claimed State and Leases

When acondorscheddclaims acondorstartd, there is a claim lease. So long as the keep alive
updates from theondorscheddto the condorstartd continue to arrive, the lease is reset. If the
lease duration passes with no updates,dtwedor startd drops the claim and evicts any jobs the
condorscheddsent over.

The alive interval is the amount of time between, or the festpy at which theondorschedd
sends keep alive updates to etindorschedddaemons. An alive update resets the claim lease at
thecondorstartd Updates are UDP packets.

Initially, as when theondorscheddstarts up, the alive interval starts at the value set by time co
figuration variableALIVE _INTERVAL. It may be modified when a job is started. The job’s ClassAd
attributeJobLeaseDuration is checked. If the value afobLeaseDuration/3 is less than
the current alive interval, then the alive interval is setither this lower value or the imposed lowest
limit on the alive interval of 10 seconds. Thus, the alivemal starts aALIVE INTERVAL and
goes down, never up.

If a claim lease expires, theondorstartd will drop the claim. The length of the claim lease is
the job’s ClassAd attributdobLeaseDuration . JobLeaseDuration defaults to 20 minutes
time, except when explicitly set within the job’s submit degtion file. If JobLeaseDuration

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 260

is explicitly set to 0, or it is not set as may be the case for & Blervices job that does not define the
attribute, thenJobLeaseDuration is given the Undefined value. Further, when undefined, the
claim lease duration is calculated withAXCLAIM_ALIVES MISSED * alive interval

The alive interval is theurrentvalue, as sent by theondorschedd If the condorscheddreduces
the current alive interval, it does not update tomdorstartd

3.5.6 Machine Activities

Within some machine stateactivitiesof the machine are defined. The state has meaning regardless
of activity. Differences between activities are significarherefore, a “state/activity” pair describes
a machine. The following list describes all the possibléegtativity pairs.

« Owner

Idle This is the only activity for Owner state. As far as Condorasicerned the machine is
Idle, since it is not doing anything for Condor.

* Unclaimed

Idle This is the normal activity of Unclaimed machines. The maetis still Idle in that the
machine owner is willing to let Condor jobs run, but Condon@ using the machine
for anything.

Benchmarking The machine is running benchmarks to determine the speddsoomachine.
This activity only occurs in the Unclaimed state. How oftha &ctivity occurs is deter-
mined by the(RUNBENCHMARI€Spression.

* Matched
Idle When Matched, the machine is still Idle to Condor.
¢ Claimed

Idle In this activity, the machine has been claimed, but the stiieat claimed it has yet to
activatethe claim by requesting eondotstarter to be spawned to service a job. The
machine returns to this state (usually briefly) when jobsl (#rereforecondor starter)
finish.

Busy Once acondorstarter has been started and the claim is active, the machine moves to
the Busy activity to signify that it is doing something asd&arCondor is concerned.

SuspendedIf the job is suspended by Condor, the machine goes into tepeSuded activity.
The match between the schedd and machine has not been btto&eta{m is still valid),
but the job is not making any progress and Condor is no longeerating a load on the
machine.

Retiring When an active claim is about to be preempted for any reasenteérs retirement,
while it waits for the current job to finish. THdaxJobRetirementTime expression
determines how long to wait (counting since the time the jaited). Once the job
finishes or the retirement time expires, the Preempting s¢a¢ntered.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd

261

* Preempting The preempting state is used for evicting a Gojub from a given machine.
When the machine enters the Preempting state, it check&/&kieTVACATEexpression to
determine its activity.

Vacating In the Vacating activity, the job that was running is in theqass of checkpointing.
As soon as the checkpoint process completes, the machinesnmde either the Owner
state or the Claimed state, depending on the reason fordengstion.

Killing Killing means that the machine has requested the runninggadxit the machine
immediately, without checkpointing.

» Backfill

Idle The machine is configured to run backfill jobs and is ready tealdbut it has not yet
had a chance to spawn a backfill manager (for example, the B@INnt).

Busy The machine is performing a backfill computation.

Killing The machine was running a backfill computation, but it is ndiink the job to either
return resources to the machine owner, or to make room fogaae Condor job.

Figure 3.4 on pagde 262 gives the overall view of all machiagestand activities and shows the
possible transitions from one to another within the Congstem. Each transition is labeled with a
number on the diagram, and transition numbers referred tilisrmanual will bebold.

Various expressions are used to determine when and if mathesé state and activity transi-
tions occur. Other transitions are initiated by parts of @ndor protocol (such as when then-
dor_negotiatormatches a machine with a schedd). The following sectionritescthe conditions
that lead to the various state and activity transitions.

3.5.7 State and Activity Transitions

This section traces through all possible state and actikatysitions within a machine and describes
the conditions under which each one occurs. Whenever aticangccurs, Condor records when the
machine entered its new activity and/or new state. Thesestiane often used to write expressions
that determine when further transitions occurred. For gxdapenter the Killing activity if a machine
has been in the Vacating activity longer than a specified anaitime.

Owner State

When the startd is first spawned, the machine it represem¢ssethe Owner state. The machine
remains in the Owner state while the express®nOWNERs TRUE. If thelS _OWNERXxpression

is FALSE, then the machine transitions to the UnclaimecastBhe default value for this _ OWNER
expression is optimized for a shared resource

START =?= FALSE

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 262

Preempting) (Claimed)
Vacating 23 L _ldle
11
/22 yes | 10 :5\\‘
21 Want Busy
Vacate? \ 19/ W
ant
% y o 18 T Retiring j«13
no~Suspend?
\ 20 yos
o 14
16 y 15
________ ‘ 17 Suspended
‘ L

9
f 31 D Idle
Idle r/:sz’
o /Matched
30/ o6 —
‘ 57 Killing 8
Benchmarki
enchmarking Busy 28
Unclaimed .
\ < L Backfill

C) = State [_] =Activity <> = Policy expression evaluation

Figure 3.4: Machine States and Activities

So, the machine will remain in the Owner state as long asSth&RTexpression locally evaluates
to FALSE. Section 3.5.2 provides more detail on BiEART expression. If theSTART locally
evaluates to TRUE or cannot be locally evaluated (it evakitd UNDEFINED), transitiod occurs
and the machine enters the Unclaimed state. IBh®WNERXxpression is locally evaluated by the
machine, and should not reference job ClassAd attributegshwvould be UNDEFINED.

For dedicated resources, the recommended value fdSth@ WNERXxpression is FALSE.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 263

The Owner state represents a resource that is in use by ésaative owner (for example, if
the keyboard is being used). The Unclaimed state represergsource that is neither in use by
its interactive user, nor the Condor system. From Condariatpof view, there is little difference
between the Owner and Unclaimed states. In both cases, sbaroe is not currently in use by
the Condor system. However, if a job matches the resou&EARTexpression, the resource is
available to run a job, regardless of if it is in the Owner orcléimed state. The only differences
between the two states are how the resource shows apridotrstatusand other reporting tools,
and the fact that Condor will not run benchmarking on a reseun the Owner state. As long
as thelS _OWNERXxpression is TRUE, the machine is in the Owner State. WheilShOWNER
expression is FALSE, the machine goes into the Unclaimeig Sta

Here is an example that assumes thatanOWNERXxpression is not present in the configura-
tion. If the STARTexpression is

START = Keyboardldle > 15 * $(MINUTE) && Owner == "coltrane"

and ifKeyboardldle is 34 seconds, then the machine would remain in the Ownex. Stawvner
is undefined, andnything && FALSE is FALSE.

If, however, theSTARTexpression is
START = Keyboardldle > 15 » $(MINUTE) || Owner == "coltrane"

andKeyboardldle is 34 seconds, then the machine leaves the Owner state anthégdJn-
claimed. This is becauseALSE || UNDEFINED is UNDEFINED. So, while this machine is not
available to just anybody, if user coltrane has jobs sulemhjtthe machine is willing to run them.
Any other user’s jobs have to wait untleyboardidle exceeds 15 minutes. However, since
coltrane might claim this resource, but has not yet, the im@apoes to the Unclaimed state.

While in the Owner state, the startd polls the status of thehime everyUPDATEINTERVAL
to see if anything has changed that would lead it to a diffestate. This minimizes the impact on
the Owner while the Owner is using the machine. Frequentkingpup, computing load averages,
checking the access times on files, computing free swap ¢pkedime, and there is nothing time
critical that the startd needs to be sure to notice as soohteppens. If theSTARTexpression
evaluates to TRUE and five minutes pass before the startdasotihat’s a drop in the bucket of
high-throughput computing.

The machine can only transition to the Unclaimed state froen@wner state. It does so when
thelS _OWNERXxpression no longer evaluates to FALSE. By default, thapbas whetsTARTNo
longer locally evaluates to FALSE.

Whenever the machine is not actively running a job, it wilrtsition back to the Owner state if
IS _OWNERvaluates to TRUE. Once a job is started, the valusSaODWNERoes not matter; the
job either runs to completion or is preempted. Therefor@, yast configure the preemption policy
if you want to transition back to the Owner state from ClainBacby.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 264

Unclaimed State

If the IS _OWNERXpression becomes TRUE, then the machine returns to theeOstate. If
thelS _OWNERXxpression becomes FALSE, then the machine remains in tokaldred state. If
the IS _OWNERXpression is not present in the configuration files, thendéfault value for the
IS _OWNERXxpression is

START =7= FALSE

so that while in the Unclaimed state, if tf8TART expression locally evaluates to FALSE, the
machine returns to the Owner state by transiion

When in the Unclaimed state, thRUNBENCHMARKSexpression is relevant. If
RUNBENCHMARKS8aluates to TRUE while the machine is in the Unclaimed statn the ma-
chine will transition from the Idle activity to the Benchrkarg activity (transition3) and perform
benchmarks to determindIPS andKFLOPS When the benchmarks complete, the machine returns
to the Idle activity (transitiod).

The startd automatically inserts an attributastBenchmark , whenever it runs benchmarks,
so commonhRunBenchmarks is defined in terms of this attribute, for example:

BenchmarkTimer = (CurrentTime - LastBenchmark)
RunBenchmarks = $(BenchmarkTimer) >= (4 * $(HOUR))

Here, a macroBenchmarkTimer is defined to help write the expression. This macro holds the
time since the last benchmark, so when this time exceeds & hee run the benchmarks again.
The startd keeps a weighted average of these benchmarldulgsréo try to get the most accurate
numbers possible. This is why it is desirable for the startdih them more than once in its lifetime.

NOTE: LastBenchmark isinitialized to 0 before benchmarks have ever been run.aie the
condorstartd run benchmarks as soon as the machine is Unclaimed (if it biadane so already),
include a term usingastBenchmark as in the example above.

NOTE: If RUNBENCHMARKSdefined and set to something other than FALSE, the startd
will automatically run one set of benchmarks when it firsttstaip. To disable benchmarks, both
at startup and at any time thereafter, B&INBENCHMARKS FALSE or comment it out of the
configuration file.

From the Unclaimed state, the machine can go to four othesilplesstates: Owner (transition
2), Backfill/Idle, Matched, or Claimed/Idle.

Once thecondornegotiatormatches an Unclaimed machine with a requester at a givenldche
the negotiator sends a command to both parties, notifyiegitbf the match. If the schedd re-
ceives that notification and initiates the claiming progeduith the machine before the negotia-
tor's message gets to the machine, the Match state is skigmetthe machine goes directly to
the Claimed/ldle state (transitids). However, normally the machine will enter the Matchedestat
(transition6), even if it is only for a brief period of time.

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 265

If the machine has been configured to perform backfill jobe (®ection 3.12/9), while it is
in Unclaimed/ldle it will evaluate thE TART.BACKFILL expression. Onc8TARTBACKFILL
evaluates to TRUE, the machine will enter the Backfill/Idke (transitior¥) to begin the process
of running backfill jobs.

Matched State

The Matched state is not very interesting to Condor. Notéwan this state is that the machine lies
about itsSTARTexpression while in this state and says fRatjuirements areFalse to prevent
being matched again before it has been claimed. Also integess that the startd starts a timer to
make sure it does not stay in the Matched state too long. Ter ts set with theMATCHTIMEOUT
configuration file macro. It is specified in seconds and dé&faol 120 (2 minutes). If the schedd
that was matched with this machine does not claim it withia geriod of time, the machine gives
up, and goes back into the Owner state via transiioh will probably leave the Owner state right
away for the Unclaimed state again and wait for another match

At any time while the machine is in the Matched state, if iR Texpression locally evaluates
to FALSE, the machine enters the Owner state directly (tti@ms3).

If the schedd that was matched with the machine claims itreefeMATCHTIMEOUTexpires,
the machine goes into the Claimed/ldle state (transBjon

Claimed State

The Claimed state is certainly the most complex state. Ith@most possible activities and the most
expressions that determine its next activities. In addjtibecondorcheckpoinandcondorvacate
commands affect the machine when it is in the Claimed stategeheral, there are two sets of
expressions that might take effect. They depend on the s the request: standard or vanilla.
The standard universe expressions are the normal expness$ior example:

WANT_SUSPEND = True
WANT_VACATE = $(ActivationTimer) > 10 * $(MINUTE)
SUSPEND = $(KeyboardBusy) || $(CPUBusy)

The vanilla expressions have the stringANILLA’ appended to their names. For example:

WANT_SUSPEND_VANILLA = True
WANT_VACATE_VANILLA = True
SUSPEND_VANILLA = $(KeyboardBusy) || $(CPUBusy)

Without specific vanilla versions, the normal versions w#l used for all jobs, including vanilla
jobs. In this manual, the normal expressions are referentée difference exists for the the re-

Condor Version 7.2.3 Manual

3.5. Policy Configuration for theondorstartd 266

source owner that might want the machine to behave diffgrémt vanilla jobs, since they cannot
checkpoint. For example, owners may want vanilla jobs toai@rsuspended for longer than stan-
dard jobs.

While Claimed, th?OLLING.INTERVAL takes effect, and the startd polls the machine much
more frequently to evaluate its state.

If the machine owner starts typing on the console againbiést to notice this as soon as possible
to be able to start doing whatever the machine owner wankaapbint. For SMP machines, if any
slot is in the Claimed state, the startd polls the machingueatly. If already polling one slot, it
does not cost much to evaluate the state of all the slots z&tine time.

There are a variety of events that may cause the startd to ggttrid of or temporarily suspend
a running job. Activity on the machine’s console, load frother jobs, or shutdown of the startd via
an administrative command are all possible sources offgremce. Another one is the appearance
of a higher priority claim to the machine by a different Condeer.

Depending on the configuration, the startd may respond differently to activity on the ma-
chine, such as keyboard activity or demand for the cpu frootgsses that are not managed by
Condor. The startd can be configured to completely ignoré sativity or to suspend the job or
even to kill it. A standard configuration for a desktop maehmight be to go through successive
levels of getting the job out of the way. The first and leastlgds the job is suspending it. This
works for both standard and vanilla jobs. If suspending tiefpr a short while does not satisfy
the machine owner (the owner is still using the machine a&tspecific period of time), the startd
moves on to vacating the job. Vacating a standard univelsajmlves performing a checkpoint so
that the work already completed is not lost. Vanilla jobs seat asoft kill signalso that they can
gracefully shut down if necessary; the defaulBIS TERM If vacating does not satisfy the machine
owner (usually because it is taking too long and the ownetswdaeir machine backow), the final,
most drastic stage is reached: killing. Killing is a quiclatteto the job, using a hard-kill signal
that cannot be intercepted by the application. For vanilsjthat do no special signal handling,
vacating and killing are equivalent.

The WANTSUSPEN@xpression determines if the machine will evaluateSkksSPEN2xpres-
sion to consider entering the Suspended activity. WHENTVACATEexpression determines what
happens when the machine enters the Preempting statel diosd the Vacating activity or d